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Multilevel Monte Carlo
MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents an approximation of some output P on level ℓ.

In simple SDE applications with uniform timestep hℓ = 2−ℓ h0,
if the weak convergence is

E[P̂ℓ − P ] = O(2−α ℓ),

and Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1], based on Nℓ samples,
with variance

V[Ŷℓ] = O(N−1
ℓ 2−β ℓ),

and expected cost
E[Cℓ] = O(Nℓ 2γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2

)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.

I always try to get β > γ, so the main cost comes from the coarsest levels
– use of QMC can then give substantial additional benefits.

With β > γ, can also randomise levels to eliminate bias
(Rhee & Glynn, Operations Research, 2015).
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Multilevel Monte Carlo

The standard estimator for SDE applications is

Ŷℓ = N−1
ℓ

Nℓ∑

n=0

(
P̂ℓ(W

(n)) − P̂ℓ−1(W (n))
)

using the same Brownian motion W (n) for the nth sample on the fine
and coarse levels.

However, there is some freedom in how we construct the coupling provided
Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1].

Have exploited this with an antithetic estimator for multi-dimensional
SDEs which don’t satisfy the commutativity condition.

(G, Szpruch: AAP 2014)
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Multilevel Monte Carlo

Also, uniform timestepping is not required – it is fairly straightforward
to implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)

coarse path

fine path t

✲✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

Also, interesting possibilities for applications with discontinuous output
functionals.
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Reflected diffusions

Motivating application comes from modelling of network queues

Reflected Brownian diffusion with constant volatility in a domain D has
SDE

dxt = a(xt)dt + b dWt + ν(xt)dLt ,

where Lt is a local time which increases when xt is on the boundary ∂D.

ν(x) can be normal to the boundary (pointing inwards), but in some cases
it is not and reflection from the boundary includes a tangential motion.
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Reflected diffusions

A penalised version is

dxt = a(xt)dt + b dWt + ν(xt)dLt ,

dLt = λ max(0,−d(xt))dt, λ ≫ 1

where d(x) is signed distance to the boundary (negative means outside)
and ν(x) is a smooth extension from the boundary into the exterior.
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Reflected diffusions

When D is a polygonal domain, this generalises to

dxt = a(xt)dt + b dWt +

K∑

k=1

νk(xt)dLk,t ,

with a different νk and local time Lk,t for each boundary face.

The corresponding penalised version is

dxt = a(xt)dt + b dWt +
K∑

k=1

νk(xt)dLk,t ,

dLk,t = λ max(0,−dk(xt))dt, λ ≫ 1

where dk(xt) is signed distance to the boundary face with a suitable
extension.
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Numerical approximations

3 different numerical treatments in literature:

projection (Gobet, S lomiński): predictor step

X̂ (p) = X̂tn + a(X̂tn , tn) hn + b ∆Wn,

followed by correction step

X̂tn+1 = X̂ (p) + ν(X̂ (p)) ∆L̂n,

with ∆L̂n > 0 if needed to put X̂tn+1 on boundary

reflection (Gobet): similar but with double the value for ∆L̂n
– can give improved O(h) weak convergence

penalised (S lomiński): Euler-Maruyama approximation of penalised
SDE with λ = O(h−1), giving convergence as h → 0
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Numerical approximations

Concern:

because b is constant, Euler-Maruyama method corresponds to first
order Milstein scheme, suggesting an O(h) strong error

however, all three treatments of boundary reflection lead to a strong
error which is O(h1/2) – this is based primarily on empirical evidence,
with only limited supporting theory

if the output quantity of interest is Lipschitz with respect to the
path then

V

[
P̂−P

]
≤ E

[
(P̂−P)2

]
≤ c2 E

[
sup
[0,T ]

(X̂t−Xt)
2

]

so the variance is O(h)

OK, but not great – would like O(hβ) with β > 1 for O(ε−2) MLMC
complexity
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Adaptive timesteps

Simple idea: use adaptive timestep based on distance from the boundary

far away, use uniform timestep hℓ = 2−ℓ h0

near the boundary, use uniform timestep hℓ = 2−2ℓ h0

in between, define hℓ(x) to vary smoothly based on distance d(x)

What do we hope to achieve?

strong error O(2−ℓ) =⇒ MLMC variance is O(2−2ℓ)

computational cost per path O(2ℓ)

β=2, γ=1 in MLMC theorem =⇒ complexity is O(ε−2)
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Adaptive timesteps

In intermediate zone, want negligible probability of taking a single step
and crossing the boundary.

Stochastic increment in Euler timestep is b ∆W , so define hℓ so that

(ℓ+3) ‖b‖2
√

hℓ = d

Final 3-zone max-min definition of hℓ is

hℓ = max
(

2−2ℓh0,min
(

2−ℓh0, (d/((ℓ+3) ‖b‖2)2
))

Balancing terms, gives

boundary zone up to d = O(2−ℓ)

intermediate zone up to d = O(2−ℓ/2)
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Adaptive timesteps

Balancing terms, gives

boundary zone up to d ≈ O(2−ℓ)

intermediate zone up to d ≈ O(2−ℓ/2)

If ρ(y , t), the density of paths at distance y from the boundary at time t,
is uniformly bounded then the computational cost per unit time is
approximately

∫
∞

0

ρ(y , t)dy

hℓ(y)
∼ 22ℓ × 2−ℓ

︸ ︷︷ ︸
boundary

+

∫ O(2−ℓ/2)

O(2−ℓ)

dy

y2
︸ ︷︷ ︸

intermediate

+ 2ℓ × 1

︸ ︷︷ ︸
interior

≈ O(2ℓ)

so we get similar cost contributions from all 3 zones.
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Numerical analysis

Theorem (Computational cost)

If

the density ρ(y , t) for the SDE paths at distance y from the

boundary is uniformly bounded

the numerical discretisation with the adaptive timestep has

strong convergence O(2−ℓ)

then the computational cost is o(2(1+δ)ℓ) for any 0<δ≪1.

The second condition is needed to bound the difference between the
distributions of the paths and their numerical approximations.
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Numerical analysis

Theorem (Strong convergence)

If

the drift a is constant

a uniform timestep discretisation has O(h1/2) strong convergence

the adaptive timestep hℓ is rounded to the nearest multiple of the

boundary zone timestep

then the strong convergence is O(2−ℓ)

The proof is based on a comparison with a discretisation using the uniform
boundary zone timestep:

adaptive numerical discretisation is exact when boundary not crossed

almost zero probability of crossing the boundary unless in the
boundary zone using the uniform timestep
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Numerical results

Simple test case:

3D Brownian motion in a unit ball

normal reflection at the boundary

x0 = 0

aim is to estimate E[‖x‖22] at time t=1.

implemented with both projection and penalisation schemes
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Numerical results

Projection method:
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Numerical results

Penalisation method:

level l
0 2 4 6 8

lo
g

2
 v

ar
ia

nc
e

-25

-20

-15

-10

-5

0

P
l

P
l
- P

l-1

level l
0 2 4 6 8

lo
g

2
 |m

ea
n|

-12

-10

-8

-6

-4

-2

0

P
l

P
l
- P

l-1

level l
0 5 10

N
l

10 0

10 2

10 4

10 6

10 8

0.0002
0.0005
0.001
0.002
0.005

accuracy ǫ

10 -3

ǫ
2
 C

os
t

10 -1

10 0

10 1

10 2

10 3

Std MC
MLMC

Mike Giles (Oxford) MLMC for reflected diffusions August 15, 2016 19 / 20



Conclusions
Initial research is promising:

natural use of localised adaptive timestepping to reduce errors

O(ε−2) complexity for ε RMS error

significant progress with numerical analysis

numerical results are also encouraging

Future challenges:

prove that for constant drift a and timestep h, the strong error is
O(h1/2) for reflected diffusions with oblique reflections, preferably
for generalised penalisation method for polygonal boundaries

extend analysis to include errors in local time

extend analysis to general drift and adaptive timesteps

Webpages:
http://people.maths.ox.ac.uk/gilesm/

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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