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Abstract

Typical mathematical frameworks for modelling the blocking behaviour of a filter due to particle deposition fall into
one of two categories: a continuum approximation, whereby particle deposition is assumed to occur in such a way
that all pores in the material are in the same state of blocking at any given time; or a discrete model, where blocking is
treated as individual events in both space and time. While the former is computationally inexpensive, the latter allows
for variation from pore to pore. This pore-to-pore variation has been shown to provide a qualitative change in the
observed filtration behaviour that is essential to reproduce experimental observations. We present a hybrid model that
describes the location of particle depositions in a continuum manner while retaining a discrete, stochastic component
to capture the time at which a blocking event occurs. The model is able to grade between the aforementioned extreme
continuum and discrete cases through a parameter that controls the spatial extent of a blocking event. This enables us
to uncover the way in which the nature of the blocking process changes between these two pre-existing models. The
model also captures the key ingredients of a fully discrete stochastic model at a fraction of the computational cost,
making it ready to use to describe other complex filtration scenarios.

1. Introduction1

1.1. Motivation2

Filtration is a vast industry with a wide range of ap-3

plications, including water treatment [1], air purifica-4

tion [2], kidney dialysis [3] and food processing [4]. A5

filter may be thought of in simple terms as consisting of6

a network of interconnected pores. In dead-end filtra-7

tion, a particle-laden fluid, or feed, is forced through the8

filter perpendicularly to the surface. If the particles are9

larger than the pores they can be sieved out on the fil-10

ter surface (size exclusion); if they are smaller than the11

pores they penetrate into the filter depth where they may12

adhere to the pore walls or become lodged if the pores13

narrow or branch. Sieving, particle adhesion and inter-14

nal trapping all lead to removal of the particles from the15

fluid, resulting in a fluid with a lower particle concen-16

tration than the input fluid.17

The removal of particles comes at a cost, however.18

When the fluid is driven through the filter by a constant19

transmembrane pressure, as particles accumulate on the20

filter surface or adhere to the pore walls this leads to21

a reduction in the flux, with the total amount of fluid22
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processed per unit membrane area, or throughput. The23

manner in which the flux falls with throughput is depen-24

dent on the type of filtration. For example, if the parti-25

cles are being removed at the surface of the filter via size26

exclusion then the graph of flux, Q, versus throughput,27

V , observed experimentally is convex, i.e., the second28

rate of change Q′′(V) > 0, where primes denote dif-29

ferentiation [5] (figure 1a). However, if the particles are30

smaller than the pores and instead find their way into the31

internal pore structure before adhering to the pore walls32

to cause a constriction then the QV curves are concave:33

Q′′(V) < 0 [6, 7, 8, 9] (figure 1b). As a result, QV34

curves are often used by practitioners to infer the type35

of blocking, or fouling, that the filter is experiencing36

without invasive methods.37

Simple models to describe the surface deposition of38

particles assume that the particles form a layer of par-39

ticles that is spatially uniform in thickness and that this40

layer provides an effective constant resistance per unit41

length to the flow. This model predicts a convex QV42

curve, in agreement with that observed in practice (see43

Appendix A.1 for a model derivation).44

When modelling internal particle deposition, it is nat-45

ural to make a similar assumption on spatial uniformity46

in the lateral direction, whereby at each instant in time47

all pores are assumed to be in the same state, with the48
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Figure 1: The two types of flux Q versus throughput V curves that
arise when filtering particle-laden fluid through a filter under a con-
stant transmembrane pressure difference. In (a) the QV curve is con-
vex (Q′′(V) > 0); this arises in idealized cases where the surface de-
position or internal pore clogging is spatially uniform over the filter
surface. In (b) the QV curve is concave (Q′′(V) < 0); this arises in
physical cases where the internal pore clogging occurs discretely, so
that different pores may be in different states of blocking at any given
time.

same number of particles deposited over the internal49

pore surface, with some given depth-dependent distri-50

bution. However, this model also predicts a convex QV51

curve, in contrast to that which is observed experimen-52

tally (see Appendix A.2 for a model derivation). One53

way in which concavity may be introduced into the QV54

models is by combining multiple fouling mechanisms.55

For example, a combination of pore blocking followed56

by cake-layer build-up was shown to describe the foul-57

ing of track-etched membranes by BSA [10] and pro-58

teins [11]. This approach can be generalized to other59

combinations of two fouling mechanisms [7] and has60

been further extended to capture three sequential foul-61

ing mechanisms, such as pore constriction followed by62

pore blocking and finally transitioning to deposition on63

the membrane surface, or caking [12].64

Although more complex models are able to generate65

concave QV curves, these do not explain why the sim-66

ple laterally invariant models describing a single foul-67

ing method cannot reproduce such concave curves de-68

spite the experimental evidence. The reason for this69

model failure was uncovered in [5], where it was shown70

that the deviations between the states of the different71

pores must be taken into account to correctly predict the72

QV curve. While this stochastic model satisfactorily re-73

solves the modelling conundrum, it is then natural for74

one to query how relaxing the spatial uniformity of pore75

blocking leads to such a significant qualitative differ-76

ence in the prediction. However, to date, the laterally77

invariant continuum models and discrete stochastic net-78

work models have remained distinct from one another.79

This is principally due to their fundamentally different80

frameworks: the assumption of lateral invariance af-81

fords a simple continuum description; allowing pores to82

be in different states of blocking lends itself to a discrete83

stochastic network model, which reproduces a broader84

range of physical experiments, but does not admit ana-85

lytic solutions and is significantly more computationally86

expensive.87

1.2. Continuum models88

In the majority of continuum models, the pore struc-89

ture is assumed to be homogeneous in the direction lat-90

eral to the flow. When the filter is undergoing inter-91

nal deposition or caking, this is justified by assuming92

that all pores are in the same state of blocking at any93

given time. For scenarios in which complete block-94

ing occurs, whereby a single particle will completely95

cover and blocks a pore, a model that tracks the aver-96

age number of blocked pores per unit surface area is97

derived, which provides the equivalent laterally homo-98

geneous description. In [13], the filtration of a feed so-99

lution comprising large particles that are trapped at the100

filter surface and small particles, which are trapped in-101

ternally via adhesion to the pore walls is considered us-102

ing a continuum approach. They model the microscale103

behaviour of a single pore and its constriction as par-104

ticles adhere and identify the relevant upscaled contin-105

uum model of Darcy flow for the entire porous medium.106

This model assumes spatial homogeneity in the lateral107

direction. The authors examine how the performance108

may be improved by varying the pore radius with fil-109

ter depth. By incorporating multiple blocking mech-110

anisms they are able to obtain convex or concave QV111

curves. They show that a filter whose pore radius de-112

creases with depth has a higher final throughput before113

reaching a threshold minimum flux and they find the114

constant porosity gradient that maximizes this through-115

put. This work is generalized in [14] to allow particles116

to become lodged internally.117

In [15], the performance of a stack of filter materi-118

als of different porosities is examined. The flow is once119

again modelled in a continuum fashion using Darcy’s120

law and the authors use the model to explore how chang-121

ing the properties of the different layers can improve fil-122

tration performance. They find the optimal stack of fil-123

ter porosities that maximize the final throughput of the124

filter.125

Another branch of continuum methods for filtration126

involves the use of homogenization theory. Here, the127

microscale pore behaviour is formally upscaled to ob-128

tain a version of Darcy’s equation and an advection–129

diffusion–reaction equation where the macroscale per-130

meability, diffusivity, flow speed and reaction all cou-131

ple to the microscale. In [16, 17], dead-end filtration132

is modelled for filters that possess a porosity gradient.133
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Again, it is assumed that the filter behaviour is inde-134

pendent of the direction lateral to the flow, and so a one-135

dimensional model is considered and used to understand136

how porosity gradients can improve filtration. In a sim-137

ilar manner to [13], they find that filters whose porosi-138

ties decrease with depth lead to maximum throughput139

before blocking. They develop this further to find an140

analytic solution in the limit of slowly varying poros-141

ity gradients that corresponds to the porosity distribu-142

tion that maximizes the contaminant removal and final143

throughput.144

The effect of pore branching is studied in [18]. Here,145

while each pore is assumed to behave in an identical146

fashion, but the pore may branch asymmetrically and147

the concentration in the respective branches is tracked.148

One may think of this as a first step towards introducing149

lateral dependence to the flow problem. The branching150

structure allows for a porosity gradient and the effect151

of this on the efficiency of particle removal is studied.152

In a similar spirit to the aforementioned works, they153

find that a branching structure with pore radii that de-154

crease with depth, so that the porosity decreases with155

depth, leads to a superior performance in terms of the156

amount of filtrate processed. They also show how this157

metric does not always align with a filter that removes158

the most particulates per unit volume of filtrate, demon-159

strating that one must be careful when setting the objec-160

tive functions for optimization. This work is generalized161

in [19] where they show that allowing pore interconnec-162

tivity structures leads to higher total throughput before163

blocking.164

1.3. Discrete network models165

In discrete models for filters, the entire pore struc-166

ture is modelled and blocking events are captured in-167

dividually. Stochasticity is included straightforwardly,168

which naturally induces lateral dependence into the fil-169

ter structure as blocking progresses. As mentioned in170

Section 1.1, in [5] it was shown that such pore-to-171

pore variation introduced by stochasticity is essential172

to describe the appropriate qualitative shape of flux-173

versus-throughput curves that match experimental ob-174

servations. This work was generalized to address mul-175

tiple layers of such membranes [20], which allows for176

porosity gradients. This provides the discrete stochas-177

tic analogue to [13, 14, 15]. The regular pore struc-178

ture that was assumed in [5, 20] was relaxed in [21] to179

study a filter structure comprising a random array of in-180

terconnected pores, which more accurately describes a181

real porous filter. This provided a model to uncover the182

role played by the tortuosity of the various paths that the183

fluid must take through the filter on the resulting filtra-184

tion efficiency.185

1.4. Overview186

In this paper we present a hybrid discrete–continuum187

framework that is able to reproduce the features of both188

a continuum description where all pores behave in the189

same way and a discrete network model and, more im-190

portantly, can transition between the two. Our model191

expresses the spatial properties of the filter in a con-192

venient continuum manner while the particle transport193

process is modelled in a stochastic fashion. Such a194

model is desirable as it allows us to determine under195

what circumstances either of these two extreme ver-196

sions of the model is required, and the underpinning197

physical changes that take place as we transition from198

one scenario to the other. These observations cannot199

be achieved by the purely continuum or purely discrete200

network models that have been studied so far. More-201

over, this model provides a continuum framework that202

accurately captures the correct QV structure in a sig-203

nificantly more numerically efficient manner, with re-204

sults that would take hours to simulate with a discrete205

stochastic network model being able to be reproduced206

in seconds.207

In Section 2 we outline our new hybrid continuum208

modelling framework and the underlying assumptions.209

Our hybrid method is founded on the principles of a dis-210

crete network model where the spatial variation in the211

model is mapped to a continuum description. In Sec-212

tion 3 we show how one can continuously grade be-213

tween a continuum description and a stochastic network214

model and show how the qualitative behaviour of a fil-215

ter that follows these two models differs. We use the216

model to probe the variations in the pore constriction217

with depth and to subsequently explore the QV curves.218

We reveal self-similar dependence upon the parameters219

that characterize the deposition events, namely the spa-220

tial extent of a blocking event, the magnitude of that221

blocking event, and the likelihood of it taking place. We222

also uncover scaling laws on these model parameters. In223

Section 4 we discuss the mathematical implications, the224

physical significance of this work, and its potential fu-225

ture use in filtration science.226

2. Modelling227

We consider a filter set-up composed of a grid of in-
terconnected circular pipes, or pores, with nodes (i, j)
that are spaced a distance ∆L apart in both the x and y
directions (see figure 2); we assume that the node spac-
ing in the x and y directions are equal but our analysis
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Figure 2: Schematic of the structure of the porous network under con-
sideration and the associated nomenclature for the flow.

readily extends to different node separations. We denote
the radius of the pore connecting nodes (i, j) and (i+1, j)
at time t by âx(i + 1/2, j, t) and the radius of the pore
connecting nodes (i, j) and (i, j + 1) as ây(i, j + 1/2, t).
We define the flux through these respective pores at this
time as Q̂x(i+1/2, j, t) and Q̂y(i, j+1/2, t). These fluxes
are related to the pore radii via Poiseuille’s law [22]:

Q̂x

(
i + 1

2 , j, t
)

=

πâx

(
i + 1

2 , j, t
)4

( p̂(i, j, t) − p̂(i + 1, j, t))

8µ∆L
, (1a)

Q̂y

(
i, j + 1

2 , t
)

=

πây

(
i, j + 1

2 , t
)4

(p̂(i, j, t)) − p̂(i, j + 1, t)

8µ∆L
, (1b)

where p̂(i, j, t) is the pressure at node (i, j) at time t and µ
is the viscosity of the fluid being filtered. Conservation
of mass of the fluid at a point (i, j) gives

Q̂x

(
i + 1

2 , j, t
)
− Q̂x

(
i − 1

2 , j, t
)

+ Q̂y

(
i, j + 1

2 , t
)
− Q̂y

(
i, j − 1

2 , t
)

= 0. (2)

Dividing both sides of (2) by ∆L and taking the limit as
∆L → 0 gives the continuous equation for conservation
of mass,

∇ · Q = 0, (3)

where ∇ = (∂/∂x, ∂/∂y) and Q = (Qx,Qy) is a con-
tinuum vector function of x, y and t such that Qx((i +

1/2)∆L, j∆L, t) = Q̂`(i + 1/2, j, t) and Qx(i∆L, ( j +

1/2)∆L, t) = Q̂y(i, j + 1/2, t) as ∆L → 0. Similarly,
taking the limit as ∆L→ 0 in (1) gives

Q = −a4 ⊗ ∇p, (4)

where ⊗ denotes the outer product, a = (ax, ay) and p228

are continuum functions of x, y and t such that ax((i +229

1/2)∆L, j∆L, t) = âx(i, j, t), ay(i∆L, ( j + 1/2)∆L, t) =230

ây(i, j, t) and p(i∆L, j∆L, t) = p̂`(i, j, t), for ` = x, y, as231

∆L → 0. Equation (4) is a version of Darcy’s law with232

spatially varying permeability.233

We consider a filter domain (x, y) ∈ [0, L] × [0,H].
We assume that the inlet and outlet of the filter are lo-
cated at y = 0 and y = H, respectively, and we apply
a constant pressure difference ∆P across 0 ≤ y ≤ H,
which drives fluid through the filter; in the x-direction
we assume periodicity:

p(x, 0, t) − p(x, L, t) = ∆P, (5a)
p(0, y, t) = p(L, y, t), (5b)

∂p(0, y, t)
∂x

=
∂p(L, y, t)

∂x
. (5c)

We consider fluid entering the filter at y = 0 with a
constant concentration of one particle per unit of fluid.
The x location of particle insertion is selected stochasti-
cally with a probability based on the fluid flux through
that part of the filter medium. Mathematically, the prob-
ability per unit width of a particle entering the filter
medium at position x is given by

p0(x, t) =
Qy(x, 0, t)∫ L

0
Qy(x, 0, t) dx

. (6)

The path of a particle through the filter is computed234

in discrete segments based on the steady flow field Q.235

Each segment corresponds to a fixed timestep ∆t, where236

the corresponding segment length (d) and orientation237

are computed based on the strength of and direction of238

the flow at that point. The particle then deterministically239

follows the direction of strongest flow. We note that the240

total path length can be used as a measure of tortuos-241

ity in an analogous manner to that considered in [21],242

although we do not explore this here.243

We assign a probability pa that the particle adheres
per unit length of the filter medium it has traversed.
Along each segment of the path, the probability of a
particle adhering to the pore wall over is given by

pt(d) = 1 − e−pad. (7)

This feature is implemented numerically by generating244

a random number from a uniform distribution between245

0 and 1 for each segment; if this random number is less246

than pa then the particle is assumed to stick in this seg-247

ment of the filter while otherwise it passes uninhibited.248
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When a particle deposits at a location (x0, y0) at time
t we assume that the effect that the particle has on con-
stricting the underlying pore radii is captured by a Gaus-
sian distribution around that point:

a`(x, y, t+) = a`(x, y, t−) + A
(
e−k((x−x0)2+(y−y0)2)

+e−k((x−x0−L)2+(y−y0)2) + e−k((x−x0+L)2+(y−y0)2)
)
,

(8)

for ` = x, y. The first Gaussian function corresponds to
the deposition in 0 ≤ x ≤ L while the second and third
Gaussian functions have the x location shifted by L in
either direction to ensure that the deposition is periodic
over 0 ≤ x ≤ L. The parameter k ≥ 0 provides a mea-
sure of the radial extent of the particle’s influence upon
deposition while A dictates the magnitude of the effect
of the particle’s adhesion on the pore constriction. We
may identify A physically with the particle size. We ac-
company (8) by the initial condition

a(x, y, 0) = 1. (9)

The function (8) captures the two extremes of particle249

modelling frameworks mentioned in the Introduction:250

when k → ∞, the particles have a pointwise effect on the251

pore radius, which corresponds to discrete models such252

as those considered in [5, 20]; when k = 0, the parti-253

cles affect the entire filter uniformly, which may be cap-254

tured via a continuum description as shown in Appendix255

A.2. Note that one could easily introduce more com-256

plex blocking laws into the framework, such as those257

that depend on the pore radius. Such laws could ac-258

count for additional physics such as the fact that smaller259

pores are likely to be constricted more than larger pores260

when a particle deposits (see, for example, [5] for such261

a physical blocking law). In principle, one might envis-262

age conducting simple laboratory experiments to iden-263

tify the relevant values of the parameters in (8) in or-264

der to quantitatively describe a specific filtration exper-265

iment. However, we emphasize that the specific form of266

(8) may change for different scenarios. Moreover, we267

have chosen this form simply since it conveniently em-268

bodies the key features that one would expect of a filter-269

blocking experiment and so may be used to demonstrate270

the abilities of the discrete–continuum framework.271

With the blocking relationship (8), ax and ay will both272

change in the same way and so we only need to con-273

sider the function a(x, y, t) ≡ ax(x, y, t) = ay(x, y, t). The274

function a then provides a measure of the pore radius. It275

would, however, be straightforward to consider scenar-276

ios in which the blocking mechanism in the pores in the277

x and y directions differed from one another by applying278

differing blocking relationships for ax and ay.279

For the blocking law (8), the governing equation (4)
reduces to

Q = −a4∇p. (10)

In our analysis, we will be interested in the cross-
sectionally averaged outlet flux, defined by

Q(t) =

∫ L

0
Q(x,H, t) dx. (11)

To facilitate comparisons for different parameter val-
ues, in our studies we apply a pressure difference ∆P
for which Q(0) = 1. We will be interested in how the
average flux Q evolves with the total amount of fluid
processed,

V(t) =

∫ t

0
Q(s) ds. (12)

We run the simulations until the flux Q first falls below
a threshold value Qfinal. We define the final throughput,
Vfinal to be the throughput when Q = Qfinal. We will also
be interested in the average pore radius,

a(y, t) =

∫ L

0
a(x, y, t) dx. (13)

We solve the system (3), (8) and (10) numerically280

subject to the boundary conditions (5) and initial con-281

dition (9) using a finite-difference method. Here, spatial282

derivatives are discretized using centred second-order283

differences. We consider a domain of size H = L = 1284

and for the cases presented in this paper we used 40285

equally spaced grid internals in each direction. The flow286

is steady between particle-deposition events, so no time287

stepping is required. Note that p is unique up to an ar-288

bitrary constant in this system. However, here we will289

be concerned only with the fluid flux Q and so we do290

not need to specify the absolute value of the pressure.291

We run the simulations until Q = Qfinal = 0.01. We292

repeat the simulation for each parameter configuration293

20 times and present the average behaviour of all vari-294

ables in our results, which smooths out the underlying295

stochastic nature of the process. The simulations are296

fast to run, taking less than a minute to complete all 20297

simulations. This may be contrasted with the network298

models presented in [5] that take tens of minutes to run299

for domains of comparable size.300

3. Results301

3.1. The effect of the deposition radius, k302

We first vary the parameter k in (8), which corre-
sponds to varying the locality of the impact of the par-
ticle deposition. When k = 0 the particle deposition
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occurs uniformly throughout the domain. This scenario
may be directly identified with the spatially averaged
continuum models (such as [13]) that assume that, at
any instant in time, all pores are in the same state of
blocking. In this case, equation (8) indicates that the
pores will be constricted uniformly in space according
to

a(V) = 1 − Apt(L)V (14)

as seen in figure 3(a). Note that this case is considered in303

Appendix A.2. We also show in Appendix A.2 the cor-304

responding relationship if one were to assume that the305

pore radius shrinks uniformly across its depth a manner306

that preserves the total volume of deposited matter. As307

the value of k is increased, the effect of the particle de-308

position becomes progressively localized. When k , 0309

the system no longer admits an analytic solution. The310

cross-sectionally averaged pore radius a now exhibits311

depth dependence, with the radius being lower closer312

to the inlet (figure 3b). This reflects the fact that more313

particles are likely to adhere closer to the inlet due to314

the probabilistic nature of the deposition. As k becomes315

larger, the pore radius falls even lower (figure 3b,c). A316

slight dip in the value of a also emerges, close to the317

inlet (figure 3b,c). This arises due to the fact that no318

particles deposit outside the filter domain, y < 0, and so319

the filter space near to the surface is influenced by the320

radial footprint of fewer particles.321

We next move on to examine the flux–throughput
profile, Q versus V . When k = 0, substituting for a
using (14) into (3) and (10) gives

∇2 p = 0, (15)

which, upon application of the boundary conditions (5)
gives

p = −
∆P
L

y + constant. (16)

Substitution of this result into (10) and (11) and using
the fact that Q(0) = 1 gives

Q = Qy =
(
1 − Apt(H)V

)4
. (17)

The expression (17) is convex
(
Q
′′ (

V
)
> 0

)
: the flux322

falls more slowly per unit of fluid processed in the later323

stages than the earlier part of the filtration process (fig-324

ure 4a,b).325

When we allow k > 0, the QV curves change nature,326

switching from convex to concave and becoming in-327

creasingly concave with increasing k (figure 4a,b); this328
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Figure 3: Mean pore radius a versus depth y for a deposition func-
tion given by (8) with A = 0.01, pa = 0.1 and (a) k = 0 for
V = 0, 10, 20, 30, (b) k = 10 and V = 0, 55, 110 and 165, and
(b) k = 100 for V = 0, 200, 400 and 600. The profiles in (a) are
given analytically by (14).

means that the filter blocks more quickly with fluid pro-329

cessed. This corroborates the observation made in [5]330

that, when the local nature of particle deposition is taken331

into account, the QV curves are concave. In all cases332
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Figure 4: (a) Flux Q versus throughput V and (b) flux Q versus
scaled throughput V/Vfinal for a deposition function given by (8) with
A = 0.01, pa = 0.1 and k = 0, 1, 5, 10, 20, 50, 150, 220. The final
throughput obeys the power law Vfinal ∝ kβ for β ≈ 0.69. The profile
when k = 0 is given analytically by (17). (c) Curvature C, defined by
(18), versus k.

though, a convex tail persists. A power law of the form333

Vfinal ∝ kβ is obeyed for β ≈ 0.69 when A = 0.01 and334

pa = 0.1.335

We can probe the nature of the QV curves further by

investigating the curvature of the QV plots, which we
define by

C = Q
′′

(V/Vfinal). (18)

We use V/Vfinal as the argument so that changes in C336

purely reflect changes in curvature rather than variations337

in Vfinal. We determine the dependence of C on k by fit-338

ting a second-degree polynomial to Q versus V/Vfinal339

for 0 ≤ V ≤ 1
2 Vfinal so that we determine the curva-340

ture in the first half of the evolution. For low values341

of k, the curvature is positive. As k increases the cur-342

vature falls, passing through zero when k ≈ 10 before343

becoming negative. The curvature plateaus at a negative344

curvature as the Q versus V/Vfinal curve converges to a345

self-similar solution as k → ∞ (figure 4c).346

As discussed in the Introduction, the curvature of a347

QV graph is often used in the filtration industry to infer348

the nature of the blocking phenomenon. As we high-349

lighted, however, this curvature is dependent on whether350

we consider a model that assumes that blocking occurs351

uniformly across the cross-section of the filter medium352

or takes place as a local event. While models exist that353

describe the resulting QV behaviour in either case, here354

we have demonstrated how we can grade from one type355

of behaviour to the other in a continuous fashion and356

identify how the curvature changes continuously when357

we do so.358

3.2. The effect of the deposition magnitude, A359

We next turn our attention to the influence of the360

magnitude of the particle-deposition effect, character-361

ized through the parameter A. As noted, we may iden-362

tify this parameter with the particle size. As we would363

expect, when A is increased, the pore radius is reduced364

more quickly with throughput (figure 5). The curves of365

pore radius, a, versus filter depth, y, exhibit self-similar366

behaviour when plotted for the same values of V/Vfinal367

for all values of k. Similarly, we find that the QV curves368

also exhibit self-similar behaviour with all plots of Q369

versus the scaled throughput V/Vfinal collapsing onto370

a universal curve. This is true regardless of whether371

the QV curves are convex, for small values of k (fig-372

ure 6a) or concave, for larger values of k (figure 6b).373

The final throughput follows an inverse relationship on374

A: Vfinal ∝ A−1, emphasizing the linear manner in which375

A affects the radial pore constriction.376

3.3. The effect of the probability of adhesion, pa377

When k = 0, the deposition location of a particle in378

the filter is irrelevant and so the pore radius will de-379

crease uniformly in time regardless of the value of pa380
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Figure 5: Mean pore radius a versus depth y for a deposition function
given by (8) at t = 50 with A = 0.005, 0.01, 0.02, 0.05, 0.075, 0.1 and
(a) k = 5 at t = 10 and (b) k = 100.

(provided the particle deposits somewhere and does not381

pass entirely through the filter). When k is not too large382

so that each deposition has a finite but large radial ex-383

tent, some spatial dependence begins to emerge in the384

pore radius versus depth (figure 7a). When k is large,385

and the deposition effect is highly localized, we observe386

a more pronounced effect when varying the probability387

of adhesion. As expected, as pa is increased the pore388

radius falls more rapidly closer to the inlet (figure 7b).389

We observe an interior minimum of a in some cases.390

This arises due to two competing effects. First, the fre-391

quency of particle deposition falls with depth into the392

filter medium. This causes an increase in a with depth.393

Second, no particles are allowed to deposit outside of394

the filter medium, for y < 0. This means that a small395

neighbourhood near the filter inlet will experience the396

radial extent effect of fewer deposited particles than po-397

sitions further into the depth. This corresponds to a rise398

in a as one gets closer to y = 0.399

When k = 0, the QV curves will be unchanged as400
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Figure 6: Flux Q versus throughput V for a deposition function given
by (8) with A = 0.001, 0.005, 0.01, 0.075 and 0.1 and (a) pa = 1
k = 1 and (b) pa = 0.1, k = 100. In both cases, the curves are concave
and broadly collapse with an inverse scaling relationship Vfinal ∝ A−1.
This self-similarity breaks down in the late stages of evolution in (b),
where the curvature, C, defined by (18) becomes dependent on A: as
A decreases, C increases. As A increases, C becomes negative.

we vary pa (again provided the particles deposit some-401

where and do not pass through the entire filter). When402

k is not too large, an increase in the probability of adhe-403

sion leads to higher fluxes for the same throughput (fig-404

ure 8a). This arises for the same reason as the interior405

minima in figure 7b): when the probability of deposi-406

tion is higher, the particles are more likely to deposit407

closer to the inlet of the porous medium; this means408

that more of their region of influence will lie outside the409

porous domain and so they will have less of an overall410

effect on pore constriction. When k is large, and de-411

position is highly localized, we recover the more intu-412

itive results that higher probabilities of adhesion lead413

to a faster decline in flux for sufficiently large k values414

(figure 8b). However, before this trend emerges, we ob-415

serve the same effect as noted in figure 8(a), since to be-416

gin with particles are more likely to deposit nearer to the417
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Figure 7: Mean pore radius a versus depth y for a deposition function
given by (8) at t = 500 with pa = 0.05, 0.1, 0.2 and 0.8 and (a) A =

0.005 and k = 5 at t = 200 and (b) A = 0.01 and k = 100 at t = 500.

surface for higher pa values, where more of their radius418

of influence lies outside the filter domain. These two419

combined features lead to a crossover in the QV curves.420

The final throughput Vfinal obeys a weak power-law de-421

pendence on pa of the form Vfinal ∝ pβa with β ≈ −0.088422

for low values of pa. However, this relationship breaks423

down as pa becomes larger (see inset of figure 8b).424

4. Conclusions425

In this paper we proposed a hybrid discrete–426

continuum framework to describe the blocking process427

in a filter as particle-laden fluid is passed through. Our428

novel framework bridges the gap between the two ex-429

treme limits that currently exist in the literature: a con-430

tinuum model where all pores behave in the same way431

(e.g., [13]) and a discrete model where each blocking432

event is captured individually (e.g., [5]). Particle de-433

positions are captured via a continuous description in434

space and discretely in time. The model is able to grade435
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Figure 8: Flux Q versus throughput V for a deposition function given
by (8) with A = 0.01 and pa = 0.05, 0.1, 0.2, 0.8 with (a) k = 5 and
(b) k = 100. When k is larger, an approximate power law of the form
Vfinal ∝ pβa with β ≈ −0.088 is obeyed for smaller values of pa but
deviates from this when pa becomes larger (inset of b, dashed line).
The red curve in the inset is to guide the eye.

between the two extreme cases by varying a single pa-436

rameter that corresponds to the radial extent of a par-437

ticle deposition. This enabled us to show how the two438

models differ in their qualitative predictions for internal439

pore blocking: a continuum description predicts convex440

QV curves while a discrete model predicts concave QV441

curves. Moreover, the model shows how the QV curves442

depend on the radial extent of a deposition (figure 4).443

We were also able to reveal the dependence of flux de-444

cline on the magnitude of a deposition event (figure 6)445

and its probability of occurrence (figure 8). We uncov-446

ered self-similarity that allows the data to collapse onto447

universal curves, as well as scaling-law dependence of448

the system performance on the key parameters.449

The model we proposed readily generalizes in a va-450

riety of ways. First, one may generalize the network451

structure to allow for pores that differ in length depend-452

ing on the location in the filter (in a suitably slowly vary-453

9



ing way to enable the continuum limit to be taken). This454

would result in the divergence term in the governing455

equation (3) being replaced with a space-dependent gra-456

dient operator. Second, we chose to consider a porous457

material whose pore structure is initially spatially uni-458

form. This may be modified to consider an initial pore459

structure with spatial dependence. For instance, one460

might be interested in exploring how a porosity gradient461

can improve filtration performance. The discrete ver-462

sion of this problem has been studied in [20] while a463

continuous version derived using homogenization the-464

ory has been examined in [16, 17].465

One of the main generalizations of this model comes466

in the form of the deposition law. Here, we chose a sim-467

ple law in which each deposition event had the same468

effect on the underlying material, (8). In many cases469

though, deposition may depend on the underlying pore470

structure or the position if the filter is composed of dif-471

ferent materials. Such effects can easily be incorporated472

by replacing (8) with the appropriate constitutive law.473

The model framework itself may be generalized by474

relaxing the assumption of a square (or rectangular)475

grid, as is more likely to be observed in real-life fil-476

ters. One could envisage constructing a random net-477

work by sampling each pore length from a distribution478

with mean and standard deviation as done in [21]. By479

ensemble averaging over a series of such filter geome-480

tries one could then obtain the effective behaviour of a481

real-life filter. This is beyond the scope of this paper482

but clearly a route of interest as we focus our efforts on483

modelling increasingly realistic pore constructions that484

may be provided, for example, from scanning electron485

microscopy (SEM) images.486

The method we present here is able to replicate the487

flux decline that is observed in practice and captured by488

a fully discrete model, but at a fraction of the computa-489

tional cost; typical simulations take less than a minute490

rather than tens of minutes. The framework is thus491

prime for deployment to describe other complex fil-492

tration scenarios where it should allow practitioners to493

probe the experimental field and offer key insight into494

future filter design.495

Appendix A. Flux models496

In this section we model the flux decline for surface497

deposition (caking) or internal pore deposition where498

we assume that the fouling mechanism occurs uni-499

formly across the filter cross-section so that the problem500

is laterally invariant.501

Appendix A.1. Caking502

The filter will offer a resistance to the flow, say Rm.503

If a uniform layer of particles builds up on the surface504

of the filter, this will add an additional resistance, Rc,505

which is proportional to the thickness of the layer of506

particles, or the cake. Since particles arrive with every507

unit of fluid flux, the resistance of the cake layer will508

rise linearly with flux: Rc = γV , where γ > 0 is a con-509

stant related the size of the particles and how closely510

they pack. The flux of fluid through the filter and cake511

combination is given by Q = σ/(Rm + Rc) where σ is512

another constant related to the geometry of the under-513

lying porous structure. The associated curvature is thus514

C = Q
′′

(V) = 2σγ2/(Rm + γV)3 > 0 and so the QV515

curve is convex.516

Appendix A.2. Internal pore deposition517

Next we consider internal deposition in a filter com-
posed of straight cylindrical pores that span the entire
thickness of the filter. We assume that all pores expe-
rience identical blocking so that at any given instant
in time each pore is in the same state of constriction.
For simplicity and illustrative purposes, here we assume
that particles deposit uniformly over the length of the
pore but our derivation generalizes to account for depth-
dependent adhesionin the same manner. As the pore
constricts, the flow will reduce according to Poiseuille’s
law, (1). This gives

Q =
Nπa(V)4∆P

8µL
, (A.1)

where N is the number of pores per unit membrane area.
In the case considered in this paper, particle deposi-
tion shrinks the pore radius independently of the cur-
rent state (equation (8)). This means that a′(V) < 0 and
a′′(V) = 0. In this case, the curvature,

C = Q
′′

(V) =
3πa2∆P(a′)2

µL
> 0 (A.2)

and so the QV curve is, again, convex.518

An alternative common scenario is to assume that the
pore radii shrink uniformly in response to deposition in
a manner that preserves the total volume of material that
has deposited. In this case,

a(V) =

√
a(0)2 −

4r3Vn
3L

(A.3)

where r is the particle radius and n is the number of
particles per unit volume of fluid in the feed. In this
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case, (A.1) gives

Q =
π∆P
8µL

(
a(0)2 −

4r3Vn
3L

)2

(A.4)

and so

C =
4π∆Pn2r6

9µL3 > 0 (A.5)

and so the curve is also convex in this case.519
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