
Lecture 3: More on OpenMP

with application to a Monte Carlo solver

Mike Giles

Mathematical Institute

Mike Giles Lecture 3: More on OpenMP 1 / 30

False sharing

In the first lecture, we discussed cache lines and the problem of false
sharing in which different threads try to update different parts of the
same cache line.

In Practical 1 you saw the potential consequences of this for
OpenMP performance.

In real applications this is probably my most common concern, and
it’s hard to diagnose. This is why I check to see whether I am getting
a good fraction of peak performance; if I’m not, then I look to see if I
might have a false sharing problem.

Mike Giles Lecture 3: More on OpenMP 2 / 30

False sharing

Optimal approach – parallel outer j loop, vector inner i loop

cache line

execution
vector

-

6

i

j

Mike Giles Lecture 3: More on OpenMP 3 / 30

False sharing

Poor approach – parallel outer i loop, vector inner j loop

cache line

execution
vector

-

6

i

j

Mike Giles Lecture 3: More on OpenMP 4 / 30

Data movement

Going back to the optimal approach, for each vector the core loads 5
vectors of data from the L1 cache into vector registers, and writes 1.

This is 6 variables for each interior grid point, so in total it is
approximately

6×m2 × 8 bytes ≡ bytes1

Mike Giles Lecture 3: More on OpenMP 5 / 30

Data movement

The data needed for 1 row of the calculation is 3 rows of v1 plus
1 row of v2

4×m × 8 bytes ≈ 13kB

This sits comfortably within L1 cache, so when going back to
calculate the next row the only new information that needs to
be loaded in is 1 row of v1 plus 1 row of v2

2×m × 8 bytes

Summing over all of the calculation rows, the total amount of data
being moved from L2 cache into L1 cache is

2×m2 × 8 bytes ≡ bytes2

Mike Giles Lecture 3: More on OpenMP 6 / 30

Data movement

The total amount of data is

2×m2 × 8 bytes ≈ 2.5MB

This will easily sit inside the L3 cache, so there will be no data
transfer between the L3 cache and the main external DDR memory.

Dividing by the number of cores, this may be small enough that the
data being used by each thread can live within its private L2 cache
for that thread, so the L3 does not get used either.

Mike Giles Lecture 3: More on OpenMP 7 / 30

Practical 1

Sources of information on Core i5-9500 CPU in many teaching lab
machines – all found using Google:

https://ark.intel.com/content/www/us/en/ark/products/134895/
intel-core-i59500-processor-9m-cache-up-to-4-40-ghz.html

https://en.techpowerup.com/cpu-specs/core-i5-9500.c2094

https://en.wikichip.org/wiki/intel/core i5/i5-9500

https://wikichip.org/wiki/intel/microarchitectures/coffee lake

Mike Giles Lecture 3: More on OpenMP 8 / 30

Practical 1

From these I learned:

first sold Q2 2019, 6 cores, 3GHz

cache line 64 bytes, cache sizes: 32kB L1, 256kB L2, 9MB L3

each core has 2 AVX2 vector units (256 bit, not 512)

main memory bandwidth around 40 GB/s

bandwidth L1–regs probably 3 GHz × 64 bytes = 192 GB/s

compute = 6 × 2 × 2 × 4 × 3 GHz = 288 GFlop/s

Using 6 threads:

time = 0.28 secs

flops = 70 GFlop/s

L1-regs = 454 GB/s = 76 GB/s/core

L2-L1 = 181 GB/s = 30 GB/s/core

Mike Giles Lecture 3: More on OpenMP 9 / 30

Practical 1

Parallelising the inner loop is much worse.

Starting and stopping a large team of threads is expensive, so
generally best to parallelise outer loop unless that doesn’t offer
enough parallelism.

Following on from this brings us to ideas of parallel sections and
work sharing.

Mike Giles Lecture 3: More on OpenMP 10 / 30

Parallel sections
The OpenMP construct

#pragma omp parallel for ...

is really a concatenation of two different constructs:

#pragma omp parallel shared(...) private (...)

{

}

which defines a parallel section of code which is to be executed by
a team of threads, and

#pragma omp for

which is a work sharing directive to say that different threads in the
team should do different parts of the loop

Mike Giles Lecture 3: More on OpenMP 11 / 30

Parallel sections

Some experts argue strongly that it is bad programming practice to
use the concatenated form, but I like its simplicity and find it very
useful for lots of applications.

However, there are some applications for which the parallel section
approach is ideal.

Note that if there are no other pragmas in the parallel section then all
threads will execute the same code identically.

The RTL function omp_get_thread_num can be used to get a
thread ID (0 up to #threads−1), and this can be used to change
what each thread does.

Mike Giles Lecture 3: More on OpenMP 12 / 30

Work sharing
By default,

#pragma omp for

splits the execution of the subsequent loop into chunks of equal size
(or as close as possible) for the different threads to execute.

This can be changed by using a schedule “clause”

schedule(static) – the default

schedule(static,chunk_size) – similar but assigns the
specified chunk sizes round-robin to each thread (useful
sometimes when work per loop element varies)

schedule(dynamic,chunk_size) – similar again, but new
chunks are assigned when previous ones are completed (again
useful for variable work, but loses cache reuse between loops)

see documentation for other alternatives (guided, auto, runtime)

Mike Giles Lecture 3: More on OpenMP 13 / 30

Reductions

As well as addition, the reduction clause can handle ∗, −, max, min
and various logical operators.

It is even possible to define your own reduction operator.

The latest OpenMP version 4.5 extends the syntax to arrays so that

reduction(+:array[:10])

will apply the reduction operation to an array of length 10.

i.e. each loop element is creating an array of length 10, and these are
all being added to together to create a overall sum array of length 10.

Note: Intel compiler icc version 18.0 is needed for this.

Mike Giles Lecture 3: More on OpenMP 14 / 30

Nested parallelism

So far I have only described a single level of parallelism.

Some implementations also support nested parallelism in which, for
example, one might start with a team of 4 threads, and then each of
those can in turn generate a team of 5 threads so that now there are
20 threads in total.

This has the potential to get very confusing, and may have little
benefit in most situations, but may be very useful in some.

(This is something which developers of mathematical libraries worry
about. For high performance they want to use multithreading, but
they don’t know whether the higher-level application is already doing
multi-threading.)

Mike Giles Lecture 3: More on OpenMP 15 / 30

Nested parallelism
One example is a 3D grid application:

for (int k=0; k<K; k++) {

for (int j=0; j<J; j++) {

for (int i=0; i<I; i++) {

u2[i+I*j+I*J*k] =

}

}

}

If K =100 and there are 72 threads then parallelising the outer loop
is poor

some threads do 1 value of k , and some do 2
(poor load-balancing)

all threads will be reading lots of data from neigbouring threads
(poor data locality)

Mike Giles Lecture 3: More on OpenMP 16 / 30

Nested parallelism

One possibility is to manually collapse/merge the outer two loops

for (int jk=0; jk<J*K; jk++) {

for (int i=0; i<I; i++) {

u2[i+I*jk] =

}

}

This addresses the load-balancing problem, but not data access
problem.

OpenMP has a collapse(2) clause which has a similar effect.

Mike Giles Lecture 3: More on OpenMP 17 / 30

Nested parallelism

An alternative is to use 12-way parallelism on the k loop, and then
6-way parallelism on the j loop.

omp_set_num_threads(12);

#pragma omp parallel for shared(...)

for (int k=0; k<K; k++) {

omp_set_num_threads(6);

#pragma omp parallel for shared(...)

for (int j=0; j<J; j++) {

for (int i=0; i<I; i++) {

u2[i+I*j+I*J*k] =

}

}

}

Mike Giles Lecture 3: More on OpenMP 18 / 30

Nested parallelism

It can also be implemented using num_threads clauses:

#pragma omp parallel for shared(...) num_threads(12)

for (int k=0; k<K; k++) {

#pragma omp parallel for shared(...) num_threads(6)

for (int j=0; j<J; j++) {

for (int i=0; i<I; i++) {

u2[i+I*j+I*J*k] =

}

}

}

Both of these are likely to be much better than loop collapsing, but I
have not tried either myself!

Mike Giles Lecture 3: More on OpenMP 19 / 30

SIMD parallelism

In Practical 1, the compiler automatically vectorised the innermost
loop.

Sometimes it is necessary to force (or at least strongly encourage)
the compiler to use vectorisation by using the pragma

#pragma omp simd

which has an optional clause simdlen(length)

(SIMD = Single Instruction Multiple Data)

Mike Giles Lecture 3: More on OpenMP 20 / 30

Global scope variables

Global variables are defined outside the main program or any function,
and have a global scope – means they can be referenced anywhere.

I often use this for constants, set once and then used throughout the
application. I almost never use it for variables which are repeatedly
changed – I pass these through function argument lists.

In OpenMP, by default such variables are shared variables.

There is a special threadprivate capability to declare them as
private, creating separate copies for each thread – very rarely needed
but very useful when it is.

Mike Giles Lecture 3: More on OpenMP 21 / 30

OpenMP RTL

The full list of functions is available here:

https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-
and-reference-openmp-run-time-library-routines

There are about 30, but I have already mentioned all of those
that I have used myself.

Mike Giles Lecture 3: More on OpenMP 22 / 30

Environment variables

The full list of environment variables is available here, as part of a
bigger list of environment variables recognised at run-time:

https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-
and-reference-supported-environment-variables

This includes the following:

OMP_DYNAMIC which controls whether the number of threads
can be adjusted dynamically (default: FALSE)

OMP_NESTED which controls whether nested parallelism is
allowed (default: FALSE)

OMP_PLACES which controls the placement of threads on cores

Mike Giles Lecture 3: More on OpenMP 23 / 30

Practical 2

Practical 2 is a Monte Carlo solver in which we want to compute∑
n

Xn,
∑
n

X 2
n

where the Xn are each generated using different random numbers.

High-level view:

trivially parallel, just needs final top-level reduction

each threads needs its own random number generator

should use Intel MKL library to generate random numbers
efficiently in chunks

chunks should be big enough for good compute performance,
but small enough to stay in L2 cache for good bandwidth

Mike Giles Lecture 3: More on OpenMP 24 / 30

Practical 2

/* each OpenMP thread has its own VSL RNG and storage */

#define NRV 16384 // number of random variables

VSLStreamStatePtr stream;

float *uniforms, *normals;

int uniforms_count, normals_count;

#pragma omp threadprivate(stream, uniforms,uniforms_count, \

normals, normals_count)

Here we use threadprivate to define separate generators
for each thread. NRV will be the size of arrays uniforms and
normals, chosen to hold the random numbers within each L2 cache.

Mike Giles Lecture 3: More on OpenMP 25 / 30

Practical 2

//

// RNG routines

//

void rng_initialisation(){

int tid = omp_get_thread_num();

vslNewStream(&stream, VSL_BRNG_MRG32K3A,1337);

long long skip = ((long long) (tid+1)) << 48;

vslSkipAheadStream(stream,skip);

uniforms = (float *)malloc(NRV*sizeof(float));

normals = (float *)malloc(NRV*sizeof(float));

uniforms_count = 0; // means no random numbers

normals_count = 0; // in the arrays currently

}

Mike Giles Lecture 3: More on OpenMP 26 / 30

Practical 2

void rng_termination(){

vslDeleteStream(&stream);

free(uniforms);

free(normals);

}

inline float next_normal(){

if (normals_count==0) {

vsRngGaussian(VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2,

stream,NRV,normals,0.0f,1.0f);

normals_count = NRV;

}

return normals[--normals_count];

}

Mike Giles Lecture 3: More on OpenMP 27 / 30

Practical 2

int main(int argc, char **argv)

{

float T=1.0f, X0=1.0f, mu=0.05f, sigma=0.2f, dt;

double sum1=0.0, sum2=0.0;

int M = 200; /* number of timesteps */

int N = 9600000; /* total number of MC samples */

dt = T / ((float) M);

// initialise generator, with separate storage for each

// thread when compiled for OpenMP

#pragma omp parallel

rng_initialisation();

Mike Giles Lecture 3: More on OpenMP 28 / 30

Practical 2

#pragma omp parallel for default(none) \

shared(T,X0,mu,sigma,dt,M,N) \

reduction(+:sum1,sum2)

for (int n=0; n<N; n++) {

float X = X0;

for (int m=0; m<M; m++) {

float delW = sqrtf(dt)*next_normal();

X = X + X*(mu*dt + sigma*delW);

}

sum1 += X;

sum2 += X*X;

}

Mike Giles Lecture 3: More on OpenMP 29 / 30

Final comments

this lecture covered more advanced / exotic features – don’t feel
that you need to understand and use all of them

concentrate on the fundamentals, and then expand into using
the more advanced ones purely as needed

remember to check on the web for examples, or talk to others
with more experience

always monitor your performance to assess whether you are
doing a good job

Mike Giles Lecture 3: More on OpenMP 30 / 30

