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The build-up of contaminants at the wall of cross-flow membrane filtration systems
can be detrimental to the operation of such systems because of, amongst other things,
the osmotic backflow it may induce. In this paper, we propose a strategy to avoid
the negative effects of backflow due to osmosis by using 2D channels bounded by
walls with a combination of permeable and impermeable segments. We show that
preventing flow through the final portion of the channel can increase the efficiency
of filtration and we determine the optimal fraction occupied by the permeable wall
that maximizes efficiency. Our analysis uses a combination of numerical techniques
and asymptotic analysis in the limit of low wall permeabilities. Finally, we consider
how the energy cost of filtration depends on the Péclet number and show that the
energy cost per unit of filtered water may be minimized by appropriately choosing
both the Péclet number and the permeable-region fraction. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4919658]

I. INTRODUCTION

An important area of increasing interest in science and engineering is the filtration of contam-
inated water to produce clean, potable water. Contaminated water is, at its simplest, a suspension
of particles and other contaminants in water, and so fluid mechanics plays an important role in
filtration. One of the most common forms of water filtration is cross-flow membrane filtration.1,2

The fluid-mechanical principles underlying cross-flow filtration are relatively simple: particle-laden
water enters a specially designed module (that we take to have the shape of a channel) with perme-
able walls that allow the fluid, but not the suspended particles, to pass through to the permeate
side. The fluid flows towards the walls as well as along the channel, advecting particles towards the
walls. This build-up of particles is moderated by diffusion towards the centre of the channel. The
resulting particle concentration profile, higher at the walls than the centre, exhibits what is known
as concentration polarization (CP).3,4 There are many adverse effects of concentration polarization,
including a greater propensity for blockage of the membrane pores, restricting flow through the
permeable walls,5 as well as an increased osmotic pressure,6 which acts to draw clean water into the
channel, reducing filtration performance (Figure 1).

There has been extensive mathematical modelling of concentration polarization in boundary
layers at a permeable wall. The convection–diffusion of particles in a steady-state boundary layer
with concentration-dependent viscosity and diffusivity given in Refs. 7 and 8 has been studied,
giving rise to similarity solutions. Other papers in the literature aim to unify different aspects of
filtration of colloidal particles such as concentration polarization and deposition.9 These models
assume that outside the boundary layer the bulk concentration of particles is constant. This common
assumption in the literature may be achieved by a large Péclet number.

Some previous works have focused on the effect of manipulating the fluid flow, for example,
by increasing shear rate6 or vortex mixing,10 as well as many other methods,11,12,30 to remove

a)Author to whom correspondence should be addressed. Electronic mail: ian.griffiths@maths.ox.ac.uk

1070-6631/2015/27(5)/053102/15/$30.00 27, 053102-1 ©2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  98.221.156.35 On: Tue, 12 May 2015 16:46:18

http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
http://dx.doi.org/10.1063/1.4919658
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
mailto:ian.griffiths@maths.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4919658&domain=pdf&date_stamp=2015-05-12


053102-2 Herterich et al. Phys. Fluids 27, 053102 (2015)

FIG. 1. Above: schematic of a channel containing a suspension of particles. The suspension enters from the left and flows
along the channel. The walls are a permeable membrane for a section of the channel and impermeable towards the end of
the channel, as depicted in the sketch of the effective permeability, κ, of the channel (below). Particles are advected towards
the wall by the flow, increasing the osmotic pressure at the walls, and diffuse back into the channel when the walls are
impermeable. If the osmotic pressure exceeds the fluid pressure, osmosis occurs. In the impermeable-walled region, there is
no flow through the walls.

particles from the wall. These may involve a structural change to the channel, such as furrowed or
dimpled wall surfaces to produce the vortex mixing, resulting in complicated fluid flows. Here, we
consider low Reynolds numbers flows and impose a structural change to the channel that does not
overcomplicate the flow. This structural change is to alter the wall permeability to block that part of
the porous wall that may otherwise result in high osmotic pressures that draw fluid into the channel
from the permeate side. Operating in a slow flow regime results in a greater deposition of particles
at the membrane surface.13 Although we do not consider deposition, the concentration polarization
observed represents the early stages of particle build-up that may ultimately lead to deposition and
cake formation.

We consider a membrane filtration system with a flow from left to right induced by a pressure
gradient (Figure 1). Membrane filtration systems utilize a higher fluid pressure to overcome the
osmotic pressure, ensuring sustained water filtration. The rationale for altering the wall permeabil-
ities stems from considering the hydrodynamic pressure within a channel with walls of uniform
permeability. Fluid leaks out of the wall (leaving particles behind) at a rate, V̂ , that depends on the
overall effective transmembrane pressure difference, ∆p̂ − ∆π̂, where ∆p̂ is the difference between
the hydrodynamic pressure in the channel at the wall and the pressure outside the channel and ∆π̂ is
the osmotic pressure difference across the permeable membrane wall.1,6 Motivated by Darcy’s law,
we write

V̂ = κ̂(∆p̂ − ∆π̂), (1)

where κ̂ = k/µb is the spatially varying effective permeability, related to the wall permeability, k,
fluid viscosity, µ, and wall thickness, b. (The form of Eq. (1) may also be justified more rigorously
from arguments based on irreversible thermodynamics.14,15) We assume that the filter is perfect,
i.e., complete rejection of particles occurs at the channel wall. If the osmotic pressure exceeds
the fluid pressure, then the flow is reversed and clean water flows into the channel, a process we
call backflow.
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Backflow of clean water into the channel is very inefficient for the filtration process; energy
has been used in extracting the clean water, only for it to re-enter the contaminated flow. Since
the region most prone to this osmotic backflow is the end (where ∆p̂ is smallest), it is natural
to consider whether replacing the permeable wall with an impermeable wall in this region would
eliminate the backflow. However, the size of this impermeable region needs to be carefully chosen:
too short and backflow will still occur, too long and there is insufficient opportunity for clean
water to flow out. Both of these scenarios compromise filtration efficiency. For example, consider
a system with permeable walls throughout, with constant pressure gradient, and a constant osmotic
pressure. Equation (1) implies that filtration occurs when p̂ > π̂, and backflow occurs when π̂ > p̂
(Figure 2(a)). If we set the permeability to be zero beyond a certain point in the channel (ignoring
the changes this will induce in the pressure for this illustrative example), then the region where
backflow by osmosis was previously active has been modified so that this no longer occurs and thus,
the amount of net fluid filtered is increased (Figure 2(b)).

For simplicity, we take the fluid pressure at the end of the channel to be equal to the fluid
pressure outside the channel (on the permeate side of the permeable wall). At the outlet, the hydro-
dynamic pressure difference across the membrane is then zero, and as a result, any non-zero osmotic
pressure difference near the end of the channel will result in a backflow (see Eq. (1)). We note
that simply shortening the channel will not remedy this inevitable flow reversal (since wherever the
end is open, the pressure difference is zero). An alternative approach would be to take a positive
reference pressure at the end of the channel and/or a negative reference outer pressure, as explored
in Ref. 16. However, keeping these additional pressure differences in place during operation in a
membrane filtration device may require additional energy. Our proposed setup of partially blocking
the end of the device offers a simple way of resolving this issue.

Energy cost is an important consideration for filtration devices. The input energy is required
for pumping the flow and creating the pressure in the filtration device. Although the volume filtered
increases with cross-flow velocity, the power requirement for the pump can increase by as much as
the cube of the cross-flow velocity.17 This results in a trade-off between input energy and filtration
output.

In this paper, we examine the advantages of using a spatially varying wall permeability in
order to optimize the efficacy of filtration. We examine in detail, using numerical and asymptotic
techniques, a channel that has a permeable region followed by an impermeable region to illustrate
the significant effect that backflow due to osmosis can have on a system where the hydrodynamic
pressure and osmotic pressure are of the same order of magnitude. We also consider the impact of a
variable permeability on the energy cost for filtration.

FIG. 2. Schematic showing the hydrodynamic pressure (solid black), p̂, and osmotic pressure (dashed black), π̂, as functions
of the distance along the channel. The sign of p̂− π̂ determines whether filtration (dark grey) or backflow (light grey)
occurs. (a) For a spatially uniform permeability, the effect of backflow significantly decreases the efficiency of filtration.
(b) Introducing an impermeable region (no flow, white) reduces backflow and increases net filtration.
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II. MATHEMATICAL MODELLING

We model the input fluid as a dilute suspension of neutrally buoyant small particles, typically
tens of nanometres in radius. The fluid flows into a 2D channel of length L, at a controlled rate with
areal flux 2Q̂. The walls of the channel are positioned at ŷ = ±H (Figure 1). The walls comprise a
region of uniform non-zero permeability followed by a region that is impermeable. On the outside
of the channel, and at the end of the channel (x̂ = L), the fluid pressure is constant; we take this
value to be our pressure datum. Upon entering the channel, the suspension is advected down the
channel and towards the permeable walls; at the wall, the suspended particles are rejected allowing
only clean water to flow out. The rate at which clean fluid (the permeate) flows through the perme-
able walls is proportional to the effective transmembrane pressure difference, as seen in Eq. (1).
Fluid that does not pass through the walls, together with the rejected particles (forming the reten-
tate), leaves the channel at the open end, x̂ = L. We consider the steady-state (time-independent)
operation of the system.

For suspensions with large volume fractions, both the fluid viscosity, µ, and particle diffu-
sivity, D, will be significantly altered by the presence of particles. For simplicity however, and
to highlight the fundamental aspects of this problem, we neglect such effects taking µ and D to
be constant, as is the case for dilute suspensions.16,18 To estimate the typical parameters of filtra-
tion, we consider values representative of cross-flow filtration of small particles such as viruses,
as considered in Ref. 19. In these systems, the virus particles are typically tens of nanometres in
radius. For hollow fibre membrane modules, the membrane channels are separated by 200 µm with
a tangential flow at a shear rate of 1200 s−1 (Ref. 19) corresponding to a typical flow speed, U,
that is of order tens of centimetres per second. Typical membrane channels have length L ∼ 1 m
and width H ∼ 200 µm.20 Hence the aspect ratio, δ = H/L = 2 × 10−4 ≪ 1; we shall exploit this
small aspect ratio in our analysis. The density and viscosity of water are ρ = 1000 kg/m3 and
µ ∼ 1 mPa s, respectively, and the diffusion constant, D ∼ 10−11 m2/s, by the Stokes–Einstein rela-
tion.21 The reduced Reynolds number, Re = δ2ρUL/µ ∼ 10−3 is small, so inertial forces may be
neglected. The reduced Péclet number, Pe = δ2UL/D ∼ 102, is rather large. However, we appre-
ciate that δ Pe is small so that Pe is not a large number for a thin-channel flow. A smaller-order
Péclet number may be achieved by a slower flow, of order cm/s.20 As such, we will assume an
order-one Péclet number as operating under this condition allows for the richest particle dynamics
in the channel. From a Stokes-equation scaling for pressure in a channel, the fluid pressure scales
like P = µU/δ2L ∼ 103 Pa. The typical osmotic pressure, Π, is given by the Morse equation22,23

for a dilute suspension of particles, Π = iRT/NAV ∗. Here, i is the van’t Hoff factor providing
a measure of the effect of the solute on various colligative properties of the solution (i = 1 for
viruses), R = 8.314 J/mol K is the gas constant, T the absolute temperature (taken to be room
temperature ≈300 K). Avogadro’s number, NA, and the volume of a single contaminant particle,
V ∗ = 4πa3/3 m3, where a is the particle size of tens of nanometers, play a role via the conversion
from density to volume fraction. Hence, Π ∼ 103 Pa is the same order as the fluid pressure.

A. Governing equations

As we have a small reduced Reynolds number, the fluid flow, û = (û, v̂), is governed by the
steady Stokes equations, representing conservation of mass and momentum of the fluid,

∇ · û = 0, (2a)

µ∇2û = ∇p̂, (2b)

where p̂ is the fluid pressure. The particle volume fraction, φ̂, is governed by the steady advection–
diffusion equation

û · ∇φ̂ = D ∇2φ̂. (3)
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B. Boundary conditions

We assume that the particles enter the channel uniformly distributed over the cross-section,

φ̂(0, ŷ) ≡ Φ0, (4)

where Φ0 is a constant.
We assume that the fluid flow and particle concentration are symmetric about the x-axis of the

channel, that is,

∂φ̂

∂ ŷ
=

∂û
∂ ŷ
= v̂ = 0 on ŷ = 0, (5)

and so we need only consider the behaviour in the half-channel 0 ≤ ŷ ≤ H .
The fluid flow through the (permeable) channel walls is given by

v̂(x̂,H) = V̂(x̂) = κ̂(x̂)(∆p̂ − ∆π̂) (6)

on ŷ = H as in Eq. (1), where κ̂(x̂) is the spatially varying effective permeability to be specified
later, ∆p̂(x̂,H) = p̂ − p̂outer is the difference between the hydrodynamic pressure in the channel at
the wall and the pressure outside the channel, p̂outer (assumed constant). We assume that the end of
the channel is open so that the pressure at the outlet p̂end = p̂outer. Since the system is driven only
by pressure differences, the choice we then make for this outer pressure does not affect the system
behavior. Similarly, ∆π̂ = π̂ − π̂outer is the osmotic pressure difference across the wall where π̂ is
the osmotic pressure due to particles in the channel and π̂outer is that due to contaminants outside
the channel. Assuming complete rejection of particles at the channel wall, i.e., a perfect filter, we
take π̂outer = 0. The osmotic pressure is, in general, a function of the volume fraction of particles at
the surface of the permeable wall,

π̂(x)| ŷ=H = ΠΦ0 φ̂(x̂, ŷ = H). (7)

In general, at a permeable wall there is a tangential slip velocity, whose magnitude is deter-
mined by a Neumann boundary condition such as that given in Ref. 24. However, it has been found
that this slip is not significant for a wide range of membranes,25,26 and so here, for simplicity, we
shall assume a no-slip boundary condition

û(x̂,H) = 0, (8)

as also adopted in Ref. 27.
Since particles are completely rejected by the wall, we apply the no-flux boundary condition7,9

V̂ φ̂ − D
∂φ̂

∂ ŷ
= 0 on ŷ = H. (9)

In general, the inlet condition (4) will not satisfy this boundary condition. However, a small bound-
ary layer region is present in which the concentration appropriately adjusts. At the inlet, we impose
a constant inlet flow, 2Q̂,

2Q̂ =
 H

−H
û d ŷ = 2

 H

0
û d ŷ at x̂ = 0. (10)

The above boundary conditions will suffice as we will consider a thin-channel approximation in
Sec. II C that reduces the order of the problem.

From a practical point of view, the amount of fluid filtered through the walls,

F̂ = 2
 L

0
V̂ d x̂, (11)

is of interest.
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C. Non-dimensionalization and thin-channel approximation

Since our system is dependent on the competing forces of hydrodynamic pressure and osmotic
pressure, and we have shown these to be of the same order for our system, it is natural to scale p̂
and π̂ in the same way; Eq. (7) indicates that the natural scaling choice is ΠΦ0; L and H = δL are
used to non-dimensionalize lengths as appropriate. We thus let

x̂ = Lx, ŷ = δL y, φ̂ = φ, π̂ = ΠΦ0π,

û =
Q̂
δL

u, v̂ =
Q̂
L
v, p̂ = ΠΦ0p + p̂outer, κ̂ =

D
ΠΦ0δL

κ, (12)

where the scalings of u, v arise in order to balance the equations and to eliminate Q̂ from the influx
condition. Hence, the earlier defined velocity scale is U = Q̂/δL. Substituting scalings (12) into
Eqs. (2) and (3), and retaining only leading-order terms in δ ≪ 1, provides the governing equations
for the system,

∂u
∂x
+

∂v

∂ y
= 0, (13a)

PeD ∂2u
∂ y2 =

∂p
∂x

, (13b)

0 =
∂p
∂ y

, (13c)

Pe
(
u
∂φ

∂x
+ v

∂φ

∂ y

)
=

∂2φ

∂ y2 , (13d)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 with the channel walls at y = ±1 (with symmetry about y = 0).
Here, Pe = δQ̂/D is the reduced Péclet number, a measure of the ratio of advection to diffusion
of the particles in a thin channel, and D = µD/δ4L2ΠΦ0 is a dimensionless number. We note
that 1/D = b(δ4L2ΠΦ0/µb)/D, so that D is identified as an inverse Péclet number where the
velocity scale is the Darcy velocity across a membrane of thickness b with permeability scaling
like a length squared, δ4L2. Hence, PeD represents a ratio of Péclet numbers. By our parameter
estimations, PeD is an order-one quantity. Throughout this paper, we take the Péclet number to be
an order-one quantity as this regime produces the richest dynamics. The influx, Q̂, that has been
scaled out of the problem appears in the Péclet number. This affects the fluid flow in Eq. (13b), and
the particles in Eq. (13d).

Note that there is no axial diffusion term in the leading-order advection–diffusion equa-
tion (13d) due to the thin-channel approximation (δ ≪ 1). The y-momentum equation (13c) indi-
cates that the pressure is a function of x only, i.e., p = p(x), as is familiar from lubrication theory
and other thin-layer models of fluid flow. Furthermore, our non-dimensionalization means that the
osmotic pressure at the walls from Eq. (15c) now reads

π(x) = φw(x), (14)

where we have introduced φw(x) = φ(x, y = 1) to denote the particle concentration at the wall.
The dimensionless boundary conditions read

symmetry :
∂φ

∂ y
=

∂u
∂ y
= v = 0, on y = 0, (15a)

no axial wall slip: u = 0, on y = 1, (15b)

permeate flow: V = κ(x)
Pe

(p − φw) , on y = 1, (15c)

perfect filtering of particles: PeV φ − ∂φ

∂ y
= 0, on y = 1, (15d)

fluid influx:
 1

0
u dy = 1, at x = 0, (15e)
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fixed outlet pressure: p = 0, at x = 1, (15f)
inlet condition: φ ≡ 1, at x = 0. (15g)

The influx, Q̂, appears through the Péclet number in the boundary conditions, affecting the flow
in Eq. (15c) and the particles in Eq. (15d). This non-dimensionalization results in four free parame-
ters: the Péclet number, Pe, the permeability, κ, the permeable wall fraction, λ, and a dimensionless
number, D. In Sec. III, we fix D = 1 and investigate the effects of varying λ with each of κ and Pe
in turn.

D. Solution of flow problem

The system of equations (13a) and (13b) with boundary conditions (15a) and (15b) can be
solved immediately to give the flow within the channel. The axial and transverse velocities are given
by

u(x, y) = 1
PeD

dp
dx

y2 − 1
2

, (16a)

v(x, y) = 1
PeD

d2p
dx2

3y − y3

6
, (16b)

respectively, where the factor 1/PeD represents the scaling for the ratio of Péclet numbers. This is a
classic result and can be found in many textbooks.28

The hydrodynamic pressure in the channel is then determined by boundary condition (15c)
and Eq. (16b), resulting in an ordinary differential equation (ODE) for p,

1
3

d2p
dx2 = Dκ(x) (p − φw) . (17)

Boundary conditions (15e) and (15f) translate to conditions on the pressure,

dp
dx

�����x=0
= −3PeD, (18a)

p(1) = 0 (18b)

and for convenience we restate the governing equation for φ,

Pe
(
u
∂φ

∂x
+ v

∂φ

∂ y

)
=

∂2φ

∂ y2 , (19)

with boundary conditions

∂φ

∂ y

�����y=0
= 0, (20a)

PeV φ − ∂φ

∂ y

�����y=1
= 0, (20b)

φ(0, y) ≡ 1. (20c)

The coupling between p and φ in the ODE for pressure (17) and advection–diffusion equation
for φ (19) makes analytical progress difficult, if not impossible. We therefore resort to numerical
solution of Eqs. (17) and (19) subject to boundary conditions (18) and (20) respectively.

We normalize the amount of fluid filtered through the walls (Eq. (11)) by the influx, 2Q̂, giving
the efficiency of the filtration process as

E =
F̂

2Q̂
=

F
2
, (21)

where

F = 2
 1

0
V d x. (22)
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FIG. 3. (a) Particle concentration in a channel with uniformly permeable walls. Concentration polarization occurs close to
the inlet but the concentration falls off with x due to concentration polarization-induced osmotic backflow and diffusion.
(b) The difference in hydrodynamic pressure (solid), p, and osmotic pressure (dashed), π, determines the regions of
filtration and backflow as in Eq. (15c): the dark shaded region indicates filtration; the light shaded region indicates backflow.
Here, D = 1, Pe= 1, and κ0= 1.

Since the wall velocity is proportional to κ (Eq. (15c)), we expect more fluid to be filtered with
larger κ. However, we consider the re-scaled efficiency, E/κ, to compare systems with different
permeability.

III. UNIFORMLY PERMEABLE WALLS

We first consider a channel in which the walls are uniform with constant permeability, i.e.,
κ(x) = κ0 = constant for 0 ≤ x ≤ 1. We solve the coupled pressure ODE (17) and particle
advection–diffusion equation (19), subject to boundary conditions (18) and (20), numerically using
a finite difference method.

Figure 3(a) shows that the system exhibits CP in the channel: φ increases close to the wall. In
practice, CP may lead to blocking of the pores of the permeable walls, a reduced permeability of the
walls, and a reduction in the proportion of water that is filtered. We do not consider this effect here,
focusing instead on the effects arising further down the channel; here, CP is significantly reduced
for two reasons. First, the channel loses fluid due to the permeable walls. This reduces the advection
of particles and so the particles that have collected at the walls (CP) begin to diffuse away, leading
to a more uniform particle distribution in the channel. Second, the osmotic pressure exceeds the
hydrodynamic pressure drawing fluid into the channel from outside (Figure 3(b)).

Both CP and backflow are undesirable effects when striving to maximize filtration efficiency
and so in Sec. IV we show how spatially variable permeability of the walls may mitigate these
issues and increase the net filtration.

IV. A VARIABLE PERMEABILITY CHANNEL

We begin by considering a canonical example of a channel with a single region of perme-
able wall for 0 ≤ x < λ and a single region of impermeable wall for λ ≤ x ≤ 1 where λ ∈ (0,1)
(Figure 1). This is motivated by the idea of blocking the permeable walls of the channel towards
the end to prevent inflow (see Introduction). While we might imagine setting the permeability to
be constant in the permeable region and zero in the impermeable region, the discontinuity in κ
results in a discontinuity in the second derivative of the pressure and thus in the transverse flow
velocity, v (Eqs. (17) and (16b), respectively). This affects the advection–diffusion of the particles
via the no-flux boundary condition (20b). In reality, this discontinuity could be absorbed by revis-
iting our neglection of O(δ) terms but this is not particularly enlightening for our analysis. Instead,
we choose a functional form for the permeability that rapidly but smoothly varies between the
permeable and impermeable regions,

κ(x) = κ0 tanh
�
A x

�
tanh

�
A (λ − x)� θ(λ − x), (23)
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where κ0 and A are constants representing the unblocked permeability and the width of the tran-
sition region, respectively, and θ is the Heaviside function. It is this value of κ0 that we vary to
analyse the dependence on the permeability. Here, we take A = 500 to provide a close approx-
imation to a step function while allowing our numerical scheme to resolve the rapid variations
in x.

A. λ and κ0–dependency

Here, we fix the Péclet number, Pe = 1, and vary the strength of the permeability, κ0, and the
fraction of permeable wall region, λ. We numerically solve the coupled pressure ODE (17) and the
particle advection–diffusion equation (19), subject to boundary conditions (18) and (20), using finite
differences, with κ given by (23).

As in the case of the uniformly permeable channel, the particle concentration, φ, exhibits CP
in the permeable region x < λ (Figure 4(a)). Also, as was seen in the uniformly permeable channel
case, the flow is reduced in the channel by loss of fluid through the membrane: diffusion then acts to
smooth out the CP further down the channel.

In the impermeable region x ≥ λ, the particles are able to diffuse back to an approximately uni-
form distribution across the channel (though with a higher concentration than at the origin, Eq. (20c),
because of the flow of fluid through the permeable walls). The distribution becomes uniform
because the transverse velocity disappears, due to the impermeable walls, and advection–diffusion
equation for the particle distribution, Eq. (19), becomes a diffusion equation with zero-flux bound-
ary conditions.

The choice of λ may significantly affect the net flux filtered through the permeable walls, F
(compare Figures 3(b) and 4(b)). If λ is close to unity, then the backflow region is significant,
reducing the net flux through the permeable wall. However, if λ is too small, then we reduce the
region available for filtration. There is, therefore, a critical (optimal) value, λ = λ∗, that maximizes
the efficiency of filtration, E (21), found by a numerical search of λ (Figure 5(a)).

We have observed, though not shown here, that an increase in the wall permeability increases
the transport of fluid through the wall. As such, the accumulation of particles at the wall (CP)
increases as well. The resulting increase in osmotic pressure leads to backflow occurring closer to
the entrance of the channel. The optimal fraction of permeable wall, λ∗, thus decreases with κ0,
as does the optimal re-scaled efficiency, E∗/κ0, as seen in Figures 5(b) and 5(c). Here, we use the
previously mentioned re-scaled efficiency, E∗/κ0, to compare the systems, however, now scaled
with the maximum permeability, κ0. Hence, the decrease in E∗/κ0 with κ0 is attributed to the larger
osmotic pressure that occurs when more particles are advected to the wall.

FIG. 4. (a) Particle concentration in a channel with permeable walls of varying permeability (23) with λ= 0.7. Concentration
polarization in the permeable region and diffusion to a uniform concentration occurs in the impermeable region. (b) The
difference in hydrodynamic (solid), p, and osmotic (dashed), π, pressures determines the regions of filtration and backflow.
The dark shaded region indicates filtration, the light shaded region indicates backflow, and there is no flow in the white region
between p and π. Here, D = 1, Pe= 1, and κ0= 1.
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FIG. 5. (a) Dependence of re-scaled efficiency of filtration through the permeable walls, E/κ0, on the permeable fraction
of the wall, λ, for κ0= {0.01,0.1,0.25,0.5,1} (solid curves). The dashed black curve and the squares show, respectively,
leading-order and first-order asymptotic results (28), for κ0= 0.01. E/κ0 is maximized by an optimal value of λ= λ∗;
and E/κ0 decreases with increasing κ0. (b) The optimal permeable wall fraction, λ∗, that maximizes the efficiency of
filtration, E/κ0, of clean water out versus wall permeability, κ0. The asymptotic result, to order-κ0 (dashed line), for this
decreasing function, matches the numerics for κ0≪ 0.01. (c) The re-scaled optimal efficiency, the efficiency at the optimal λ
for each κ0. Here, Pe= 1 and D = 1.

B. Asymptotics for small permeability

The numerical results in Sec. IV A give an insight into the behaviour of our system. We now
seek to gain a deeper understanding by finding analytical expressions for the parameter depen-
dencies in the asymptotic regime of small permeability, κ0 ≪ 1. This corresponds to a cross-flow
filtration system with a very small filtration velocity. While this is less relevant to filtration appli-
cations, it gives insight into the qualitative behaviour of the system that holds even at higher
permeabilities.

When the channel walls are impermeable (κ0 = 0), flow in the channel (17) is given by
a constant pressure gradient, dp/dx = −3PeD by Eq. (18a), and so the velocities in Eq. (16)
read, u = 3(1 − y2)/2 ≡ u0 and v = 0 (i.e., Poiseuille flow). By (19), the volume fraction then re-
mains uniform throughout, φ ≡ 1. We consider the small-permeability limit, κ0 ≪ 1, as a pertur-
bation of this uniform, unidirectional flow state with the aim of understanding the general shape
shown in Figure 5(a). We perturb the variables as follows:

p = p0 + κ0 p1, (24a)

u = u0 + κ0 u1, (24b)

v = κ0 v1, (24c)
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φ = 1 + κ0 φ1, (24d)
π = 1 + κ0 φ1(y = 1), (24e)

where (24e) is obtained from Eq. (14). Equation (17) at leading and first order gives

d2p0

dx2 = 0, (25a)

d2p1

dx2 − 3Dp0 + 3D = 0, (25b)

respectively. Equations (25a) and (25b) must be solved subject to the boundary conditions

∂p0

∂x

�����x=0
= −3PeD, (26a)

p0(1) = 0, (26b)

∂p1

∂x

�����x=0
= 0, (26c)

p1(1) = 0, (26d)

using Eq. (18), which gives

p0 = 3PeD (1 − x) , (27a)

p1 = −
3
2
D

�
PeDx3 + (1 − 3PeD)x2 + 2PeD − 1

�
. (27b)

The filtration efficiency, (21), is given as a function of λ by

E =
κ0 λ

Pe

(
3PeD − 1 − 3PeD λ

2

)
+

κ2
0

Pe

 λ

0
(p1 − π1) d x. (28)

The first term in Eq. (28) (proportional to κ0) explains the quadratic dependence on λ observed in
the efficiency of filtration (Figure 5(a)). As such, the leading-order efficiency of filtration is

E0

κ0
= λ

(
3D − 1

Pe
− 3D λ

2

)
, (29)

which is shown as the dashed curve in Figure 5(a). The value of λ that maximizes E0 is then, to
leading order,

λ
∗
asymp = 1 − 1

3PeD
. (30)

The order-κ0 result may be calculated numerically and matches the result in Figure 5(b) for
κ0 = 0.01.

The osmotic term π1 = φ1 that appears in (28) is determined by substituting the perturba-
tion (24d) into the advection–diffusion equation (19) and the boundary conditions (20). The result-
ing O(κ) equations are

∂φ1

∂x
=

2
3 Pe (1 − y2)

∂2φ1

∂ y2 , (31a)

∂φ1

∂ y
= 0, on y = 0, (31b)

Pe v1 −
∂φ1

∂ y
= 0, on y = 1, (31c)

φ1 = 0, at x = 0. (31d)

These equations for φ1 may in principle be solved by separation of variables. However, the re-
sulting parabolic cylinder functions are complicated and do not give much insight to the solution.
We therefore solve the problem numerically. The efficiency of filtration, E, can now be calculated
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from (28) for various values of λ. The order-κ flux captures the shape of E as a function of λ
(Figure 5(a)). Including the O(κ2

0) correction provides an almost indiscernible result from the full
numerical solution when κ0 = 0.01.

C. λ and Pe–dependency

The permeability is a structural part of the membrane filtration device that plays an important
role in filtration; once the device is made, it cannot easily be changed. However, the Péclet number,
Pe = δQ̂/D, is dependent on the flow rate which may easily be adjusted by the pump used in a
device. This parameter is important for the transport of particles in the flow and hence heavily
influences the osmotic pressure. By varying the Péclet number, we are not considering changes to
the particles, e.g., radius. It is the influx that is being changed, not the diffusivity.

To investigate the role of Pe, we solve the coupled pressure ODE (17) and particle
advection–diffusion equation (19), subject to boundary conditions (18) and (20), numerically using
finite differences. The wall permeability, κ, is again given by (23) with κ0 = 1 and the Péclet number
is varied, together with λ. In Sec. IV A, we observed an optimal value, λ∗, for the efficiency of
filtration (Figure 5(a)), that decreases with κ0 (Figure 5(b)). We now observe a similar behaviour,
i.e., the presence of an optimal value for the efficiency of filtration as we vary the Péclet num-
ber. As we increase Pe, the optimal value, λ∗, increases (Figure 6(a)), i.e., a larger fraction of
permeable wall maximizes the efficiency of filtration. This can be explained by considering the
pressure in the channel: the pressure gradient at the entrance is dependent on the flux, and hence
on Pe (18a), resulting in greater pressures in the channel as we increase Pe. The value of λ∗ asymp-
totes as Pe → ∞ because backflow is inevitable at the end of the channel since the hydrodynamic
pressure vanishes (18b).

The optimal filtration efficiencies, E∗, corresponding to the optimal fraction of permeable
wall, λ∗, as Pe varies also exhibits an optimum (Figure 6(b)). This provides the global maximum
efficiency for both λ and Pe. This may be explained by considering the particle distribution in the
channel; as we begin to increase the Péclet number, advection is dominating, however, a boundary
layer at the wall exists when Pe ≫ 1. This boundary layer produces larger particle concentrations
and concentration gradients at the walls, which leads to a large osmotic pressure that increases
further with Pe. This competes with the large pressure in the channel and a turning point occurs,
reducing the efficiency, and thus leading to an optimum.

D. Energy

We have analysed the efficiency of a filtration device composed of a region of permeable
wall followed by an impermeable-walled region. However, filtration efficiency does not neces-
sarily imply energy efficiency. In a filtration setup, the power requirement for a feed pump scales

FIG. 6. (a) The optimal permeable wall fraction, λ∗, as a function of the Péclet number, Pe, increases rapidly for Pe . 10
and asymptotes for larger values. (b) The optimal flux, E∗, corresponding to the optimal fraction of permeable wall, λ∗, for
each Pe, results in a global optimal result that maximizes filtration. Here, κ0= 1 and D = 1.
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like P̂ = Q̂ (p̂(0) − p̂(L)) /e17,29 where Q̂ is the influx, p̂(0) − p̂(L) is the pressure difference in the
channel, and e is the pump efficiency (a constant for a given pump). Since power corresponds to the
quantity of energy (T̂) consumed per unit time, we equate the energy with the power multiplied by
the time taken to filter an areal volume, V , of fluid, t̂ f = V/Q̂E, giving

T̂ = P̂t̂ f =
[p̂(0) − p̂(L)]V

Ee
. (32)

In dimensionless form, scaling T̂ = (ΠΦ0V/e)T , the energy cost (input) required for filtration scales
like

T ∼ p(0) − p(1)
E

=
p(0)
E

, (33)

since, in our case, p(1) = 0. This is a balance between how hard we push the fluid (pressure differ-
ence applied) and the filtration efficiency, E. The harder we push and/or the less efficient the system,
the more energy that is consumed to filter a given amount of fluid.

The Péclet number plays an important role in the energy cost of the system, directly affecting
the pressure (Eq. (18a)) and velocity (Eq. (16)) of the fluid. For any given variable-permeability
channel with a permeable-region fraction, λ, an optimal value for the Péclet number, Pe∗, exists
that minimizes the energy expended (Figure 7(a)). This optimal value increases with λ, indicat-
ing that channels that comprise a higher fraction of permeable-wall region must operate at higher
Péclet numbers to minimize energy cost (Figure 7(b)). Finally, an optimum value of λ (using the

FIG. 7. (a) The energyT varies with Péclet number Pe for λ= 0.1,0.2,0.25,0.45,0.65,0.85,1 (solid curves with λ increasing
in the direction of the arrows) giving an optimal value (dashed line) for each value of λ. (b) The Péclet number that minimizes
the energy cost, Pe∗, increases with λ. (c) The minimal energy cost, T ∗, for each λ evaluated at the optimal Péclet number
from (b) showing a global minimum. In all cases, κ0= 1 and D = 1.
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corresponding Pe∗) exists for which the energy is globally minimized (Figure 7(c)). This is also
seen as the dashed line in Figure 7(a). When κ0 = 1, we find that the global optimal operating
conditions are λ ≈ 0.5 and Pe ≈ 1.05 (Figures 7(b) and 7(c)). We note that this optimization can
yield significant advantages with, for instance, an energy saving of up to 50% when operating in this
optimal regime when compared to a setup with λ = 0.1 (Figure 7(c)).

V. CONCLUSIONS

In this paper, we have explored the idea of tailoring the wall permeability in a permeable
channel to optimize the amount of fluid that is filtered, addressing deleterious problems in filtration
such as backflow due to osmosis and energy cost for the case where the outlet pressure is the same
as the permeate side pressure. We consider the early stages of particle build-up in which filtration
is compromised by an osmotic pressure opposing the filtration process. Further study is required to
address later-stage mechanisms such as deposition and cake formation.

We introduced a channel with walls composed of permeable and impermeable regions. An opti-
mum permeable wall fraction that maximizes the net flux of fluid filtered at the walls is found. This
optimum arises as a result of the competing effects of hydrodynamic pressure, allowing filtration,
and osmosis, causing a flow of the filtered fluid back into the channel. The optimum is a design
parameter that is a decreasing function of the permeability; this indicates that setups composed of
walls with higher permeability are optimized with smaller permeable regions. This is due to larger
permeability resulting in larger filtration velocities, inducing a greater transport of particles to the
wall and thus causing osmotic backflow to occur earlier in the channel. Our numerical results match
an asymptotic result for small wall permeabilities.

Similar optima are found when varying the Péclet number. However, here the optimal perme-
able wall fraction increases with the Péclet number, due to the dependence of the pressure on this
parameter, until an asymptote occurs due to the inevitable backflow at the end of the channel. An
optimal Péclet number that maximizes filtration efficiency exists due to a boundary layer at the wall
that increases the osmotic pressure.

We considered the effect of Péclet number on the energy cost of filtration and found that, given
a certain fraction of permeable wall, an optimal value for the Péclet number exists that minimizes
the energy to filter a given quantity of liquid. Furthermore, that optimal Péclet number increases
with the fraction of the wall that is permeable and, given this, an optimal fraction of permeable wall
exists that minimizes the energy.

As stated, the model presented is suitable for the early stages in a filtration process, before cak-
ing, blocking, and fouling occur. By increasing the efficiency of the filtration process at this stage,
we expect this to have favourable repercussions later on in the process by significantly reducing the
volume of fluid to be filtered at higher pressures.

The ideas presented here give an insight into potential methods to optimize processes in water
filtration, in this case, to maximize the filtration rate for a fixed influx. We show that changes in
design can greatly improve performance by minimizing energy cost and adverse effects such as
backflow due to osmosis, and the results may suggest developments for the filtration industry.
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