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We develop a general model to describe a network of interconnected thin viscous sheets, or
viscidas, which evolve under the action of surface tension. A junction between two viscidas
is analysed by considering a single viscida containing a smoothed corner, where the
centreline angle changes rapidly, and then considering the limit as the smoothing tends to
zero. The analysis is generalized to derive a simple model for the behaviour at a junction
between an arbitrary number of viscidas, which is then coupled to the governing equation
for each viscida. We thus obtain a general theory, consisting of N partial differential
equations and 3J algebraic conservation laws, for a system of N viscidas connected
at J junctions. This approach provides a framework to understand the fabrication of
microstructured optical fibres containing closely spaced holes separated by interconnected
thin viscous struts. We show sample solutions for simple networks with J = 2 and N = 2
or 3. We also demonstrate that there is no uniquely defined junction model to describe
interconnections between viscidas of different thicknesses.
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1. Introduction

A conventional optical fibre is typically made from two different layers of glass: a doped
inner core and an outer cladding of pure silica (Senior & Jamro 2009). Light travels along
the fibre by the process of total internal reflection at the interface between the core and
the cladding, which have different refractive indices. There is currently great interest in
the fabrication of a relatively new type of microstructured optical fibre (MOF), made of
a single material, with the cladding region containing an array of air holes that run along
the entire fibre length, as illustrated by the example in figure 1 (Wynne 2006). These
holes provide an effective difference in the refractive index, and thus light passing through
the core is guided by total internal reflection in a similar manner to a conventional optical
fibre. The air channels can be arranged in a multitude of patterns, and it is due to this
flexibility that MOFs can be produced with adaptable optical properties (see for example
Birks et al. 1997; Monro et al. 1999; Ranka et al. 2000).

A MOF is constructed by heating a macroscopic silica preform (typically a few
centimetres in diameter) and then drawing it down into a fibre, typically 125 µm in
diameter, at a speed of 10–50 m/min (Fitt et al. 2002). To achieve the desired optical
properties, the MOF must be constructed with a precise air-channel configuration.
The fluid flow that arises during the manufacturing and drawing processes can lead
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� Light is guided through

the silica core by TIR.

Figure 1. Schematic diagram of a segment of a microstructured optical fibre; air holes are
arranged in a hexagonal lattice in the cladding region (Hansen et al. 2005), running along the
entire length of the fibre.

to distortions in the preform that render the fibre useless even if one specifies the
initial arrangement of the air channels. Unwanted side effects such as changes in the
shape, size or location of the air holes, or even complete closure of the air holes,
have been experimentally observed (Ebendorff-Heidepriem & Monro 2007; Ebendorff-
Heidepriem et al. 2008). A mathematical model enabling the manufacturing process to
be properly understood, controlled and optimized would resolve the current costly and
time-consuming trial-and-error nature of the largely experimental fabrication process.

Predicting the full evolution of a MOF during the drawing process is a formidable
challenge, but fortunately one can exploit various geometrical features to simplify the
problem. If one assumes that the fibre cross-section is slowly varying in the axial direction
then, in a suitable Lagrangian frame of reference, the shape evolution of the cross-
section is reduced to a classical two-dimensional Stokes-flow free-boundary problem. (This
asymptotic decoupling can also give a useful approximation to the real behaviour even
when the axial variations are not so slow.) The transverse-flow problem is coupled with
a one-dimensional axial-stretching problem, determining the size of the cross-section as
a function of axial distance. The approach is illustrated schematically in figure 4, and
has been used successfully in, for example, Dewynne et al. (1989, 1994) and Cummings
& Howell (1999) to describe the evolution of a fibre with arbitrary simply-connected
cross-section. In Griffiths & Howell (2007, 2008) the same insight is used to model the
cross-sectional shape of a slender thin-walled viscous tube with uniform thickness at each
cross-section, subject to deformations due to both axial stretching and surface tension.
Stokes et al. (2014) build on the same ideas to present a general mathematical framework
to model the pulling of slender optical fibres whose cross-section can have any geometry,
including multiple holes.

Having exploited the slenderness in the axial direction, it remains to solve the resulting
two-dimensional Stokes-flow problem. Motivated by the fabrication process of MOFs,
Buchak & Crowdy (2016) present a numerical scheme to solve a two-dimensional Stokes-
flow problem with multiple interacting free boundaries whose evolution is driven by
surface tension. Similarly, a model for fibre evolution based upon complex-variable
methods is presented in Tronnolone et al. (2013); Tronnolone (2016), where the focus
is on the extrusion stage of the fabrication process. Modelling of fibre drawing with
deformation of channels due to stretching, surface tension and pressurization has been
treated in Chen et al. (2015). Finally, the model described in Buchak et al. (2015) uses
two asymptotic approximations: that the fibre is slender and that the cross-section of
the fibre is a circular disc with well-separated elliptical channels that are sufficiently far
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Figure 2. Schematic diagrams of the cross-sections of MOFs with air channels that are
(a) well-spaced and (b) closely spaced.
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Figure 3. High-quality scanning electron microscope (SEM) images of the cross-section of
(a) germanate double-nanoweb fibre, (b) germanate suspended-core fibre, (c) lead-silicate
multi-component bandgap fibre and (d) lead-silicate highly nonlinear photonic crystal fibre;
(a)–(c) have a solid core and (d) has a hollow core. All of these are examples of soft glass
photonic crystal fibres made at the Max Planck Institute for the Science of Light (Russell 2019).
The blue figures are the equivalent schematic diagrams.

from the outer boundary. This approach regularizes the ill-posed inverse problem of the
fabrication of MOFs.

The approximate model derived by Buchak et al. (2015) is valid when the holes are
well-spaced (see figure 2a). However, many MOFs lie at the opposite limit, in which the
holes are very close together (see figure 2b); typical real examples are shown in figure 3.
Our focus in this paper is on such geometries, where it is no longer appropriate to model
individual holes that are weakly coupled through a bulk Stokes flow. Instead, one can
exploit the geometrical assumption that the holes are closely spaced, so that the cross-
section can be thought of as being composed of a network of very thin sheets of glass, or
viscidas (Buckmaster & Nachman 1978; Buckmaster et al. 1975), which are connected
together at junctions (see schematics in figure 3). In this paper we develop such a theory
by extending the model for a single viscida derived by Griffiths (2007); Griffiths & Howell
(2007, 2008) to describe the behaviour at a junction where two or more viscidas meet
and to allow for variations in thickness. The resulting coupled model is used to tackle
a series of canonical problems that form the building blocks of the full problem of the
evolution of a MOF cross-section with closely spaced holes.

We begin in §2 by recapping the governing equations for a single surface-tension-
driven viscida. In §3 we study the behaviour at a junction where several viscidas meet.
The case of two connected viscidas is modelled as a smoothed corner in a single viscida,
and we show that a well-defined evolution law is obtained in the limit as the smoothing
parameter tends to zero. This angle-evolution law is then generalized to an arbitrary
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Figure 4. Two-dimensional model to describe the shape evolution of the cross-section of a
microstructured optical fibre.

number of interacting viscidas by performing a local moment balance. In §4 we combine
the ideas from §§2–3 to derive a coupled model for a system of viscidas connected at
junctions. We work in detail through two examples containing two and three viscidas,
respectively, before presenting a general theory for an arbitrary viscida network which, in
theory, allows us to capture the behaviour of complex MOF cross-sections such as those
depicted in figure 3. We use this theory in an example of a six-viscida configuration.
In §5, we extend the analysis to include variations in thickness along and between the
viscidas. This apparently innocuous generalization exposes an interesting degeneracy in
the modelling of a junction between viscidas of differing thicknesses. Finally, in §6, we
discuss our results and draw our conclusions.

2. Governing equations for a viscida

Consider a thin two-dimensional sheet of viscous liquid which is invariant in the z-
direction, whose thickness is given by h(s, t) and whose centre-line in the (x, y)-plane
makes an angle θ(s, t) with the x-axis, where s is arc-length and t is time. Griffiths
& Howell (2007) derived a model for the evolution of such a viscida by performing
an asymptotic analysis in the limit where the aspect ratio ε of typical thickness h to
typical length L tends to zero. Here we present the resulting leading-order dimensionless
governing equations, in which lengths are made dimensionless with L, thickness with
h = εL and time with hµ/γ, where µ and γ denote the constant viscosity and surface
tension, respectively.

A balance of forces and moments at each point along the viscida leads to the identity

∂M

∂s
= −A(t) sin θ−B(t) cos θ, (2.1)

where M(s, t) is the bending moment, while A(t) and B(t) are the spatially uniform
net tensions in the x- and -y-directions. These two functions must also be determined
as part of the solution; the signs are chosen simply for convenience. The leading-order
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constitutive relation for the bending moment is

M = −h
3

3

D

Dt

(
∂θ

∂s

)
(2.2)

where D/Dt is the material time derivative following a particular section through the
viscida. Finally, an evolution equation for the thickness of the viscida arises from a
balance between the viscous tension and the surface tension. The viscous tension in a
two-dimensional thin viscous sheet is given (in dimensional variables) by −4µDh/Dt
(Griffiths & Howell 2007), while the net contribution of surface tension at the two free
surfaces is 2γ. A net tangential force balance thus leads to the dimensionless equation

Dh

Dt
=

1

2
, (2.3)

which describes a constant rate of thickening of each material section under the action
of surface tension.

In principle, equations (2.1)–(2.3) provide a closed system for M(s, t), h(s, t) and
θ(s, t). Once θ has been determined, the position of the centreline may be expressed
parametrically by (x, y) =

(
x(s, t), y(s, t)

)
, where

∂x

∂s
= cos θ,

∂y

∂s
= sin θ. (2.4a,b)

To solve the system (2.1)–(2.3), one requires initial conditions for θ(s, 0) = θ0(s) and
h(s, 0) = h0(s), as well as four boundary conditions, since the integration functions A(t)
and B(t) must also be found as part of the solution. Suitable boundary conditions usually
amount to specifying four out of: the position of each end of the viscida; the inclination
angle θ and/or the bending moment M applied at each end; and the tensions A and B.
We will illustrate some typical examples below.

To facilitate computing the material derivatives in equations (2.2) and (2.3), we now
move to a Lagrangian frame, with coordinates (ξ, τ) such that t = τ and ξ labels a
particular material section of the viscida. Enforcing local mass conservation provides a
kinematic relation between s and ξ, namely

∂s

∂ξ
=

h0(ξ)

h(ξ, τ)
. (2.5)

In terms of the dimensionless Lagrangian framework, the thickness equation (2.3) be-
comes

∂h

∂τ
=

1

2
, (2.6)

which may be integrated to give

h(ξ, τ) = h0(ξ) +
τ

2
, (2.7)

where h0(ξ) = h(ξ, 0). Thus, the bending moment may be written as

M = −
(
h0(ξ) + τ/2

)3
3

∂

∂τ

(
h0(ξ) + τ/2

h0(ξ)

∂θ

∂ξ

)
, (2.8)

and the Langrangian form of the evolution equation (2.1) is

∂

∂ξ

[
(h0(ξ) + τ/2)3

∂

∂τ

(
h0(ξ) + τ/2

h0(ξ)

∂θ

∂ξ

)]
=

3h0(ξ)
[
A(τ) sin θ+B(τ) cos θ

]
h0(ξ) + τ/2

. (2.9)
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Figure 5. (a) A two-viscida junction with exterior angle ∆θ = θ(ξ+0 , τ)− θ(ξ−0 , τ) and interior
angle ϕ = π − θ(ξ+0 , τ). (b) The same junction smoothed over a small length-scale δ.

The Lagrangian spatial coordinate lies in the fixed range ξ ∈ [0, 1] (by our non-
dimensionalization), and the evolving Eulerian length of the viscida is then given by

L(τ) =

∫ 1

0

h0(ξ) dξ

h0(ξ) + τ/2
. (2.10)

Solutions of equation (2.9) were obtained by Griffiths & Howell (2007) for the case of
a single spatially uniform viscida which forms a closed loop, so that h0(ξ) ≡ 1 and θ(ξ, τ)
satisfies periodic boundary conditions θ(ξ+1, τ) ≡ θ(ξ, τ)+2π. In the following sections,
we generalize this previous work in several ways. First we analyse situations where two
or more spatially uniform viscidas are connected at a junction. We then use the results of
this analysis to construct a general network model for a system of connected viscidas and
junctions, as in the cross-section of a MOF consisting of closely spaced holes separated by
thin glass struts. Finally, we consider the effects of thickness variations and, in particular,
how they interact with angle variations in the vicinity of a junction.

It is surprising at first glance that the evolution equation (2.9) makes sense whether
solved forwards or backwards in time. In the “forward” problem, we specify the initial
geometry of the viscida and then track how it evolves, while the “backward” problem
consists of specifying a desired final shape of the viscida and then determining the initial
conditions required to achieve it. As shown by Griffiths & Howell (2007), the resulting
inverse problem is well posed until such (negative) time that either the viscida self-
intersects or the thickness h reaches zero.

3. The evolution of a viscida junction

3.1. A two-viscida junction

To gain an understanding of the general behaviour at a junction, we first analyse a
join between two viscidas of uniform and equal thickness, as shown schematically in
figure 5(a). Our aim is to determine the time evolution of the interior corner angle
ϕ(τ) = π + θ(ξ−0 , τ) − θ(ξ+0 , τ) made between the two connected viscidas. Our initial
approach is to smooth the resulting corner, modelling the junction as a single viscida
in which θ varies rapidly as a function of ξ, over a small neighbourhood whose size is
of order δ � 1, as in figure 5(b). The thin-viscida approximation remains valid locally
provided ε � δ; however, Griffiths & Howell (2007) showed that the problem may be
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solved for arbitrarily small δ without introducing any artefacts from the corner, and the
solution approaches a well-defined limit as δ → 0.

Since the initial thickness is assumed to be uniform, we have h0(ξ) = 1, so the thickness
evolves as h = 1 + τ/2 from (2.7), and the evolution equation (2.9) is then simply

∂

∂τ

[
(1 + τ/2)

∂2θ

∂ξ2

]
=

3A(τ)

(1 + τ/2)4
sin θ+

3B(τ)

(1 + τ/2)4
cos θ. (3.1)

We rescale into the corner region via ξ = ξ+0 δη and define Θ(η, τ) := θ(δη, τ) within this
region. Substituting this local scaling into (3.1) and retaining only leading-order terms
in δ gives

∂

∂τ

[
(1 + τ/2)

∂2Θ

∂η2

]
= 0, (3.2)

which is subject to the matching conditions

Θ(η, τ)→ θ
(
ξ±0 , τ

)
as η → ±∞. (3.3)

We integrate (3.2) and apply the far-field conditions (3.3) to obtain

ϕ(τ) = π − π − ϕ(0)

1 + τ/2
. (3.4)

Therefore the junction angle straightens out with increasing τ , approaching π as τ →
∞. The result (3.4) also makes sense for inverse time provided τ > −2, and we see
that the internal angle sharpens for decreasing τ , becoming zero when τ = −2ϕ(0)/π,
corresponding to eventual self-intersection.

3.2. A junction of n viscidas

We now attempt to extend our theory to describe the evolution of a junction where
several viscidas meet. Let us first consider an alternative derivation of the equation
(3.4) governing the interior angle at a junction between two viscidas with uniform and
equal thickness meeting with interior angle ϕ and exterior angle ∆θ = π − ϕ, as shown
in figure 5(a). As above, we can treat the two viscidas as a single continuous viscida
containing a local jump in the inclination angle θ, at ξ = ξ0, say. From (2.8), we know
that the bending moment is given by

M = − (1 + τ/2)3

3

∂

∂τ

[(
1 +

τ

2

) ∂θ
∂ξ

]
. (3.5)

Since θ ∼ θ(ξ−0 , τ)+∆θH (ξ − ξ0), near the corner, where H is the Heaviside function,
the local bending moment behaves as

M ∼ − (1 + τ/2)3

3

∂

∂τ

[(
1 +

τ

2

)
∆θ
]
δ(ξ − ξ0), (3.6)

where δ(ξ−ξ0) denotes the Dirac delta function. To avoid an unbalanced point singularity
in M , we must therefore have

∂

∂τ

[(
1 +

τ

2

)
∆θ
]

= 0, (3.7)

which upon integration with respect to τ and use of ϕ = π − ∆θ, yields precisely the
same angle evolution law (3.4) as found above by smoothing the corner.

We now generalize the above argument to the case of a junction where three viscidas
meet, as shown schematically in figure 6. Here the viscidas are labelled 1–3, with ϕi
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Figure 6. A junction between three viscidas of equal thicknesses. The behaviour is
characterized by the evolution of the internal angles ϕi (i = 1, 2, 3).

denoting the interior angle between viscida i and viscida i+1 (mod 3). The bend through
an exterior angle ∆θ3 between viscidas 3 and 1 produces a point anticlockwise moment
of magnitude

M3 = − (1 + τ/2)3

3

∂

∂τ

[(
1 +

τ

2

)
∆θ3

]
. (3.8)

Similarly, the bend between viscidas 3 and 2 produces a point moment of magnitude

M2 =
(1 + τ/2)3

3

∂

∂τ

[(
1 +

τ

2

)
∆θ2

]
. (3.9)

To ensure that no unbalanced point moment acts on viscida 3, we must have M3+M2 = 0,
which may be simplified to

∂

∂τ

[(
1 +

τ

2

)
(ϕ3 − ϕ2)

]
= 0. (3.10)

Similarly, a balance of moments acting on each of viscidas 1 and 2 gives

∂

∂τ

[(
1 +

τ

2

)
(ϕ1 − ϕ3)

]
= 0 and

∂

∂τ

[(
1 +

τ

2

)
(ϕ2 − ϕ1)

]
= 0. (3.11a,b)

We also note that the interior angles must satisfy

ϕ1 + ϕ2 + ϕ3 = 2π. (3.12)

Using (3.12) and combinations of (3.10) and (3.11), we find that

ϕi(τ) =
2π

3
+
ϕi(0)− 2π/3

1 + τ/2
, (3.13)

where i ∈ {1, 2, 3}. Therefore, the junction of three viscidas evolves in a way that ensures
that, as τ →∞, the interior angles ϕ1, ϕ2, ϕ3 all tend to 2π/3.

We hypothesize, based on the examples we have shown, that this method is general-
izable for a junction of n viscidas, for any n > 2. Balancing moments at the n-viscida
junction yields, after some algebra,

∂

∂τ

[(
1 +

τ

2

)
(ϕi − ϕj)

]
= 0, (3.14)

for all 1 6 i < j 6 n, where ϕi again labels the interior angle between viscidas i and
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α(τ) β(τ)

θ1(ξ, τ)

θ2(ξ, τ)

Figure 7. Schematic diagram of the two-viscida problem. The top viscida has a centreline
described by θ1(ξ, τ) and the bottom viscida has a centreline described by θ2(ξ, τ). The interior
angle at ξ = 0 for any time τ is given by α(τ) and the angle at ξ = 1 by β(τ). The two nodes
represent the viscida junctions.

i+ 1 (mod n). Also, in the general case, the relation (3.12) becomes

n∑
i=1

ϕi = 2π, (3.15)

which in combination with (3.14), gives

ϕi(τ) =
2π

n
+
ϕi(0)− 2π/n

1 + τ/2
. (3.16)

Again, all the interior angles tend to the same value, 2π/n, as τ →∞.

4. Modelling a viscida network

4.1. A two-viscida network

In this section, we analyse a set-up consisting of two interacting viscidas of equal
and uniform thickness, connected by junctions at their ends, as illustrated in figure 7.
By combining the governing equation (3.1) for each viscida with the angle evolution
equation (3.4) for each node, we obtain a closed model for the coupled system of viscidas
and junctions. The ideas developed in this section will be generalized below to a more
general network of viscidas connected by junctions.

The inclination angle θi(ξ, τ) in viscida i ∈ {1, 2} satisfies (3.1), which we write in the
form

∂

∂τ

[(
1 +

τ

2

) ∂2θi
∂ξ2

]
= Ai(τ) sin θi +Bi(τ) cos θi, (4.1)

by absorbing factors ±3/(1 + τ/2)4 into the functions Ai(τ) and Bi(τ). Since each
equation (4.1) is second order in space and has two additional unknowns, eight boundary
conditions are needed in total to close the problem.

To ensure that the ends join up, we impose∫ 1

0

cos θ1 dξ =

∫ 1

0

cos θ2 dξ and

∫ 1

0

sin θ1 dξ =

∫ 1

0

sin θ2 dξ. (4.2a,b)

It is further required that, at each junction, there is zero net bending moment, i.e.
M1 +M2 = 0 where the bending moment in each viscida is given by (3.5). Therefore we
impose the boundary condition

∂

∂τ

[
(1 + τ/2)

(
∂θ1
∂ξ

+
∂θ2
∂ξ

)]
= 0 at ξ = 0, 1. (4.3)
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Equation (3.4) provides the evolution of the corners at ξ = 0, 1:

α(τ) = π +
α(0)− π
1 + τ/2

= θ1(0, τ)− θ2(0, τ), (4.4)

β(τ) = π +
β(0)− π
1 + τ/2

= θ2(1, τ)− θ1(1, τ), (4.5)

respectively, where α(0) is the initial internal angle at ξ = 0 and β(0) is the initial internal
angle at ξ = 1. Force balances at ξ = 0, 1 imply that there must be zero resultant forces
in the x- and y-direction, for all τ , i.e.,

A1(τ) +A2(τ) = 0 and B1(τ) +B2(τ) = 0. (4.6a,b)

Equations (4.2)–(4.6) provide eight boundary conditions in total, and so appear to close
the problem. However, there remains an indeterminate rigid-body motion: for example,
one can easily see that the entire problem (4.1)–(4.6) is invariant under the transformation
θi(ξ, τ) 7→ θi(ξ, τ)+ψ(τ) for any function ψ(τ). Therefore, we will find that three further
conditions are needed to fix the arbitrary translation and rotation.

Upon integration of (4.1) with respect to ξ, we obtain

∂2

∂ξ∂τ

[(
1 +

τ

2

)
θi

]
= Ai(τ)Yi +Bi(τ)Xi + Ci(τ), (4.7)

where (
Xi(ξ, τ)
Yi(ξ, τ)

)
= (1 + τ/2)

(
xi(s, t)
yi(s, t)

)
=

(
X0(τ)
Y0(τ)

)
+

∫ ξ

0

(
cos θi

(
ξ̂, τ
)

sin θi
(
ξ̂, τ
)) dξ̂ (4.8)

gives the centreline of viscida i∈ {1, 2}, expressed in Lagrangian variables. At ξ = 0, the
two viscidas meet at a junction whose position

(
X0(τ), Y0(τ)

)
is thus far arbitrary. By

applying (4.3) and (4.6) at ξ = 0, we deduce that

C1(τ) + C2(τ) = 0, (4.9)

and then the corresponding moment balance (4.3) at ξ = 1 is satisfied identically: a
manifestation of the rotational invariance alluded to above.

Integration once more with respect to ξ gives

∂

∂τ

[(
1 +

τ

2

)
θi

]
= Ai(τ)

∫ ξ

0

Yi dξ̂ +Bi(τ)

∫ ξ

0

Xi dξ̂ + Ci(τ)ξ +Di(τ), (4.10)

for i ∈ {1, 2}. If we subtract (4.10) with i = 1 from (4.10) with i = 2 and use the angle
conditions (4.4) and (4.5) at ξ = 0 and ξ = 1, we obtain the relations

D1(τ)−D2(τ) =
π

2
, (4.11)

C1(τ) =
1

2

[
A2(τ)Y2(τ) +B2(τ)X2(τ)−A1(τ)Y1(τ)−B1(τ)X1(τ)− π

]
, (4.12)

where the bar is used to denote the averaged value

F (τ) :=

∫ 1

0

F (ξ, τ) dξ. (4.13)

At this point it is helpful to make some specific choices that eliminate the arbitrary
rigid-body motion and simplify the problem somewhat. We fix the rotation by taking
D1(τ) +D2(τ) ≡ 0. We also assume that the net translation is chosen to fix the net
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centroid of the system, so that X1(τ) +X2(τ) ≡ 0 and Y1(τ) + Y2(τ) ≡ 0. Given these
specific choices, we can evaluate

C1 = −π
2
, C2 =

π

2
, D1 =

π

4
, D2 = −π

4
, (4.14)

as well as (
X0(τ)
Y0(τ)

)
= −1

2

∫ 1

0

(1− ξ)
(

cos θ1(ξ, τ) + cos θ2(ξ, τ)
sin θ1(ξ, τ) + sin θ2(ξ, τ)

)
dξ, (4.15a)

(
Xi(1, τ)
Yi(1, τ)

)
=

1

2

∫ 1

0

ξ

(
cos θ1(ξ, τ) + cos θ2(ξ, τ)
sin θ1(ξ, τ) + sin θ2(ξ, τ)

)
dξ. (4.15b)

Thus equation (4.10) reduces to

∂

∂τ

[(
1 +

τ

2

)
θi

]
= (−1)i

[
A1(τ)

∫ ξ

0

Yi dξ̂ +B1(τ)

∫ ξ

0

Xi dξ̂ +
π

4
(1− 2ξ)

]
, (4.16)

which can be solved numerically for θi once we have determined A1(τ) and B1(τ).
To this end, we multiply (4.7) by Xi for i ∈ {1, 2} and integrate over the viscida length

to obtain

∂

∂τ

[
(1 + τ/2) θi

]∣∣∣∣
ξ=1

Xi(1, τ)− ∂

∂τ

[
(1 + τ/2) θi

]∣∣∣∣
ξ=1

X0(τ)

− (1 + τ/2)
∂

∂τ

∫ 1

0

sin θi dξ − 1

2

∫ 1

0

θi cos θi dξ = AiXiYi +BiX2
i . (4.17)

In a similar fashion, by multiplying (4.7) by Yi, integrating over the viscida length and
using (4.2b), we obtain

∂

∂τ

[
(1 + τ/2) θi

]∣∣∣∣
ξ=1

Yi(1, τ)− ∂

∂τ

[
(1 + τ/2) θi

]∣∣∣∣
ξ=1

Y0(τ)

+ (1 + τ/2)
∂

∂τ

∫ 1

0

cos θi dξ − 1

2

∫ 1

0

θi sin θi dξ = AiY 2
i +BiXiYi, (4.18)

with i ∈ {1, 2}. We subtract the cases i = 1 and i = 2 of (4.17) and (4.18) and rearrange
to obtain a linear system for A1 and B1 as follows:(

X1Y1 +X2Y2 X2
1 +X2

2

Y 2
1 + Y 2

2 X1Y1 +X2Y2

)(
A1

B1

)

=
1

2

∫ 1

0

[(
cos θ2
sin θ2

)[
θ2 − π(ξ − 1/2)

]
−

(
cos θ1
sin θ1

)[
θ1 − π(1/2− ξ)

]]
dξ. (4.19)

With A1(τ) and B1(τ) determined at every time τ by (4.19), the evolution equation
(4.16) for θi(ξ, τ) is easily solved numerically, for example by using the method of lines.
Before proceeding, we observe that the coupled problem (4.16), (4.19) admits an exact
steady solution in which

θ1(ξ, τ) = π

(
1

2
− ξ
)
, θ2(ξ, τ) = π

(
ξ − 1

2

)
. (4.20)

Clearly these forms render the right-hand side of (4.19) identically zero and thus give
A1 = B1 = 0 (since the matrix on the left-hand side of (4.19) is negative definite). Then
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Figure 8. Solutions of the system (4.16), (4.19) for two connected viscidas, plotted using
Eulerian coordinates (x, y), with initial conditions given by (4.21) (a, b) and (4.23) (c, d).
The times shown are (a) τ ∈ {0, 1, 2, 4, 8}, (b) τ ∈ {−1.16,−1.1,−1.0,−0.8,−0.4, 0},
(c) τ ∈ {0, 1, 2, 4, 8}, (d) τ ∈ {−2/3,−1/2,−1/3,−1/6, 0}, with the direction of increasing
τ indicated by an arrow in each figure. In (a) and (b), the dotted lines show the analytical
result (4.22).

the left- and right-hand sides of (4.16) are also identically equal. The solution (4.20)
corresponds to a pair of semicircular viscidas whose ends meet smoothly with an interior
angle of π, which is tantamount to a single complete circular viscida. We expect the
system to converge to such a configuration for large positive values of τ .

We illustrate the strategy developed above to solve for the evolution of a pair of
symmetric coupled viscidas whose initial centreline geometries are defined by

θ1(ξ, 0) = −θ2(ξ, 0) = tanh
(
20(1/2− ξ)

)
. (4.21)

As demonstrated in figure 8(a,b), the reflectional symmetry is preserved, so that θ2 ≡ −θ1
for all time. As τ increases, the two-viscida system retracts under the action of surface
tension and becomes increasingly circular, approaching the limiting solution (4.20) as ex-
pected. When the solution is calculated for negative time, the reverse happens, with each
viscida becoming increasingly elongated and deformed, and a non-local self-intersection
occurs when τ ≈ −1.16.

We note that the set-up shown in figure 7 may equivalently be viewed as a single
closed-loop viscida containing two corners, rather than as a system of two viscidas whose
ends are joined. Moreover, the initial condition (4.21) corresponds to a viscida centreline
which is symmetric under rotation through π. As shown by Griffiths & Howell (2007), this
rotational invariance implies that the two tensions A1(τ) and B1(τ) must be identically
zero, and we can therefore obtain the exact solution of the evolution equation (4.16) in
this case, namely

θ1(ξ, τ) = −θ2(ξ, τ) =
θ1(ξ, 0)− π(1/2− ξ)

1 + τ/2
+ π(1/2− ξ). (4.22)

It is evident in figure 8(a,b) that our two-viscida solutions computed following the general
approach described above agree essentially perfectly with the analytical solution (4.22),
which is plotted using dotted curves.

Next we demonstrate our method on another two-viscida example, which has reflec-
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α1(τ)

α2(τ)

β1(τ)

β2(τ)

θ1(ξ1, τ)

θ3(ξ3, τ)

θ2(ξ2, τ)

Figure 9. A system of three connected viscidas. The top, bottom and middle viscida has
a centreline described by θ1(ξ1, τ), θ2(ξ2, τ) and θ3(ξ3, τ), respectively. For i ∈ {1, 2, 3}, the
interior angles at ξi = 0 are given by α1,2(τ), and the angles at ξi = `i are given by β1,2(τ). The
two nodes represent the viscida junctions.

tional symmetry again, but not rotational symmetry. We impose the initial conditions

θ1(ξ, 0) = −θ2(ξ, 0) =


π

3
−
(√

3 +
π

2
− 1
)
ξ ξ <

π

2
√

3 + π − 2
,

−π
6

ξ >
π

2
√

3 + π − 2
,

(4.23)

which describe a circular arc merged smoothly with a straight line, as can be seen in the
“t = 0” curves in figure 8(c,d). In this case, one can show that A1(τ) is identically zero
but B1(τ) is strictly negative, so an analytical solution akin to (4.22) does not exist, and
it is necessary to solve the system (4.16), (4.19) numerically.

The resulting solutions plotted in figure 8(c,d) again show the anticipated behaviour.
As τ increases, the corner angles increase towards π and the system approaches a circular
arc. As τ decreases from zero, the corner angles sharpen, with a cusp forming at ξ = 1
when τ = −2/3, so that self-intersection would occur for τ < −2/3.

4.2. A three-viscida network

Next we analyse a network of three viscidas connected in the configuration illustrated
in figure 9, with a three-way junction at either end. To describe such a situation, we must
solve an evolution equation for each viscida, i.e.,

∂

∂τ

[(
1 +

τ

2

) ∂2θi
∂ξ2i

]
= Ai(τ) sin θi +Bi(τ) cos θi, (4.24)

for i ∈ {1, 2, 3}. We identify each spatial coordinate ξi separately for clarity, since
each viscida may have a different initial length, say `i. Twelve independent boundary
conditions are required to solve for the three deflection angles θi(ξi, τ) and the six tensions
Ai(τ), Bi(τ).

Since the ends must meet at the two junctions, we enforce∫ `1

0

(
cos θ1
sin θ1

)
dξ1 =

∫ `2

0

(
cos θ2
sin θ2

)
dξ2 =

∫ `3

0

(
cos θ3
sin θ3

)
dξ3. (4.25)

The condition of zero net bending moment at each junction becomes, in this case,

∂

∂τ

[(
1 +

τ

2

)(∂θ1
∂ξ1

+
∂θ2
∂ξ2

+
∂θ3
∂ξ3

)]
= 0 at ξj = 0, `j for j = 1, 2, 3. (4.26)
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Using equation (3.16) with n = 3, we write the evolution of the angles at the corners as

αi(τ) =
2π

3
+
αi(0)− 2π/3

1 + τ/2
= (−1)i+1[θi(0, τ)− θ3(0, τ)], (4.27a)

βi(τ) =
2π

3
+
βi(0)− 2π/3

1 + τ/2
= (−1)i+1[θ3(`3, τ)− θi(`i, τ)], (4.27b)

for i ∈ {1, 2}. Here α1,2(0) and β1,2(0) are the initial internal angles at each junction, as
illustrated in figure 9. Force balances at ξi = 0, `i for i ∈ {1, 2, 3} imply that there must
be zero resultant forces in the x- and y-directions, for all τ , i.e.,

3∑
i=1

Ai(τ) = 0 and

3∑
i=1

Bi(τ) = 0. (4.28a,b)

Equations (4.25)–(4.28) provide twelve boundary conditions for the system (4.24).
However, as in §4.1, the problem suffers from a rotational indeterminacy. By integrating
the evolution equation (4.24) along the length of each viscida from ξi = 0 to ξi = `i and
applying the force balances (4.28), we see that the moment balance (4.26) is satisfied
identically at ξi = `i if it is enforced at ξi = 0. Therefore one more condition must be
imposed to determine all of the angles θi(ξi, τ) uniquely, and then a further two conditions
are needed to fix the translation of the entire network. The details of the calculation to
determine the evolution of the three-viscida network may be found in Appendix A.

We illustrate the evolution of a three-viscida network with an initial configuration
given by

θ1(ξ1, 0) = π (1/2− ξ1) , for 0 6 ξ1 6 1, (4.29a)

θ2(ξ2, 0) = π (ξ2 − 1/2) , for 0 6 ξ2 6 1, (4.29b)

θ3(ξ3, 0) = 0, for 0 6 ξ3 6 2/π, (4.29c)

which corresponds to an initially circular cross-section with a straight strut partitioning
the centre, as in the real-world example shown in figure 3(a). We show the evolution of
such a profile for both forward and inverse time in figure 10. The reflectional symmetry of
the initial condition (4.29) is preserved by the dynamics, and the central viscida therefore
remains flat for all time.

For forward time, the internal angles formed at the junctions evolve towards 2π/3,
while the outer viscidas want to approach circular arcs, but the specified (Lagrangian)
lengths are incompatible with such a configuration. The system resolves this frustration
by approaching two semi-circular arcs (similar to the initial condition), with the angle
adjusting rapidly to satisfy the required angle conditions in boundary layers near the two
junctions. The profile for negative time shows the cross-sectional profile that we should
begin with to achieve a final circular tube cross-section with a central partitioning viscida.

4.3. A general viscida network model

We now combine the ideas presented so far to construct a general framework that
describes the evolution of an arbitrary system of N thin viscidas connected at J junctions.
In principle the resulting model can ultimately be used to describe the fabrication of a
MOF.

As shown schematically in figure 11(a), we describe the shape of a viscida that goes
from junction i to junction j (with 1 6 i 6= j 6 J) by the inclination angle θij(ξ, τ). For
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Figure 10. Solution of the problem (4.24), (4.25)–(4.28) for three connected viscidas with initial
profiles given by (4.29), plotted in Eulerian coordinates for (a) τ ∈ {0, 1.03, 2.53, 4.03, 6} and
(b) τ ∈ {−1,−0.75,−0.5,−0.25, 0}.

each of the N such viscidas, we have to solve a version of the evolution equation (4.1), i.e.

∂

∂τ

[(
1 +

τ

2

) ∂2θij
∂ξ2

]
= Aij(τ) sin θij +Bij(τ) cos θij , (4.30)

for ξ ∈ (0, `ij), where `ij is the viscida’s initial length and (Aij , Bij) are the scaled tension
components. Considering the same viscida instead as going from junction j to junction i,
we deduce the symmetry conditions

Aji(τ) ≡ −Aij(τ), Bji(τ) ≡ −Bij(τ), `ji ≡ `ij , (4.31a–c)

and

θji(ξ, τ) ≡ ±π + θij(`ij − ξ, τ). (4.32)

We note in passing that the set-up here appears to assume that there is only one
viscida connecting each pair of junctions (ij) and also that there are no viscidas that
start and end at the same junction. Such cases can be dealt with either by introducing
additional passive junctions (connecting two viscidas with interior angle π) or by defining
slightly more cumbersome notation, such as θkij , with the index k enumerating all of the
viscidas connecting junctions i and j. In either case, the arguments developed below
follow through.

We denote the (anticlockwise) moment exerted on node i by the viscida that connects
it to node j by Mij , which may be expressed in the form

Mij(τ) =
∂

∂τ

[
(1 + τ/2)

∂θij
∂ξ

]∣∣∣∣
ξ=0

. (4.33)

By integrating equation (4.30) between ξ = 0 and ξ = `ij , and using the identity (4.32),
we find a symmetry condition satisfied by Mij , namely

Mij(τ) +Mji(τ) ≡
[
Xi(τ)−Xj(τ)

]
Bij(τ) +

[
Yi(τ)− Yj(τ)

]
Aij(τ), (4.34)

where (Xi, Yi) and (Xj , Yj) denote the positions of junction i and junction j, respectively.
Now, to impose the corner-evolution equation (3.16), we need to define the relevant

interior angles between adjacent viscidas. To this end, let vi be an ordered list, enumerat-
ing the indices j of the other junctions which are connected to junction i, sorted in order
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Figure 11. (a) Schematic of a viscida connecting two junctions labelled i and j. (b) A central
junction i connected to five others {a, b, c, d, e}.

of increasing θij(0, 0); for example, in the scenario sketched in figure 11(b), we could take
vi = {a, b, c, d, e}. Then the total number of viscidas connected at junction i is ni = |vi|,
and the total number of viscidas in the network is

N =
1

2

J∑
i=1

ni. (4.35)

It is also clear that j ∈ vi if and only if i ∈ vj .
We can now write the interior angles in terms of the differences between the angles

corresponding to successive terms in the ordered list vi, i.e.,

ϕik(τ) = θivi(k+1)(0, τ)− θivi(k)(0, τ), (4.36)

where vi(k) denotes the kth element in vi. Finally, applying the corner rule (3.16), we
deduce that the angle with which each viscida leaves junction i is given by

θivi(k)(0, τ) = Θi(τ) +
θivi(k)(0, 0)

1 + τ/2
+

(k − 1)πτ

ni(1 + τ/2)
, (4.37)

where Θi is an arbitrary function of τ , which measures the net rotation of junction i.
Let us suppose for a moment that we know the position

(
Xi(τ), Yi(τ)

)
and rota-

tion Θi(τ) of every junction i = 1, 2, · · · , J . If so, then equation (4.37) determines the
angle θij at both ends of each viscida. In addition, the displacement between each pair
of connected junctions is given by∫ `ij

0

cos θij(ξ, τ) dξ = Xj(τ)−Xi(τ),

∫ `ij

0

sin θij(ξ, τ) dξ = Yj(τ)− Yi(τ). (4.38a,b)

In total, then, for each pair (ij) with j ∈ vi, we have the four boundary conditions
required to solve the evolution equation (4.30) uniquely for Aij(τ), Bij(τ) and θij(ξ, τ).

Assuming we have solved for θij(ξ, τ), we can then evaluate all of the moments acting
at each junction using (4.33). Finally, we impose force and moment balances at each
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junction, namely ∑
j∈vi

Aij =
∑
j∈vi

Bij =
∑
j∈vi

Mij = 0, (4.39)

for every i = 1, 2, · · · , J . On the face of it, (4.39) provides the 3J equations required to
determine the remaining unknowns Xi, Yi and Θi which we had temporarily imagined
to be given. However, the problem suffers from a by now familiar degeneracy. By virtue
of the symmetry conditions (4.31) and (4.34), it is easily shown that∑

i,j

Aij ≡
∑
i,j

Bij ≡
∑
i,j

Mij ≡ 0, (4.40)

and therefore (4.39) actually provides only 3J − 3 independent equations, and there
remain three degrees of freedom in the problem. To determine the solution uniquely, it is
necessary to eliminate the arbitrary rigid-body motion, for example by fixing the position
and rotation of a specific junction, say X1(τ) = Y1(τ) = Θ1(τ) = 0 for all τ .

We thus argue that the system of equations, boundary conditions and balance laws
developed above results in a well-posed evolution problem for the shape of each viscida
and the position and rotation of each junction. A general solution strategy is sketched
out in Appendix B.

We illustrate the general approach by solving for the evolution of a six-viscida tri-
junction network, similar to the one shown in figure 3(b). We prescribe the initial
configuration

θ23(ξ, 0) =
2π

3
ξ, θ34(ξ, 0) =

2π

3
(ξ + 1), θ42(ξ, 0) =

2π

3
(ξ + 2), (4.41a)

for 0 6 ξ 6 1, and

θ13(ξ, 0) =
π

6
, θ14(ξ, 0) =

5π

6
, θ15(ξ, 0) =

9π

6
, (4.41b)

for 0 6 ξ 6 3/2π, impose the angle evolution equation (3.16) at each junction, and ensure
that the ends join up by setting(

x13(3/2π, τ), y13(3/2π, τ)
)

=
(
x23(1, τ), y23(1, τ)

)
=
(
x34(0, τ), y34(0, τ)

)
, (4.42a)(

x14(3/2π, τ), y14(3/2π, τ)
)

=
(
x34(1, τ), y34(1, τ)

)
=
(
x42(1, τ), y42(1, τ)

)
, (4.42b)(

x12(3/2π, τ), y12(3/2π, τ)
)

=
(
x42(1, τ), y42(1, τ)

)
=
(
x23(0, τ), y23(0, τ)

)
, (4.42c)(

x12(0, τ), y12(0, τ)
)

=
(
x13(0, τ), y13(0, τ)

)
=
(
x14(0, τ), y14(0, τ)

)
. (4.42d)

We show the evolution of such a profile for both forward and inverse time in figure 12.
The rotational symmetry of the initial condition (4.41) is preserved by the dynamics,
so the central struts remain straight and the interior angles at the centre remain equal
to 2π/3 for all time. The junctions at the edge become more symmetric as τ increases,
with all of the interior angles approaching 2π/3, but become increasingly asymmetric
as τ becomes increasingly negative. In either case, the evolution of the angles at the
junctions imposes forces and moments on the curved viscidas and causes them to lose
their initially circular shapes. At τ = −3/2, the angles between the radial struts and the
curved viscidas become zero, leading to self-intersection for τ < −3/2.
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Figure 12. Solution of the problem (4.30), (4.33), (4.37)–(4.39) for six connected viscidas with
initial profiles given by (4.41), plotted in Eulerian coordinates for (a) τ ∈ {0, 0.90, 2.15, 3.40, 5}
and (b) τ ∈ {−1.5,−1.12,−0.75,−0.37, 0}.

5. Effects of varying thickness

5.1. Viscida evolution

Thus far in this paper, we have studied systems of thin viscidas that are joined
together in a variety of configurations, to capture the complex network structure of
the cross-section of a microstructured optical fibre. However, so far we have assumed
throughout that every viscida in our network structure has equal and uniform thickness.
In this section we return to the full equation of motion (2.9) to study the dynamics of a
viscida with non-uniform initial thickness profile h0(ξ). In many of the real-life examples
shown in figure 3, the connecting struts do not have uniform thickness. In particular, the
honeycomb structure of figure 3(d) has struts that thicken as they approach junctions.

To explore the possible effects of thickness variations on the dynamics, we first consider
the example of a single viscida with free ends at which no force or moment is applied.
In this case, the evolution is governed by (2.9) with the tensions A = B = 0 and zero-
moment boundary conditions at the ends:

∂

∂τ

[
h0(ξ) + τ/2

h0(ξ)

∂θ

∂ξ

]
= 0 at ξ = 0, 1. (5.1)

We can therefore integrate (2.9) directly with respect to ξ and τ , subject to a specified
initial centreline profile θ(ξ, 0) = θ0(ξ) to give

θ(ξ, τ) = D(τ) +

∫ ξ

0

h0
(
ξ̂
)

h0
(
ξ̂
)

+ τ/2
θ′0
(
ξ̂
)

dξ̂, (5.2)

where D(τ) is an integration function. Two further integrations are required to evaluate
the centreline profile, which is given by

x(ξ, τ) = x(0, τ) +

∫ ξ

0

h0
(
ξ̂
)

cos θ
(
ξ̂, τ
)

h0
(
ξ̂
)

+ τ/2
dξ̂, (5.3a)

y(ξ, τ) = y(0, τ) +

∫ ξ

0

h0
(
ξ̂
)

sin θ
(
ξ̂, τ
)

h0
(
ξ̂
)

+ τ/2
dξ̂. (5.3b)

We eliminate the remaining arbitrary functions D(τ), x(0, τ) and y(0, τ), which cor-
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Figure 13. Sketch of the initial condition (a) for the centreline given by (5.5) and (b) for the
thickness profile (5.6).

respond to rigid-body translations and rotations, by fixing the positions of the ends
according to

x(0, τ) +

∫ 1

0

(1− ξ)h0(ξ) cos θ(ξ, τ)

h0(ξ) + τ/2
dξ = y(0, τ) = y(1, τ) = 0. (5.4)

This choice results in the viscida having both ends lying on the x-axis and the centroid
at x = 0.

We calculate the solutions given by (5.2) and (5.3) for a free viscida with specific initial
centreline and thickness configurations, given respectively by

θ0(ξ) =



π

4
, 0 6 ξ 6 ξ1 − δ,

π

4

(
ξ1 − ξ
δ

)
, ξ1 − δ < ξ < ξ1 + δ,

−π
4
, ξ1 + δ 6 ξ 6 1,

(5.5)

and

h0(ξ) =


1− β, 0 6 ξ 6 ξ2 − ν,

1 + β

(
ξ − ξ2
ν

)
, ξ2 − ν < ξ < ξ2 + ν,

1 + β, ξ2 + ν 6 ξ 6 1.

(5.6)

This formulation corresponds to an initial viscida whose angle transitions linearly from
π/4 to −π/4 over a region of width 2δ centred at ξ = ξ1 and whose thickness varies
linearly from 1 − β to 1 + β over a region of width 2ν centred at ξ = ξ2. The functions
defined by (5.5) and(5.6) are sketched in figure 13. We will take small values of δ and ν
so that the transitions in both angle and thickness are localized.

In figure 14 we plot solutions for the evolution of a free viscida, as given by (5.2)–(5.4),
for an initial angle and thickness profile given by (5.5) and (5.6). We choose ξ1 = ξ2 = 1/2
so that the transitions in angle and thickness both occur close to the central point of the
viscida.

In figure 14(a), we set ν = 0, so that the thickness increases abruptly across ξ = 1/2,
and then gradually decrease the angle smoothing parameter δ. As the viscida evolves, we
observe that the effect of smoothing the angle remains localized near ξ = 1/2, and the
solution appears to approach a well-defined limiting profile containing a corner as δ → 0.
These observations echo the behaviour found for a uniformly thick viscida by Griffiths
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Figure 14. Evolution of the centreline for a free viscida whose initial angle and thickness
profiles are given by (5.5) and (5.6), with β = 0.3 and ξ1 = ξ2 = 1/2. (a) We fix ν = 0 and
vary δ ∈ {0.01, 0.08, 0.15} (dotted, dot-dashed and solid lines). (b) We fix δ = 0 and vary
ν ∈ {0.1, 0.3, 0.5}.

& Howell (2007). The thickness variations lead to a loss of symmetry in the centreline
profile as τ increases, caused by the more rapid retraction of the thinner region under
the action of surface tension.

In figure 14(b), we perform the complementary experiment of setting δ = 0, so the
profile contains a sharp corner at ξ = 1/2, while varying the value of ν. We find that
the corner is again pulled towards the left-hand end by capillary retraction, but that the
way in which the transition in thickness is smoothed has very little effect on the global
viscida behaviour.

Next we explore the influence on the dynamics of the relative positioning of the
transition in angle relative to the transition in thickness. We find that the effect is most
prominent when the viscida ends are fixed in place, rather than being free. We therefore
solve the full evolution equation (2.9) subject to the boundary conditions

θ(0, τ) = θ(0, 0), θ(1, τ) = θ(1, 0), (5.7a,b)

x(0, τ) = 0, x(1, τ) = x(1, 0), (5.7c,d)

y(0, τ) = 0, y(1, τ) = 0, (5.7e,f )

corresponding to clamping the end points of the viscida at fixed angles at fixed locations
on the x-axis. For the details of the calculations to determine the resulting viscida
evolution, see Appendix C.

Figure 15 shows the evolution in both forward and inverse time of an initial profile with
a smoothed corner at the central point ξ = 1/2 and a sharp transition in thickness at a
different location ξ = 0.4. As above we observe that the thinner section of the viscida
retracts more rapidly as τ increases, and it is also more susceptible to deformation.
Since the effective bending stiffness is proportional to h3, the thicker portion of the
viscida approximately preserves its shape, while the thinner portion undergoes significant
bending. The effect is particularly marked in a neighbourhood of the thickness transition
point, where the thinner section is effectively clamped by the thicker section. For inverse
time, the thin part of the viscida rapidly becomes even thinner and longer while, again,
being restrained by the thick part, which remains relatively unchanged. Consequently, the
thin region adopts a profile akin to a buckled state (Buckmaster et al. 1975; Buckmaster
& Nachman 1978). In the manufacture of microstructured optical fibres, however, the
original preform is usually constructed by sintering identical glass tubes, so it is unlikely
that one would observe large variations in thickness.
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Figure 15. Evolution in Eulerian coordinates of a profile with rapid local angle and thickness
variations at different locations along the viscida. The initial angle and thickness are given by
(5.5) and (5.6) with parameter values δ = 0.02, ν = 0.01, β = 0.6, ξ1 = 1/2 and ξ2 = 0.4.
The dot-dashed line indicates the centreline and the shaded region depicts the viscida thickness.
(a) The forward time evolution with τ = 0, 0.5. (b) The inverse time evolution with τ = −0.5, 0.
The circled region in (a) highlights the deflection generated with time at the thickness transition
point.

5.2. A junction of two viscidas of different thicknesses

Figure 14 shows the evolution of several viscida profiles in which sharp changes in angle
and thickness both occur at the same location. Here we consider in detail the limit as
the smoothing parameters δ and ν both tend to zero, so that the limiting configuration
describes a junction between two viscidas of differing thicknesses. As in §3.1, we scale
into the region over which the angle and thickness both vary rapidly via ξ = ξ+0 δη, and
define Θ(η, τ) := θ(δη, τ) and H0(η) := h0(δη). We substitute these scalings into (2.9)
and retain only leading-order terms in δ to obtain

∂

∂η

[
(H0(η) + τ/2)3

∂

∂τ

(
H0(η) + τ/2

H0(η)

∂Θ

∂η

)]
= 0, (5.8)

which is subject to the initial condition Θ(η, 0) = Θ0(η) and the matching conditions
Θ(η, τ) → θ(ξ±0 , τ) as η → ±∞. By integrating (5.8), we obtain the following evolution
law for the internal angle ϕ(τ) = π + θ(ξ−0 , τ)− θ(ξ+0 , τ):

π − ϕ(τ) =

∫ ∞
−∞

H0(η)Θ′0(η)

H0(η) + τ/2
dη (5.9a)

=
H+Θ+

H+ + τ/2
− H−Θ−
H− + τ/2

− τ

2

∫ ∞
−∞

H ′0(η)Θ0(η)

(H0(η) + τ/2)2
dη, (5.9b)

where H± = h0(ξ±0 ) = H0(±∞) and Θ± = θ0(ξ±0 ) = Θ0(±∞) describe the initial
jumps in thickness and angle at the junction. We note that (5.9) recovers the corner
angle-evolution result (3.4) in the uniformly thick case H0(η) = 1. In a similar manner,
we observe that the corner straightens in forward time, with ϕ → π as τ → ∞, and
becomes sharper for decreasing τ , with ϕ reaching zero for some finite negative value
of τ , corresponding to self-intersection of the viscida.

In the case of a uniformly thick viscida, the corner evolution given by (3.4) depends
only on the initial angle ϕ(0) and not on the precise way in which the initial angle profile
Θ0(η) varies from Θ− to Θ+. In contrast, equation (5.9) shows that, for a non-uniformly
thick profile, the evolution of ϕ depends on the specific local behaviour of both the
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thickness profile H0(η) and the angle variation Θ0(η). We illustrate this dependence by
examining the two limiting cases where either the thickness variation occurs much more
rapidly than the angle variation or vice versa.

The first limit corresponds to a viscida with a relatively slow change in angle around
a smoothed corner, in the midst of which there is an abrupt jump in thickness, which we
may take to occur at η = 0 without loss of generality. In this case, the inner thickness
profile H0(η) collapses to a Heaviside function, and the angle evolution equation (5.9)
thus reduces to

π − ϕ(τ) =
H+

H+ + τ/2

(
Θ+ −Θ0(0)

)
+

H−
H− + τ/2

(
Θ0(0)−Θ−

)
. (5.10)

We can interpret (5.10) as the sum of two evolution laws of the form (3.4) for the portions
of the inner region in η > 0 and η < 0, with effective initial thicknesses H+ and H−,
respectively.

In the reverse limit, the thickness varies relatively smoothly while the angle suddenly
switches at a sharp corner at η = 0, so that Θ0(η) may be replaced by a Heaviside
function and (5.9) reduces to

π − ϕ(τ) =
H0(0)

H0(0) + τ/2

(
π − ϕ(0)

)
. (5.11)

Thus the uniform-thickness evolution law (3.4) is recovered in this case, with initial
thickness effectively constant in the inner region, and equal to its value H0(0) at the
corner.

Let us discuss the above results in the context of our piecewise linear example, with
the initial angle and thickness given by (5.5) and (5.6), respectively. If ξ1 = ξ2, then the
rapid variations in θ0(ξ) and h0(ξ) are centred at the same point, as in the solutions
plotted in figure 14, and the configuration approaches a junction between two viscidas
of differing thicknesses as δ and ν both tend to zero. We have shown that the limiting
behaviour depends on the order in which the limits δ → 0 and ν → 0 are taken: the
interior angle satisfies equation (5.10) if ν � δ � 1 or equation (5.11) if δ � ν � 1. In
the distinguished limit where ν ∼ δ � 1, then the integrals in (5.9) must be computed,
and the behaviour depends on the entire inner profiles of Θ0(η) and H0(η).

As shown in §3.1, a corner in a viscida with spatially uniform thickness may be analysed
by regularizing the corner over a small length-scale δ and then letting δ → 0. The
resulting limiting configuration also describes a junction between two viscidas of uniform
and equal thickness, and the same approach also works when the thickness is nonuniform,
provided it varies smoothly across the join. Of course, if δ becomes too small, then the
asymptotic approximations used to derive the governing equations (2.1)–(2.3) cease to
be valid. In principle one should then solve a two-dimensional inner Stokes-flow problem
for the behaviour near the corner and match to the viscida model away from the corner.
However, as argued by Griffiths & Howell (2007), the outer solution approaches a unique
well-defined limit as δ → 0, which does not depend on the behaviour in the inner region.

In this section we have found that the same regularization approach does not work
for a junction where both the thickness and the angle vary rapidly. The introduction of
a smoothing parameter δ does not result in a unique solution being selected as δ → 0,
and the evolution of the corner depends on the precise local behaviour of both h and θ.
A generalized moment-balance argument analogous to that in §3.2 does not work either,
since there is no well-defined interpretation of the product of distributions involved in
the calculation of M if both h and θ are discontinuous. We conclude that the global
behaviour of a junction between viscidas of different thicknesses ultimately depends on
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the solution in an inner region that is not described by the thin-viscida approximation,
and there is no universal corner evolution law for such a configuration. To resolve the
indeterminacy one would need to consider an inner Stokes-flow problem whose solution
depends on precisely how the two viscidas are joined together.

6. Conclusions

In this paper we propose a new framework to describe the evolution of a network of
thin viscidas, motivated by the drawing of microstructured optical fibres with closely
spaced holes. We consider a parameter regime in which the dynamics is driven entirely
by a balance between surface tension and viscosity. Similar network models used in foam
dynamics (see for example Stewart et al. 2015) operate in the regime where surface tension
dominates, with the viscidas known as lamellae and the junctions as Plateau borders. In
the case of foam dynamics, a difference in pressure across lamellae is also a key feature,
which corresponds to the difference between the pressures in neighbouring bubbles. The
modification of our model to include pressure in the governing equation (3.1), as described
in Griffiths & Howell (2007), would make the set-up studied here more relevant to a foam.

Our approach allows a model to be built to describe a network of connected viscidas of
arbitrary complexity. The numbers of partial differential equations of the form (4.30) and
algebraic balance laws (4.31) to be solved grows linearly with the number of viscidas in the
network, but the method of lines in principle leads to a manageable system of differential-
algebraic equations, especially when any symmetries in the geometry are exploited. In
comparison, numerical solution of the full two-dimensional Stokes-flow problem becomes
increasingly onerous as the geometry of the viscous liquid inclusions between the air holes
becomes increasingly thin and distorted.

Furthermore, the Stokes-flow free-boundary problem is ill posed when run backwards
in time, but the viscida formulation remains well posed, because it filters out short-
wavelength disturbances that grow arbitrarily quickly when time is run backwards. Thus
our model provides an easy route to solve the inverse problem of determining the initial
conditions that would evolve to a desired final state, as we demonstrate in several simple
examples. The well-posedness of the model for inverse time means that our theory can in
principle provide the initial preform profile required to construct microstructured tubing
with a desired final cross-section. The inclusion of internal pressurization in the model
would add an extra level of control to the problem to open up the range of possible final
cross-sectional profiles that can be constructed.

For viscidas of uniform thickness, time may be run backwards in our model up to
the critical time τ = −2, at which the thickness tends to zero and the viscida length
tends to infinity. The solutions shown for example in figures 8 and 12 indicate that the
viscida may self-intersect before this critical inverse time is reached. Indeed, the angle
evolution equation (3.16) implies that the interior angle ϕi(τ) at a junction tends to zero
as τ tends to −nϕ(0)/π, which is greater than −2 whenever the initial angle is less than
2π/n. Thus, at any junction where the angles are not all equal initially, at least one of
the angles will tend to zero, causing self-intersection, at a critical inverse time τ > −2.
We also expect any smooth viscida to ultimately self-intersect at some critical τ > −2
(as in figure 8(b)) unless it is a circular arc, in which case it may remain circular for all
time. In summary, we hypothesize that self-intersection will always occur for τ > −2 for
any initial conditions that do not consist of circular arcs meeting at junctions where all
angles are equal.

Our model is built on the theory for a single surface-tension-driven viscida derived
by Griffiths & Howell (2007) and Griffiths & Howell (2008). We extend those previous
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Figure 16. Schematic showing three possible ways to connect two viscidas of different
thicknesses.

results not only to allow for junctions between multiple viscidas but also to include the
effects of non-uniform thickness. Thickness variations have a perhaps surprisingly large
influence on the dynamics, both because the thinner regions retract more rapidly and
because the bending stiffness increases strongly with thickness. It should be possible to
use these properties advantageously to assist in the fabrication of a greater variety of
cross-sectional geometries in multiply connected glass fibres and tubes.

One significant deficiency in our model is the lack of a unique evolution law for a
junction between viscidas of different thicknesses. In such cases, one could introduce some
local smoothing and then compute the relevant integrals of the form (5.9), accepting that
the local behaviour then depends on the specific choice of smoothing. Alternatively, one
could obtain the required evolution law by solving an inner Stokes-flow problem, although
this would still depend on defining the precise way in which the viscidas are joined. Even
for the simplest case of just two viscidas, one can easily imagine a variety of ways to
connect them, as illustrated in figure 16, and our analysis suggests that each would
result in a different local model for the dynamics at the corner. Still, we hypothesize
that any junction between n viscidas will ultimately approach a state where the interior
angles are all equal to 2π/n, regardless of the initial conditions. In principle, one can thus
calculate at least the large-τ behaviour of the entire network, which would correspond
to the behaviour of a fibre cross-section far downstream of the inlet point.

The theory presented here provides an approach to the previously open problem of
how to model the evolution of complex microstructured optical fibres with closely spaced
holes. While our simple example solutions appear to be consistent with experimental
results such as those shown in figure 3, it would be worthwhile to perform a systematic
comparison between our model and experiments, as well as to study the region of overlap
between the present theory and the corresponding theories for well-spaced holes (for
example Buchak et al. 2015).

Appendix A. Solution strategy for a three-viscida network

Upon integration of (4.24) twice with respect to ξi, we obtain

∂

∂τ

[(
1 +

τ

2

)
θi

]
= Ai(τ)

∫ ξi

0

Yi
(
ξ̂, τ
)

dξ̂+Bi(τ)

∫ ξi

0

Xi

(
ξ̂, τ
)

dξ̂+Ci(τ)ξi+Di(τ), (A 1)

where

Xi(ξ, τ) = X0(τ) +

∫ ξi

0

cos θi
(
ξ̂, τ
)

dξ̂, Yi(ξ, τ) = Y0(τ) +

∫ ξi

0

sin θi
(
ξ̂, τ
)

dξ̂. (A 2a,b)

We will fix the arbitrary rigid-body translation
(
X0(τ), Y0(τ)

)
later through a convenient

choice to simplify the algebra. By applying the moment condition (4.26), the four angle
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conditions (4.27) and the force balances (4.28), we obtain the relations

C1 + C2 + C3 = 0, (A 3a)

D1 −D3 = D3 −D2 =
π

3
, (A 3b)

`3
[
A3Y3 +B3X3 + C3

]
− `1

[
A1Y1 +B1X1 + C1

]
=

2π

3
, (A 3c)

`2
[
A2Y2 +B2X2 + C2

]
− `3

[
A3Y3 +B3X3 + C3

]
=

2π

3
, (A 3d)

where the bar denotes the generalization of the averaged quantity (4.13) for a viscida
whose length is not unity, i.e.,

φ(τ) =
1

`i

∫ `i

0

φ(ξ, τ) dξ. (A 4)

Without loss of generality, we fix the arbitrary rotation by taking

D1(τ) =
π

3
, D2(τ) = −π

3
, D3(τ) = 0. (A 5a–c)

It is convenient to assume that the translation
(
X0(τ), Y0(τ)

)
is chosen such that

A1Y1 +A2Y2 +A3Y3 = B1X1 +B2X2 +B3X3 = 0. (A 6)

Then, equations (A 3) allow us to solve for the unknowns Ci(τ) in the forms

C1 = − 2π(`2 + 2`3)

3(`1`2 + `2`3 + `3`1)
−
(
A1Y1 +B1X1

)
, (A 7a)

C2 =
2π(`1 + 2`3)

3(`1`2 + `2`3 + `3`1)
−
(
A2Y2 +B2X2

)
, (A 7b)

and C3 = −C1 − C2.
Finally, to determine Ai and Bi, we multiply (A 1) by cos θi and sin θi, integrate from

ξi = 0 to ξi = `i and then subtract relevant pairs of the resulting integrated equations.
Using the force balances (4.28) to eliminate A3 and B3, we thus obtain a linear system
whose solution at every time τ yields A1, A2, B1 and B2, as follows:

Q1 +Q3 Q3 P1 + P3 P3

Q3 Q2 +Q3 P3 P2 + P3

R1 +R3 R3 Q1 +Q3 Q3

R3 R2 +R3 Q3 Q2 +Q3



A1

A2

B1

B2

 =
1

2


p3 − p1
p3 − p2
q3 − q1
q3 − q2



+
π

3(`1`2 + `2`3 + `3`1)


−(`2 + 2`3)f1 + (`1 − `2)f3
(`1 + 2`3)f2 + (`1 − `2)f3
−(`2 + 2`3)g1 + (`1 − `2)g3
(`1 + 2`3)g2 + (`1 − `2)g3

 , (A 8)

where we have introduced the shorthand

Pi = `i

(
X2
i −Xi

2
)
, Qi = `i

(
XiYi −Xi Yi

)
, Ri = `i

(
Y 2
i − Yi

2
)
, (A 9a–c)

pi = `iθi cos θi, qi = `iθi sin θi, (A 10a,b)

fi = `i(2ξ − `i) cos θi, gi = `i(2ξ − `i) sin θi. (A 10c,d)

We now solve by using the method of lines, i.e. by discretizing in ξi to turn the evolution
equations (A 1) into a system of ODEs in τ , with Ai and Bi determined at each instant
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by (A 8). The resulting system is then integrated using a numerical initial-value problem
solver.

Appendix B. Solution strategy for a general viscida network

Integration of (4.30) with respect to ξ and application of the boundary condition (4.33)
leads to

∂

∂τ

[(
1 +

τ

2

) ∂θij
∂ξ

]
= Mij(τ) +Aij(τ)

[
Yij(ξ, τ)− Yi(τ)

]
+Bij(τ)

[
Xij(ξ, τ)−Xi(τ)

]
,

(B 1)
where (

Xij(ξ, τ)
Yij(ξ, τ)

)
=

(
Xi(τ)
Yi(τ)

)
+

∫ ξ

0

(
cos θij

(
ξ̂, τ
)

sin θij
(
ξ̂, τ
)) dξ̂, (B 2)

with ξ ∈ (0, `ij), is the Lagrangian parametrization of viscida (ij) at time τ . By
integrating once more and using the angle condition (4.37) at ξ = 0, we obtain

∂

∂τ

[(
1 +

τ

2

) [
θij(ξ, τ)−Θi(τ)

]]
−
(
v−1i (j)− 1

)
π

ni
= Mij(τ)ξ

+Aij(τ)

∫ ξ

0

(
ξ − ξ̂

)
sin θij

(
ξ̂, τ
)

dξ̂ +Bij(τ)

∫ ξ

0

(
ξ − ξ̂

)
cos θij

(
ξ̂, τ
)

dξ̂. (B 3)

Now applying the angle condition (4.37) at the other end ξ = `ij , we find the following
relation:

d

dτ

[(
1 +

τ

2

) [
Θj(τ)± π −Θi(τ)

]]
+

(
v−1j (i)− 1

)
π

nj
−
(
v−1i (j)− 1

)
π

ni

= `ij

[
Mij(τ) +Aij(τ)(Yij − Yi)(τ) +Bij(τ)(Xij −Xi)(τ)

]
(B 4a)

= −`ji
[
Mji(τ) +Aji(τ)(Yji − Yj)(τ) +Bji(τ)(Xji −Xj)(τ)

]
, (B 4b)

where the bar again denotes the average of a quantity over viscida (i, j), defined as in
(A 4), and the latter identity in (B 4) follows from the symmetry condition (4.34).

Equation (B 4) relates the relative rate of rotation of junctions i and j to the tensions
and moments in the viscida that connects them. It is worth noting that the second and
third terms on the left-hand side of (B 4), and the sign of the ±π inside the first term,
are all fixed in advance once the initial topology of the network has been established.

Next we multiply (B 3) by
(
sin θij , cos θij

)
and integrate between ξ = 0 and ξ = `ij to

get(
1 +

τ

2

) d

dτ

[
Xj(τ)−Xi(τ)

]
+

[
d

dτ

[(
1 +

τ

2

)
Θi(τ)

]
+

(
v−1i (j)− 1

)
π

ni

] [
Yj(τ)− Yi(τ)

]
− 1

2
`ijθij sin θij(τ) = `ijMij(τ)(Yij − Yj)(τ)

+ `ijAij(τ)(Yij − Yi)(Yij − Yj)(τ) + `ijBij(τ)(Xij −Xi)(Yij − Yj)(τ), (B 5)
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and(
1 +

τ

2

) d

dτ

[
Yj(τ)− Yi(τ)

]
−

[
d

dτ

[(
1 +

τ

2

)
Θi(τ)

]
+

(
v−1i (j)− 1

)
π

ni

] [
Xj(τ)−Xi(τ)

]
+

1

2
`ijθij cos θij(τ) = −`ijMij(τ)(Xij −Xj)(τ)

− `ijAij(τ)(Xij −Xj)(Yij − Yi)(τ)− `ijBij(τ)(Xij −Xi)(Xij −Xj)(τ). (B 6)

It can be verified that the corresponding versions of equations (B 5) and (B 6) with
the indices (i, j) swapped are satisfied identically by virtue of equation (B 4) and the
symmetry relations (4.31) and (4.34).

Let us suppose, as suggested in §4.3, that we have eliminated the arbitrary rigid-
body motion by fixing the position and rotation angle at vertex 1. For each of the N
viscidas, indexed by (i, j), equations (B 4), (B 5) and (B 6) provide a 3× 3 linear system
that instantaneously determines the tensions Aij , Bij and moment Mij . If we solve
all of the N such linear systems and substitute the results into the force and moment
balances (4.39), then we end up with 3J−3 independent linear equations for the velocities
d/dτ

(
Xi(τ), Yi(τ)

)
and rotation rates d/dτ

(
(1 + τ/2)Θi(τ)

)
of all of the J −1 remaining

junctions, with i = 2, 3, · · · , J .

Thus the velocity and rotation rate of every junction is instantaneously determined,
in terms of the shape of each viscida (through the averaged quantities Xij , θij sin θij ,
etc.) and the position of each junction. If we now discretize each θij(ξ, τ) in ξ, using say
m grid points, then the whole problem is reduced to a system of 3J − 3 +Nm ordinary
differential equations in τ , which can be tackled using a standard solver.

Appendix C. The evolution of a clamped viscida

By integrating (2.9) twice with respect to ξ and applying the clamped boundary
condition (5.7a) at ξ = 0, we obtain

∂θ

∂τ
= −1

2

(
θ(ξ, τ)

h0(ξ) + τ/2
− θ(0, 0)

h0(0) + τ/2

)
− 1

2

∫ ξ

0

h′0
(
ξ̂
)
θ
(
ξ̂, τ
)(

h0
(
ξ̂
)

+ τ/2
)2 dξ̂

+ 3A(τ)

∫ ξ

0

h0
(
ξ̂
)
y
(
ξ̂, τ
)(

h0
(
ξ̂
)

+ τ/2
)4 dξ̂ − 3B(τ)

∫ ξ

0

h0
(
ξ̂
)
x
(
ξ̂, τ
)(

h0
(
ξ̂
)

+ τ/2
)4 dξ̂

+ C(τ)

∫ ξ

0

h0
(
ξ̂
)(

h0
(
ξ̂
)

+ τ/2
)4 dξ̂, (C 1)

where C(τ) is a function of integration to be determined. Imposing the clamped-angle
condition (5.7b) at ξ = 1, we obtain

3ỹ(τ)A(τ)− 3x̃(τ)B(τ) + 1̃(τ)C(τ)

=
θ(1, 0)

2h0(1) + τ
− θ(0, 0)

2h0(0) + τ
+

1

2

∫ 1

0

h′0(ξ)θ(ξ, τ)(
h0(ξ) + τ/2

)2 dξ, (C 2)
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where, for any φ(ξ, τ), we define the weighted average

φ̃(τ) =

∫ 1

0

h0(ξ)(
h0(ξ) + τ/2

)4 φ(ξ, τ) dξ. (C 3)

Similarly, by multiplying (C 1) by
(
cos θ, sin θ

)
, integrating over the viscida length, from

ξ = 0 to ξ = 1, and applying the boundary conditions (5.7), we obtain

3ỹ2(τ)A(τ)− 3x̃y(τ)B(τ) + ỹ(τ)C(τ)

=
1

2

∫ 1

0

h0(ξ) cos θ(ξ, τ)− h0(ξ)θ(ξ, τ) sin θ(ξ, τ) + h′0(ξ)y(ξ, τ)θ(ξ, τ)(
h0(ξ) + τ/2

)2 dξ, (C 4)

and

3
[
x̃y(τ)− x(1, 0)ỹ(τ)

]
A(τ)− 3

[
x̃2(τ)− x(1, 0)x̃(τ)

]
B(τ)

+
[
x̃(τ)− x(1, 0)1̃(τ)

]
C(τ) =

θ(0, 0)x(1, 0)

2h0(0) + τ

+
1

2

∫ 1

0

h0(ξ) sin θ(ξ, τ)− h0(ξ)θ(ξ, τ) cos θ(ξ, τ) + h′0(ξ)
[
x(ξ, τ)− x(1, 0)

]
θ(ξ, τ)(

h0(ξ) + τ/2
)2 dξ.

(C 5)

The solution of the linear system (C 2), (C 4), (C 5) determines the three unknown
functions A(τ), B(τ) and C(τ) at each time τ . The evolution equation (C 1) is then
solved by discretizing in ξ and using the method of lines.
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