MLMC for multi-dimensional reflected Brownian diffusions

Mike Giles ¹ Kavita Ramanan ²

¹Mathematical Institute, University of Oxford

²Division of Applied Mathematics, Brown University

MCQMC'16, Stanford University

August 15, 2016

Outline

- Multilevel Monte Carlo
- Multi-dimensional reflected diffusions
 - numerical discretisations
 - adaptive timestepping
 - numerical analysis
 - numerical results
- Conclusions

MLMC is based on the telescoping sum

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$$

where \widehat{P}_{ℓ} represents an approximation of some output P on level ℓ .

In simple SDE applications with uniform timestep $h_{\ell}=2^{-\ell}\,h_0$, if the weak convergence is

$$\mathbb{E}[\widehat{P}_{\ell}-P]=O(2^{-\alpha\,\ell}),$$

and \widehat{Y}_{ℓ} is an unbiased estimator for $\mathbb{E}[\widehat{P}_{\ell}-\widehat{P}_{\ell-1}]$, based on N_{ℓ} samples, with variance

$$\mathbb{V}[\widehat{Y}_{\ell}] = O(N_{\ell}^{-1} 2^{-\beta \ell}),$$

and expected cost

$$\mathbb{E}[C_{\ell}] = O(N_{\ell} 2^{\gamma \ell}), \quad \dots$$

... then the finest level L and the number of samples N_ℓ on each level can be chosen to achieve an RMS error of ε at an expected cost

$$C = \left\{ \begin{array}{ll} O\left(\varepsilon^{-2}\right), & \beta > \gamma, \\ \\ O\left(\varepsilon^{-2}(\log \varepsilon)^{2}\right), & \beta = \gamma, \\ \\ O\left(\varepsilon^{-2-(\gamma-\beta)/\alpha}\right), & 0 < \beta < \gamma. \end{array} \right.$$

I always try to get $\beta>\gamma$, so the main cost comes from the coarsest levels – use of QMC can then give substantial additional benefits.

With $\beta>\gamma$, can also randomise levels to eliminate bias (Rhee & Glynn, Operations Research, 2015).

The standard estimator for SDE applications is

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{n=0}^{N_{\ell}} \left(\widehat{P}_{\ell}(W^{(n)}) - \widehat{P}_{\ell-1}(W^{(n)}) \right)$$

using the same Brownian motion $W^{(n)}$ for the n^{th} sample on the fine and coarse levels.

However, there is some freedom in how we construct the coupling provided \widehat{Y}_ℓ is an unbiased estimator for $\mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$.

Have exploited this with an antithetic estimator for multi-dimensional SDEs which don't satisfy the commutativity condition.

(G, Szpruch: AAP 2014)

Also, uniform timestepping is not required – it is fairly straightforward to implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)

Also, interesting possibilities for applications with discontinuous output functionals.

Reflected diffusions

Motivating application comes from modelling of network queues

Reflected Brownian diffusion with constant volatility in a domain ${\cal D}$ has SDE

$$dx_t = a(x_t) dt + b dW_t + \nu(x_t) dL_t,$$

where L_t is a local time which increases when x_t is on the boundary ∂D .

 $\nu(x)$ can be normal to the boundary (pointing inwards), but in some cases it is not and reflection from the boundary includes a tangential motion.

Reflected diffusions

A penalised version is

$$dx_t = a(x_t) dt + b dW_t + \nu(x_t) dL_t,$$

$$dL_t = \lambda \max(0, -d(x_t)) dt, \quad \lambda \gg 1$$

where d(x) is signed distance to the boundary (negative means outside) and $\nu(x)$ is a smooth extension from the boundary into the exterior.

Reflected diffusions

When D is a polygonal domain, this generalises to

$$\mathrm{d} x_t = a(x_t)\,\mathrm{d} t + b\,\,\mathrm{d} W_t + \sum_{k=1}^K \nu_k(x_t)\,\mathrm{d} L_{k,t},$$

with a different ν_k and local time $L_{k,t}$ for each boundary face.

The corresponding penalised version is

$$dx_t = a(x_t) dt + b dW_t + \sum_{k=1}^K \nu_k(x_t) dL_{k,t},$$

$$dL_{k,t} = \lambda \max(0, -d_k(x_t)) dt, \quad \lambda \gg 1$$

where $d_k(x_t)$ is signed distance to the boundary face with a suitable extension.

Numerical approximations

3 different numerical treatments in literature:

projection (Gobet, Słomiński): predictor step

$$\widehat{X}^{(p)} = \widehat{X}_{t_n} + a(\widehat{X}_{t_n}, t_n) h_n + b \Delta W_n,$$

followed by correction step

$$\widehat{X}_{t_{n+1}} = \widehat{X}^{(p)} + \nu(\widehat{X}^{(p)}) \ \Delta \widehat{L}_n,$$

with $\Delta \widehat{L}_n > 0$ if needed to put $\widehat{X}_{t_{n+1}}$ on boundary

- reflection (Gobet): similar but with double the value for $\Delta \widehat{L}_n$ can give improved O(h) weak convergence
- penalised (Słomiński): Euler-Maruyama approximation of penalised SDE with $\lambda = O(h^{-1})$, giving convergence as $h \to 0$

Numerical approximations

Concern:

- because b is constant, Euler-Maruyama method corresponds to first order Milstein scheme, suggesting an O(h) strong error
- however, all three treatments of boundary reflection lead to a strong error which is $O(h^{1/2})$ this is based primarily on empirical evidence, with only limited supporting theory
- if the output quantity of interest is Lipschitz with respect to the path then

$$\mathbb{V}\left[\widehat{P}-P\right] \leq \mathbb{E}\left[(\widehat{P}-P)^2\right] \leq c^2 \mathbb{E}\left[\sup_{[0,T]}(\widehat{X}_t-X_t)^2\right]$$

so the variance is O(h)

• OK, but not great – would like $O(h^{\beta})$ with $\beta>1$ for $O(\varepsilon^{-2})$ MLMC complexity

(□) (□) (□) (□) (□)

Adaptive timesteps

Simple idea: use adaptive timestep based on distance from the boundary

- ullet far away, use uniform timestep $h_\ell=2^{-\ell}\,h_0$
- ullet near the boundary, use uniform timestep $h_\ell=2^{-2\ell}\,h_0$
- ullet in between, define $h_\ell(x)$ to vary smoothly based on distance d(x)

What do we hope to achieve?

- strong error $O(2^{-\ell}) \implies \mathsf{MLMC}$ variance is $O(2^{-2\ell})$
- computational cost per path $O(2^{\ell})$
- $\beta = 2$, $\gamma = 1$ in MLMC theorem \implies complexity is $O(\varepsilon^{-2})$

Adaptive timesteps

In intermediate zone, want negligible probability of taking a single step and crossing the boundary.

Stochastic increment in Euler timestep is $b \Delta W$, so define h_{ℓ} so that

$$(\ell+3) \|b\|_2 \sqrt{h_\ell} = d$$

Final 3-zone max-min definition of h_{ℓ} is

$$h_{\ell} = \max\left(2^{-2\ell}h_0, \min\left(2^{-\ell}h_0, (d/((\ell+3)\|b\|_2)^2)\right)\right)$$

Balancing terms, gives

- boundary zone up to $d = O(2^{-\ell})$
- intermediate zone up to $d = O(2^{-\ell/2})$

Adaptive timesteps

Balancing terms, gives

- boundary zone up to $d \approx O(2^{-\ell})$
- intermediate zone up to $d \approx O(2^{-\ell/2})$

If $\rho(y,t)$, the density of paths at distance y from the boundary at time t, is uniformly bounded then the computational cost per unit time is approximately

$$\int_{0}^{\infty} \frac{\rho(y,t) \, \mathrm{d}y}{h_{\ell}(y)} \sim \underbrace{2^{2\ell} \times 2^{-\ell}}_{boundary} + \underbrace{\int_{O(2^{-\ell})}^{O(2^{-\ell/2})} \frac{\mathrm{d}y}{y^{2}}}_{intermediate} + \underbrace{2^{\ell} \times 1}_{interior} \approx O(2^{\ell})$$

so we get similar cost contributions from all 3 zones.

Numerical analysis

Theorem (Computational cost)

<u>If</u>

- the density $\rho(y,t)$ for the SDE paths at distance y from the boundary is uniformly bounded
- the numerical discretisation with the adaptive timestep has strong convergence $O(2^{-\ell})$

then the computational cost is $o(2^{(1+\delta)\ell})$ for any $0 < \delta \ll 1$.

The second condition is needed to bound the difference between the distributions of the paths and their numerical approximations.

Numerical analysis

Theorem (Strong convergence)

<u>If</u>

- the drift a is constant
- ullet a uniform timestep discretisation has $O(h^{1/2})$ strong convergence
- the adaptive timestep h_ℓ is rounded to the nearest multiple of the boundary zone timestep

then the strong convergence is $O(2^{-\ell})$

The proof is based on a comparison with a discretisation using the uniform boundary zone timestep:

- adaptive numerical discretisation is exact when boundary not crossed
- almost zero probability of crossing the boundary unless in the boundary zone using the uniform timestep

Numerical results

Simple test case:

- 3D Brownian motion in a unit ball
- normal reflection at the boundary
- $x_0 = 0$
- aim is to estimate $\mathbb{E}[\|x\|_2^2]$ at time t=1.
- implemented with both projection and penalisation schemes

Numerical results

Projection method:

Numerical results

Penalisation method:

Conclusions

Initial research is promising:

- natural use of localised adaptive timestepping to reduce errors
- $O(\varepsilon^{-2})$ complexity for ε RMS error
- significant progress with numerical analysis
- numerical results are also encouraging

Future challenges:

- prove that for constant drift a and timestep h, the strong error is $O(h^{1/2})$ for reflected diffusions with oblique reflections, preferably for generalised penalisation method for polygonal boundaries
- extend analysis to include errors in local time
- extend analysis to general drift and adaptive timesteps

Webpages:

http://people.maths.ox.ac.uk/gilesm/ http://people.maths.ox.ac.uk/gilesm/mlmc_community.html