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We develop a spatially dependent generalisation
to the Wells–Riley model [1], which determines
the infection risk due to airborne transmission
of viruses. We assume that the infectious aerosol
concentration is governed by an advection–diffusion–
reaction equation with the aerosols advected by
airflow, diffused due to turbulence, emitted by
infected people and removed due to ventilation,
inactivation of the virus and gravitational settling.
We consider one asymptomatic or presymptomatic
infectious person breathing or talking, with or without
a mask, and model a quasi-3D setup that incorporates
a recirculating air-conditioning flow. We derive a
semi-analytic solution that enables fast simulations
and compare our predictions to data from three
real case studies – a courtroom, a restaurant and a
hospital ward – demonstrating good agreement. We
then generate predictions for the concentration and
the infection risk in a classroom, for four different
ventilation settings. We quantify the significant
reduction in the concentration and the infection risk
as ventilation improves and derive appropriate power
laws. The model can be easily updated for different
parameter values and can be used to make predictions
on the expected time taken to become infected, for
any location, emission rate and ventilation level. The
results have direct applicability in mitigating the
spread of the COVID-19 pandemic.
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1. Introduction
The COVID-19 pandemic has spread rapidly across the globe, with more than 245 million
confirmed cases worldwide and almost five million deaths, at the time of writing [2]. The virus
causing the pandemic, SARS-CoV-2, is transmitted through virus-carrying respiratory aerosols,
which are released when an infected person coughs, sneezes, talks or breathes [3,4]. Evidence
has accumulated that airborne aerosols formed from smaller respiratory droplets evaporating
can also transmit the disease [5]. In July 2020, 239 scientists signed an open letter appealing
for the recognition of airborne transmission [6] and in October 2020 the US Centre for Disease
Prevention and Control acknowledged airborne transmission and updated their guidelines [7]. In
March 2021, Public Health England recommended improving ventilation of indoor spaces as an
intervention against COVID-19 [8].

Models studying the risk of airborne transmission generally fall into one of two types:
Computational Fluid Dynamics (CFD) models and the Wells–Riley model and its extensions.
Markov-chain methods have also been used to study airborne transmission, in global population
scenarios [9–12] and in local space-dependent scenarios [10,11,13,14]. CFD models are useful
in studying airborne transmission as they can take into account the details of the room size,
geometry, the complex turbulent airflow and the size distribution of the aerosols. Various CFD
models been applied to the COVID-19 pandemic to investigate the transport of aerosols [15–20].
Some of these studies focus on the transport in the short term (less than five minutes) [15–17],
while others show the build-up of aerosols indoors over an hour [19]. The risk of infection can then
be estimated from these results [19,20]. However, CFD models require specialised software and
are computationally demanding.They take a long time to run even for small-sized locations, so
they cannot easily be applied to a new location and are hence not suited for ‘dynamic simulations’,
which are essential in a fast-evolving pandemic.

On the other hand, the Wells–Riley model [1,21] and its generalisations such as the
Gammaitoni-Nucci extension [22] are built on the Well-Mixed-Room (WMR) assumption, which
assumes that the virus-carrying aerosols are instantaneously evenly distributed throughout the
room [1,21,22]. This assumption implies that everyone in the room is equally likely to be infected,
regardless of their position. This is a major simplification of the problem as it neglects the complex
effects of the air flow on the aerosols, and the effects of the room geometry. However, Wells–Riley
models are easy to implement and very fast to run [22,23] and they have been extensively applied
to make predictions about COVID-19 transmission [23–29].

In this paper we determine the spatially dependent viral concentration and the airborne infection
risk in a room through developing an extension to the Wells–Riley model [1,22]. The model
describes the concentration of the aerosols via an advection–diffusion–reaction equation, and
allows fast simulations while still taking into account the effect of the turbulent airflow. Although
this model is more complex than the Wells–Riley model, it is significantly less computationally
expensive than CFD models. Consequently, the model is able to sufficiently reproduce results of
CFD simulations while running quickly on an average PC. The computational simplicity of our
model is an asset during the fast decision-making that is required in a fast-evolving pandemic as
it enables easy, quick application to different locations such as classrooms, healthcare clinics and
restaurants.

In Section 2, we present our model. We assume a single presymptomatic or asymptomatic
spreader of COVID-19 who is breathing or talking in a room with only mechanical ventilation
(no open doors or windows). We model the recirculation of the air due to air-conditioning by
modelling the concentration at all positions on a loop around the room, which provides a quasi-
3D setup. In this case, we show that a semi-analytic solution exists for the concentration as a
function of space and time. We then use the concentration to determine the infection risk, using
the Wells–Riley ansatz. In Section 3, we discuss the parameter values in our model and how these
may be easily changed once updated knowledge becomes available.
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In Section 4, we apply our model to three real case studies and find good agreement with
data. We first compare the model with data from two superspreader outbreaks. The first outbreak
occurred at a courtroom in Switzerland in October 2020 [30] where five out of ten people present
tested positive a few days after a hearing. The second outbreak occurred at a restaurant in
Guangzhou, China in January 2020; 7–9 people out of 20 people were infected [31]. Satisfactory
agreement with two CFD models that simulated the restaurant outbreak is also obtained [18,32].
We also consider air sampling data in a hospital ward, as reported in [33]. Subsequently, in
Section 5 we apply the model to an average-sized classroom. We determine how the aerosol
concentration and the infection risk change for four different ventilation settings: very poor
ventilation, poor ventilation, the ASHRAE recommended minimum ventilation for classrooms
and a ventilation setting better than the ASHRAE recommended minimum.

We summarise our work and indicate how policy-makers and other decision-makers could
use the model in future planning to tackle the pandemic in Section 6.

2. Modelling Framework

(a) The Advection–Diffusion–Reaction (ADR) Equation

Figure 1: Schematic of the room configuration illustrating the assumption of air recirculation in
the room generated by an air-conditioning unit.

Below we develop our model and explain major assumptions. As discussed in the
Introduction, while the WMR assumption of the Wells–Riley model leads to fast predictions, the
latter model does not capture spatial effects. Since a CFD approach is very time consuming, we
develop a quick-to-run quasi-3D, spatio-temporal model for the concentration of viral aerosols
indoors and the infection risk. We consider an infectious person talking or breathing, with or
without a mask. We also assume that the room contains an air-conditioning unit, which drives
a recirculating flow, as shown in Figure 1, and as predicted by [34]. We show that the model
possesses a semi-analytic solution and, thus, predictions can be generated very quickly.

The infectious person acts as a source of infectious aerosols, Sinf. For simplicity, we make the
assumption that all aerosols are of the same size and carry the same amount of virus, but note that
this can be readily generalised for particle-size distributions [35]. The aerosols are transported by
advection caused by the airflow which follows the recirculating loop, as shown in Figure 1, and
has velocity, v⃗. Even though air is expelled from the mouth and nose during breathing and talking,
this is a local and temporary effect, so it is fair to assume that the aerosols are passively released
into the flow stream1, so that the advection velocity of the aerosols is also v⃗.

1This would not be a good assumption for coughing and sneezing.
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The infectious aerosols are assumed to be removed due to three factors: ventilation, biological
deactivation of the virus, and gravitational settling. These correspond to sink terms, which we
denote by Svent, Sdeact, and Sset, respectively.

Finally, we assume turbulent mixing of the air. Turbulence leads to the aerosols diffusing much
more rapidly than due to Brownian motion [36]. Turbulent diffusion is governed by the eddy
diffusion coefficient, K (m2/s) [36]. More details are given in Section (b).

From these assumptions, we arrive at the advection–diffusion–reaction (ADR) equation, the
governing equation for the concentration of infectious aerosols:

∂C
∂t

+∇ · (v⃗C)−∇ · (K∇C) = Sinf − Svent − Sdeact − Sset, (2.1)

where C is the concentration of infectious aerosols (aerosols/m2) at all points in the surface of
the looping airflow, t is the time (s) [37], and ∇= (∂/∂ξ, ∂/∂y) is the two-dimensional gradient
operator in the surface of the looping airflow, where ξ (m) denotes the arclength in the streamwise
direction of the flow and y (m) is the coordinate transverse to the flow. The upper and lower
branches of the surface are assumed to be separated by a distance h/2, following [34]—see
Figure 2(a).

(b) Further Modelling Assumptions–A Simplified ADR Equation
Following [38], we model an infected person who is breathing or talking as a continuous point
source emitting virus-carrying aerosols at a constant rate of R aerosols/s. We choose to use the
infectious aerosol emission rate instead of the traditional quanta generation rate in the Wells–Riley
model for reasons that are discussed in Section 2(d). We also assume that inhaling and exhaling
occur at the same rate, so there is no net source or sink of air from the emitter and receiver of the
aerosols. Thus, an infectious person talking or breathing at position (ξ0,y0) is modelled as follows:

Sinf =Rδ(ξ − ξ0)δ(y − y0), (2.2)

where δ(x) is the Dirac delta function.
Furthermore, we assume there is mechanical ventilation provided by air-conditioning units.

Following [22,24,39–41], we model the ventilation effect as a sink term of uniform strength over
the domain,

Svent =−λC, (2.3)

where λ is the air exchange rate of the room, measured in s−1. This is an approximation, since
ventilation is a localised effect, with removal of the air by ventilation occurring at a higher rate
near the air vents and openings in the room [40,42]. However, our approach still allows us to
include the effect of ventilation while retaining its key features and without greatly increasing the
mathematical complexity of our model.

Following [22], we model the biological deactivation and gravitational settling as global first-
order removals:

Sdeact =−βC, (2.4)

Sset =−σC, (2.5)

where β is the viral deactivation rate and σ is the aerosol settling rate, both measured in s−1.
While gravitational settling would induce interaction between the two layers, due to the size of
the aerosols (about 5 µm [3]), it would take about four hours for them to fall from layer 1 to layer
2, if a perfect vertical fall is assumed. However, these aerosols will not follow a perfect vertical
motion as a result of the re-circulation; it takes only minutes for an aerosol to loop around the
room. Thus, the aerosols are much more likely to be carried from the upper layer to the lower layer
by the recirculating airflow than fall into into the lower layer from the upper layer. Furthermore,
most of the virus in the aerosols is deactivated within 1-2 hours (see Section (a)). Therefore, in our
model we assume that we can neglect the layer-layer interaction.
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The typical airflow from an air-conditioning unit, |v⃗|= 0.1− 1m/s [43], is small compared to
the speed of sound (340 m/s), so we may assume that the air is an incompressible fluid [44], that
is,

∇ · v⃗= 0. (2.6)

The velocity, v⃗, is controlled solely by the air-conditioning unit, which we assume has an inlet in
the left wall, and we assume that the airflow velocity at all points in the surface of the loop is
constant and uniform, ie. v⃗= (v, 0), where v is a constant.

To determine K, the eddy diffusion coefficient, we use the following formula:

K = ckQ(2cϵV N2)−1/3. (2.7)

Here, ck is the von Karman constant, Q is the total volume flow rate into the room, V is the room
volume, N is the number of air supply vents, and cϵ is the constant of proportionality in Taylor’s
Dissipation Law [45,46]. The relation (2.7) was presented in [41] and is based on the turbulent
kinetic energy balance (TKEB) relationship initially proposed in [45] for rooms served by mixing
ventilation (ie. when cool air is blown in through the ceiling or wall and dilutes the room air [47];
see Figure 1 for an example). Since Q= V λ, (2.7) may be rewritten as

K = ckV λ(2cϵV N2)−1/3. (2.8)

We assume the relationship cϵ = c3k following [45,48]. Taking ck = 0.39 [49] gives cϵ = 0.059. (We
note that different formulae for cϵ have been used, for example cϵ = ck [39] and cϵ = 0.5c3k [41],
albeit without providing a rationale.)

For a room with length l and width w, we unwrap the loop surface of the airflow to the two-
dimensional domain (ξ, y)∈ [0, 2l]× [0, w] (see Figure 2(b)). This extended domain allows us to
model the evolution of the aerosol cloud in both the upper and lower layers of the flow stream in
a simpler way. Assuming there is only one infectious person in the room, we substitute equations
(2.2), (2.3), (2.4), (2.5) and (2.6) into the ADR equation (2.1) to obtain the partial differential
equation (PDE) we will be solving:

∂C
∂t

+ v
∂C
∂ξ

−K

(
∂2C
∂ξ2

+
∂2C
∂y2

)
=Rδ(ξ − ξ0)δ(y − y0)− (λ+ β + σ)C. (2.9)

We assume that no virus-carrying aerosols are present initially. Hence, the initial condition is

C(ξ, y, 0) = 0. (2.10)

We model the recirculating flow using the following domain and boundary conditions. In our
setup, the aerosols loop around the room; we model this through periodic boundary conditions
on the concentration and its derivative at the wall ξ = 0 and opposite side of the extended domain,
at ξ = 2l. Hence,

C(0, y, t) = C(2l, y, t), (2.11a)

∂C
∂ξ

(0, y, t) =
∂C
∂ξ

(2l, y, t). (2.11b)

The system is closed by applying Neumann boundary conditions at the walls located at y= 0, w:

∂C
∂y

(ξ, 0, t) =
∂C
∂y

(ξ, w, t) = 0. (2.11c)

The conditions (2.11c) correspond to perfect reflection of aerosols at the wall. In practice, some
aerosols may be absorbed by the wall and so our model represents a worst-case scenario in this
respect.

(c) The Semi-Analytic Solution for the Viral Aerosol Concentration
We solve the PDE (2.9) with the boundary conditions (2.11) and initial condition (2.10) by first
solving the homogeneous problem to determine the impulse function. Then, we convolve the
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Figure 2: (a) Quasi-3D setup with air recirculating in a room of dimensions l × w × h; ξ denotes
the arclength around the loop surface of the recirculating flow. We divide the loop into an upper
(blue/darker) and lower (green/lighter) domain; x and y denote Cartesian coordinates that
describe the position on the floor. The upper half of the loop is projected onto the Cartesian plane
via x= ξ, 0≤ ξ ≤ l; the lower half is connected via x= 2l − ξ, l≤ ξ ≤ 2l. The upper and lower
branches of the surface are assumed to be separated by a distance h/2. (b) The unwrapping of the
loop surface leads to a two-dimensional domain.

impulse with the source function (2.2) to obtain the full solution (see [50] for details). A solution to
the homogeneous problem of the form C(ξ, y, t) = e−(λ+β+σ)tA(ξ, y, t) is assumed [50]. We then
use separation of variables to reduce the problem to two one-dimensional diffusion problems [50].
Due to the periodic and Neumann boundary conditions (2.11), we can use the method of images
[51] when solving for the impulse function. Hence, the solution is given by

C(ξ, y, t) =
∫ t
0

R

4πKτ
e−(λ+β+σ)τ

∞∑
m=−∞

e−
(ξ−vτ−ξ0−2ml)2

4Kτ ×

∞∑
n=−∞

(
e−

(y−y0−2nw)2

4Kτ + e−
(y+y0−2nw)2

4Kτ

)
dτ.

(2.12)

Now, leveraging the mapping of the quasi-3D setup to a two-dimensional geometry we can
average the aerosol concentration in the upper and lower branch of the loop surface to determine
the concentration for the quasi-3D setup. Specifically, we define x∈ [0, l] to be the Cartesian
coordinate in the direction of the upper flow, so x= ξ, 0≤ ξ ≤ l defines the upper branch and
x= 2l − ξ defines the lower branch, for l≤ ξ ≤ 2l (see Figure 2(a)). The concentration of viral
aerosols in the upper branch is then given by

Cupper(x, y, t) = C(x, y, t), (2.13)

and the concentration of viral aerosols in the lower branch is given by

Clower(x, y, t) = C(2l − x, y, t). (2.14)

Recall that we assume that the separation between the two branches is half the height of
the room. We assume that within these the two branches the air is well-mixed, and use this to
transform the two-dimensional expressions back into a three-dimensional representation,

C(x, y, t) =
(Cupper(x, y, t) + Clower(x, y, t))

h/2
. (2.15)

By modifying Equation (2.15) and placing the source in the appropriate layer, we are equally able
to account for people who are standing, sitting or lying down. We then substitute (2.12) into (2.15)
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to obtain the total concentration

C(x, y, t) =
2R

4πKh

∫ t
0

∞∑
m=−∞

(
e−

(x−vτ−x0−2ml)2

4Kτ + e−
(x+vτ+x0−2ml)2

4Kτ

)

×
∞∑

n=−∞

(
e−

(y−y0−2nw)2

4Kτ + e−
(y+y0−2nw)2

4Kτ

)
e−(λ+β+σ)τ

τ
dτ.

(2.16)

(d) The Probability of Infection (Infection Risk)
Following the Wells–Riley ansatz, we assume an exponential probability density function for a
susceptible person being infected from aerosols as a function of the dose of viral aerosols inhaled,
d [1,29,52],

P (d) = 1− exp(−Id). (2.17)

We then calculate d from the formula given in [1,16]:

d(x, y, t) =

∫ t
0
ρC(x, y, τ)dτ. (2.18)

Here, ρ is the average breathing rate of the susceptible person, ie. the average volume of air
inhaled by a susceptible person per second, and C(x, y, t) is given by (2.16). Equations (2.17)
and (2.18) may be combined to give

P (x, y, t) = 1− exp
(
−I

∫ t
0
ρC(x, y, τ)dτ

)
. (2.19)

Here, I is a conversion factor that allows to obtain the number of infectious aerosols in terms of
the quanta emission rate [24]. A quantum is defined as the dose of airborne virions corresponding
to an infection risk of 1− e−1 ≈ 63%, that is, 63% of susceptibles getting infected [1,21]. The
parameter I is also related to the median infectious dose, dm, the dose of airborne virions causing
infection to 50% of the susceptible population, by

1

2
=

{
1− exp(−Idm) if µ≤ 1,

1− exp(−Idm/µ) if µ> 1.
(2.20)

Here, µ is the expected number of viral copies in each aerosol, which is given by [35,53]

µ=
π

6
d3pcv, (2.21)

where cv is the viral load (viral copies/mL) of the virus in biological samples (usually sputum
or saliva for SARS-CoV-2) and dp is the average diameter of the aerosols released. The quanta
emission rate, q, is related to I via

q=RI. (2.22)

We choose not to use the infectious quantum as the unit in (2.1) and (2.2) and to work in terms of
R and I instead since the predictions of this model may then be more easily re-generated when
either of these parameter values is updated. The value of R changes with the type of activity
but is currently uncertain. Also, the value of I may change independently since the dose may
change with the severity of the COVID-19 disease [54,55]; age has also been suggested to influence
disease severity [56,57]. Moreover, it has been suggested that some SARS-CoV-2 variants, such as
the Delta variant, are more infectious corresponding to higher values of I [58].
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3. Parameters

(a) Parameter Estimates
In this section we discuss the model parameters that are independent of the room configuration
and give the values we choose. For each case study we examine, additional location-specific
parameter values are given in Tables 1, 3, 5 of Section 2 of the Supplementary Information,
respectively.

(i) Infectious Aerosol Emission Rate

The infectious aerosol emission rate, R, is obtained from the rate of the total number of aerosols
generated, Rtotal, by

R=

{
µRtotal, if µ< 1,

Rtotal, if µ≥ 1.
(3.1)

Currently, there is no agreed value for the total aerosol emission rate, Rtotal, in the literature.
Also, µ varies as it is proportional to the viral load, cv , (see Equation 2.21) which varies for each
infectious person and their stage of infection [59–61]. For instance, the airborne transmission
models in [24], [27], [35] and [62] all use different values forRtotal, following [63], [64], [65]
and [66], respectively; these values are compiled in Table ??. Some of these papers present the
emission rate in terms of number of aerosols per volume of breath exhaled, RV =Rtotal/ρinf,
where ρinf is the average breathing rate of the infectious person. However, there seems to be a
consensus [63–65] that speaking is assumed to release significantly more aerosols than breathing;
here we assume that speaking generates 10 times more aerosols than breathing.

The total aerosol emission rate, used in different models, for breathing and for talking (where
available). For emission rates originally given in terms of aerosol per volume, RV , we have used
the conversion formula RV =Rtotal/ρinf, where the breathing rate, ρinf = 1.3× 10−4 m3/s [67].

We take the values from [64] for the analysis in this paper.
Source Rtotal (aerosols/s) for breathing Rtotal (aerosols/s) for talking

[63] 13.1 42.9
[64] 8 80
[65] 9.2 20.5
[66] – 1000

Following [27] and [64], we assume that the total aerosol emission rate, Rtotal = 8 aerosols/s
for breathing and Rtotal = 80 aerosols/s for talking. The parameter values used are collected in
Table 1. We assume that the average aerosol diameter dm = 5,µm according to the definition
of airborne droplet nuclei from the WHO [3]. The viral load in the mouth, cv , on the other
hand, varies for each infectious person and their stage of infection [59–61]. Values of cv have
been found in the range of 103 − 1012 viral copies mL−1, with the median value about 106 viral
copies mL−1 [59–61]. However, [68] and [69] report that the minimum viral loads required for
aerosol transmission was 108 − 109 viral copies mL−1. Hence, in our simulations for the two
superspreader outbreaks (courtroom and restaurant), as well as for the study in the hypothetical
classroom later, we choose cv ≥ 109 viral copies mL−1. Hence, from Equation (2.21), µ≥ 6.5%

of aerosols carry a copy of the SARS-CoV-2 virus. From Equation (3.1), the emission rate of
virus-carrying aerosols is then R≥ 0.5 aerosols/s for breathing and R≥ 5 aerosols/s for talking.

We note that in (2.16), C is proportional to the strength of the source, R, as expected.
Henceforth, we will also use the dimensionless parameter R=R/R0, where R0 is the rate of
emission of infectious aerosols when breathing (see Table 1 and Table 2). In this way, the results
may be easily scaled when better estimates of R become available.
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Table 1: Parameter estimates

Parameter Symbol Value Source
Average breathing rate of susceptible
person

ρ 1.3× 10−4 m3/s [67]

Total aerosols emission rate Rtotal Breathing: 8 aerosols/s [64]
Talking: 80 aerosols/s

Viral load cv ≥ 109 viral copies/mL [69]
Average aerosol diameter dp 5 µm [3]
Viral copies per aerosol µ ≥ 6.5% viral copies/aerosol [53]
Infectious aerosols emission rate R Breathing: ≥ 0.5 aerosols/s (3.1)

Talking: ≥ 5 aerosols/s
Efficiency of mask η 0.5 [70]
Virus deactivation rate β 1.7×10−4 s−1 [71]
Gravitational settling rate σ 1.1×10−4 s−1 [35]
Median infectious dose dm 100 virions [16,72]
Conversion factor to obtain dose in
terms of infectious quantum

I 0.0069 (2.20)

Quanta emission rate q Breathing: 12.4 quanta/h (2.22)
Talking: 124 quanta/h

Table 2: The rate of emission of infectious aerosols by a person and the corresponding non-
dimensional rate R when breathing or talking and with and without a mask, scaled by the
emission rate during breathing, R0 = 0.5 aerosols/s.

Infectious person state R (aerosols/s) R=R/R0

Breathing 0.5 1
Talking 5 10

Breathing with mask 0.25 0.5
Talking with mask 2.5 5

(ii) Using a Mask

We quantify the reduction in the infection risk when the infectious person wears a face mask.
Therefore, we introduce a parameter, η, that measures the efficiency of the mask, so

Rmask =R(1− η). (3.2)

The efficiency of surgical masks and N95 respirators is well documented [73,74]. However, due
to the sudden demand due to the COVID-19 pandemic, there has been a shortage of such masks
and many people have had to manage with cloth masks. The efficiency of these masks is not
well studied: at the moment there is only a preliminary study by [70], which suggests that the
efficiency is at least 50%. Furthermore, a fraction of people wear their masks incorrectly, which
reduces their efficiency. Thus, we shall assume that a mask with an efficiency of 50% represents a
reasonably realistic scenario.

(iii) Viral Deactivation and Gravitational Settling

For the viral deactivation rate, β, according to [71], artificially generated aerosols carrying SARS-
CoV-2 had a half-life of 1.1–1.2 hours which suggests that β is in the range of 0.58–0.63h−1 ≈
1.6–1.8 ×10−4 s−1. In our simulations, we will take β = 1.7× 10−4 s−1. We must caution that
this value of β is for artificially generated aerosols in a controlled laboratory environment and
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may be different for naturally produced bio-aerosols. However, our model can easily be updated
if more accurate estimates emerge.

For the gravitational settling parameter, σ, we refer to [35]. Here, aerosols released by
respiratory activities were found to have mean value of σ= 0.39 h−1 ≈ 1.1×10−4 s−1; we take
this value for our work.

(iv) Dose and Infectious Quantum

At present, the median infectious dose, dm, is unknown for SARS-CoV-2. Early estimates by [72],
[16] and [75] suggest that dm for airborne COVID-19 is O(100) virions. We take dm = 100 virions
for our analysis but keep in mind that this may be updated in the future. [54] recently showed
that in primates, dm for seroconversion was 52, and dm for fever was 256 virions; our choice lies
between these values. As µ< 1, when dm = 100 virions, (2.20) gives I ≈ 0.0069.

Using the latter value of I and also R as in Table 2, Equation (2.22) gives q= 12.4 quanta/hour
for breathing and 124 quanta/hour for talking. In [25], they estimate the average q to be between
14-48 quanta/hour which is comparable to our value for breathing. On the other hand, our values
are in the 95th–99th percentile of the values obtained in [62]. Our high values of q are due to a
higher value of cv that we assumed following [53,69], and because we choose a value of dm which
probably corresponds to a worst-case scenario.

We collect parameter values for this section in Table 1. The results of our model, as well as
those of most other models for COVID-19 transmission, should be interpreted with caution until
these values are confirmed.

(b) Low-Cost Numerical Implementation
In the subsequent simulations, we implement the solution for the concentration (2.16) in Python
3.8.5 64-bit. The convolutions are performed using the convolve function from the scipy.signal
subpackage, which convolves two N -dimensional arrays [76]. To achieve satisfactory accuracy,
we use a time step of 1s. The first infinite series in (2.16) is evaluated for m≤ |vt/2l| as this is the
number of times an aerosol travels around the recirculation surface during the time t. The second
infinite series in (2.16) only needs to be evaluated for −3≤ n≤ 3, as the steep exponential decay
of the terms ensures very good accuracy with only the first few terms in the series [40]. For the
courtroom case study (see Section 4(a)), as v= 0, so m= n≤ |3| (see Table 1 of the Supplementary
Information for more information). For the restaurant case study (see Section 4(b)), m≤ |45|. For
the hospital case study (see Section 4(a)), m≤ |77|. Finally, for the hypothetical classroom case
study (see Section 5), m≤ 135.

To determine the infection risk (2.18), we apply the cumtrapz function from the
scipy.integrate subpackage, which cumulatively integrates an array of values using the
trapezoidal rule [76], to the results of the convolutions. All plots are produced using the
Matplotlib library [77].

The contour plots of the concentration and probability of infection are generated using a
rectangular mesh of size 0.05m. The computation time required is approximately one minute for
one hour of real time.We run the simulations on a 2012 MacBook Pro laptop, with a 2.5GHz Dual
Core Intel Core i5-3210M processor and 4GB 1805MHz RAM. Our code is available at:
https://github.com/zechlau14/Modelling-Airborne-Transmission.

(c) Ease of Updating the Model
Due to our model’s quick runtime, the results can easily be updated when the value of R and I are
updated, for example due to new variants of the virus. We can also easily update our results for
different settings, activity types and ventilation levels. For example, we could quickly generate
predictions for a person wearing a surgical mask or exercising in a gym. See Supplementary
Information, Section 1 for more details on how to update the results for several cases of interest.

https://github.com/zechlau14/Modelling-Airborne-Transmission
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4. Comparing the Model with Real Case Studies
We apply our model to a series of real case studies: two superspreader outbreaks in a courtroom
in Switzerland [30] and at a restaurant in Guangzhou, China [31] and air sampling data from
a hospital ward [33]. Ventilation quality varies between these case studies; the courtroom was
very poorly ventilated due to a breakdown of the ventilation system, the restaurant was poorly
ventilated with recirculation of the air from the air-conditioner increasing transmission and the
hospital was very well ventilated. For these case studies we generate predictions for the aerosol
concentration, the dose inhaled or the infection risk, depending on the data available, and we find
good agreement. The model predictions also agree well with those made by CFD models, when
they are available. More details are provided in the Supplementary Information, Section 2.

(a) Courtroom Superspreader Outbreak: Comparison with Data
We consider a courtroom in Vaud, Switzerland [30] that was poorly ventilated due to a breakdown
in the mechanical ventilation system. Within days of a three-hour hearing in October 2020, five
out of the ten people present tested positive. Figure 3 shows the seating positions of the people
in the courtroom. P1 was the infectious person. The infected people, P2, P3, P4, P5 were seated
within 3.5 m from P1, while people seated further away (P6–P9) were not infected. P10 also sat
within 3.5 m but was in the room for only 34 minutes, as a witness.

Figure 3: Schematic for the courtroom case study described in [30]. P1 is the infectious person, a
circled X an infected person and X a person that has not been infected.

We run our model for a three-hour event. As P1 was mostly silent according to the report of the
hearing, we assume Rtotal = 8 aerosols/s. Assuming then a viral load cv = 5× 109 (which is at the
lower end of the viral loads required for aerosol transmission [68,69]) leads to µ= 33% and hence
R= 2.5 aerosols/s. Taking also I = 0.0069 corresponds to an emission rate of 62 quanta/h. This
provides a spatially averaged probability of 39%, which matches well with four people infected by
P1 out of nine. (Note that our quanta emission value is approximately half of the quanta emission
rate of 130quanta/h found by back-calculation in [30] using the Wells–Riley model.) In Table 3 we
present the dose inhaled by each person normalised by the dose inhaled by P2, who was closest to
P1, as well as the infection risk. According to our model, P2–P5 were exposed to significantly more
infectious aerosols than P6–P9, and, correspondingly, to a quite higher infection risk compared to
the not infected individuals. This matches up with P2–P5 becoming infected. See Supplementary
Information, Section 2.1 for more details.
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Table 3: Comparing the results of our model with data from the courtroom case study in [30]
where five out of ten people tested positive a few days after a three-hour hearing. P1 was the
infectious person and infected P2–P5. P10 was in the room only for 34 minutes. We assume R=

2.5 aerosols/s and I = 0.0069, which is equivalent to 62 quanta/h. The dose was normalised by
the dose inhaled by P2. We take parameter values as in Table 1 and Table 1 of the Supplementary
Information, Section 2.1.

Person
Distance from Infectious

Person
Normalised dose Infection Risk Infected? (Y/N)

P1 0 m .... .... Y
P2 1.5 m 1.0 80.8% Y
P4 1.5 m 1.0 83.1% Y
P3 3 m 0.35 43.7% Y
P5 3.3 m 0.23 35.3% Y
P10 3.4 m 0.05 7.8% N
P8 4.0 m 0.10 14.8% N
P7 4.5 m 0.11 25.7% N
P6 5.0 m 0.09 22.2% N
P9 5.0 m 0.11 16.6% N

(b) Guangzhou Restaurant Superspreader Outbreak: Comparison with
Data and with CFD Models

A superspreader outbreak occurred at a restaurant in Guangzhou, China on January 23, 2020
[31]. In [18], they found that the air flow from the five air-conditioning units in the restaurant
formed ’recirculation zones’. In the recirculation zone where the infectious person was, the air-
conditioning stream carried the infectious aerosols to the opposite window, then the stream bent
downward and returned at a lower height before finally the contaminated air rose and returned
to the air-conditioning unit, repeating the cycle [18]. 7–9 people out of 20 were infected in one of
these recirculating zones [31], which corresponds to an infection rate of 35-45%.

We simulate the concentration and infection risk using our model. We take as the
computational domain a simplified rectangular domain 6 m (l) × 17 m (w) × 3.14 m (h)—see
Figure 4(a). In Figure 4(b) we show in more detail the area of interest, which contains the
recirculating zone in which the infectious person (A1) was sat, at Table A. We also show Tables
B and C which were also in this recirculating zone. Assuming that the infected person was
talking without a mask, the emission rate R= 5 aerosols/s, and I ≈ 0.0069 (equivalent to 124
quanta/hour). In Figure 5(a) we show the spatially varying infection risk and in Figure 5(b) the
average infection risk in the area of interest, as generated using our model, after one hour and
twenty-two minutes. We have chosen 82 minutes since it is the time the infectious individual
remained in the restaurant. The spatially averaged infection risk, P , is 40% after an hour and over
50% after 82 minutes. Although 50% might be an overestimation of the infection risk recall that
we assumed the person continuously talking whereas s/he must had periods where s/he was
eating. Table 4 shows the average infection risk at Tables B, C and E. Tables B and C in the area of
interest have a significantly higher risk than Table E which is equal distance away from Table A
but outside this area. Comparing also Tables B and C which are similar distance away from Table
A, the infection risk was lower at Table B since people stayed there 53 minutes versus 77 minutes
at Table C. (See Supplementary Information Section 2.2. for more details.) Therefore, our model
is in good agreement with data. If the Wells–Riley model had been used, it would not have been
able to identify the heightened risk in the area of interest. Furthermore, as the risk in the Wells–
Riley model would have been averaged over the whole restaurant, back-calculation of the quanta
emission rate would result in an extremely alarming figure. CFD models in [18], [32] and [78] have
also been used to study this superspreader case. Using our model we find that in this region the
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Figure 4: (a) The 6m × 17m computational domain, shown in grey, over which we run our model
as a simplified version of the Guangzhou restaurant [31]. (b) The area of interest contains the
‘recirculating zone’ in which 7-9 people were infected by A1, the infectious person. The circled X
denotes an infected person and X denotes a person who was not infected.

x (m)

y (m)

(a)
Time (minutes)

P

(b)

Figure 5: Superspreader outbreak in the Guangzhou restaurant in China [31]. (a) Infection risk
after one hour and 22 minutes in the chosen recirculation zone (b) Average infection risk,
P , versus time. We use (2.19) with l= 6m, w= 17m, h= 3.14m, λ= 0.77h−1, N = 5 (five air-
conditioning units). The infected person is at (x0, y0) = (3.75, 0.5) and we take R= 10 (talking).
Other parameter values taken as in Table 1 and the Supplementary Information Table 3.

average concentration after one hour is five times higher than what the maximum concentration
would have been without recirculation (See Figure 5 of the Supplementary Information, Section
2 for more details); these results agree with [32]. With our model, we also determine the dose
inhaled normalised by the dose inhaled by a person seated next to the infectious person–see
Table 4 and for more details, Supplementary Information Section 2.2. The result agrees well
with [18].

(c) Hospital Ward: Comparison with Air Sampling Data
In [33], the concentration was sampled at two points in a COVID-19 hospital ward of area 7m ×
3.5m over three hours. A single patient was present. We choose to compare with this case because
it provides clear information regarding the dimensions of the room, the ventilation system and
the sampling positions. Figure 6 shows a schematic of the COVID-19 ward described in [33].
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Table 4: Normalised dose in the restaurant from [18], normalised by the dose inhaled by a person
seated at Table A, adapted from Table 3 from [18], and the normalised dose and average infection
risk

from our model, from (2.16) and (2.18) with l= 6m, w= 17m, h= 3.14m, λ= 0.77h−1,
V = 431m3, N = 5, (x0, y0) = (3.75, 0.5) and other parameter values as given in Table 1 and the

Supplementary Information Table 3. Here, R= 10, which corresponds to talking.

Table Normalised dose in [18] Our normalised dose
Our average
infection risk

Table B 0.76 0.84 40.3%
Table C 0.89 0.85 57.7%
Table E 0.40 0.31 27.1%

Sampling Position 1 (S1) was at the left wall, about 2m from the head of the patient (the viral
source) and sampling Position 2 (S2) was at the bottom right corner of the room, about 4.8m from
the head of the patient. Ventilation was very good, with λ= 6h−1. Neither the activity of the
patient or the viral load were reported in [33]. The location-specific parameters are in Table 5 of
the Supplementary Information, Section 2, and other parameters in Table 1.

Figure 6: Schematic of the COVID-19 ward described in [33]. S1 and S2 represent the locations of
the air samplers.

Table 5 shows the comparison of our model with data from [33]. Our ratio of the concentrations
at the two sampling locations is 1.74 while the experiment [33] gives 1.88 so there is good
agreement. This shows the importance of employing a spatially dependent model like ours: the
ratio arising from a Wells–Riley model would be equal to 1. More air-sampling data of aerosols
carrying SARS-CoV-2 together with viral load measurements are required to accurately estimate
Rµ in order to provide absolute values for the concentration (and the infection risk).

Table 5: Comparison of our predictions with air sampling data from [33]. From (2.16) with
parameter values as given in Table 1 and Table 5 of the Supplementary Information.

Concentration (Virus copies/L)
S1 S2 S1/S2

[33] Data 30 16 1.88
Our model 8.0× 10−3 Rµ 4.6× 10−3 Rµ 1.74
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5. Hypothetical Case Study: A Classroom
Countries have been debating the best practices for operating indoor spaces in schools and
universities during the COVID-19 pandemic. Hence, we use our model to study the transmission
of COVID-19 in an average classroom of dimensions 8m (l) × 8m (w) × 3m (h) – see Figure 7. For
this classroom, we assume that the air-conditioning drives an air flow with velocity v= 0.15m/s
[43]. All parameters associated with this location and their values are found in Table 6.

8m

8m

v

Infectious person

A:(5,4)

B:(8,8)
A

ir
-c

on
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ti
on

in
g

un
it

y

x

Figure 7: Schematic of the modelled classroom. One infectious person (viral source) is located at
the centre of the room. Positions A : (5, 4) and B : (8, 8) are of particular interest and are studied
in our analysis.

Ventilation is increasingly considered a very important intervention against COVID-19 [79].
We will consider four different ventilation settings, as follows:

• Setting 1: Very poor ventilation,
• Setting 2: Poor ventilation,
• Setting 3: ASHRAE recommended minimum ventilation setting for classroom [80,81]
• Setting 4: A ventilation setting better than the ASHRAE recommended minimum (that is

equivalent to the ASHRAE recommended minimum for health care facilities [82])

where ASHRAE is the American Society of Heating, Refrigeration and Air-Conditioning
Engineers [81]. Each setting is characterised by a different value of λ, the air exchange rate, which
increases with ventilation quality. The eddy diffusion coefficient, K is determined by (2.8) for
each λ assuming N = 1 and its values are given in Table 6.

(a) The Concentration of Infectious Aerosols
Figure 8 shows, in a contour map, the concentration of the infectious aerosols in the classroom
after one hour, for the four ventilation settings. For all ventilation settings, the highest
concentration is in the region directly downwind from the infectious person. The width of this
region increases with the amount of ventilation, as it depends on the eddy diffusion coefficient,
K, which is proportional to λ (see Equation (2.8)). The next highest concentration in the room
is found upwind. The concentration decreases as one travels away from the infectious person in
the direction orthogonal to the air flow. Our results agree qualitatively with those obtained from
air sampling in hospital wards in Wuhan, conducted in [84], which showed that virus-carrying
aerosols were ‘mainly concentrated near and downstream from the patients’ and there was also
an ‘exposure risk upstream’. Note that we express the concentration in terms of R so that the same
plot can be used for breathing or talking, with and without a mask or indeed other activities.
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Table 6: Location-dependent parameters and their values

Parameter Symbol Value Source
Room Length l 8m
Room Width w 8m
Room Height h 3m
Airflow speed v 0.15 m/s [43]
Room air
exchange rate

λ Very poor ventilation: 0.12 h−1 ≈ 3.3× 10−5 s−1 [83]
Poor ventilation: 0.72 h−1 ≈ 2× 10−4 s−1 [83]
ASHRAE recommended minimum ventilation for
classrooms: 3 h−1 ≈ 8.3× 10−4 s−1

[80,81]

A ventilation better than the ASHRAE recommended
minimum: 6 h−1 ≈ 1.7× 10−3 s−1

[80]

Eddy diffusion
coefficient

K Very poor ventilation: 8.8 ×10−4 m2/s [41]
Poor ventilation: 5.3 ×10−3 m2/s [41]
ASHRAE recommended minimum ventilation for
classrooms: 2.2 ×10−2 m2/s

[41]

A ventilation better than the ASHRAE recommended
minimum: 4.4 ×10−2 m2/s

[41]

Figure 9 shows the concentration in the room versus time evaluated at Position A:(5,4), and
Position B:(8,8) (see Figure 7). These two positions were chosen because, as seen in Figure 8,
Position A is where the highest concentration is while maintaining 1m social distancing from the
infectious person and Position B is where the lowest concentration is.

Figure 9 shows that the concentration increases initially, before reaching a steady state. For
lower values of λ, more time is required to approach the steady-state concentration, as predicted
also by the Gammaitoni–Nucci extension of the Wells–Riley model [22].

At point A, downwind from the source, Figure 9a shows that the steady-state concentration is
higher for lower values of λ, where there is less removal of infectious aerosols, as expected. Figure
9a also shows that we can obtain a power law of the form C(xA, ya, t)∝Rtα, where α≈ 0.34

which is independent of the amount of ventilation; only the constant of proportionality depends
on λ. The trend deviates from this power law (by more than 5%) when t≈ 16 minutes.

For positions that are outside the high-concentration regions, such as Position B in the corner,
Figure 9b shows that no scaling law is obeyed, due to the influence of the walls. Moreover,
we see that the ASHRAE recommended ventilation settings 3 and 4 initially have higher
concentrations before being overtaken by the worse ventilation setting. This result occurs because
the movement of the infectious aerosols in the direction orthogonal to the airflow is governed by
the eddy diffusion coefficient, K, which increases with λ according to (2.8). Since the ASHRAE
recommended ventilation settings have higher values of K, the infectious aerosols diffuse faster in
the y-direction to begin with. However, given sufficient time, the infectious aerosols in the worse
ventilation settings will also reach the farthest points of the room, and the concentration there
will eventually surpass that in the ASHRAE recommended ventilation settings. This result is a
first indication that a small amount of ventilation could actually increase the risk of transmission
compared to the case of very poor ventilation.

(b) Probability of Infection
Figure 10 shows the probability of infection for the four ventilation settings we considered in
the 8m × 8m × 3m room after an infectious person just breathes for one hour. The contours in
Figure 10 are similar in shape to the concentration contours in Figure 8. This implies that the
greatest risk of infection indoors is directly downwind from the infectious person, and the risk
decreases as we travel away from the source in a direction orthogonal to the airflow.
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Figure 8: Concentration of SARS-CoV-2-carrying aerosols after one hour in an 8m × 8m × 3m
room, determined from Equation (2.16), with parameter values given in Tables 1 and 6, for four
ventilation settings: (a) very poor ventilation, (b) poor ventilation, (c) ASHRAE recommended
minimum ventilation for classrooms, (d) a ventilation better than the ASHRAE recommended
minimum. Values for R for breathing and talking, with and without masks are given in Table 2.

Figure 11 shows the probability of infection versus time evaluated at Position A and Position
B in the case study 8m × 8m × 3m classroom for the case of an infectious person just breathing.
In Figure 11b, we can see the effect of the concentration building more slowly at very poor
ventilation that we saw in Figure 9b, with the probability of infection growing very slowly initially
then overtaking the two ASHRAE recommended ventilation settings 3 and 4. As Position A

and Position B are the positions with the highest and lowest infection risk in the room while
maintaining social distancing of 1 m, by examining these two points we have a range of the risk
in the room.
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Figure 9: Concentration of SARS-CoV-2-carrying aerosols versus time in a case of very poor
ventilation (red dashed), poor ventilation (orange solid), ASHRAE recommended minimum
ventilation for classrooms (green dot-dashed) and a ventilation better than the ASHRAE
recommended minimum (blue dotted), from Equation (2.16), with parameter values as given
in Tables 1 and 6. (a) Evaluated at Position A:(5,4). In this case, a power law of the form
C(xA, yA, t)∝Rtα is obeyed, where α≈ 0.34; the trend deviates from this power law when
t≈ 16 minutes and the presence of the walls begins to influence the solution. (b) Evaluated at
Position B:(8,8). In this case, the influence from the walls is significant for all times and hence no
scaling law is obeyed. Values for R for breathing and talking, with and without masks are given
in Table 2.

(c) Average Probability of Infection
In Figure 12, we evaluate the spatially averaged probability of infection (2.19) and compare with
the probability of infection derived by inserting the average concentration; the latter is according
to the WMR assumption of the Wells–Riley model. We consider the infectious person talking. As
Figures 12b–d show, as ventilation improves, the spatially averaged probability is almost equal
to the probability of the average concentration. However, for the very poor ventilation setting,
Figure 12a shows that the former is lower than the latter. This demonstrates that our spatially
dependent model more accurately captures the infection risk in poorly ventilated environments
compared to the Wells–Riley model.

(d) Time to Probable Infection (TTPI)
Paving the way towards formulating policy recommendations, we can also use the model to
calculate the Time To Probable Infection (TTPI) – the time required for the infection risk at a
point in the room to reach 50%. We present in Figure 13 the spatially dependent TTPI in the room
for the case of an infectious person talking in the 8m × 8m × 3m classroom.

Figure 14 shows the relationship between the TTPI and λ at Positions A and B in our classroom
case study, respectively. The TTPI monotonically increases with λ. We can extract the following
values for the four ventilation settings. For very poor ventilation TTPI≈ 50 minutes and for poor
ventilation, TTPI≈ 100 minutes. For the ASHRAE recommended ventilation settings, the TTPI
exceeds 200 and 350 minutes, respectively. In Figure 14a we observe further evidence of the
scaling-law behaviour at Position A that was identified in Figure 9a, by now finding that the
TTPI satisfies the relationship TTPI∝ λγ , where γ ≈ 0.41 for λ< 1h−1, and a linear relationship,
ie. γ ≈ 1, for λ> 1h−1. We note that as Point A is the most dangerous point in the room with the
lowest TTPI (while maintaining 1m social distancing), the TTPI at A could be used to determine
a ‘safe occupancy time’ for the whole room.
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Figure 10: Probability of infection after one hour due to an infectious person breathing at the
centre of a 8m × 8m × 3m room from (2.16) and (2.19), with parameter values as given in Tables
1 and 6: (a) very poor ventilation, (b) poor ventilation (c) ASHRAE recommended minimum
ventilation for classrooms (d) a ventilation better than the ASHRAE recommended minimum.
Here, R= 1 which corresponds to breathing.

At Position B, Figure 14b, at the top right corner we see that the TTPI depends non-
monotonically on λ with a TTPI attaining a minimum value (most dangerous point) for λ

approximately equal to 0.6h−1. For values of λ smaller than 0.6h−1 the TTPI decreases with λ;
for values of λ> 0.6h−1 the TTPI again increases with λ. At first glance, this is perhaps counter-
intuitive since it implies that more ventilation makes the room less safe but it can be explained
by the slower initial build-up of concentration for this range of λ (see Figure 9b. Crucially, this
non-monotonic behaviour of the TTPI demonstrates that very low ventilation could increase the
infection risk in some parts of the room away from the source, so a very important take-away
from our work is that ‘increasing the ventilation a little could actually be worse’. This supports
the initial observation made in Figure 9. More significantly, as λ increases, the infection risks at
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Figure 11: Infection risk versus time in an 8m × 8m × 3m classroom for an infectious person
breathing in a case of very poor ventilation (red dashed), poor ventilation (orange solid), ASHRAE
recommended minimum ventilation for classrooms (green dot-dashed) and a ventilation better
than the ASHRAE recommended minimum (blue dotted), using (2.16) and (2.19), with parameter
values as given in Tables 1 and 6. (a) Evaluated at Position A:(5,4). (b) Evaluated at Position
B:(8,8). Here, R= 1, which corresponds to breathing.

both Positions A and B drop significantly and the TTPIs increase significantly – for example when
we double λ from 3 to 6 h−1 for A we go from TTPI = 200 to 370 minutes and for B we go from
TTPI = 325 to 570 minutes. Hence, the TTPI does not double in value but it is close. We note that
Figures 13 and 14 could be generated very quickly for any location, parameters and ventilation
settings of interest.

Next, in order to quantify the dependence of the TTPI on the type of activity we plot in
Figure 15 the TTPI vs R, the emission rate of infectious aerosols, for the four ventilation settings.
At Position A there is a power law of the form TTPI∝Rϕ with ϕ≈ -0.79, -0.85, -0.96 and -
0.99, respectively. At Position B, ϕ≈ -0.75, -0.84, -0.96 and -0.99, respectively. As expected, the
TTPI decreases as R increases, at both A and B. As ϕ decreases with increasing ventilation, the
dependence of TTPI on R becomes weaker with increasing ventilation. In other words, the more
aerosols generated per second the less safe the room is but when ventilation increases sufficiently
the type of activity matters less. We also note that at Position B, for the poorer ventilation settings,
the effects of the weaker mixing are visible again. Furthermore, as ρ and I have the same influence
in (2.19) as R, we could also determine analogous power laws of the forms TTPI∝ ρϵ or TTPI∝ Iν .

In Figure 16, we consider the TTPI at one metre downwind in several other indoor spaces
found in schools and universities: an office (4m × 4m), an auditorium or lecture theatre (15m ×
30m), and a convention centre or indoor football field (68m × 105m). We note that as the size of
the room increases to infinity, ϕ→−1. Since ϕ decreases with increasing room size, this shows
that the dependence of the TTPI on R becomes weaker with increasing room size.

6. Conclusion and Future Directions
In this paper we have addressed the urgent need for a quick-to-run and efficient model that
determines the spatially dependent concentration of airborne particles (aerosols) carrying the
SARS-CoV-2 virus and also the corresponding probability of infection (infection risk). The model
compares well with data from three real case studies in a courtroom [30], a restaurant [31] and
a hospital ward [33], respectively and also with CFD models (see Section 4). We have applied
the model to predict the concentration and the infection risk in an average-sized classroom and
we have shown that the benefits of improving ventilation are significant. Our approach could be
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Figure 12: Comparison of the spatially averaged probability of infection P (red solid) versus the
probability of infection from the spatially averaged concentration (blue dashed) in a 8m × 8m
× 3m classroom with an infectious person talking, from (2.16) and (2.19), with parameter values
from Tables 1 and 6: (a) very poor ventilation, (b) poor ventilation (c) ASHRAE recommended
minimum ventilation for classrooms (d) a ventilation better than the ASHRAE recommended
minimum. Here, R= 10, which corresponds to talking.

applied to any other room. We placed one infectious, asymptomatic or presymptomatic person
in the centre of the room who either breathes or talks, with or without a mask; this corresponds
to four different emission rates for the viral aerosols (Table 2). Note that we have taken the mask
efficiency to be 50% but this number can be very easily altered (as all other parameters in the
model).

The semi-analytic solution we derived in (Section 2(c)) allows for fast simulations; for example,
it takes only one minute of simulation to determine the concentration after one hour of real time,
on a standard laptop. Subsequently, using the spatially varying concentration (2.16) in the well-
known exponential probability density function of the Wells–Riley model [1,29,52] we determine,
for the first time, a spatially varying probability of infection (2.19).

The model relies on many parameters that are currently unknown for SARS-CoV-2 or which
are known to vary over a wide range. Particularly uncertain parameters are the median infectious
dose, and hence the conversion factor between dose of viral aerosols inhaled and infectious
quantum, the viral load and the length of time before the virus becomes biologically inactivated.
We have used the best estimates for these parameters by consulting the literature and talking to
scientists involved in experiments (see Section 3). However, our predictions must still be taken
with caution. Our model provides an important contribution to the COVID-19 modelling field
since it can be easily updated and rerun as when more accurate estimates are obtained. The
model can also be used to quickly determine the comparative infection risk arising from new
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Figure 13: ‘Time to probable infection’ (TTPI) due to an infectious person talking at the centre
of a 8m × 8m × 3m room from (2.16) and (2.19), with parameter values from 1 and 6: (a) very
poor ventilation, (b) poor ventilation (c)ASHRAE recommended ventilation for classrooms (d) a
ventilation better than the ASHRAE recommended minimum. R= 10 for talking.

variants of the virus or from different types of activity, such as physical exercise (see Section 1 of
Supplementary Information).

In Section 5 we applied the model to a hypothetical average-sized classroom, with dimensions
8m × 8m × 3m (Figure 3). Our model shows that the concentration, and the infection risk in
the room are highest downwind from the infectious person (see Figure 8). As in the Wells–
Riley model, the concentration in the room increases initially, then reaches a steady state (see
Figure 9). We consider the concentration at two indicative points: A (1m downstream of the
source, assuming social distancing); and B (top right corner). The time to reach the steady state is
shorter and the steady-state concentration is lower for larger values of ventilation λ at point A.
However, at point B the highest concentration is attained in the poor ventilation setting. Moreover,
the ASHRAE recommended ventilation settings 3 and 4 exhibit higher concentrations than the
very poor ventilation for some time before the poor ventilation surpasses these values. At position
A the concentration obeys a power-law dependence on time to begin with, since the spreading
behaviour is unimpeded by obstacles. However, as time progresses and the effect of the walls
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Figure 14: The TTPI versus the air exchange rate λ for an infectious person talking in the room;
from (2.16) and (2.19): (a) at Position A:(5,4) (b) at Position B:(8,8). All parameter values are given
in Tables 1 and 6. Here, R= 10, which corresponds to talking.

log(R)
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Figure 15: Log–log plot of the TTPI versus R in a case of very poor ventilation (red dashed), poor
ventilation (orange solid), ASHRAE recommended minimum ventilation for classrooms (green
dot-dashed) and a ventilation better than the ASHRAE recommended minimum (blue dotted):
(a) at Position A, (b) at Position B, obtained from (2.16) and (2.19). All parameter values are given
in Tables 1 and 6.

comes into play, the power law breaks down. Analogously, no power law exists for B, since the
influence of the walls is significant for all time due to the proximity of the walls to this location.

Another observation from Figure 8 is that the second highest concentration level is found
upwind of the source (on the same horizontal line). Our results agree qualitatively with air
sampling data from hospital wards in Wuhan [84], which showed that virus-carrying aerosols
were ‘mainly concentrated near and downstream from the patients’ and there was also an
‘exposure risk upstream’.

In Figure 10 we show the probability of infection for the four ventilation settings we consider
(8m × 8m × 3m classroom, infectious person breathing for one hour). The contours in Figure 10
are similar in shape to the concentration contours in Figure 8. This implies that the greatest risk
of infection indoors is directly downwind from the infectious person, and the risk decreases
as we travel away from the source in a direction orthogonal to the airflow. Figure 11 shows
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Figure 16: Log–log plot of the TTPI versus R, in rooms with poor ventilation, evaluated at 1m
downwind from the infectious person, from solving Equations (2.16) and (2.19). The black dashed
line represents an infinite room; the red dotted line represents a convention centre (68m × 105m);
the orange dot-dashed line represents an auditorium (15m × 30m); the green solid line represents
a classroom (8m × 8m); and the blue dashed line represents a personal office (4m × 4m). All other
parameter values are given in Table 1.

the probability of infection versus time evaluated at Positions A and B. In Figure 11b, we can
see the effect of the concentration building more slowly for very poor ventilation (Figure 9b),
with the probability of infection growing very slowly initially then surpassing the two ASHRAE
recommended ventilation settings 3 and 4. As Position A and Position B are the locations in the
room with the highest and lowest concentrations, respectively, they provide us with the range of
the concentration and the infection risk in the room.

In Figure 12, we present a comparison of the spatially averaged probability of infection
versus the probability of infection obtained from the average concentration arising from our
model. The latter infection risk is that predicted by previous, spatially uniform Wells–Riley
models. We consider an infectious person talking, in the 8m × 8m × 3m classroom. As Figures
12b–d show, as ventilation improves, the average probability becomes almost equal to the
probability derived from the average concentration. However, for the very poor ventilation
setting, Figure 12a shows that the spatially averaged probability is lower than the probability from
the average concentration in the room. This figure suggests that the spatially averaged (WMR)
approximations may overestimate the infection risk for poorer ventilation settings.

Paving the way for formulating policy-making recommendations, in Section 5(d) we used
the spatially varying concentration to determine the Time to Probable Infection (TTPI) as a
function of ventilation λ. In the downwind region, 1m away from the source (point A), the TTPI
increases with λ, exhibiting a scaling-law dependence on λ (see Figure 14a). Outside this high-
concentration region (point B), the TTPI, interestingly, exhibits a non-monotonic relationship with
λ, first decreasing to a minimum TTPI and then increasing again with λ (see Figure 14b). This
observation ties up with previous observations that improving ventilation a little may be worse
than not doing anything. More significantly, Figure 14 shows that increasing ventilation in a room
can drastically reduce the infection risk, and hence drastically increase the TTPI.

We have also identified a power-law relation between the TTPI and R, the emission rate of
airborne infectious particles (see Figure 15) that encapsulates the TTPI over a continuous range of
R. Consequently, this can be used to quickly quantify the effect on the TTPI of the activity type for
one person (for example talking at low or high volume) or differences in the emission rate between
persons (as some people emit more viral particles than others for the same type of activity). We
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also note that this dependence of the TTPI on R becomes weaker with increasing room size (see
Figure 16). Analogous power laws can be determined for the TTPI versus I , the conversion factor
between the number of infectious aerosols and the infectious quantum in the probability density
function (2.19); and for the TTPI versus ρ, the breathing rate of the susceptible person. These
would allow us to quickly generate predictions for new variants, once the parameters are made
available.

The model could be extended in several ways to account for additional questions of
interest. Currently we are working on including viral particle-size distributions, particularly size-
dependent gravitational settling and emission rates that depend on the particle size. Also, of
particular practical interest is quantifying the effect to the infection risk when air purifiers are
introduced in rooms, a stream of work motivated by our industrial partner Smart Separations
Ltd. The model can be extended to study rooms with more complex geometries, air velocities and
ventilation systems. For example, someone could explore ventilation as a localised effect, with
removal of the air by ventilation occurring at a higher rate near the air vents and openings in the
room [40].

In conclusion, our model can be implemented to assess the risk of airborne infection in rooms
of different sizes when an infectious person is breathing or talking, with or without a mask. It
can also be implemented to quantify the effectiveness of changing the ventilation available in the
room. The modelling framework contains a series of parameters that may easily be adjusted in
light of new guidelines on ventilation or confirmed information on the virus. Most importantly for
the current COVID-19 pandemic, it can be implemented quickly on individual, widely available
and inexpensive computers.
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