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Algorithm 955: approximation of the inverse Poisson cumulative
distribution function

Michael B. Giles, University of Oxford

New approximations for the inverse of the incomplete gamma function are derived, and these are used to
develop efficient evaluations of the inverse Poisson cumulative distribution function. An asymptotic approx-
imation based on the standard Normal approximation is particularly good for CPUs with MIMD cores, while
for GPUs and other hardware with vector units a second asymptotic approximation based on Temme’s ap-
proximation of the incomplete gamma function is more efficient due to conditional branching within each
vector. The accuracy and efficiency of the software implementations is assessed on both CPUs and GPUs.
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1. INTRODUCTION

Poisson random variables are used in a wide variety of applications, as diverse as the
simulation of queueing systems [Gross et al. 2008] and stochastic biochemical reaction
modelling [Gillespie 2007]. We are motivated by applications which do not have a fixed
Poisson rate λ, so we aim to develop a method which is efficient at handling a different
λ for each Poisson random variable N .

The cumulative distribution function (CDF) for Poisson rate λ is defined as

C(n) ≡ P(N ≤ n) = e−λ
n∑

m=0

λm

m!
. (1)

We are interested in evaluating the inverse CDF defined as

C
−1

(u) = n, (2)

where n is the smallest integer such that

u ≤ e−λ
n∑

m=0

λm

m!
. (3)
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Alternatively, it is the smallest integer n such that

1−u ≥ e−λ
∞∑

m=n+1

λm

m!
. (4)

Given this inverse CDF, we can generate a random variable U which is uniformly
distributed on the open unit interval (0, 1) and then compute the Poisson variate

N = C
−1

(U). There are alternative approaches to generating Poisson random variables
based on rejection methods [Ahrens and Dieter 1982] or a recursion [Devroye 1991],
but the advantage of this approach is that it can also be used with quasi-random uni-
forms, and with variance reduction approaches such as stratified and Latin Hypercube
sampling [Asmussen and Glynn 2007; Glasserman 2004].

When λ is relatively small, which we take to be λ ≤ 4, the most efficient approach to

evaluating C
−1

(u) is to use either (3) or (4). The former approach, usually referred to
as “bottom-up” summation, has lower floating point rounding errors when u< 1

2 , while

the latter approach (“top-down” summation) is usually more accurate when u > 1
2 .

Practical implementation issues will be discussed later.

Most of this paper is devoted to the case of large λ. Suppose that X is a real positive
random variable with a CDF corresponding to the (regularised) incomplete Gamma
function

C(x) ≡ P(X < x) =
1

Γ(x)

∫
∞

λ

e−t tx−1 dt.

If N = ⌊X⌋ denotes X rounded down to the nearest integer, then integration by parts
reveals that

P(N ≤ n) = P(X < n+1) =
1

n!

∫
∞

λ

e−t tn dt = e−λ
n∑

m=0

λm

m!
.

Hence, N has a Poisson distribution with rate λ, and C
−1

(u) = ⌊C−1(u)⌋, as illustrated
in Figure 1.

Note that this inverse, C−1(u), is different to the one considered in the literature
[Temme 1992], which considers the inverse with respect to λ rather than x.

The next two sections of the paper derive two approximations Q̃(u) to the quantile
function Q(u) ≡ C−1(u). Before deriving the approximations and discussing their ac-
curacy, we first address the question of how much accuracy is desired.

Suppose that
∣∣∣Q̃(u)−Q(u)

∣∣∣ < δ for some δ < 1
2 . We then have

Q(u) ∈
(
Q̃(u)−δ, Q̃(u)+δ

)
,

and hence

n = ⌊Q(u)⌋ ∈
[
⌊Q̃(u)−δ⌋, ⌊Q̃(u)+δ⌋

]
.

Since δ < 1
2 , the interval contains at most two integer values. It contains only one in-

teger with a probability which is approximately 1−2δ, assuming that Q(u) − ⌊Q(u)⌋
is approximately uniformly distributed. In this case, n = ⌊Q̃(u)⌋. In the other case in

which the interval includes two integer values then m = ⌊Q̃(u)+δ⌋ is equal to either
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Fig. 1. Plot of C(x) and C(x) for λ=10, and an illustration of the rounding down of C−1(u) to give C
−1

(u).

Table I. Average CPU and GPU costs, relative to CC , for two different

approximations Q̃(u).

δ=0.01, CQ/CC = 0.1 δ=0.0001, CQ/CC = 0.2

CPU cost 0.1 + 0.02 = 0.12 0.2 + 0.0002 = 0.2002

GPU cost 0.1 + 0.48 = 0.58 0.2 + 0.0064 = 0.2064

n or n+1. We can distinguish between these two possibilities by evaluating C(m), as-
suming that we have an efficient way of doing this. If C(m) < u, then n = m, otherwise
n = m−1.

If the costs of evaluating Q̃(u) and C(m) are CQ and CC , respectively, then the av-
erage cost is approximately CQ + 2 δ CC . This raises an interesting tradeoff; a more

accurate approximation Q̃(u) will reduce δ, but may increase CQ, so it is not clear
whether it will improve the overall average cost.

This simple analysis has assumed an execution on conventional MIMD CPU cores,
with each core operating independently. Execution on functional units within an
NVIDIA GPU has a SIMD style in which 32 threads in a warp all execute the same
instruction at the same time, but using different data [NVIDIA 2014]. When there is
conditional branching, effectively all of the threads still perform the same operation,
but only some of the threads store the result. This is known as warp divergence and
results in a significant loss of performance. In the algorithm described above, if any
one of the threads needs to evaluate C(m) then effectively all of them execute that
code. The probability that at least one thread needs to evaluate C(m) is approximately
(1− (1−2 δ)32 ≈ 64 δ, if δ ≪ 1, and so the average cost becomes

CQ +
(
1− (1−2 δ)32

)
CC ≈ CQ + 64 δ CC if δ ≪ 1.

Table I presents the consequences of this analysis for two different approximations

Q̃(u). The first gives δ = 0.01 at a relative cost CQ/CC = 0.1, while the second more
accurate approximation gives δ = 0.0001 at double the cost, CQ/CC = 0.2. For CPU
execution the first approximation gives the lowest average cost, while for GPU execu-
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tion the second is more efficient. This motivates the development of the two different
approximations in the next two sections.

In addition, single-precision arithmetic is 3-24 times faster than double-precision on
GPUs, and therefore we develop both single-precision and double-precision approxi-
mations and implementations for the GPU. Note as well that each core in the latest
Intel CPUs also has an AVX vector unit which operate on 256-bit vectors (8 single-
precision or 4 double-precision variables) [Intel 2014]. Most application codes do not
use these at present, but as they become used more in the future, and as the vec-
tor length increases, then the approximations developed in this paper for GPUs may
become equally relevant to CPUs.

A final preliminary comment concerns the range of finite precision floating point
variables u satisfying the inequailities 0<u<1. In single precision, the smallest value
is approximately 10−38, while the largest value is approximately 1− 6×10−8. Hence,
the single precision approximations to be developed will be tested over the “full single
precision range” defined as [10−38, 1− 6×10−8].

The corresponding double precision range would be [10−308, 1−10−16]. This provides
much greater resolution of the tail of the probability distribution near u= 0 than the
other tail near u = 1. To provide equal resolution of both tails, we choose to define a

second function C
−1

c (v) for the inverse of the complementary Possion CDF, defined by

Cc(n) = 1− Cc(n) =⇒ C
−1

c (v) = C
−1

(1−v).

Implementing double precision approximations for both C
−1

(u) and C
−1

c (v), the input
v can take values as small as 10−308, so we are now able to sample both tails equally.
Hence, the “full double precision range” which is used for testing the approximations
will be [10−308, 1−10−308].

2. NORMAL ASYMPTOTIC APPROXIMATION

It is well known that as λ → ∞ the Poisson CDF approaches that of a Normal distri-
bution with mean λ and variance λ. This motivates the change of variables

x = λ+
√
λ y, t = λ+

√
λ (y−z),

which gives

C(x) =
1√
2π

∫ y

−∞

I(y, z) dz,

where

log I = 1
2 log(2π)− log Γ(x)− t+ (x−1) log t− 1

2 log λ.

Defining ε = λ−1/2, an asymptotic expansion in powers of ε, followed by exponentiation
and a second expansion in powers of ε, yields

I(y, z) = exp(− 1
2z

2)

(
1 +

∞∑

n=1

εnpn(y, z)

)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article XXXX, Publication date: May 2015.
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Fig. 2. Errors in Normal approximations Q̃N1, Q̃N2, Q̃N3, for x=10, 100 and |w|≤3.

where each of the pn(y, z) is a polynomial in both y and z. Integrating this by parts
gives

C(x)=Φ(y) + φ(y)
(
ε (− 1

3 − 1
6 y

2) + ε2( 1
12y +

1
72 y

3 − 1
72 y

5)

+ ε3(− 1
540 − 23

540 y
2 + 7

2160 y
4 + 5

648 y
6 − 1

1296 y
8) +O(ε4)

)

where Φ(y) is the standard Normal CDF function, and φ(y) = Φ′(y) = exp(− 1
2y

2)/
√
2π

is the standard Normal probability density function. Inverting this expansion, using
the methodology presented in Appendix A, gives the asymptotic expansion

Q(u) ≡ C−1(u) = λ +
√
λ w + ( 13 + 1

6 w
2) + λ−1/2 (− 1

36 w − 1
72 w

3)

+ λ−1(− 8
405 + 7

810 w
2 + 1

270w
4) + O(λ−3/2),

where w = Φ−1(u).
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Fig. 3. Maximum errors for Normal approximations Q̃N1, Q̃N2, Q̃N3, for |w|≤3.

The asymptotic expansions given above were performed using MATLAB’s Symbolic
Toolbox. Additional validation is provided by Figures 2 and 3 which display the errors
corresponding to the three approximations:

Q̃N1(u) = λ+
√
λ w + ( 13 + 1

6 w
2)

Q̃N2(u) = Q̃N1(u) + λ−1/2 (− 1
36 w − 1

72 w
3)

Q̃N3(u) = Q̃N2(u) + λ−1(− 8
405 + 7

810 w
2 + 1

270 w
4)

The errors are calculated for values of w in the range [−3, 3], corresponding to 3 stan-
dard deviations of the Normal distribution. The probability of being outside this range
is less than 0.3%, assuming u is uniformly distributed over (0, 1). In the rare cases
in which w is outside this range, the algorithm from the next section can be used to
approximate Q(u).

For each pair x,w, we compute u = Φ(w), and use the MATLAB function gammaincinv
to determine the value of λ for which C(x) = u. The error is then defined as

Q̃(u)−Q(u) ≡ Q̃(u)−x. Figure 3 uses a lower limit of x= 10 because if the computed
approximation for x is less than 10, we will instead use bottom-up summation, based
on (3), to determine the inverse Poisson CDF value.

Comparing the approximations Q̃N2 and Q̃N3, it suggests that a possible bound for

the error in Q̃N2 is

δ = λ−1( 1
40 + 1

80 w
2 + 1

160 w
4).

Figure 4 shows the relative error (Q̃N2−Q)/δ for x = 10, 100. The maximum relative
error, over the same x range as before, does not exceed 0.85 for all x ≥ 10. If w is
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Fig. 4. Relative error of approximation Q̃2 for x=10, 100.

Normally distributed with zero mean and unit variance, then the expected value of δ
is λ−1( 1

40 + 1
80 + 3

160 ) =
9

160 λ
−1, so that even when λ=4 there is less than a 3% chance

of Q̃N2(u) giving a value which is within δ of an integer value, leading to uncertainty
about its correct rounding and hence requiring the additional check described in the
Introduction.

3. TEMME ASYMPTOTIC APPROXIMATION

The Normal asymptotic approximations derived in the previous section have two major
shortcomings. One is that they converge very slowly since the asymptotic expansion is
in powers of λ−1/2, and the other is that they are very inaccurate when |w| is large.

Both of these shortcomings are addressed by starting from an expansion due to
Temme [Temme 1979]. The leading order term in the expansion is

C(x) ≈ Φ(−
√
x η),

where

η =

√
2

(
λ

x
− 1− log

λ

x

)
, (5)

with the square root being chosen to have the same sign as λ−x. i.e. η > 0 if λ > x, and
η < 0 if λ < x. Hence, if u = C(x) and w = Φ−1(u) then −√

x η ≈ w, and therefore x is
given (approximately) by the equation

√
2x

(
λ

x
− 1− log

λ

x

)
= w

with the square root being chosen to match the sign of w. Equivalently,
√
2
(
1− x

λ
+

x

λ
log

x

λ

)
=

w√
λ

so if we define r = x/λ and also define

f(r) ≡
√
2 (1− r + r log r),

with the sign of the square root matching the sign of r−1, then

r = f−1(w/
√
λ).
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Fig. 5. The function f(r).

Hence, if u = C(x) = Φ(w), then to leading order we have x = λ r where r = f−1(w/
√
λ).

The function f(r) is plotted in Figure 5. Given w/
√
λ, the value r = f−1(w/

√
λ) can

be obtained by a Newton iteration, requiring 4 – 6 iterations typically to achieve full
double precision accuracy. Alternatively, as we will discuss later, it can be obtained
from a high order polynomial approximation to f−1(s). The minimum value of f(r) is
−
√
2. If s<−

√
2 then f−1(s) can be defined to equal zero. This will give x=0 which will

lead to the use of bottom-up summation to determine the inverse Poisson CDF value.

Putting x = λ r, Temme derives a uniform asymptotic expansion which can be ex-
pressed in the form

C(λ r) = Φ(λ
1

2 f(r)) + λ−
1

2 φ(λ
1

2 f(r))
∞∑

n=0

λ−n an(r).

Differentiating this gives

C ′(λ r) = λ−1 ∂

∂r

{
Φ(λ

1

2 f(r)) + λ−
1

2 φ(λ
1

2 f(r))

∞∑

n=0

λ−n an(r)

}

= λ−
1

2 φ(λ
1

2 f(r))

{
f ′(r) +

∞∑

n=0

λ−n
(
λ−1a′n(r)− f(r)f ′(r) an(r)

)}
,

and we can prove inductively that the mth derivative has the form

C(m)(λ r) = λ−
1

2 φ(λ
1

2 f(r))

∞∑

n=0

λ−n bm,n(r),

where, due to the fact that φ′(x) = −xφ(x),

bm,0(r) = (− f(r)f ′(r))
m−1

(f ′(r)− f(r)f ′(r) a0(r)) .

We have already shown that if u = C(x) = Φ(w), and r = f−1(w/
√
λ), then to leading

order x ≈ λ r. We now seek an asymptotic expansion of the form

x = λ r + p(λ, r), p(λ, r) ≡
∞∑

n=0

λ−n cn(r).
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We have

u = C(x)

= C(λ r + p(λ, r))

= C(λ r) +

∞∑

m=1

pm(λ, r)

m!
C(m)(λ r)

= Φ(λ
1

2 f(r)) + λ−
1

2 φ(λ
1

2 f(r))
∞∑

n=0

λ−n an(r) +
∞∑

m=1

pm(λ, r)

m!
C(m)(λ r).

However Φ(λ
1

2 f(r)) = Φ(w) = u, and so cancelling this term leaves

λ−
1

2 φ(λ
1

2 f(r))
∞∑

n=0

λ−n an(r) +
∞∑

m=1

pm(λ, r)

m!
C(m)(λ r) = 0,

from which the functions cn(r) may be determined by matching the coefficients for each

power of λ. Considering the coefficients corresponding to the leading order power λ−
1

2

gives

a0(r) +

∞∑

m=1

cm0 (r)

m!
(−f(r)f ′(r))

m−1
(f ′(r)− f(r) f ′(r) a0(r)) = 0,

and hence

a0(r) +
(
1− exp (−f(r) f ′(r) c0(r))

)( 1

f(r)
− a0(r)

)
= 0.

Re-arranging this gives c0(r) = (f(r) f ′(r))
−1

log (1− f(r) a0(r)) . Since f(r) f ′(r) =
1
2 (f(r)

2)′ = log r, and Temme’s paper [Temme 1979] gives

a0 =

√
r

1− r
+

1

f(r)
,

we finally obtain

c0(r) =
log ( f(r)

√
r/(r−1) )

log r
.

This gives us the approximation

Q̃T1(u) = λ r + c0(r),

where r = f−1(w/
√
λ) and w = Φ−1(u).

To check that this is consistent with the Normal asymptotic expansion derived in
the previous section, note that a Taylor series expansion of f(r) around r=1 gives

f(r) = (r−1)− 1
6 (r−1)2 + 5

72 (r−1)3 +O((r−1)4),

from which it follows that

f−1(w/
√
λ) = 1 + w/

√
λ+ 1

6 (w/
√
λ)2 − 1

72 (w/
√
λ)3 +O(λ−2).

Furthermore, a Taylor series expansion of c0(r) around r=1 gives

c0(r) =
1
3 − 1

36 (r−1) +O((r−1)2),

ACM Transactions on Mathematical Software, Vol. V, No. N, Article XXXX, Publication date: May 2015.
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Fig. 6. Error in Q̃T1, Q̃T2 approximations based on Temme expansion.
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Fig. 7. Maximum error in Q̃T1, Q̃T2 approximations over the single precision range.

and hence we obtain

Q̃T1(u) = λ+ λ1/2 w + ( 13 + 1
6 w

2) + λ−1/2 (− 1
36 w − 1

72 w
3) + O(λ−1),

which matches the leading order terms in the Normal asymptotic expansion.

The advantage of this new approximation, compared to the Normal asymptotic ap-

proximation Q̃N2 is its accuracy over the full range of possible values for w, not
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just |w| < 3. The top plots in Figure 6 show the error in this Q̃T1 approximation for
x = 10, 100 and u taking values in the single precision range [10−38, 1− 6×10−8].

Based on the form of the error, and bearing in mind that the Normal asymptotic
analysis gave

Q̃N3(
1
2 ) = λ+ 1

3 − 8
405 λ

−1

some numerical experimentation led to an ad-hoc correction giving the improved ap-
proximation

Q̃T2(u) = Q̃T1(u)−
0.0218

Q̃T1(u) + 0.065λ
.

The bottom plots in Figure 6 show that this is significantly more accurate. Figure 7
plots the maximum errors for the two approximations as a function of x over the single

precision range of values for u.. A bound on the maximum error in Q̃T2 over the full
double precision range for u is given by δ = 0.01/x, and further testing shows that this
same bound applies also to the double precision range [10−308, 1−10−308].

The cost of evaluating the functions c0(r) and f−1(s) can be reduced greatly by con-
structing polynomial approximations for 0.4 < r < 3.25 (most of the range plotted in
Figure 5) and smin<s<smax with smin=f(0.4)≈−0.6834, smax=f(3.25)≈1.778.

Since f−1(s) = 1+ s+ 1
6s

2+O(s3), the polynomial approximation to f−1(s) is defined
to be a degree 14 polynomial

p1(s) = 1 + s+ 1
6s

2 +

14∑

n=3

ans
n,

with the coefficients an chosen through a weighted least-squares minimisation. The
left-hand plot in Figure 8 shows the resulting error over the corresponding s interval.

Similarly, since c0(r) = 1
3 + O(r), the approximation to c0(r) is defined to be the

degree 12 polynomial

p2(r) =
1
3 +

12∑

n=1

bnr
n,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article XXXX, Publication date: May 2015.
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Fig. 9. Error in Q̃T3 approximation based on Temme expansion.
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Fig. 10. Maximum error in Q̃T3 approximation based on Temme expansion.

with the coefficients bn again chosen through a weighted least-squares minimisation.
The right-hand plot in Figure 8 shows the resulting error.

In addition to these polynomial approximations to f−1(s) and c0(r), we improve the
approximation of Q(u) by defining

Q̃T3(u) = λ r + p2(r) + p3(r)/λ,

where r = p1(w/
√
λ) = p1(Φ

−1(u)/
√
λ). Here p3(r) is a degree 10 polynomial with

coefficients chosen through a weighted least-squares minimisation, minimising the
difference from Q(u) over the range 0.4<r<3.25, 10≤λ≤100.

Figures 9 and 10 show the errors in this new approximation. The Q̃T3 approximation
can use the error bound δ = 2×10−6.
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Fig. 11. Error and relative error in Temme approximation for C(x) for x=10, 100.

4. EVALUATION OF C(X) FOR X ≥ 10

In the rare cases when the approximations are not sufficiently precise to know which
integer to round to, it becomes necessary to evaluate C(x) for integer values of x ≥ 10.

If λ/2≤x≤2λ, then Temme’s 1987 algorithm [Temme 1987] can be used with N=12
terms (see [Temme 1987] for full details). If x ≤ λ/2, then since x is an integer we can
use C(x) = C(x−1) and use a simple summation, starting at x−1 and then working
downwards. The ratio of successive terms in the summation is less than 1/2, because
x ≤ λ/2, so no more than 50 terms will be required to achieve full double precision
accuracy. Similarly, if x ≥ 2λ, we can compute 1−C(x) by summing upwards, starting
at x and finishing when the increments become negligible. These summations require
the computation of exp(−λ)λx−1 /Γ(x), which is discussed in Appendix B.

This is similar to the implementation of the incomplete gamma function in the NAG
mathematical library [NAG 2014b], which uses Temme’s method when x ≥ 20 and
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Fig. 12. Maximum relative error in Temme approximation for C(x).

0.7x≤ λ≤ 1.4x, and otherwise follows the approach due to Gautschi [Gautschi 1979].
Other references on computing the incomplete gamma function include [Temme 1994;
Winitzki 2003].

Figure 11 plots the error compared to MATLAB’s gammainc function for x = 10, 100,
and λ in the range corresponding to the full range of double precision values u in the
open interval (0, 1).

Figure 11 also shows the error relative to C ′(x), which gives an estimate for the
equivalent error in x since ∆x ≈ ∆C/C ′(x). Figure 12 plots the maximum relative
error over a range of values for x. The irregular nature of the error suggests it is due
to floating point rounding error, not the error in Temme’s asymptotic approximation,
and further investigation confirms it is due to the rounding error in computing η, as
defined in (5).

5. BOTTOM-UP AND TOP-DOWN SUMMATION

As explained in the Introduction, it is standard to use bottom-up summation when
u ≤ 1

2 , and top-down summation for u > 1
2 , because this gives the greatest accuracy.

However, when executing on a GPU, this approach almost doubles the computational
cost because some of the 32 threads in a warp will perform the bottom-up summation,
while others work top-down, and so the computational cost is the sum of the two.

Instead, we use bottom-up summation for all values of u, but monitor the accuracy
when u > 1

2 to check whether it is necessary to re-do the calculation with a top-down
summation. Given a bound δ on the maximum summation error, if we define

Sn=exp(−λ)

n∑

m=0

λm

m!
,

then when Sn−1+δ < u < Sn−δ, we know that n is the correct value despite the floating
point errors in the computation of Sn−1 and Sn, whereas if Sn−δ < u < Sn+δ, we
switch to top-down summation to determine the correct value. The pseudo-code to do
this, starting from n = 0 is :
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a := exp(−λ);
S := a;
while S + δ < u do

n := n+ 1;
a := a λ/n;
S := S + a;

end
if S − δ > u then

return n;
else

perform top-down summation instead
end

When u≤ 1
2 , δ is set to zero since the bottom-up summation gives the best accuracy.

For u > 1
2 , we use δ = 10−6 for single precision arithmetic. This is because we use

bottom-up summation only for n up to approximately 10, giving a maximum of 20
floating point operations, each with a maximum relative error of 5× 10−8. This bound
assumes the worst-case scenario in which each of the rounding errors has the same
sign, and has been verified by exhaustive investigation of the accumulated errors in

computing exp(−λ)
∑50

m=1
λm

m! for 1 < λ < 10. Given 10 possible return values, each
with an exclusion zone of width 2×10−6, then if u is uniformly distributed on (0, 1)
this gives a probability of approximately 2×10−5 that the single precision bottom-up
summation will fail to return a value, and we will instead have to proceed to the top-
down summation to determine the correct value for n.

For double precision, we use δ=10−13 when u> 1
2 .

One drawback of the bottom-up algorithm is that it requires a relatively expensive
division by n in each iteration. This can be avoided by subtracting u−δ from S, and
then dividing both S and δ by the factor exp(−λ) λn/n! (which changes during the
calculation as n increases) resulting in:

S := 1− exp(λ) (u−δ);
δ := exp(λ) δ;
while S < 0 do

n := n+ 1;
S := S n/λ+ 1;
δ := δ n/λ;

end
if S > 2δ then

return n;
else

perform top-down summation instead
end

The reciprocal λ−1 can be pre-computed so that now the computational cost is equal
to the cost of the exponential exp(λ) plus approximately 5n floating point operations
(each iteration requires 1 addition, 2 multiplications, 1 fused multiply/add, and 1 con-
ditional test).

One last technical detail is that when λ is large, but u is exceptionally small so that
n<10 and bottom-up summation is still required, it is possible for exp(λ) to exceed the
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maximum floating point value. This problem can be avoided by replacing exp(λ)(u−δ)
by e((u−δ)e), where e = exp(λ/2).

Multiplying the terms a and S by exp(λ), the pseudo-code for top-down summation,
starting from some suitable value n is:

a := λn/n!;
S := a− exp(λ) (1−u);
while S < 0 do

a := an/λ;
S := S + a;
n := n− 1;

end
return n;

The only remaining issue is the initial value n which is chosen so that the sum of
the terms which are ignored through truncating the series representation is negligible
compared to 1−u.

6. INVERSE POISSON CDF ALGORITHMS

Combining all of the elements of the previous sections, the pseudo-codes for the CPU

and GPU algorithms to compute the inverse Poisson CDF function C
−1

(u) are given
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in Algorithms 1 – 3. For the reasons explained in the Introduction, and illustrated in
Table I, the CPU algorithm uses the Normal approximation derived in Section 2, while
the GPU algorithms use the approximations based on Temme’s asymptotic expansion,
as derived in Section 3.

In the rare cases when the approximations are not sufficiently accurate to be cer-
tain about the rounding to the appropriate integer, the CPU algorithm and the double
precision GPU algorithm both use the methods of computing C(x) outlined in Section
4. The approximations in the single precision GPU algorithm are sufficiently accurate
that there is no need to improve upon them.

Figure 13 illustrates the different regions which are important to the three algo-
rithms. The dot-dash lines show the boundaries for bottom-up/top-down summation,
used by all three algorithms. The dashed lines specify the central region 0.4<r<3.25,
which corresponds to smin <s< smax, as used by the GPU algorithms. The innermost
pair of curved lines correspond to |w| = 3, which is the boundary for the Normal approx-
imation in the CPU algorithm. The next pair of curved lines correspond to u= 10−38

and u=1− 6×10−8, which are the extreme single precision floating point values in the
open interval (0, 1). Finally, the outermost two curved lines correspond to u = 10−308

and u=1−10−308, which are the extreme double precision floating point values when
implementing both the inverse CDF function and its complementary counterpart, as
discussed in the Introduction.

ALGORITHM 1: CPU algorithm to compute the inverse Poisson CDF function n = C
−1

(u).

Data: λ, u

Result: n = C
−1

(u)
if λ > 4 then

w := Φ−1(u);
if |w| < 3 then

x := Q̃N2(w);

δ := ( 1

40
+ 1

80
w2 + 1

160
w4) / λ;

else

r := f−1(w/
√
λ) ; /* computed by Newton iteration */

x := λ r + c0(r);
x := x− 0.0218/(x+0.065λ);
δ := 0.01/λ;

end

end
n := ⌊x+ δ⌋;
if x > 10 then

if x−n > δ then
return n;

else if C(n) < u then
return n;

else
return n−1;

end

end
use bottom-up summation to determine n
if u>0.5 and not accurate enough then

use top-down summation to determine n
end
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ALGORITHM 2: Single precision GPU algorithm to compute the inverse Poisson CDF function.

Data: λ, u

Result: n = C
−1

(u)
if λ > 4 then

w := Φ−1(u);

s := w/
√
λ;

if smin<s<smax then
r := p1(s);
x := λ r + p2(r) + p3(r)/λ;

else

r := f−1(s) ; /* computed by Newton iteration */
x := λ r + c0(r);
x := x− 0.0218/(x+0.065λ);

end
n := ⌊x⌋;
if x > 10 then

return n;
end

end
use bottom-up summation to determine n;
if u>0.5 and not accurate enough then

use top-down summation to determine n;
end
return n

7. IMPLEMENTATION, VALIDATION AND PERFORMANCE

The double precision CPU function poissinv(u,lam) and its complementary inverse
poisscinv(u,lam) are defined in a header file poissinv.h. Their implementations use
a common core function poissinv core(u,v,lam) with u+v = 1, so that

poissinv(u,lam) = poissinv core(u,1-u,lam)

poisscinv(v,lam) = poissinv core(1-v,v,lam)

For the purposes of performance comparison, the header file also includes a CPU ver-
sion of the vector algorithm poissinv v(u,lam).

The single-precision and double-precision GPU algorithms have been imple-
mented in CUDA C [NVIDIA 2014] in the header file poissinv cuda.h, defining
poissinvf(u,lam) and poissinv(u,lam) as inline device functions which are called
from a user’s kernel function executing on the GPU.

The implementations all require two special functions. The complementary error
function erfc, which is used in the computation of C(x) from Temme’s 1987 algorithm,
as detailed in Section 4, is part of the C++11 standard, and so is available as part of
the standard math library on almost all systems.

The other function which is needed is normcdfinv which computes Φ−1(u). Alterna-
tively, one could use erfcinv which is the inverse of erfc and equivalent to Φ−1(u)
with a simple scaling. Unfortunately, neither of these is part of the C++11 stan-
dard. NVIDIA provides normcdfinv as part of its math library. For the CPU imple-
mentations, we used a C implementation of an approximation developed by Wichura
[Wichura 1988], having independently verified that its relative error is less than 10−16

compared to the value computed by MATLAB.
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ALGORITHM 3: Double precision GPU algorithm to compute the inverse Poisson CDF func-
tion.

Data: λ, u

Result: n = C
−1

(u)
if λ > 4 then

w := Φ−1(u);

s := w/
√
λ;

if smin<s<smax then
r := p1(s);
x := λ r + p2(r) + p3(r)/λ;

δ := 2×10−5;
else

r := f−1(s) ; /* computed by Newton iteration */
x := λ r + c0(r);
x := x− 0.0218/(x+0.065λ);
δ := 0.01/λ;

end
n := ⌊x+δ⌋;
if x > 10 then

if x−n > δ then
return n;

else if C(n) < u then
return n;

else
return n−1;

end

end

end
use bottom-up summation to determine n;
if u>0.5 and not accurate enough then

use top-down summation to determine n
end
return n;

To check the accuracy for a given value of λ, GCC’s quadlib quadruple-precision
mathematical library [Foundation ] (which requires GCC version 4.6 or later) is used
to compute un = C(n) for all integers n for which un < 1 − 10−300. For each n, un

is rounded both down and up to the nearest single or double-precision floating point
values u−

n , u
+
n .

These are compared to the corresponding values ũ−

n , ũ
+
n obtained from poissinvf or

poissinv by using repeated interval bisection to determine two consecutive floating
point values ũ−

n , ũ
+
n with Q(ũ−

n ) < n and Q(ũ+
n ) ≥ n, where Q(u) represents the value

returned by poissinvf or poissinv. 1

Since

C
−1

(u) = n =⇒ u+
n ≤ u ≤ u−

n+1

Q(u) = m =⇒ ũ+
m ≤ u ≤ ũ−

m+1

1In most cases Q(ũ−

n ) = n−1 and Q(ũ+
n ) = n, but the difference between the two can be greater than 1

when either u or 1−u is extremely small.
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it follows that

m ≥ n+2 =⇒ ũ+
n+2 ≤ u ≤ u−

n+1

m ≤ n−2 =⇒ u+
n ≤ u ≤ ũ−

n−1

However, for all values of λ tested, it is found that ũ+
n+1 > u−

n and u+
n+1 > ũ−

n for all n,

and hence |C −1
(u)−Q(u)| ≤ 1.

The L1 error
∫ 1

0

|C −1
(u)−Q(u)| du,

can be computed as
∑

n

1
2

∣∣(u−−ũ−

n ) + (u+−ũ+
n )
∣∣ .

Figure 14 plots this error for both the single precision poissinvf and the double
precision poissinv and poisscinv. The accuracy is excellent, and in line with what one
would expect from single and double precision computations. In the case of poissinvf,
the main error at larger values of λ is due to the error in computing Φ−1(u); since

this is multiplied by
√
λ, the resulting L1 error is approximately proportional to

√
λ.

In the case of poissinv, the error is due to the error in computing C(n), and this is
approximately proportional to λ as shown in Section 4.

Finally, Tables II and III document the performance of the algorithms, measured in
samples per second. The first table gives performance on a 4-core 130W 3.6GHz Intel
Xeon E5-1620 based on the Sandy Bridge architecture. The results are obtained using
two compilers, GCC 4.6.3 and Intel ICC 13.0, both with full optimisation enabled (-O3).
The computations use only one core; performance would scale linearly if additional
cores were used.

The most important observation from the results is that for λ ≥ 4 the algorithm
designed for the CPU is approximately twice as fast as the algorithm which was de-
signed for vector execution on GPUs. Further testing reveals that about the cost of the
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Table II. Samples/sec for poissinv and poissinv v on Intel Xeon E5-1620
using two compilers: GCC and Intel’s ICC

gcc 4.6.3 icc 13.0

λ poissinv poissinv v poissinv poissinv v

2 3.30e07 3.30e07 4.58e07 4.64e07
8 1.34e07 7.51e06 1.47e07 8.37e06
32 1.60e07 8.91e06 1.76e07 9.73e06
128 1.61e07 8.91e06 1.76e07 9.73e06

normcdfinv 2.75e07 5.87e07

Table III. Samples/sec for poissinvf and poissinv on two NVIDIA GPUs:
GTX750 Ti (Maxwell) and K40 (Kepler)

GTX750 Ti K40
λ poissinvf poissinv poissinvf poissinv

2 6.04e09 4.76e08 2.53e10 7.54e09
8 2.97e09 1.67e08 1.31e10 2.91e09
32 4.35e09 3.19e08 1.79e10 6.13e09

128 4.35e09 3.19e08 1.79e10 6.13e09
mixed 2.53e09 1.37e08 1.07e10 2.33e09

normcdfinvf 1.25e10 4.54e10
normcdfinv 4.36e08 1.16e10

correction procedure in the algorithm contributes 2-4% of the total cost of the CPU
algorithm, compared to less than 0.5% of the vector algorithm. Referring back to the
discussion in the Introduction, this corresponds to 2δ CC/CQ ≈ 0.03 for the CPU algo-
rithm and 0.003 for the vector algorithm. Hence, it is to be expected that the average
cost is least for the CPU algorithm which has the simpler primary approximation.

Note also that the performance of the CPU algorithm using GCC is very similar to
the performance of the normcdfinv function given in the final line; for an unknown
reason, ICC gives double the performance for normcdfinv.

Table III gives the performance of poissinvf and poissinv using CUDA 6.0 on two
NVIDIA GPUs: a 60W GTX 750 Ti which is an entry-level consumer graphics card
based on the latest Maxwell GPU architecture, and a 235W Tesla K40 which is the
current high-end HPC card based on the previous generation Kepler architecture. Full
optimisation was enabled (-O3 --use fast math), with the second flag enabling use of
the SFU (Special Function Unit) for single precision intrinsics such as log. In the case
of the GTX 750 Ti the double precision performance is 24× worse than single precision,
whereas with the K40 the difference is only 3×. The rows for specified values of λ
compute the inverse CDF for a uniform sequence of 224 values un covering the whole
(0, 1) interval. The row marked “mixed” uses mixed pairs of values (u, λ) so that each
warp is likely to have some threads performing bottom-up summations, while others
in the same warp have to evaluate the asymptotic approximation. Because of this warp
divergence, the average cost of each sample in the mixed case is roughly equal to the
sum of the costs of the samples for λ=2 and λ=32. It is also similar to the cost for λ=8
since most threads in that region must first evaluate the asymptotic approximation,
and then perform the bottom-up summation.
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8. CONCLUSIONS

In this paper we have derived a number of approximations of the inverse incomplete
gamma function which can be used to implement the inverse Poisson cumulative dis-
tribution function.

The Normal asymptotic approximation labelled Q̃N2 is well suited to CPU implemen-
tations since it directly gives the correct integer output more than 99% of the time. In
the other 1% there is a more expensive secondary step which is used to determine the
correct value, but this contributes little to the overall average cost.

The asymptotic approximations Q̃T2 and Q̃T3 based on the Temme expansion are a

better choice for GPU implementation because the primary approximation Q̃T3 gives
the correct output more of the time, reducing the costs due to different threads within
the same GPU warp branching differently. Indeed, in the case of single precision arith-
metic the approximations are so accurate that no correction step is required.

The approximations in this paper could be used to initialise a Newton iteration to
determine the inverse of the incomplete gamma function [DiDonato and Morris 1986;
Temme 1992; Gil et al. 2012]. Another direction for future work is the generation of
similar asymptotic approximations for the inverse of the incomplete beta function to
facilitate the fast inversion of the CDF for the Binomial distribution.

A. INVERSE FUNCTION ASYMPTOTIC EXPANSION

Suppose that a smooth function f(x) has the expansion

f(x) = f0(x) + ε f1(x) + ε2f2(x) + ε3f3(x) + . . .

where f0(x) is monotonic, and we seek a similar expansion

g(x) = g0(x) + ε g1(x) + ε2g2(x) + ε3g3(x) + . . .

for the inverse function defined by g(f(x)) = x. Performing a Taylor series expansion
in ε of g(f(x)), and equating the coefficients for each power of ε, we obtain:

ε0 : g0(y) = x

ε1 : g1(y) + g′0(y) f1(x) = 0

ε2 : g2(y) + g′1(y) f1(x) + g′0(y) f2(x) +
1
2g

′′

0 (y) (f1(x))
2 = 0

ε3 : g3(y) + g′2(y) f1(x) + g′1(y) f2(x) +
1
2g

′′

1 (y) (f1(x))
2

+ g′0(y) f3(x) + g′′0 (y) f1(x) f2(x) +
1
6g

′′′

0 (y) (f1(x))
3 = 0

where y = f0(x). Hence we have

g0(y) = f−1
0 (y)

g1(y) = −g′0(y) f1(x)

g2(y) = −g′1(y) f1(x)− g′0(y) f2(x)− 1
2g

′′

0 (y) (f1(x))
2

g3(y) = −g′2(y) f1(x)− g′1(y) f2(x)− 1
2g

′′

1 (y) (f1(x))
2

−g′0(y) f3(x)− g′′0 (y) f1(x) f2(x)− 1
6g

′′′

0 (y) (f1(x))
3
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with x = f−1
0 (y) = g0(y).

This allows us to determine g0(y), g1(y), g2(y), g3(y) sequentially, and the construc-
tion is easily extended to obtain additional terms in the asymptotic expansion.

B. COMPUTING EXP(−λ)λX−1 /Γ(X)

The summations in Section 4 require the computation of

t = exp(−λ)λx−1 /Γ(x),

but it is surprisingly tricky to do this accurately. When x and λ are large, the first term
is very small, and the last two terms are extremely large, and even the range of double
precision floating point variables is insufficient.

This leads to the idea of first computing

log t = −λ+ (x−1) log λ− log Γ(x).

The problem here is that (x−1) log λ and log Γ(x) are large and similar in magnitude.
For example, when λ = 200, x = 400, then (x−1) log λ ≈ 2114.0 and log Γ(x) ≈ 1994.5,
while the final result is relatively small, with log t ≈ −80.5. Hence, there is a large
cancellation which greatly increases the rounding error due to floating point precision.

The solution to this is to not use the log Γ(x) function which is made available in
mathematical libraries, but instead use the asymptotic approximation which is typi-
cally used internally. One standard approximation is

log Γ(x) ≈ (x− 1
2 ) log x− x+ 1

2 log(2π) + S(x),

where

S(x) = 1
12 x

−1 − 1
360 x

−3 + 1
1260 x

−5 − 1
1680 x

−7 + 1
1188 x

−9.

Using this gives

log t ≈ −x log(x/λ) + (x−λ)− log λ+ 1
2 log x− 1

2 log(2π)− S(x),

and therefore

t ≈
√

x

2πλ2
exp

(
− x log(x/λ) + (x−λ)− S(x)

)
.

In the above derivation, the key step which improves the accuracy which can be
achieved is x log λ− x log x = −x log(x/λ). Since log λ and log x are both typically much
larger than log(x/λ), the expression on the right can be evaluated much more accu-
rately than the one on the left.

The final expression for t can be evaluated relatively cheaply. When λ, x > 10, it
gives a relative error of 10−13 in double precision.

This is similar to the way in which the gamma distribution probability density func-
tion is computed in the NAG mathematical library [NAG 2014a].
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