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Abstract In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via
the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection
and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the
dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional
systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases
admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative
importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the
furnace and the role of each in controlling the glass temperature. The models derived predict many of the qualitative
features observed in real industrial processes, such as the glass temperature profile within the furnace and the sharp
transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable
practical information about the dependencies of the solution on the parameters and the dominant heat-transport
mechanism.

Keywords Asymptotic analysis · Extensional flow · Heat transfer · Optical fibre drawing · Slow viscous flow

1 Introduction

Fibre drawing is an important industrial process used to manufacture fibre-optic cables for telecommunications
applications. A cylindrical glass preform, of diameter around 5 cm, is lowered into a furnace. Here the preform
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Fig. 1 Schematic diagram
for drawing of optical glass
fibres. The (dimensional)
furnace temperature is given
by T̂f (ẑ), whereas the
ambient air temperature in
the furnace is denoted by
T̂a(ẑ)

melts, the glass viscosity decreases, and a fibre of thickness around 100µm may be drawn by applying a tension at
the end. As it exits the furnace, the glass is cooled by the air and solidifies into the desired solid fibre. A schematic
of the process is shown in Fig. 1.

One of the most interesting aspects of the process is that it is not isothermal, and many of the material properties,
most notably the glass viscosity, are found to depend on the temperature. In general, the glass temperature is
governed by a balance between thermal convection, radiation and conduction, although the relative importance of
these effects changes with distance down the fibre. In particular, there is typically a sharp transition in the glass
thickness, with the glass behaving differently on either side of the transition point.

There have been many theoretical studies of the drawing process in the literature stretching back over 40 years.
Early work considered the one-dimensional problem, in which quantities of interest vary only in the axial direction
and not radially [8,14]. Later studies concentrated on improving the modelling of the radiative heat transfer [13],
with Jaluria and co-workers gradually developing methods to solve the full three-dimensional conjugate heat
transfer between the glass, surrounding gas and furnace [11,18]. However, these solutions are computationally
very demanding, and so simpler models remain desirable for quick scenario testing and to give clearer insight
into the dependencies of the solution on the parameters. To that end, Huang and co-workers extended earlier one-
dimensional models to investigate the effects of, for example, viscous dissipation [22] and dopant diffusion [9],
but often at the expense of realistic radiative modelling, which is an inherent part of the industrial process. Other
studies ignored radiative heating altogether and considered only the cooling stage of the process [15]. Further, the
majority of work in this area considers fibre drawing with a draw speed of comparable magnitude with the input
speed, whereas fabrication of thin optical fibres necessitates much higher draw speeds that have become possible
more recently [25].

In this paper we derive simplified but realistic models for high-speed fibre drawing for the fabrication of optical
fibres, including both radiative and convective heat transfer throughout the process, and determine where each
mechanism dominates. We exploit both the small aspect ratio of the fibre and the relative orders of magnitude of
the dimensionless parameters to reduce the problem to a one- or two-dimensional system of equations that may be
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Asymptotic solutions for steady optical fibre drawing

readily solved numerically and for which some approximate analytical solutions exist. In particular, we aim to give
a systematic asymptotic breakdown of the dependencies of convection, surface radiation and conduction and how
their relative importance changes with axial distance down the furnace. We investigate different possible functional
forms for the radius-dependent radiative and convective heat transfer coefficients and in addition consider the effect
of non-uniform furnace temperatures.

The paper is laid out as follows. In § 2, we formulate our theoretical description of the problem, coupling together
the axisymmetric slow-flow equations with an energy equation governing the temperature of the glass. In § 3, we
exploit the small aspect ratio of the fibre to derive one-dimensional equations for the fluid flow. We then consider
the temperature profiles of the glass in § 4, considering a number of different asymptotic limits that may be relevant
to the industrial process. Finally, in § 5, we discuss our results and consider possible avenues for future research.

2 Problem description

2.1 Governing equations

2.1.1 Fluid flow

We consider the steady-state configuration where the input radius of the fibre preform is R̂0 and the length of
the furnace is L̂ , as depicted in Fig. 1, and we note that for clarity all dimensional quantities are denoted with
hats. Based on typical parameter values for the process (Table 1), we find that the Reynolds number for the flow,
based on the fibre radius, is very small and, assuming axisymmetry, the fluid flow is governed by the slow-flow
equations [5]:
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) + ∂ŵ
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∂ r̂

))
+ ∂μ̂

∂ ẑ
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where r̂ and ẑ denote the radial and axial coordinates, p̂ is the pressure within the molten glass, and û and ŵ are the
radial and axial velocities of the glass. The glass viscosity, denoted μ̂, is a function of its temperature T̂ only, which
may in general vary both along and across the fibre. At the centre of the fibre, symmetry provides the conditions

û = ∂ŵ

∂ r̂
= 0 (2a)

on r̂ = 0, while the kinematic and dynamic boundary conditions are

û = ŵ
dR̂

dẑ
, (2b)

(
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dR̂

dẑ
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+ ∂ŵ
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, (2c)

μ̂

(
∂ û
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+ ∂ŵ

∂ r̂

)
= dR̂

dẑ

(
− p̂ + 2μ̂

∂ŵ

∂ ẑ

)
(2d)

on the glass–air interface r̂ = R̂(ẑ), where we neglect any effects due to surface tension since these are typically
small [9]. The fluid problem is closed by specifying the velocity at the two ends of the tubing,

ŵ(r̂ , ẑ = 0) = Ŵ0, ŵ(r̂ , ẑ = L̂) = Ŵ1. (2e)
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Table 1 Typical parameter
values for high-speed
drawing of glass fibres

a Yin and Jaluria [25]
b Huang et al. [9]
c Paek and Runk [14]
d Myers [13]
e Lee and Jaluria [11]

Parameter Symbol Approximate value Units

Tubing lengtha,b L̂ 0.5 m
Initial radiusa R̂0 0.05 m
Input speeda Ŵ0 10−3 m s−1

Draw speeda Ŵ1 30 m s−1

Densityb,c ρ̂ 2200 kg m−3

Furnace temperatured,e T̂f 3000 K
Ambient air temperatured,e T̂a 2250 K
Glass softening temperatured,e T̂s 1900 K
Softening viscositye μ̂s 4500 N s m−2

Specific heatb,c,e ĉp 1000 J kg−1 K−1

Heat transfer coefficientb,c,e k̂h 100 W m−2

Thermal conductivityb,e k̂c 1.1 W m−1 K−1

Stefan–Boltzmann constante σ̂ 5.67 × 10−8 W m−2 K−4

Specific emissivityd εr 0.9 –
Refractive indexe n0 1.5 –
Absorption coefficientc,d χ̂ 200 m−1

2.1.2 Glass viscosity

The viscosity of glass varies significantly with temperature, with a number of expressions for μ̂(T̂ ) having been
reported in the literature depending on the type of glass [8]. We choose

μ̂ = μ̂s exp

(
a

(
1

T̂
− 1

T̂s

))
, (3)

which is suitable for fused silica, where T̂s is the softening temperature for glass, μ̂s the softening viscosity, and a
an empirically determined constant [13].

2.1.3 Temperature equation

The equation governing the distribution of temperature is

ρ̂ĉp

(

û
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∂ ẑ

)

= 1
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∂ ẑ

(

k̂(T̂ )
∂ T̂

∂ ẑ

)

, (4)

where the left-hand side represents thermal convection and the right-hand side thermal conduction, with k̂(T̂ )

denoting the conductivity of glass. For transparent materials, radiative transfer within the material is of significance,
especially at high temperatures. A full description of this effect is a formidable challenge; however, provided the fibre
is optically thick, that is, R̂ is much greater than the absorption length scale, 1/χ̂, where χ̂ is the glass absorption
coefficient (with typical values given in Table 1), one may use the Rosseland approximation to include a radiative
contribution to the thermal conductivity, k̂c, so that the apparent conductivity k̂(T̂ ) = k̂c + k̂r (T̂ ), where [14]

k̂r (T̂ ) = 16n2
0σ̂ T̂ 3

3χ̂
. (5)

Here σ̂ is the Stefan–Boltzmann constant and n0 denotes the refractive index for the glass (with typical values given
in Table 1). We may therefore separate the respective conductive components in (4) to give
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, (6)

123123

Author's personal copy



Asymptotic solutions for steady optical fibre drawing

where κ̂r (T̂ ) = k̂r/4T̂ 3. The assumption may break down once the fibre is drawn down to a thickness of O(100 µm),

at which point one might expect the glass to absorb the radiation directly from the surrounding furnace and re-radiate
heat back to the furnace.1 Nevertheless, given that the absorption length scale is highly dependent on the glass
properties and radiation wavelength, in the interest of simplicity we limit ourselves to considering only the optically
thick limit. Furthermore, we note that the validity of the Rosseland approximation for the fibre-drawing process has
been confirmed by numerical tests using more realistic models for bulk radiation [24].

The boundary condition at the glass–air interface r̂ = R̂(ẑ) is

− k̂
∂ T̂

∂ r̂
= σ̂ εr

(
T̂ 4 − T̂ 4

f

)
+ k̂h

(
T̂ − T̂a

)
, (7)

where T̂f = T̂f(ẑ) and T̂a = T̂a(ẑ) are, respectively, the temperatures of the furnace and ambient air in the furnace,
both of which are assumed to be known functions of the distance along the furnace, as discussed in § 2.1.4. The
terms on the right-hand side represent respectively radiative transfer and convective heating to the surroundings via
Newton cooling [1]. Here εr is the specific emissivity and k̂h the heat transfer coefficient, which may depend on
the radius of the fibre; appropriate functional forms are discussed in § 2.1.5.

Finally, the system is closed by specifying the input temperature T̂ = T̂0 at ẑ = 0. For simplicity, we assume
that T̂0 is a constant so that the heat flux through the outer radius is zero. Then (7) implies that T̂0 is given by the
solution to the quartic equation

σ̂ εr

(
T̂ 4

0 − T̂f(0)4
)

+ k̂h

(
T̂0 − T̂a(0)

)
= 0. (8)

However, in reality, the temperature of the glass entering the furnace is unlikely to satisfy (8); rather, the fibre will
enter at the far lower ambient temperature outside the furnace, say around 300 K. In this case we expect there to
be a small transient near the inlet over which the system quickly adjusts to the solution of (8). We investigate this
thermal boundary layer in § 4.1.1.

2.1.4 The form of T̂f and T̂a

The furnace temperature T̂f is not very well characterized, but it is known that the furnace is generally hottest in
the central portion and coolest at the ends [11] and has been typically modelled as having either a Gaussian or
parabolic profile [17]. To evaluate the effect of the furnace temperature, we consider both an isothermal and varying
temperature profile, with the latter taken to be of the functional form [4]

T̂f(ẑ) = T̂m

(
1
5 + 4

5 e−0.5(ẑ/L̂−0.35)2
)

, (9)

with the maximum temperature T̂m ≈ 3000 K.
For a given furnace profile, the ambient air temperature should be determined as part of the solution to the

full heat transfer problem [18]. However, for simplicity we assume the ambient temperature to be known. Several
authors take this to be constant, with T̂a ≈ T̂m/2 [11,14], or equal to room temperature [9]. However, full numerical
simulations suggest that T̂a(ẑ) follows the same profile as T̂f(ẑ), so we follow Filippov [4] and set T̂a(ẑ) = 3T̂f(ẑ)/4
throughout.

2.1.5 The form of εr and k̂h

Although typical values for the specific emissivity εr and heat transfer coefficient k̂h given in Table 1 are often
treated as constant, they are in fact both dependent on the material properties, temperature and radius of the fibre.
The emissivity is particularly tricky to measure at typical furnace temperatures and is usually assumed to behave as

1 One can tackle this optically thin limit in an ad hoc manner by including an additional radiative term in the temperature Eq. (4), as
was done by Fitt et al. [5].

123

Author's personal copy



M. Taroni et al.

if at room temperature, where it is experimentally found to decrease with decreasing fibre radius. While [14] posed
an ad hoc smoothly varying εr(R̂) ∈ [0.1, 0.6], [13] derived a more accurate model with εr(R̂) ∈ (0, 0.9], reaching
the higher value for R̂ � 1/χ̂ ≈ 10−2 m.

To maintain generality, we consider separately the cases of an emissivity that is constant and one that is of the

functional form εr ∼ 1−e−φ R̂, with φ ≈ 2.5χ̂ chosen so as to give qualitative agreement with Myers’s model [13].
The heat transfer coefficient k̂h is generally thought to vary only weakly throughout the process, although values

between 10 and 300 Wm−2 have been reported in the literature. While it is generally taken to be constant, [6] and
[8] have assumed the functional form R̂k̂h ∼ (ŵ R̂)1/3, derived by considering flow past a cylinder. In this paper,
we therefore investigate the effect of a k̂h that is both constant and of the form posed by Geyling and Homsy [8].

2.2 Non-dimensionalization

We exploit the slenderness of the geometry, that is, we introduce the inverse aspect ratio ε = R̂0/L̂ ≈ 0.1 � 1 and
scale using

r̂ = ε L̂r, ẑ = L̂z, û = εŴ0u, ŵ = Ŵ0w,

R̂ = ε L̂ R, T̂ = T̂s T, p̂ = μ̂s Ŵ0

ε2 L̂
p, μ̂ = μ̂sμ. (10)

Substituting into (1) and (4) provides the dimensionless system

1

r

∂

∂r
(ru) + ∂w

∂z
= 0, (11a)

−∂p

∂r
+ ε4 ∂

∂z

(
μ

∂u

∂z

)
+ ε2μ

∂

∂r

(
1

r

∂

∂r
(ru)

)
+ ε2 ∂μ

∂z

∂w

∂r
+ 2ε2 ∂μ

∂r

∂u

∂r
= 0, (11b)

−∂p

∂z
+ ε2 ∂

∂z

(
2μ

∂w

∂z

)
+ 1

r

∂

∂r

(
μr

∂w

∂r

)
+ ε2

r

∂

∂r

(
μr

∂u

∂z

)
= 0, (11c)

ε2Pe

(
u

∂T

∂r
+ w

∂T

∂z

)
= 1

r

∂

∂r

(
r
∂T

∂r
+ γ r

∂T 4

∂r

)
+ ε2 ∂2

∂z2

(
T + γ

∂T 4

∂z

)
, (11d)

where Pe = ρ̂ĉpŴ0 L̂/k̂c is the Péclet number and γ = 4n2
0σ̂ T̂ 3

s /3χ̂ k̂c measures the importance of bulk diffusion.
The dimensionless boundary conditions are

u = ∂w

∂r
= 0 (12a)

on r = 0 and

u = w
dR

dz
, (12b)

−p + 2ε2μ
∂u

∂r
= ε2μ

dR

dz

(
ε2 ∂u

∂z
+ ∂w

∂r

)
, (12c)

μ

(
ε2 ∂u

∂z
+ ∂w

∂r

)
= dR

dz

(
−p + 2ε2μ

∂w

∂z

)
, (12d)

−
(

1 + 4γ T 3
) ∂T

∂r
= εα

(
T 4 − T 4

f

)
+ εβ (T − Ta) (12e)

on r = R(z), where α = σ̂ εr T̂ 3
s L̂/k̂c and β = k̂h L̂/k̂c represent the importance of conduction relative to radiation

and convection respectively. We note that when only one of these effects is accounted for, both α and β have been
referred to as the Biot number [9,23]. Typical values are given in Table 2, although these may vary both with the
fibre radius and the type of glass used. Finally, we have boundary conditions on the fibre temperature and velocity
at input and the pulling speed as the fibre exits the furnace, namely
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Table 2 Dimensionless
parameter definitions and
approximate values

Parameter Symbol Approximate value

Aspect ratio ε = R̂0/L̂ 0.1

Reynolds number Re = ρ̂Ŵ0 L̂

μ̂s
� 10−3

Péclet number Pe = ρ̂ĉp Ŵ0 L̂

k̂c
1000

Draw ratio w1 = Ŵ1

Ŵ0
3 × 104

Surface radiation parameter α = σ̂ εr T̂ 3
s L̂

k̂c
160

Conduction parameter β = k̂h L̂

k̂c
50

Bulk radiation parameter γ = 4n2
0σ̂ T̂ 3

s

3χ̂ k̂c
5

w(r, 0) = 1, T (r, 0) = T0, w(r, 1) = w1, (13f-h)

where the draw ratio w1 = Ŵ1/Ŵ0 is the ratio of axial draw speed to input speed and T0 = T̂0/Ts is the dimensionless
inlet temperature. Finally, from (3) and taking a ≈ 61000 K [13] we find the dimensionless viscosity

μ(T ) = exp (32(1/T − 1)) . (14)

3 Fluid flow

Seeking regular parameter expansions of the form u = u(0) + ε2u(1) + · · · into the flow problem, (11a–c) and
(12a–c), and considering the resulting equations to leading order, we find that w(0) = w(0)(z), and thus the flow is
extensional. An approach similar to that of [3] may then be used to derive the following leading-order equations:

d

dz

(
w(0) R(0)2

)
= 0, (15a)

d

dz

(

3μ̄(0) R(0)2 dw(0)

dz

)

= 0, (15b)

representing conservation of mass and an axial stress balance respectively, where overbars denote the radially
averaged quantity

φ̄(z) = 2

R2

R∫

0

rφ(r, z)dr. (16)

Integrating (15a–b) and applying boundary condition (13f) yields

w(0) R(0)2 = 1, (17a)
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3μ̄(0) R(0)2 dw(0)

dz
= F, (17b)

where F is the (constant) tension in the fibre. In our problem we prescribe the draw speed w(1) = w1 (chosen here
to be 3 × 104, which corresponds to a high draw speed of 30 ms−1). Then F is determined as part of the solution
once we have found the temperature and, hence, radially averaged viscosity μ̄(0) using (14) and (16). We discuss
the variation of F with w1, α and β in §4.1.3.

4 Temperature profiles

The temperature system (11d) and (12e) possesses various asymptotic limits of interest, and we address these in
what follows. We note that several of the dimensional parameters given in Table 1, and thus their dimensionless
counterparts given in Table 2, are uncertain and may vary by up to an order of magnitude depending on the glass
used, and so the different limits will be applicable to these different scenarios.

4.1 Rapid heat transport across fibre radius

4.1.1 Surface radiation and conduction balance axial convection

We begin by supposing that Pe = Pe∗/ε, where Pe∗ = O(1), and also assume α, β and γ to be of order unity. In
practice this corresponds to high conduction, so that it balances both with surface radiation and axial convection.
Substituting a regular parameter expansion of the form T = T (0) + εT (1) +· · · into (11d) and using (12e) indicates
that T (0) = T (0)(z), and thus there are no variations in temperature across the fibre. The system is closed by
proceeding to second order in (11d), integrating over the fibre radius and using (12e) and (17a), leading to the
system

3μ̄(0)(T (0))
dw(0)

dz
= Fw(0), (18a)

1

2

√
w(0)Pe∗ dT (0)

dz
= −

(
α

(
T (0)4 − T 4

f

)
+ β

(
T (0) − Ta

))
, (18b)

subject to boundary conditions

w(0)(r, 0) = 1, T (0)(r, 0) = T0, w(0)(r, 1) = w1. (19a-c)

The evolution of temperature, viscosity, axial velocity and radius with axial position, taking the illustrative
parameter choice Pe∗ = 1, for different (but constant in space) values of α and β is shown in Fig. 2, where we
have assumed the Gaussian furnace temperature profile (9). We see that the viscosity varies through many orders
of magnitude as the fibre is drawn through the furnace. The fibre temperature is heavily guided by the furnace
temperature, peaking around or just after the furnace peak temperature. Following this, the temperature then falls
throughout the remainder of the furnace. The axial velocity and fibre radius both vary over a relatively small axial
distance, corresponding to the region where the glass temperature is near its maximum.

We notice that the axial velocity of the glass dramatically increases as we move down the profile. As a result it is
useful to visualize the temperature profile of a material element of molten glass as it moves through the furnace. This
corresponds to determining the temperature as a function of a dimensionless ‘time variable’, τ = τ(z), defined by
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Fig. 2 Effect of varying furnace temperature on leading-order variation of a temperature, b viscosity, c axial velocity and d radius,
with axial position for Pe∗ = 1, w1 = 3 × 104, Ta = 3Tf/4, T0 = Ts/10. In all cases the black solid line illustrates the case where
α = 160, β = 1, the dotted–dashed line shows the case α = 1, β = 50, and the dashed line shows the case α = 1, β = 1. The red
dashed line in a shows the furnace temperature Tf (z), given by (9) with Tm = 3000 K. (Color figure online)

τ =
z∫

0

1

w(0)(ζ )
dζ, (20)

which we identify with the time at which an element starting at the top of the furnace reaches the axial position
z. The rapid acceleration of the glass as it moves towards the end of the furnace is clearly shown by the relation
between τ and axial position z in Fig. 3a. The rapid cooling is evident in Fig. 3b–d, where we show the temperature,
viscosity and fibre radius varying dramatically in the final stages of the drawing process.

Aside from exhibiting all of the general features that are found in practice, these examples also illustrate the
effect of α and β on the process: a higher β leads to stronger cooling, whereas a higher α is needed to raise the glass
temperature to the furnace temperature. To examine this more closely, we consider the case of a constant furnace
temperature Tf in Fig. 4.2 These plots clearly illustrate the initial boundary layer in which the glass temperature
rapidly increases from T0 to its equilibrium value Te given by the solution to

α
(

T 4
e − T 4

f

)
+ β (Te − Ta) = 0. (21)

Furthermore, we see that the boundary layer width decreases with increasing α, while changing β affects only the
steady-state value attained. For the large values of α typically observed in practice, we are therefore justified in
ignoring this initial transient and setting T0 = Te as the initial condition for the temperature.

2 The constant Tf case is amenable to phase-plane analysis, details of which may be found in the appendix.
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Fig. 3 a Time variable τ against axial distance z for α = 160, β = 1 (solid line), α = 1, β = 50, (dotted–dashed line) and α = 1, β = 1
(dashed line). The corresponding b temperature, c viscosity and d radius are plotted against τ. In all cases Pe∗ = 1, w1 = 3 × 104,

Ta = 3Tf/4, T0 = Ts/10
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Fig. 4 Influence of a α and b β on variation of glass temperature with axial position taking a constant furnace temperature Tf = 2500 K,
shown red (dashed). In a we take β = 5, α = {1, 5, 20}, whereas in b α = 1, β = {1, 5, 20}. In all cases Pe∗ = 1, w1 = 3 × 104,

Ta = 3Tf/4, T0 = Ts/10. (Color figure online)

4.1.2 Effect of α(z), β(z)

We now consider the effect of letting α and β vary in the axial direction. Following our discussion in § 2.1.5, we

take εr ∼ 1 − e−φ R̂ with φ = 2.5χ̂ and use (17a) to obtain

α(z) = α0

(
1 − e−25/

√
w(0)(z)

)
, (22a)

where α0 is a constant. Taking R̂k̂h ∼ (ŵ R̂)1/3 as discussed in § 2.1.5 and using (17a) leads to

β(z) = β0w
(0)2/3

, (22b)
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Fig. 5 Influence of a α(z) given by Eq. (22a) (solid curve) and b β(z) given by Eq. (22b) (solid curve), compared to constant values
α0 = 160 and β0 = 50 (dotted–dashed); the furnace temperature is also shown (dashed). In all cases Pe∗ = 1, w1 = 3 × 104, Ta =
3Tf/4, T0 = Ts/10

where β0 is a constant.
We compare the difference between constant α and α(z) (with β held constant) in Fig. 5a, where we see that a

lower glass temperature is taken on exiting the furnace when α is a constant than when α varies with axial position.
When α depends upon the axial position, Newton cooling is the dominant mechanism in the later stages of the
process, as argued by, for example, [9]. Data for the exit glass fibre temperature would provide a mechanism to
determine the most suitable form for α.

On the other hand, we see in Fig. 5b that, with the proposed functional form for β(z), the temperature drops
off before the furnace reaches its maximum temperature and the glass viscosity is not reduced enough to enable
effective drawing. We therefore believe that this form is not realistic and that β should be kept constant. This is in
agreement with the numerical results to the full conjugate heat transfer problem, which reported that k̂h remained
approximately constant throughout the process [25].

For the remainder of this paper we focus our attention on the case where α and β are constant.

4.1.3 The force

An important quantity for industrial applications is the force, F, required to draw a fibre, found as part of the
solution to (18), satisfying F = 3 log w1/

∫ 1
0 1/μ̄(0)dz. We plot the force as a function of the prescribed draw ratio

w1 in Fig. 6a, which, as expected, is a monotonically increasing function. We also plot the force against α and β in
Figs. 6b and c; interestingly, the former is found to be non-monotonic at low values of α.

We note that, for a rapidly varying choice of μ(T ), Wylie et al. [23] reported that a simplified model with
constant heating and no cooling could predict three possible branches in force/draw-ratio space, two of which
were potentially stable. This surprising result was later extended to include surface tension and inertial effects [20].
Although we have also been able to reproduce their results for our model using the μ(T ) form suggested by Wylie et
al. [23], the solutions are very sensitive to the parameter values; in particular, we have not found the three branches
for our choice of μ(T ) and range of realistic parameter values.

4.1.4 Surface radiation and conduction dominate

Our parameter estimates given in Table 1 suggest that both α and β may in fact be quite large. If we therefore assume
that α = λα∗ and β = λβ∗, where α∗, β∗ are of order unity and λ � 1, then surface radiation and conduction
dominates over axial convection, and we may neglect the left-hand side of (18b). If we now assume that α∗ and β∗
are constant, then T (0)(z) is given simply by T (z), the solution to the quartic equation

α∗ (
T (z)4 − Tf(z)

4
)

+ β∗ (T (z) − Ta(z)) = 0, (23)
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Fig. 6 Force F against a w1 for α = 160, β = 50 (solid), α = 1, β = 50 (dashed), α = 1, β = 1 (dotted–dashed), b α for
β = {1, 10, 50}, w1 = 3 × 104, c β for α = {10, 20, 50, 100}, w1 = 3 × 104. In all cases, Pe∗ = 1, Ta = 3Tf/4, T0 = Ts/10

which may be expressed explicitly, although, due to its complicated form, we refrain from writing it here. Once
determined, (18a) may be integrated to give

w(0) = exp

⎛

⎝
z∫

0

3F

μ̄(0)(T (s))
ds

⎞

⎠ , (24)

with F chosen such that w(0)(1) = w1, and R(0) may then be calculated from (17a).
Towards the end of the furnace the fibre velocity rises significantly, and the term neglected on the left-hand side of

(18b) becomes important again; a boundary layer is thus present. Rescaling w(0) = λ2W we find that system (18b)
now reads

1

2

√
WPe∗ dT (0)

dz
= −

(
α∗ (

T (0)4 − T 4
f

)
+ β∗ (

T (0) − Ta

))
, (25)

and we return to solving the original full system (18). However, since the numerical simulations indicate that the
velocity evolves to its final value over a fairly narrow window (near where the temperature attains its maximum),
its value is approximately constant (and equal to the draw speed) for an appreciable portion of the fibre drawing.
We thus propose that we may set W1 = W1/λ

2(= O(1)), the (known) fibre pulling speed, so that (25) provides a
decoupled autonomous equation for T (0) in this region, which may be solved implicitly to give

z
(

T (0)
)

= −
T (0)∫

1

√
W1Pe∗ ds

α∗ (
s4 − T 4

f

) + β∗(s − Ta)
. (26)

We may then patch the solution to (23) with the solution to (26) to find an approximation to the full temperature
distribution. Once determined, w(0) and R(0) are easily calculated from (18a) and (17a) as before. This patched
asymptotic solution is compared with the solution to the full coupled system (18) in Fig. 7, showing excellent
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Fig. 7 a Variation of leading-order temperature with axial position given by full system (18) when Pe = 1, α = 160 and β = 50 (black),
while the blue dashed line shows the asymptotic solution T given by (23). In both cases, Pe∗ = 1, w1 = 3×104, Ta = 3Tf/4, T0 = Te.

In (b), the corresponding numerical and asymptotic solutions for the fibre radius are shown. (Color figure online)

agreement, with the two solutions almost indistinguishable. To complete a formal asymptotic analysis, we need to
solve the full problem in a small region that matches the solution determined in the two regions here. Nevertheless,
the asymptotic solutions derived here provide a simple yet accurate description of the system behaviour.

4.1.5 First-order correction

The α, β limit discussed in § 4.1.4 may be treated in an asymptotically rigorous manner by setting α = α∗/ε p,

β = β∗/εq , where p, q ∈ Z+. Since the leading-order system depends only on the axial position, to quantify the
radial variations, we must analyse the system at the next order in the expansion in powers of ε. In doing so, provided
w(0) is of order unity, which we have seen is true up to the point where the glass reaches its maximum temperature,
we may use Eq. (11d) and boundary condition (12e) at O(ε) (recalling that εPe = Pe∗) to obtain

T (r, z) = T (z) + ε

[
Pe∗(r2 − R(0)2

)w(0)T ′(z)
4(1 + 4γT (z)3)

+ A(z)

]

. (27)

Here, A(z) depends on the size of p and q: provided α∗ and β∗ are kept constant, we find from (12e) that

A(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Pe∗w(0)T ′(z)R

2(β∗ + 4α∗T (z)3)
p = q = 1,

−β∗

α∗
(Tf − Ta)

4T 3
f

p = 2, q = 1,

−α∗

β∗
1

(T 4
a − T 4

f )
p = 1, q = 2,

0 p, q ≥ 2.

(28)

We plot the temperature profile (27) against both the axial position and scaled radial position, x(r, z) = r/R(0)(z),
for the case p = 2, q = 1 in Fig. 8, showing excellent agreement with the numerical solution to the full
two-dimensional problem (§4.2), at least until the temperature reaches its maximum. After this point the axial
velocity w(0) increases rapidly and we can no longer ignore the left-hand side of (11d). Nevertheless, these asymp-
totic results give us a useful check on our two-dimensional numerical solution, which we now discuss.
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Fig. 8 Numerical (solid) and asymptotic (dashed) results for temperature against a axial position, with x = 0, and b scaled radial
position, x, with z = {0.1, 0.2, 0.3}, taking ε = 0.1, Pe∗ = 1, α = 1.6/ε2, β = 5/ε, γ = 0, w1 = 3 × 104, Ta = 3Tf/4, and
T0 = Te

4.2 Transport across the fibre balancing convection

4.2.1 Surface radiation and conduction balance convection

We now let Pe = O(1/ε2) = P/ε2, which is likely to be relevant to fibre drawing at the higher speeds that have
become possible more recently [25]. In this case, heat transfer across the fibre is balanced by the convective transport
and, from (11d), we see that T (0) depends on both r and z. However, it is convenient to change variables into a
coordinate frame that adapts to the radius of the fibre, via

x(r, z) = r

R(0)(z)
, ζ = P z. (29)

This transforms system (11d) and (12e) into

∂T (0)

∂ζ
= 1

x

∂

∂x

[

x
∂T (0)

∂x

(
1 + 4γ T (0)3

)
]

, (30a)

with

− ∂T (0)

∂x

(
1 + 4γ T (0)3

)
= α∗ R(0)

(
T (0)4 − T 4

f

)
+ β∗ R(0)

(
T (0) − Ta

)
(30b)

on x = 1, where we have set α = α∗/ε and β = β∗/ε, as this provides the richest limit in which surface radiation
and conduction balance convection.

In general, we must solve (30) numerically together with (17). We discretize the differential equations using
second-order centred differences for the spatial derivatives and integrate in time using the MATLAB differentio-
algebraic equation solver ode15s, treating (17b) as an algebraic constraint at each time-step. Once the solution is
found for an initial guess for F, the process is repeated iteratively until boundary condition (13h) is satisfied at the
end of the domain.

4.2.2 Industrially relevant regime

Based on the parameter values given in Table 1, we take α∗ = 16, β∗ = 5, γ = 5 and consider the effect of the Péclet
number, which is directly proportional to the preform width W0 and, thus, the draw ratio; indeed Péclet numbers
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Fig. 9 a Variation in leading-order temperature with axial position for radial coordinate x = {0, 0.2, 0.4, 0.6, 0.8, 1} in the case a P = 1
and c P = 10; the furnace temperature is also shown (dashed). b, d Corresponding fibre radii. In all cases, α = 16/ε, β = 5/ε,

γ = 5, w1 = 3 × 104, Ta = 3Tf/4 and T0 = Te, whereas in a and c, we also show the case of α(z) using (22a) (dot-dashed)

as high as O(103) are possible in high-speed fibre drawing. We present numerical results for the temperature and
free-surface profiles for P = 1, 10 in Fig. 9 (for ease of comparison we have used z rather than the rescaled variable
ζ ). As expected, we see that the temperature now varies across the radius of the fibre, being hottest at the edge
and coolest in the middle. Furthermore, this variation is much more pronounced at the larger Péclet number, as
suggested from the rescaling (29).

Although we are able to solve the full system numerically, we note that in the limit of strong radiation
(as suggested by our parameter values) or strong cooling, Eqs. (30a) and (30b) de-couple, which leads to a simpli-
fied system. For example, setting α = α̂/ε2 and β = β̂/ε2, where α̂ and β̂ are O(1), the leading-order boundary
condition (30b) simplifies to T (0) = T (ζ ) on x = 1, where T is again given by (23) with α∗, β∗ replaced by α̂, β̂

respectively.

4.2.3 Effect of bulk radiation

We now consider the role of bulk radiation, which for Pe = O(1/ε2) comes in at leading order when γ = O(1),

as assumed thus far. From (30) we see that if γ � 1, then bulk radiation dominates, so that the temperature is
approximately constant across the fibre. On the other hand, if we now set γ = 0, that is, zero bulk radiation, the
model reduces to

∂T (0)

∂ζ
= 1

x

∂

∂x

(

x
∂T (0)

∂x

)

in 0 < x < 1, (31a)

T (0) = T (ζ ) at x = 1, (31b)
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T (0) bounded at x = 0, (31c)

T (0) = T (0) at ζ = 0, (31d)

and in this case we are able to solve explicitly for the temperature. We let T (0)(x, ζ ) = T (ζ ) + T̂ (x, ζ ) and pose
the ansatz3 that

T̂ (x, ζ ) =
∞∑

m=1

fm(ζ )J0(λm x), (32)

where J0 is the lowest-order Bessel function and λm are the roots of J0. We substitute (32) into (31a), multiply by
x J0(λn x) and integrate across the fibre to find that fm satisfies

f ′
m + λ2

m fm = − 2T ′

λm J1(λm)
, (33)

where J1 is the first-order Bessel function and the solution for fm is given by

fm = − 2e−λ2
mζ

λm J1(λm)

ζ∫

0

T ′(s)e−λ2
m sds, (34)

and so the solution for T (0) is

T (0)(x, ζ ) = T (ζ ) +
∞∑

m=1

−2J0(λm x)e−λ2
mζ

λm J1(λm)

ζ∫

0

T ′(s)e−λ2
m sds. (35)

We plot the expression for T (0) given by (35), using ten terms in the summation, in Fig. 10a, where we see excellent
agreement with numerical results everywhere except near the origin, where the modulus of the terms in the expansion
start becoming very large, leading to numerical errors. Once we have found the temperature, we may now calculate
μ̄ and use (17) to find w(0), R(0) and F. The corresponding fibre radius is shown in Fig. 10b. In addition to giving
a simple explicit solution, (35) also provides a validation for the full two-dimensional numerics.

We compare our solution for zero bulk radiation to one with non-zero bulk radiation, but all other parameters
kept constant, in Fig. 10c and d. As expected, with zero bulk radiation we find a greater variation in temperature
across the fibre, which leads to a greater radially averaged glass viscosity, so that a greater force is required to
pull the fibre through the furnace. Increasing γ aids the heat transfer through the filament cross section and hence
smooths the temperature out across the fibre.

5 Discussion

In this paper we derived and analysed an extensional-flow model to describe the evolution of an optical fibre with
axial position drawn at high speed, in which we track the radius of the fibre, the speed of the fibre and the temperature.

3 We choose this particular form by analogy with the solution to the case where T (ζ ) = T (a constant), where it is clear that the

solution is of the form T (0)(x, ζ ) = T +
∞∑

m=1

fm(ζ )J0(λm x), with a simpler form for fm .
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Fig. 10 a Variation in leading-order temperature with axial position for x = {0, 0.2, 0.4, 0.6, 0.8, 1} in the case P = 1, α̂ = 1,

β̂ = γ = 0. The solid lines correspond with the numerical solution of (31a), whereas the dashed lines correspond to the exact solution
(35) taking ten terms in the expansion. The corresponding fibre radius is shown in (b). c and d are the same as a and b, except γ = 5

We incorporated energy transfer due to conduction, convection, bulk and surface radiation, and convective cooling
from the air, assuming that the fibre was optically thick. We also included the dependence of the viscosity on
temperature.

The model was first solved numerically in the limit where the temperature did not vary across the fibre. A change
of variable allowed us to present the solutions in terms of a Lagrangian time variable that traces a material fluid
element as it passes down the fibre. In terms of this variable, a boundary layer near the end of the evolution was
shown to exist. The structure of this solution was determined in the original coordinate system using asymptotic
analysis. The domain decomposed into an initial region where the temperature was set by a balance between surface
radiation and convective cooling, in which the velocity and fibre radius varied significantly, and then a later region
where the radius and velocity were effectively constant and the evolution of the temperature also involved bulk
convection.

Other interesting parameter limits of the model were explored using asymptotics and numerics. In an industrially
relevant limit, the temperature varies along and across the fibre, but the qualitative features are the same as in the
radially invariant case. The model can be used to assess the relative importance of surface cooling, surface radiation,
bulk radiation and standard heat transfer on the evolution of a fibre. In particular, including bulk radiation smooths
the temperature profile across the fibre, as shown in Fig. 10.

Our analysis has always assumed a known (large) pulling speed, with the required force calculated as part of
the solution. As expected, this force increases monotonically with the pulling speed and also increases as the glass
viscosity decreases, for example when the Péclet number is particularly high, as investigated in § 4.2.2. In fact, we
note that there always exists a force F that allows us to solve our one- or two-dimensional model, although it may be
unfeasibly high for practical purposes. This is in contrast to the more elaborate two- and three-dimensional models
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of Jaluria and co-workers, who are unable to find a steady solution if the glass temperature is too low, suggesting
that the fibre solidifies and breaks.

Throughout this paper we have restricted ourselves to considering only steady profiles, yet it has long been
known that even for an isothermal fibre draw ratio the problem becomes unstable once the draw ratio exceeds a
critical value wcrit ≈ 20 [10]. This oscillatory instability is known as draw resonance and is of both mathematical
interest [16] and great practical importance. A number of authors have thus investigated both the linear [8,13] and
nonlinear [6] stability of non-isothermal fibre drawing. While it would be possible to follow the same methodology
for our model, we note that [19] recently performed an in-depth study on the effect of cooling on fibre drawing,
noting that it is governed by the Stanton number St = β/εPe. Provided this is not much greater than unity, as found
from our parameter estimates, cooling has a stabilizing effect on fibre drawing, which would aid the process.

As discussed in §2.1, a limitation in our model is the assumption of an optically thick fibre, which is likely to
break down once the fibre is at its thinnest. Unfortunately, determining the energy transfer for an optically thin fibre
would involve tracing rays within the fibre; methods to do so have been discussed by, for example, [11,12] and,
more recently, [7]. Secondly, we should solve for the temperature field outside the fibre, taking into account that the
convective transfer to the fibre will be affected by the speed of the fibre and that the presence of the air will affect
the (external) radiative transfer.

However, the foregoing extensions would necessarily involve computationally intense problems, negating the
entire philosophy behind our work, that is, to derive realistic yet simple models for fibre drawing that may be
solved quickly. In light of this, useful extensions to our models that could still be readily solved would be the
inclusion of multiple layers, as discussed by [2,21], and of viscous dissipation. This latter effect was analysed
for a simplified case by [22], who found that dissipative effects were important once the fibre had thinned, and a
one-dimensional analysis required the inclusion of inertial effects. Similarly, [11] argued that viscous dissipation
made two-dimensional effects important, and so it would be expedient to include this effect in future extensions of
our work.
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Appendix

Phase plane analysis at constant furnace temperature

As noted in the main text, system (18a,b) is amenable to a phase plane analysis in the case where the furnace
temperature Tf is assumed constant (for consistency with the assumption of §2.1.4 the ambient temperature Ta is
then also constant). Dropping all leading-order (0) superscripts to simplify notation, it proves convenient to consider
the phase plane in (w,μ)-space. With T (μ) given by inverting relation (14), the autonomous system (18a,b) then
becomes

dw

dz
= Fw

3μ
, (36)

dμ

dz
= 64μ

Pe∗T (μ)2
√

w

(
α(T (μ)4 − T 4

f ) + β(T (μ) − Ta)
)

, (37)

123123

Author's personal copy



Asymptotic solutions for steady optical fibre drawing

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

Fig. 11 Phase plane for ambient temperature below glass-cooling
temperature. If the draw ratio is sufficiently high, then the fibre
viscosity may increase again before the fibre exits the furnace

Fig. 12 Phase plane for ambient temperature above glass-
softening temperature. The fibre viscosity decreases monotoni-
cally as the fibre passes through the furnace for all draw ratios

with T (μ) = (1 + log(μ)/32)−1. The phase plane for this system is the solution trajectories of the ordinary
differential equation

dw

dμ
= Pe∗FT (μ)2w3/2

192μ2
(
α(T (μ)4 − T 4

f ) + β(T (μ) − Ta)
) . (38)

As in the main text, we can consider either constant α, β, or α(w), β(w) as in, for example, Eq. (22). Here we present
two representative example phase planes for the case in which α and β are functions of w. A key factor influencing
the qualitative features of the phase diagram is whether the ambient temperature Ta is greater than or less than the
glass-softening temperature. In Fig. 11 we show the phase plane for α = α0(1−exp(−10/

√
w)), β = β0w

2/3, and
with α0 = 160, β0 = 1, Tf = 1.57, Ta = 0.75 (lower than the glass-softening temperature, which normalizes to
1), and Pe∗F = 3840. The solid curves are the phase trajectories, while the dashed curve is the nullcline on which
α(T (μ)4 − T 4

f ) + β(T (μ) − Ta) = 0. Only a limited range of the μ-axis is shown for simplicity, but it is clear
what the evolution would be for such a fibre. The fibre enters at a small value of w, the input velocity. At this stage
its viscosity is extremely large. As the fibre enters further into the furnace it gains axial velocity and its viscosity
drops precipitously before levelling off. Depending on the draw ratio (ratio of exit velocity to input velocity), the
viscosity may reach a minimum value (phase path crossing a nullcline) and then increase again before the fibre
exits the furnace.

In the case where the ambient temperature Ta is higher than the softening temperature, the evolution is less
dramatic. An example is shown in Fig. 12, with all parameters as before except Ta = 1.18 > 1. In this case, the
viscosity again drops rapidly as the fibre enters the furnace, but then stays at a low value until exit.

Bearing in mind the comments of §4.1.2 about the unrealistic nature of the proposed functional dependence of
β, we also show a phase plane for the case of constant β = 50 (Fig. 13). In this case the phase plane shows no
qualitative difference between the cases where the ambient temperature is above or below the softening temperature,
so we show only the case considered throughout most of the paper, where Ta = 3Tf/4 = 1.18 > 1 (and all other
parameters are as above). The fibre viscosity now decreases monotonically as the fibre passes through the furnace,
for all draw ratios.
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Fig. 13 Phase plane for
ambient temperature above
glass softening temperature,
and parameter β taken to be
constant. The fibre viscosity
decreases monotonically as
the fibre passes through the
furnace for all draw ratios
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