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1 Introduction

The stability of fiber pulling is considered here; of particular interest in this MPI is the diameter
variation of the fiber during pulling, and trying to quantify the variation of the diameter with flow
and pulling conditions. The pulling of a fiber was studied at MPI 2001 [1]; the progress there was
based in significant measure on P. Howell’s thesis [2]. However, the stability of the solution was
not considered in that study.

The stability of pulling an solid fiber has been studied before; the isothermal case includes
[3, 6, 7, 4, 5] and a summary of older work, including a number of non-Newtonian models can be
found in Pearson’s book [8]. Studies of the nonisothermal case include [9, 10, 11] and many others;
a modern review can be found in the D.Phil. thesis of Voyce [12].

More modern issues ar concerned with the dynamics of the instability. Some surveys have
pointed out the variety of diameter fluctuations that can occur [13, 14, 15, 16, 17]. Stability
analyses of different types suggest that fibers being pulled may be unconditionally stable [11] or
chaotic [19]. The discrpancy may be explained in part by the conditions under which the modeling
are done; when the pulling velocity is specified the instability, known as draw resonance occurs;
when the pulling force is specified, the instability may not occur [12, 18].

Many modern studies involve fibers that do not have uniform properties in the cross section.
These may include holey fibers with air inclusion (see e.g., [20, 21, 22, 23]) or different glass materials
from say doping (e.g., [24]). These efforts may aim to decrease losses from signals, increase flexibility
of the fiber, or both. For a modern review, see Voyce’s thesis or [22], e.g.

There are two aspects that were studied. One is to try the idea of boudinage (French for
sausage); stretching or compression of fluids containing viscous inclusions of different viscosity of
fluid may lead to instability as is seen in geological flows and models (e.g., [25, 26, 27, 28]). In
the limit of this view, the curvature from starting with a thick blank and ending with a thin
fiber (necking) is neglected, and the blank is uniformly stretched in the absence of any instability.
However, stretching can induce instability; a varicose instability may form with shapes that are
characteristic in tension (boudinage) and compression (inverse boudinage or mullions) [25, 26].
Circular shapes may become distorted [25, 29] and initially flat layers may develop varicose or
sinuous (folding) instabilities (e.g., [25, 26, 27, 28]).

In this work, we focus on varicose instability for viscous inclusions, and ignore the possibility
of fold instabilities. We use the term boudinage to refer to the stretching of included viscous layers
and the resulting instability that results from stretching. We hope that context will make clear
the distinction between the approach to modeling as opposed to shapes obtained after instability
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(boudinage vs mullions).
The practical idea for fibers of interest here is to have different viscosities at different initial

radii, and then stretch; will instability occur in the isothermal case? In the best situation, the
model has more viscous fluid at its core and at the outer radius, with a less viscous region between.
This situation would model a holey region in an annulus that acts to keep light inside the fiber.

2 Estimates

We now estimate the sizes of some parameters. The fiber speed V is taken to be 25 × 10−6m/s in
the region of interest at the hot end of the fiber near the die head and V = 25m/s far from the
blank where the fiber has effectively reached its final diameter. The length L0 along the fiber in
the region of interest is L0 = 2.5m. Thus a time scale may be L0/V = 0.1s. The final radius of the
fiber is Rf = 125× 10−6m; the initial blank radius is Ri = 125× 10−3m. Let ǫ = Ri/L = 5× 10−4.

The viscosity depends on the temperature of the glass and the material. We use a minimum
value of the viscosity in the range of µ = 103 to 4 × 105Pa·s and a maximum value in the range
µ = 106 to 2 × 107Pa·s. We use a density of ρ = 2500kg/m3.

Using the low speed V = 25 × 10−6m/s and low viscosity µ = 103Pa·s, we approximate the
conditions near the blank with the Reynolds number Re = ρV L0/µ ≈ 10−3. For the conditions
far from the blank, we use the high speed V = 25m/s and low viscosity µ = 107Pa·s, we find the
Reynolds number to be Re ≈ 10−2.

3 Boudinage

3.1 Formulation

In isothermal formulation of stretching of a viscous inclusion is considered; the centerline of the fluid
is assumed to be straight. We nondimensionalized the governing equations with length L0 = 2.5m
and pulling speed V in the axial direction (z); ǫL0 and ǫV in radial direction. Time was scaled
with The pressure was scaled with a viscous scale.

The two fluid case with an initial state of coaxial fluids with length L0 with inner radius a1(z, t)
and outer radius a2(z, t). The inner fluid (viscosity µ1) is thus located in 0 ≤ r < a1(z, t) and the
outer fluid (viscosity µ2) is in a1(z, t) < r ≤ a2(z, t).

The nondimensional equations in the fluid i, with i = 1, 2, are
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Here µ(1) = 1, µ(2) = µ12. St = ρgL2
0/µ/V is the Stokes number.

At r = 0, we have symmetry, w
(1)
,r = u(1) = 0.

At the outermost radius r = a2(z, t), we have

a2,t + w(2)a2,z = u(2) (4)
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These are, respectively, the kinematic, the tangential stress and the normal stress conditions. The
parameter Ca = σ1/(µ

(1)V ) is the capillary number based on the inner fluid and σ = σ2/σ1 is the
surface tension ratio.

At r = a1(z, t), we continuity of the velocity components, u(1) = u(2) and w(1) = w(2), as well
as the kinematic, the tangential stress and the normal stress conditions, respectively:
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The viscosity contrast is defined as µ12 = µ(2)/µ(1); we note that µ12 = 1/m, where m is the
viscosity ratio used by Smith [25]. In what follows we neglect surface tension (Ca→ ∞), inertia
(Re= 0) and gravity (St= 0).

3.1.1 One fluid

By eliminating the outer fluid, we can recover the one-fluid case. The derivation of the evolution
equations for a slender fiber have been derived many places elsewhere, e.g. [2, 22]. They are
equations for the leading order axial velocity component w0(z, t) and cross-sectional area A(z, t) as
follows:

A,t + (w0A),z = 0, and (3Aw0,z), z = 0. (10)

See Howell’s thesis for a derivation of a solution in this case. Note that the leading order axial
velocity is independent of the radial coordinate and it was obtained at the next order (not leading
order); these equations may be thought of as mass conservation and an axial force balance. We
expect similar things to happen in the two fluid case.

3.1.2 Two fluids

We use a regular expansion of all dependent variables in even powers of ǫ starting from 0; e.g.,
w(r, z, t) = w0 + ǫ2w2 + . . ..
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The leading order equations are, for the inner fluid on 0 < r < a1(z, t),
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For the outer fluid in a1(z, t) < r < a2(z, t), we have
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On the interface between fluids 1 and 2 at r = a1(z, t) we have
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On the outer surface at r = a2(z, t), we have
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Integrating what is left of the momentum equations for each fluid shows that

w
(1)
0 = C1(z, t) ln r + C2(z, t), (25)

w
(2)
0 = C3(z, t) ln r + C4(z, t). (26)

For the inner fluid, C1 = 0 for a bounded solution; from the shear stress condition at the interface,
we must have C3 = 0. Thus, the leading order axial velocity in both fluids is independent of radius.
We let

w
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Integrating the radial momentum equation gives the pressures, namely,

p
(1)
0 = −w

(1)
0,z + C5(z, t), (29)

p
(2)
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Using the normal stress boundary conditions reveals that C5 = C6 = 0 and so
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0,z and p

(2)
0 = −w

(2)
0,z . (31)

It remains to determine the axial velocity components and the evolutions of the free boundaries
locating the radial extent of the fluids; we must go the next order to find these quantities.

Going to next order allows us to close the system. The leading order equations for the free
surfaces and the leading order axial velocity component may be expressed in terms of the cross
sectional areas as follows:

A1,t + (A1w0),z = 0, (32)

A2,t + (A2w0),z = 0, (33)

1

a1
[3(1 − µ12)A1w0,z]z +

1

a2
[3µ12A2w0,z]z = 0. (34)

Here the Ai with i = 1, 2 is the cross sectional area within a1 and a2 respectively; w0 is the leading
order axial velocity component that is a single function in both fluids.

3.2 Results

3.2.1 Numerics for two fluids

We tried a method of lines approach. We mapped the PDEs to a fixed domain with the variable
ζ = z/L(t) so that in the new variable we have 0 ≤ ζ ≤ 1. We then applied centered finite difference
methods on a uniform mesh for the spatial derivatives. The resulting system is differential-algebraic,
though it was solved with essentially an ODE approach. The method first solved the algrebraic
problem for axial velocity component w0j for all j on the grid points and then solved the ODE’s
for the a1j(t) and a2j(t) at the grid points using either ode45 or ode15s in Matlab. The code for
the two fluid case is in Appendix B.

The initial conditions for computation are given by A1(ζ, 0) = δ1 sin(2πζ) + Ā1 and A2(ζ, 0) =
δ2 sin(2πζ) + Ā2.

3.2.2 A first case

We begin with some sample computations where we chose µ12 = 2, Ā1 = 1, Ā2 = 1.5 and δ1 =
δ2 = 0.1; the results are shown in Figure 1. The left hand panel shows Ai(ζ, t), i = 1, 2, which is
the total cross-sectional area within each fluid surface, as a function of space and time. The right
hand panel compares the maximum and minimum values of the total cross-sectional area for each
interface as a function of time. The subscripts are left off in the legend to reduce clutter; the lower
curve in each case is for the inner interface located by A1 and the upper curve is for the outer
interface located by A2. Note the logarithmic scales on each ordinate and the periodicity of the
solution. There is a consistently a localized increase in amplitude with a relatively broad flat valley
between. This strongly resembles the boudinage pictures from the geological papers, which justifies
the original ansatz of the work. We now go on to vary the amplitude of the initial conditions and
the viscosity ratio.

5



0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

 

 

0
2.8467
3.5543
4.2397
5

0 1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

t

 

 
ln(A

max
/A

min
)

ln(A
min

)

ln(A
max

)

Figure 1: Left: Inner and total area as a function of ζ for different times. The
nonlinearity in the instability is apparent. Right: Minimum and maximum film
area, and their ratio, with time for µ12 = 2, Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.1.
The maxima in the area appear to asymptote to a constant value, while the mimima
appear to take on power law behavior (constant slope) at the latest times.

3.2.3 Varying the initial conditions

The rapidity with which the constant maximum area and the power law decrease in the minimum
radii is obtained is accelerated when the initial disturbance amplitude is increased. Figure 2 shows
results for a smaller disturbance amplitude and a slower development. Compare the results shown
in Figure 1.

So far, the sinusoidal disturbances have been in phase. We now try the case when they are
out of phase with µ12 = 2, Ā1 = 1, Ā2 = 1.5 and δ1 = −δ2 = 0.1; results are shown in Figure 3.
The maxima end up lining up anyway after an early adjustment period. The instability has been
accelerated, with the minimum areas four to five times thinner in the out-of-phase case. The
numerical instability is visible by t = 4 now, so it is encouraged in this case as well.

3.2.4 Changing the viscosity ratio

We now make a more viscous outer annulus compared to the core. We show results for µ12 = 5,
Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.1 in Figure 4. These results develop much more slowly than
for the smaller viscosity ratio for this in phase disturbance. For the out of phase disturbance with
same high viscosity contrast, namely µ12 = 5, Ā1 = 1, Ā2 = 1.5 and δ1 = −δ2 = 0.1 in Figure 5. In
this case, the boudinage instability is promoted, with a large area contrast at the end time being
observed. We don’t yet know why the instability is promoted or retarded by these combinations in
the nonlinear regime.

We now make the core 5 times more viscous than the outer layer, so that we compute for
µ12 = 1/5, Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.1 in Figure 6. The boudinage instability is promoted
in this case relative to the out of phase disturbance for the same parameters to follow, and although
it is a little slower to develop, this case is similar to the µ12=5 case. For the out of phase case, we
compute for µ12 = 1/5, Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.1 in Figure 7. In this case, the boudinage
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Figure 2: Left: Inner and total area as a function of ζ for different times. The
nonlinearity in the instability develops more slowly with the smaller initial amplitude
of the disturbance in the initial condition. Right: Minimum and maximum film area,
and their ratio, with time for µ12 = 2, Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.025. It takes
significantly longer to get to the late time behavior for the case when δ1 = δ2 = 0.1.
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Figure 3: Left: Inner and total area as a function of ζ at different times
for µ12 = 2, Ā1 = 1, Ā2 = 1.5 and δ1 = −δ2 = 0.1; compare with
in phase case shown in Figure 1. Right: Minimum and maximum film
area, and their ratio, with time. The boudinage instability of the fiber
is encouraged compared to the in-phase case.
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Figure 4: Left: Inner and total area as a function of ζ for different times for µ12 = 5,
Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.1. The nonlinearity in the instability develops
much more slowly with the increased viscosity contrast and an in-phase disturbance
in the initial condition. Right: Minimum and maximum film area, and their ratio,
with time. Note the small amplitude ratio at the last time.
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Figure 5: Left: Inner and total area as a function of ζ for different times for µ12 = 5,
Ā1 = 1, Ā2 = 1.5 and δ1 = −δ2 = 0.1. Here we have only integrated to t = 4.5
to avoid disastrous numerical instability. Right: Minimum and maximum film area,
and their ratio, with time. Note the very large amplitude ratio at the last time;
the instability from boudinage was promoted by the high viscosity ratio and out of
phase disturbance.
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Figure 6: Left: Inner and total area as a function of ζ for different times for µ12 =
1/5, Ā1 = 1, Ā2 = 1.5 and δ1 = δ2 = 0.1. Right: Minimum and maximum film area,
and their ratio, with time. Note the very large amplitude ratio at the last time;
the instability from boudinage was promoted by the high viscosity ratio and out of
phase disturbance.
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Figure 7: Left: Inner and outer thickness as a function of ζ for different times
for µ12 = 1/5, Ā1 = 1, Ā2 = 1.5 and δ1 = −δ2 = 0.1. Right: Minimum and
maximum film thickness, and their ratio, with time. Note the smaller amplitude
ratio at the last time; the instability from boudinage has been retarded by out of
phase disturbance.
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Figure 8: Inner and outer thickness as a function of ζ for different times.
Left: Ā2 = 1.25; right: Ā2 = 2. The instability develops faster for
smaller Ā2.

instability is retarded from the out of phase disturbance.

3.2.5 Numerical instability

Now for a bit more about the numerical instability. Making the initial conditions for the surface
closer together promotes the numerical instability, while increasing the separation seems to less it.
We show results for Ā2 = 1.25 and Ā2 = 2 with Ā1 = 1 and δ1 = δ2 = 0.1 as before in Figure 8 At
this time we have not analyzed or fully understood the numerical instability.

3.2.6 Linear stability for two fluids

We now discuss the linear stability of the boudinage case with concentric fluids of different viscosity
which was numerically solved in the previous section. We studied the class of perturbations for
L(t) = V t, that is, constant pulling speed and sinusoidal variation in the area. This corresponded
to the numerical computations in the previous section. For the stability analysis is is convenient
to put the equations on a fixed domain via the transformation ζ = z/L(t) as for the numerics; the
equations are then

A1,t −
L̇ζ

L
A1,ζ + (A1w0),ζ = 0, (35)

A2,t −
L̇ζ

L
A2,ζ + (A2w0),ζ = 0, (36)

1

a1
[3(1 − µ12)A1w0,ζ ]ζ +

1

a2
[3µ12A2w0,ζ ]ζ = 0. (37)

We will make use of L(t) = V t where V is the constant stretch speed and we pose

A1(ζ, t) =
V1

πV t
[1 + δÂ1(ζ, t)], (38)
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A2(ζ, t) =
V2

πV t
[1 + δÂ2(ζ, t)], (39)

w0(ζ, t) = V ζ + δŵ0(ζ, t), (40)

where δ ≪ 1 is the perturbation amplitude and Vi is the volume inside the respective outer radii
of the fluid.

Substituting the solution forms into the equations and linearizing gives, for the areas,

Â1,t +
ŵ0,ζ
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= 0, (41)

Â2,t +
ŵ0,ζ

V t
= 0. (42)

We can then use the last equation to solve for the quantity

ŵ0,ζ

V t
= −(V1/V2)

3/2(1 − µ12)Â1 + µ12Â2

(V1/V2)3/2(1 − µ12) + µ12

1

t
(43)

Here we made use of
1√
Ai

=

(

V1

πV t

)

−1/2

(1 − Â1δ/2 + ...). (44)

Solving for the area perturbation equation, we find

Ã1,t = Ã2,t =
(V1/V2)

3/2(1 − µ12)Â1 + µ12Â2

(V1/V2)3/2(1 − µ12) + µ12

1

t
. (45)

We now hypothesize sinusoidal disturbances in ζ, namely,

Âi = Ãi(t) sin(kπζ), i = 1, 2; (46)

substitution gives
dÃ1

dt
=

dÃ2

dt
=

(V1/V2)
3/2(1 − µ12)Â1 + µ12Â2

(V1/V2)3/2(1 − µ12) + µ12

1

t
. (47)

We can see that the initial change in the size of the amplitude of the perturbations depends on the
size of the perturbations, the viscosity contrast between the different materials and the phase of the
disturbances (i.e., the sign of the disturbance amplitudes). However, trends are not immediately
apparent.

Suppose that we now wish to make the phase of the disturbances explicit; we choose Ã2 = ±|Ã2|
and then find

dÃ1

dt
= ±d|Ã2|

dt
=

(V1/V2)
3/2(1 − µ12)Â1 + µ12(±|Â2|)

(V1/V2)3/2(1 − µ12) + µ12

1

t
. (48)

The sign change between the two areas for the initial change may explain why the out of phase
case (minus sign) decays and then the in phase shape appears during the nonlinear evolution.
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3.3 Discussion

We’ve explored the stretching in the two fluid case, and only considered the effect of differing
viscosities in an inclusion. The case with an out-of-phase disturbance and a less viscous core
seemed to be the most unstable, showing a ratio of maximum to minimum approaching 104 is when
integrating to t = 5. This extreme value is reminiscent of the extreme instability shown in Smith
[25] in geologic formations. At such extreme values, it is reasonable to expect that other physics
may be needed, e.g., surface tension and inertia.

The idea that a boudinage-type instability may occur and contribute in fiber pulling appears
to be a good one.

4 Conclusion

Remaining tasks for the future are manifold. A critical extension is to the three-fluid case. The
inclusion of gravity, inertia, surface tension and non-Newtonian effects on the boundinage/mullions
instability would be of interest. This is certainly accessible given appropriate time.

Another direction is to consider the effect of thermal perturbations on the pulling when there
is taper in the drawn fiber.
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Appendix A: Nonlinear and linearized problem in terms of radii

In case it is useful, the problems in terms of radii for two-fluid Boudinage are given here. We first
record the eq In terms of the radii ai(z, t) with i = 1, 2, we may write the equations as follows:

2a1a1,t + (a2
1w0),z = 0, (49)

2a2a2,t + (a2
2w0),z = 0, (50)

1

a1

[

3(1 − µ12)a
2
1w0,z

]

z
+

1

a2

[

3µ12a
2
2w0,z

]

z
= 0. (51)

The boundary conditions are again w0(0, t) = 0, w(L, t) = L̇ with periodicity in the ai.
A z-independent solution is available for the radii, namely

ā1(t) =

√

V1

πL(t)
, with ā1(0) =

√

V1

πL(0)
= R10, (52)

ā2(t) =

√

V2

πL(t)
, with ā2(0) =

√

V2

πL(0)
= R20, (53)

w̄0(z, t) =
L̇

L
z. (54)

Here we have made use of cylindrical geometry at all times where Vi(t) = πL(t)[ai(t)]
2, with i = 1, 2.

Applying the perturbations

a1(z, t) = ā1(t) + δâ1(z, t) (55)

a2(z, t) = ā2(t) + δâ2(z, t) (56)

w0(z, t) = w̄0(t) + δŵ0(z, t) (57)

and linearizing gives the linear stability problem as follows:

2(ā1â1,t + â1ā1,t) +
[

2ā1â1w̄0 + (ā1)
2ŵ0

]

,z
= 0, (58)

2(ā2â2,t + â2ā2,t) +
[

2ā2â2w̄0 + (ā2)
2ŵ0

]

,z
= 0, (59)

1

ā1

[

3(1 − µ12)(2ā1â1w̄0,z + (ā1)
2ŵ0,z)

]

z
+

1

ā2

[

3µ12(2ā2â2w̄0,z + (ā2)
2ŵ0,z)

]

z
= 0. (60)

It is convenient for analysis to choose L(t) = V t so that we pull with constant speed; then w̄0 = V z
and ŵ0(0, t) = ŵ0(L, t) = 0 corresponds to no perturbation to the pulling speed, and the radii are
initially sinusoidal.
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Appendix B: Code for single fluid case

function [t,z,y] = onefluid1(N,tout,imethod,Amean,Ainit)

% function [t,z,y] = onefluid1(N,tout,imethod,Amean,Ainit)

%

% one fluid code for Corning problem

% uses either ode45 or ode15s with finite difference MOL

% manually solves for algebraic variable, so really solving odes

% Input

% N = total number of grid points (including ends)

% tout = final time

% imethod = 1 for ode45, 2 for ode15s

% Amean = initial mean area

% Ainit = amplitude of initial inner area perturbation

% Binit = amplitude of initial total area perturbation

% Output

% t = output times

% z = spatial mesh

% u = dependent variable solution; each row is a different time

% and 1:N is A

% N = 201; %number of total node points

z = linspace(0,1,N);

A = Ainit*sin(2*pi*z)+Amean; % Initial State

% Boundary conditions

w0 = 0;

wL = 1;

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6);

if (imethod==1)

[t,y]= ode45(@timeDer,[0 tout],A,options,w0,wL,N);

else

[t,y]= ode15s(@timeDer,[0 tout],A,options,w0,wL,N);

end

%surf(y)

%keyboard

%hold off

figure;

for i = 1:length(t)

plot3(diag(t(i)*eye(N)),z, y(i,1:N)*(t(i)+1));

hold on

end

ymin = (min(y’))’;

ymax = (max(y’))’;
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yrat = ymax./ymin;

figure

semilogy(t,yrat,’-’,t,ymin,’-.’,t,ymax,’--’,’LineWidth’,2);

xlabel(’t’);

legend(’ln(r_{max}/r_{min})’,’ln(r_{min})’,’ln(r_{max})’,2);

figure;

i1 = round(length(t)/4);

i2 = round(length(t)/2);

i3 = round(length(t)*3/4);

semilogy(z,y(1,:),’.’,z,y(i1,:),’--’,z,y(i2,:),’-.’,z,y(i3,:),’-’,z,y(end,:),’.’);

legend(gca,num2str(t(1)),num2str(t(i1)),num2str(t(i2)),num2str(t(i3)),num2str(t(end)),1);

end

%keyboard

function Adot = timeDer(t,A,w0,wL,N)

% Finite difference implementation to compute w

z = linspace(0,1,N);

delZ = z(2)-z(1);

W(1:N) = w0;

W(N) = wL;

Mat = zeros(N-2,N-2);

RHS = zeros(N-2,1);

Mat(1,1) = -(A(3)+2*A(2)+A(1)); % N = 2

Mat(1,2) = A(3)+A(2);

RHS(1,1) = -(A(2)+A(1))*W(1);

Mat(N-2,N-3) = A(N-1)+A(N-2); % N = N-1

Mat(N-2,N-2) = -(A(N)+2*A(N-1)+A(N-2));

RHS(N-2,1) = -(A(N)+A(N-1))*W(N);

nodeID = 3;

for i = 1:N-4

Mat(i+1,i) = A(nodeID)+A(nodeID-1);

Mat(i+1,i+1) = -(A(nodeID+1)+2*A(nodeID)+A(nodeID-1));

Mat(i+1,i+2) = A(nodeID+1)+A(nodeID);

nodeID = nodeID+1;

end

Wsol(2:N-1) = Mat\RHS;
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Wsol(1) = W(1); % wL

Wsol(N) = W(N); % wR

% To compute Adot

Ldot = 1;

L = 1;

%

% for i = 1:N-1

% Adot(i) = (Ldot/L)*(i-1)*(A(i+1)-A(i)) - ...

(A(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(A(i+1)-A(i)))/(L*delZ) ;

% end

% Adot(N) = (Ldot/L)*(N-1)*(A(i)-A(i-1)) - ...

(A(i)*(Wsol(i)-Wsol(i-1))+Wsol(i)*(A(i)-A(i-1)))/(L*delZ) ;

% Adot = Adot’;

for i = 2:N-1

Adot(i,1) = -(Wsol(i+1)*A(i+1) - Wsol(i-1)*A(i-1))/(2*delZ*L) +...

z(i)*Ldot*(A(i+1)-A(i-1))/(2*delZ*L);

end

Adot(1,1) = -A(1)*(-Wsol(3)+4*Wsol(2)-3*Wsol(1))/(2*delZ*L);

Adot(N,1) = -A(N)*(3*Wsol(N)-4*Wsol(N-1)+Wsol(N-2))/(2*delZ*L);

end
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Appendix C: Code for two fluid case

function [t,z,y] = twofluid1(N,tout,imethod,Amean,Bmean,Ainit,Binit,visrat)

% function [t,z,y] = twofluid1(N,tout,imethod,Ainit,Binit)

%

% two fluid code for Corning problem

% uses either ode45 or ode15s with finite difference MOL

% manually solves for algebraic variable, so really solving odes

% Input

% N = total number of grid points (including ends)

% tout = final time

% imethod = 1 for ode45, 2 for ode15s

% Amean = initial inner mean area

% Bmean = initial total mean area

% Ainit = amplitude of initial inner area perturbation

% Binit = amplitude of initial total area perturbation

% visrat = viscosity ratio (outer/inner)

% Output

% t = output times

% z = spatial mesh

% y = dependent variable solution; each row is a different time

% and 1:N is A, N+1:2*N is B

%N = 201; %total number of node points

z = linspace(0,1,N);

A = Ainit*sin(2*pi*z)+Amean; % Initial State

B = Binit*sin(2*pi*z)+Bmean; % Initial State

% Boundary conditions

w0 = 0;

wL = 1;

statevec = [A,B]’;

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6);

if (imethod == 1)

[t,y]= ode45(@timeDer,[0 tout],statevec,options,w0,wL,N,visrat);

else

[t,y]= ode15s(@timeDer,[0 tout],statevec,options,w0,wL,N,visrat);

end

%figure

%surf(y(:,1:N));

%hold on

%surf(y(:,N+1:2*N));

hold off

figure

waterfall(y(:,1:N));
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figure

for i = 1:10:length(t)

plot3(diag(t(i)*eye(N)),z, y(i,1:N)*(t(i)+1));

hold on

plot3(diag(t(i)*eye(N)),z,y(i,N+1:2*N)*(t(i)+1));

end

figure

yinmin = (min(y(:,1:N)’))’;

yinmax = (max(y(:,1:N)’))’;

youtmin = (min(y(:,N+1:2*N)’))’;

youtmax = (max(y(:,N+1:2*N)’))’;

yinrat = yinmax./yinmin;

youtrat = youtmax./youtmin;

semilogy(t,yinrat,’-’,t,yinmin,’-.’,t,yinmax,’--’,t,youtrat,’-’,...

t,youtmin,’-.’,t,youtmax,’--’,’LineWidth’,2);

xlabel(’t’);

legend(’ln(r_{max}/r_{min})’,’ln(r_{min})’,’ln(r_{max})’,2);

figure

i1 = round(length(t)/4);

i2 = round(length(t)/2);

i3 = round(length(t)*3/4);

semilogy(z,y(1,1:N),’.’,z,y(i1,1:N),’--’,z,y(i2,1:N),’-.’,z,y(i3,1:N),’-’,...

z,y(end,1:N),’.’,z,y(1,N+1:2*N),’.’,z,y(i1,N+1:2*N),’--’,z,y(i2,N+1:2*N),...

’-.’,z,y(i3,N+1:2*N),’-’,z,y(end,N+1:2*N),’.’,...

’LineWidth’,2);

legend(gca,num2str(t(1)),num2str(t(i1)),num2str(t(i2)),num2str(t(i3)),num2str(t(end)),3);

xlabel(’\zeta’); ylabel(’A_1(\zeta,t), A_2(\zeta,t)’);

% keyboard

function Dotvec = timeDer(t,statevec,w0,wL,N,Mu)

%the A and B are areas, not radii.

A = statevec(1:N,1);

B = statevec(N+1:2*N,1);

%Mu = 2;

% Finite difference implementation to compute w

z = linspace(0,1,N);

delZ = z(2)-z(1);

W(1:N) = w0;

W(N) = wL;
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Mat = zeros(N-2,N-2);

RHS = zeros(N-2,1);

Mat(1,1) = -(A(3)+2*A(2)+A(1))*(1-Mu)/sqrt(A(2)) -...

(B(3)+2*B(2)+B(1))*Mu/sqrt(B(2)) ; % N = 2

Mat(1,2) = (A(3)+A(2))*(1-Mu)/sqrt(A(2)) + (B(3)+B(2))*Mu/sqrt(B(2));

RHS(1,1) = -(A(2)+A(1))*W(1)*(1-Mu)/sqrt(A(2)) -(B(2)+B(1))*W(1)*Mu/sqrt(B(2));

Mat(N-2,N-3) = (A(N-1)+A(N-2))*(1-Mu)/sqrt(A(N-1)) + ...

(B(N-1)+B(N-2))*Mu/sqrt(B(N-1)) ; % N = N-1

Mat(N-2,N-2) = -(A(N)+2*A(N-1)+A(N-2))*(1-Mu)/sqrt(A(N-1))-...

(B(N)+2*B(N-1)+B(N-2))*Mu/sqrt(B(N-1));

RHS(N-2,1) = -(A(N)+A(N-1))*W(N)*(1-Mu)/sqrt(A(N-1))-...

(B(N)+B(N-1))*W(N)*Mu/sqrt(B(N-1)) ;

nodeID = 3;

for i = 1:N-4

Mat(i+1,i) = (A(nodeID)+A(nodeID-1))*(1-Mu)/sqrt(A(nodeID))+...

(B(nodeID)+B(nodeID-1))*Mu/sqrt(B(nodeID)) ;

Mat(i+1,i+1) = -(A(nodeID+1)+2*A(nodeID)+A(nodeID-1))*(1-Mu)/sqrt(A(nodeID))-...

(B(nodeID+1)+2*B(nodeID)+B(nodeID-1))*Mu/sqrt(B(nodeID));

Mat(i+1,i+2) = (A(nodeID+1)+A(nodeID))*(1-Mu)/sqrt(A(nodeID))+...

(B(nodeID+1)+B(nodeID))*Mu/sqrt(B(nodeID));

nodeID = nodeID+1;

end

Wsol(2:N-1) = Mat\RHS;

Wsol(1) = W(1); % wL

Wsol(N) = W(N); % wR

% To compute Adot and Bdot

Ldot = 1;

L = 1;

% for i = 1:N-1

% Adot(i,1) = (Ldot/L)*(i-1)*(A(i+1)-A(i)) - ...

% (A(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(A(i+1)-A(i)))/(L*delZ) ;

% Bdot(i,1) = (Ldot/L)*(i-1)*(B(i+1)-B(i)) - ...

% (B(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(B(i+1)-B(i)))/(L*delZ);

% end

i = 1;

Adot(1,1) = (Ldot/L)*(i-1)*(A(i+1)-A(i)) - ...

(A(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(A(i+1)-A(i)))/(L*delZ) ;

Bdot(1,1) = (Ldot/L)*(i-1)*(B(i+1)-B(i)) - ...
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(B(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(B(i+1)-B(i)))/(L*delZ);

i = N;

Adot(N,1) = (Ldot/L)*(N-1)*(A(i)-A(i-1)) - ...

(A(i)*(Wsol(i)-Wsol(i-1))+Wsol(i)*(A(i)-A(i-1)))/(L*delZ) ;

Bdot(N,1) = (Ldot/L)*(N-1)*(B(i)-B(i-1)) - ...

(B(i)*(Wsol(i)-Wsol(i-1))+Wsol(i)*(B(i)-B(i-1)))/(L*delZ) ;

for i = 2:N-1

Adot(i,1) = -(Wsol(i+1)*A(i+1) - Wsol(i-1)*A(i-1))/(2*delZ*L) + ...

z(i)*Ldot*(A(i+1)-A(i-1))/(2*delZ*L);

Bdot(i,1) = -(Wsol(i+1)*B(i+1) - Wsol(i-1)*B(i-1))/(2*delZ*L) + ...

z(i)*Ldot*(B(i+1)-B(i-1))/(2*delZ*L);

end

% Adot(1,1) = -A(1)*(-Wsol(3)+4*Wsol(2)-3*Wsol(1))/(2*delZ*L);

% Bdot(1,1) = -B(1)*(-Wsol(3)+4*Wsol(2)-3*Wsol(1))/(2*delZ*L);

%

% Adot(N,1) = -A(N)*(3*Wsol(N)-4*Wsol(N-1)+Wsol(N-2))/(2*delZ*L);

% Bdot(N,1) = -B(N)*(3*Wsol(N)-4*Wsol(N-1)+Wsol(N-2))/(2*delZ*L);

Dotvec = [Adot;Bdot];
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