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Abstract

Hypothesis

Colloidal particles in a nematic liquid crystal (NLC) exhibit very different behaviour

than that observed in an isotropic medium. Such differences arise principally due to the

nematic-induced elastic stresses exerted as due to the interaction of NLC molecules with

interfaces, which competes with traditional fluid viscous stresses on the particle.

Theory

A systematic mathematical analysis of the behaviour of particles placed in the flow within

an NLC microfluidic channel is performed using the continuum Beris–Edwards framework

coupled to the Navier–Stokes equations. We impose strong homeotropic anchoring on the

channel walls and weak homeotropic anchoring on the particle surfaces.

Findings

The viscous and NLC forces act on an individual particle in opposing directions, resulting

in a critical location in the channel where the particle experiences zero net force in the

direction perpendicular to the flow. For multi-particle aggregation we show that the final

arrangement is independent of the initial configuration, but the path towards achieving

equilibrium is very different. The results of our work uncover new mechanisms for particle

separation and routes towards self-assembly.

Keywords: nematic fluid, microchannel, Beris–Edwards, particle dynamics

1. Introduction1

Nematic liquid crystals (NLCs) are important examples of complex anisotropic fluids2

with locally preferred directions [1]. NLCs combine the intrinsic fluidity of liquids with3
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long-range orientational ordering of the constituent rod-like molecules. The orientational4

order couples with the flow and induces novel effects compared with isotropic Newtonian5

fluids, such as backflow, anisotropic stresses and multiple viscosities. The study of NLCs6

in microfluidic environments is relatively new, with substantial experimental interest since7

around 2011. Subsequently, experimentalists have highlighted the immense potential of8

NLC microfluidics for transport, mixing and particle separation [2, 3], while the ability of9

NLCs to spontaneously organize micron-size particles into regular patterns shows great10

promise [4]. For example, it is possible to generate defect or disclination lines in an11

NLC microfluidic set-up with an appropriate choice of boundary conditions, material12

parameters, temperature and flow effects and these defect lines can naturally attract13

colloidal particles or micro-cargo, which are subsequently transported along these lines14

as self-assembled chains [3, 5]. Further, the forces facilitating spatial-reorganization of15

colloidal dispersions in an NLC medium are two to three orders of magnitude higher than16

in water-based colloids [6, 7].17

In the bulk NLC, additional long-range interactions between particles are present be-18

cause of the competition between elasticity and the interaction between NLC molecules19

and surfaces (termed ‘anchoring’), implying that colloids suspended in a nematic ma-20

trix are qualitatively different from their isotropic analogues. The particle sets a certain21

director distortion around itself, due to the surface anchoring conditions; the director22

distortions lead to long-range elastic interactions of the particle with the bounding walls23

(or neighbouring interfaces); and the nematic order leads to an anisotropy in the Stokes24

drag [8, 9]. These features mean that rich self-ordering phenomena can be observed,25

which is characterized by strong interplay between the colloidal size, NLC anisotropies,26

particle and surface anchoring properties [3, 10, 11, 12].27

There is a wealth of literature on nematohydrodynamics in the absence of particle inclu-28

sions [13, 14]. The analysis of the impact of placing a particle in an NLC has generally29

been focused on how the NLC reorders around a single particle that is held in posi-30

tion [15] or the transitions in the flow profiles [16, 17]. More recent experimental studies31

have focused on the dynamic behaviour of (finite sized) suspended colloidal particles in32

a nematic-fluid flow [1, 3, 7, 18].33

Our work is motivated by the experiments conducted by Sengupta et al. in [2]. Here34

the authors study an NLC microfluidic set-up experimentally and numerically in three35
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different flow regimes: weak, medium and strong, and report on both the flow profiles36

and the averaged local molecular alignment profiles, referred to as “director” profiles in37

the continuum-modelling literature. The surfaces of the microfluidic channel are treated38

to induce homeotropic boundary conditions, so that the nematic molecules are preferen-39

tially anchored along the normal to the boundary surfaces, or equivalently the continuum40

“director” is parallel to the normal to the channel walls. A flow is induced by applying a41

pressure gradient at the inlet and the observations seem to be invariant across the width42

of the cell.43

In this paper we focus on three separate aspects: (i) a static particle at the centre with44

variable anchoring strength on its boundary, (ii) the forces experienced by a particle45

inclusion due to hydrodynamic effects, nematic stresses and attractive forces induced by46

the boundary conditions and (iii) the dynamics of two and three particles in an NLC47

microfluidic environment including the transient dynamics.48

We mathematically model the NLC microfluidic environment using the nematodynamics49

formulation used in [19]. The state of nematic alignment is described by a two-dimensional50

(2D) Landau-de Gennes (LdG) Q-tensor, which is a symmetric traceless two-by-two ma-51

trix with two degrees of freedom: an angle θ that describes the preferred in-plane align-52

ment of the nematic molecules or the direction of the nematic director n, and a scalar53

order parameter, s, that is a measure of the degree of alignment about the director n.54

We investigate how the particles interact with the NLC environment in the absence and55

presence of flow, for both static and moving particles. The first example concerns a static56

particle in the NLC microfluidic cell with no fluid flow. For a given anchoring strength57

on the particle boundary, we study the director profile around the particle as a function58

of its size and, for a given particle size, we investigate the surrounding director profile as59

a function of anchoring strength. In both cases, there is a narrow window of parameters60

within which the director orientation on the particle boundary switches from uniform to61

normal/homeotropic and we numerically explore the switch in different cases. We then62

systematically study the force experienced by the particle including the effects of a flow63

field, particle surface anchoring, and the particle size. In particular, for a given anchor-64

ing strength and flow velocity, there is a critical particle size (relative to the channel65

dimensions) such that, in contrast to conventional liquids, the force attains a maximum,66

decreasing for larger particles owing to the attractive forces exerted by the boundaries.67
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We conclude by studying the motion of two and three colloidal particles in the microfluidic68

channel, including the transient re-alignment dynamics, how the particles get attracted69

to each other starting from different initial configurations and are transported through70

the channel as an agglomerate.71

2. Theory72

We consider a two-dimensional NLC microfluidic channel (parallel-plate geometry) as73

shown in Fig. 1. The nematic director n = (cos θ, sin θ), represents the locally preferred74

in-plane alignment of the NLC molecules relative to the horizontal axis. We consider a75

circular particle, whose boundary is parameterized by the angle φ to the horizontal axis.76

We apply strong homeotropic anchoring conditions on the channel walls (modelled by77

Dirichlet conditions) while the anchoring conditions on the colloidal particle are varied78

from weak to strong in terms of an anchoring coefficient. Provided the channel dimension79

into the page (z direction) is large compared with the channel height (in the y direction,80

i.e., 2L2 in Fig. 1) then this two dimensional approximation is valid [20, 21]. We note81

that the three-dimensional analogue of this two-dimensional set-up would in principle82

correspond to cylindrical particles. However, similar methods can be applied to stud-83

ied to spherical colloidal particles in an NLC microfluidic channel, though this requires84

further study. When these dimensions are comparable then the problem is fully three85

dimensional, as seen in [22, 23]. Whilst we do not consider this scenario in this paper, we86

analyse this further in Appendix A of the Supplementary Information. The fluid flow in87

the device is driven by an external pressure difference and by the nematic ordering. We88

impose no-slip conditions on the channel walls and particle surface.89

The flow hydrodynamics are described by the incompressible Navier–Stokes equations

with an additional stress (σ) due to the NLC orientational ordering [19, 24],

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (µ[∇u+ (∇u)′] + σ). (2)

Here∇ =
(
∂
∂x
, ∂
∂y

)
, ρ and µ are the density and viscosity of the fluid medium respectively,

p is the hydrodynamic pressure, u is the fluid velocity and µ[∇u+ (∇u)′] is the viscous

stress experienced by the fluid ([∇u]′ is the transpose of ∇u). The NLC stress (σ) is
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Figure 1: Schematic of the problem definition and system geometry showing the reference co-ordinate

system. The fluid flow is in the direction of positive x.

given by [19, 13, 25, 26, 2],

σ = −λsh+ qh− hq, (3)

where s =
√

2|q| is the scalar order parameter and h is the molecular field, which controls

the relaxation to equilibrium and is given by

h = κ∇2q − Aq − C|q|2q. (4)

Here, q is the nematic order parameter, a symmetric and traceless 2× 2 matrix, used to

describe the NLC state and is referred to as the two-dimensional LdG tensor [27],

q =

q11 q12

q12 −q11

 ; (5)

κ is the NLC elastic constant, A and C are material and temperature-dependent coeffi-90

cients and λ is the (dimensionless) NLC alignment parameter, which reflects whether the91

NLC response is affected by the fluid strain or vorticity and is determined experimen-92

tally [25, 28, 29].93

The tensor q and the director n are related by q = s (n⊗ n− I/2) where I is the

identity matrix in 2D and s2 = 2|q|2. We recover the director angle from the relation

θ = 1
2

tan−1(q12/q11). In [19], the evolution equation for q is given by [30, 19, 24]

∂q

∂t
+ u · ∇q =

1

2
λs[∇u+ (∇u)′] + qω − ωq +

1

Γ
h, (6)
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where Γ is the rotational diffusion coefficient [25] and ω = ∇× u is the anti-symmetric

part of the velocity gradient tensor, or vorticity tensor. We label q as a 2D vector with

two independent components, q = (q11, q12) where q11 = s
2

cos 2θ and q12 = s
2

sin 2θ. We

impose strong homeotropic conditions on the channel walls so that

q =

(
2|A|
C

)1/2(
ν± ⊗ ν± −

I

2

)
, (7)

where ν± = (0,±1) are the unit outward normals at the channel walls y = ±L2, where94

L2 is the channel half height as depicted in Fig. 1.95

On the particle, we apply a mixed anchoring condition,

−κ∇q11 · νp = w

(
q11 +

√
A

2C

)
, (8a)

−κ∇q12 · νp = wq12, (8b)

where νp is the unit normal to the particle surface and w is an anchoring-strength pa-96

rameter. When w = 0, (8) reduces to Neumann boundary conditions and w →∞ is the97

Dirichlet strong homeotropic anchoring limit.98

2.1. Non-dimensionalization99

We non-dimensionalize equations (1)–(6) by applying the following scalings:

X =
x

L2

, Y =
y

L2

, U =
u

u0

,

V =
v

u0

, P =
pL2

µu0

, T =
u0t

L2

, (9)

where u0 is the mean channel velocity and µ is the fluid viscosity. The dimensionless

versions of Eqs. (1)–(4) are then

∂U

∂X
+
∂V

∂Y
= 0, (10)

Re

(
∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+
∂2U

∂X2
+
∂2U

∂Y 2

+
1

Er

|A∗|
2C∗

∂

∂X
(−λSH11) +

1

Er

|A∗|
2C∗

∂

∂Y
(−λSH12 − η), (11)

Re

(
∂V

∂T
+ U

∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+
∂2V

∂X2
+
∂2V

∂Y 2

+
1

Er

|A∗|
2C∗

∂

∂X
(−λSH12 + η) +

1

Er

|A∗|
2C∗

∂

∂Y
(λSH11). (12)
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Here H is the dimensionless molecular field given by

H =
∂2Q

∂X2
+
∂2Q

∂Y 2
− A∗

(
1 +

1

4
S2

)
Q, (13)

where

A∗ =
AL2

2

κ
, C∗ =

CL2
2

κ
, H = h

L2
2

κ

√
2C∗

|A∗|
,

Q = q

√
2C∗

|A∗|
, η = 2(Q12H11 −Q11H12), S = s

√
2C∗

|A∗|
; (14)

Er = u0µL2/κ denotes the Ericksen number, the ratio of the viscous to NLC elastic forces

and Re = ρu0L2/µ is the Reynolds number, which quantifies the relative magnitude of the

inertial to viscous forces. In microfluidic flows, Re � 1 (Table 1 gives typical operating

regimes 10−6 < Re < 10−3), which reduces Eqs. (11)–(12) to a Stokes flow (where the

inertial terms on the left-hand side are ignored), so that

∂P

∂X
=
∂2U

∂X2
+
∂2U

∂Y 2
+

1

Er

|A∗|
2C∗

∂

∂X
(−λSH11) +

1

Er

|A∗|
2C∗

∂

∂Y
(−λSH12 − η), (15)

∂P

∂Y
=
∂2V

∂X2
+
∂2V

∂Y 2
+

1

Er

|A∗|
2C∗

∂

∂X
(−λSH12 + η) +

1

Er

|A∗|
2C∗

∂

∂Y
(λSH11). (16)

For the flow problem, we apply the following boundary conditions: no slip and no pene-

tration on the channel walls and particle surface,

U = 0, V = 0, (17)

on Y = ±1 ∀X and X2 + Y 2 = R2, where R = r/L2 is the dimensionless radius of the

colloidal particle and pressure boundary conditions at the channel entrance and exit,

P = 1 on X = −L1/2L2, −1 ≤ Y ≤ 1, (18)

P = 0 on X = L1/2L2, −1 ≤ Y ≤ 1. (19)

The dimensionless versions of the evolution equations (6) are

∂Q11

∂T
+ U

∂Q11

∂X
+ V

∂Q11

∂Y
= λS

∂U

∂X
−Q12

(
∂V

∂X
− ∂U

∂Y

)
+
µ/Γ

Er
H11, (20)

∂Q12

∂T
+ U

∂Q12

∂X
+ V

∂Q12

∂Y
=

1

2
λS

(
∂V

∂X
+
∂U

∂Y

)
−Q11

(
∂V

∂X
− ∂U

∂Y

)
+
µ/Γ

Er
H12. (21)

The strong homeotropic boundary conditions (7) translate to

Q11 = −1, Q12 = 0. (22a,b)
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The anchoring conditions on the particle, (8), become

− ∇̃Q11 · νp = W (Q11 + 1), (23a)

− ∇̃Q12 · νp = WQ12, (23b)

where ∇̃ = (∂/∂X, ∂/∂Y ) is the dimensionless gradient operator, and W = wL2/κ is the100

dimensionless anchoring parameter.101

2.2. Force exerted on the particle102

The total dimensional force (per unit length), f , on a particle of radius r in an NLC

medium [31, 32, 33] is given by,

f =

∫
ψ

(− pI + µ[∇u+ (∇u)′] + σ) · νp dξ, (24)

where ψ defines the circular boundary of the particle and νp denotes the unit normal

to the surface. The displacement of the particle can be calculated from the Stokes drag

equation

f = 3πµ(u− ẋp), (25)

where xp = (xp, yp) denotes the instantaneous position of the particle centre and a dot103

represents differentiation with respect to time.104

Non-dimensionalizing Eq. (24) via (9) and choosing the natural force scaling F = f/µu0

gives the dimensionless drag (Fx) and lift (Fy) components of the force experienced by

the particle (i.e., the forces in the x and y directions, respectively),

Fx =

∫
Ψ

[(
2
∂U

∂X
− P − 1

Er

|A∗|
2C∗

λSH11

)
νx

+

(
∂U

∂Y
+
∂V

∂X
− 1

Er

|A∗|
2C∗

(λSH12 + η)

)
νy

]
dΩ, (26)

Fy =

∫
Ψ

[(
∂U

∂Y
+
∂V

∂X
− 1

Er

|A∗|
2C∗

(λSH12 − η)

)
νx

+

(
2
∂V

∂Y
− P +

1

Er

|A∗|
2C∗

λSH11

)
νy

]
dΩ, (27)

where Ψ denotes the perimeter of the particle in the dimensionless domain and νp =

(νx, νy). The dimensionless version of Eq. (25) reads as

3π(U − ẊP ) = Fx, (28a)
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3π(V − ẎP ) = Fy, (28b)

where ẊP = dXP/dT and ẎP = dYP/dT are the respective dimensionless particle velocity105

components.106

Table 1: Typical values of the physical parameters

Parameter Typical values

[units] [reference]

Elastic constant, κ [pN ] 40 [2]

Length of the microchannel, L1 [µm] 50

Half-height of the microchannel, L2 [µm] 10

Particle radius, r [µm] 3

Mean fluid velocity, u0 [µm/s] 10

Rotational diffusion constant, Γ [Pa s] 7.3 [2]

Viscosity, µ [Pa s] 0.01 [21]

NLC material property, A [MJ/m3] -0.172 [2]

NLC material property, C [MJ/m3] 1.72 [2]

Dimensionless parameters used in calculation

NLC alignment parameter, λ 1 [2]

Dimensionless particle radius, R 0.3

Reynolds number, Re 0.0001

Ericksen number, Er 0.01 – 100

Parameter, |A∗|/C∗ 0.1

Relative anchoring strength, logW 3

3. Results and Discussion107

The coupled system of the equations (10–23) are solved numerically using a finite element108

software COMSOL v5.2 [34]. The details of the numerical techniques and the solver109

settings are given in the Supplementary Information (Section B).110
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3.1. Static particle and no fluid flow111

We first compute the equilibrium director profiles and the order parameter S in the112

absence of a flow field U = V = 0 (or Er = 0). In this case we need only solve Eqs. (20)113

and (21), which reduce to H11 = H12 = 0 respectively, subject to the boundary conditions114

(22) and (23). We vary the anchoring strength parameter at the particle surface from115

weak to strong (homeotropic) anchoring (Fig. 2). There have been both experimental [35]116

and theoretical studies [36] where such ranges (over orders of magnitude) of the anchoring117

strength have been studied for physically realistic scenarios.118

In [35] there are several surface anchoring values reported for different combinations of119

NLC materials and surfaces, which correspond to logW ≈ 0 − 2. In [36] the authors120

have studied the effect of surface anchoring strength (varying from logW ≈ 1−2) on the121

stability of the nematic ordering.122

Surface anchoring strengths can be altered by photo-excitation [37], electric or magnetic123

fields [38, 39] or chemical surface functionalization [40]. Defects along the axial symmetry124

line (Y = 0) are observed, consistent with the literature reports [14, 41, 17, 42]. The125

contours of the order parameter are also qualitatively similar to the report of Fukuda126

et al. [13] and Sengupta et al. [43]. For low anchoring strengths, the defects are almost127

pinned to the particle surface, migrating away from the particle surface with increasing128

anchoring strength; at present there has been little experimental investigation along these129

lines.130

The director field on the particle surface is very sensitive to the change in anchoring131

strength in the range 0.5 < logW < 1 for R = 0.3 (Fig. 3a). The anchoring switches132

from being effectively uniform (zero anchoring) to homeotropic (strong anchoring) within133

this range.134

The effect of the particle size has a profound influence on the director field (Fig. 3b–135

d), particularly with increasing anchoring strength. As the particle size increases, the136

distance between the particle surface and channel walls reduces, inducing strong coupling137

between the directors on the particle surface and on the channel walls. Again there138

is a narrow range of R over which the director orientation switches from uniform to139

homeotropic on the particle boundary. The values of R in the transition region decrease140

with increasing logW (Fig. 3b–d). For example, in the case of W = 3.2 the transition141

occurs for 0.7 < R < 0.8 (Fig. 3c), whereas for W = 10, the same occurs in the range142
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Figure 2: Orientation of the director field around the particle with homeotropic boundary conditions

on the channel walls with zero flow field (Er = 0) for R = 0.3. The angle of the director orientation,

θ (quiver angle) is given by θ = 1
2 tan−1(Q12/Q11). The anchoring strength on the particle surface is

varied from weak to strong. (a) logW = 0, (b) logW = 0.8, (c) logW = 1 and (d) logW = 2. The solid

lines represent the director profiles (θ) and the background contour represent the magnitude of the order

parameter S. Due to symmetry we show only half of the channel. The values of the relevant parameters

used for the calculation are given in Table 1.

0.1 < R < 0.3 (Fig. 3d).143

3.2. Static particle with fluid flow effects144

Next, we include a flow field but hold the particle in place. We solve Eqs. (15), (16), (20),145

(21) subject to Eqs. (17)–(19), (22), (23) for the steady-state situation and ∂Q/∂T = 0146

in Eqs. (20) and (21). This models a system with an obstacle (for example, a static147

micropillar [18]). On increasing the Ericksen number (while maintaining Re � 1) we148

observe three distinct regimes: weak, moderate and strong. The weak regime occurs149

for small Er. Here, the director profiles remain almost unchanged compared with those150

observed in the previous section with no flow field while the flow profile is significantly151

different to classical Poiseuille flow (Fig. 4a).152

There are two stable director profiles, known as the horizontal (H) and vertical (V) states153

(Fig. 4d). The H and V states have different orientations at the channel centre (H-state,154

θ = 2nπ and in V-state, θ = (n + 0.5)π where n = 0, 1, 2, 3...). In the H-state the155

directors splay, whereas in the V-state the director has a bent profile [44]. As the flow156

field is increased (through increasing Er) we enter the moderate flow regime (Fig. 4b),157
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Figure 3: Variation of the director angle on the particle surface, with zero flow field (Er = 0) with

different particle sizes and anchoring strength. In (a) the anchoring strength is increased with logW =

−3, 0, 0.5, 0.8, 0.9, 1 and 2 (in the direction of the arrow), for R = 0.3. In (b-d) the particle size is increased

as R = 0.1, 0.3, 0.5, 0.7 and 0.8 (in the direction of the arrow) for (b) logW = 0, (c) logW = 0.5 (inset:

qualitative visualization of the director orientation corresponding to R = 0.1 and 0.8), and (d) logW = 1.

Note that the particle is located at the centre of the channel with homeotropic boundary conditions on

the surface. The values taken for all other parameters used for the calculation are given in Table 1.
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one primarily observes the V-state and the flow begins to assume a parabolic profile158

(Fig. 4b).159

As we further increase the flow rate (i.e., increase Er), the NLC stress weakens and we160

enter the strong regime (see Eqs. 15 and 16). The director field adapts to the more161

energetically favourable H-state configuration (Fig. 4c,d) and the flow assumes a fully162

developed Poiseuille profile. (Fig. 4c) [16]. This is consistent with the experimental163

observations of Sengupta et al. [2].164

In Fig. 4e, we compare the location of the hyperbolic hedgehog defect on the leading165

side, as obtained from our numerical simulations, with the experimental results [18] for a166

channel with large aspect ratio, rendering the wall effect insignificant in the z-direction,167

consistent with our 2D set-up. We can see that the theoretical and experimental results168

are in close agreement for Er < 100. We also observe defects close to the particle body169

in the range π/2 ≤ φ ≤ π, for moderate Er in agreement with the experiments in [13].170

Further, the distance of the defect on the trailing side from the particle surface is roughly171

0.17 times the diameter, in line with experiments that report this to be in the range of172

0.05–0.25 times the diameter [13].173

Of principal interest is the force experienced by a particle as a result of the viscous and174

elastic stresses exerted on the particle surface, given by Eq. (24), since this ultimately175

dictates the motion of the particle. Since the particle is placed at the channel centre, the176

overall lift force (Fy) is zero due to symmetry and the only force is in the x direction,177

Fx (drag). As we increase Er, the force on the particle increases, in the direction of the178

hydrodynamic pressure gradient (Fig. 5a).179

When the anchoring strength (logW in Eq. 23) is increased, the driving force increases180

(Fig. 5b). This suggests that tuning the particle surface anchoring conditions by external181

stimuli, such as by photo-excitation [37] or an electric field [38] could assist in spatial182

reorganization in the nematohydrodynamic field.183

While the viscous force on a particle due to hydrodynamic flow increases proportionally184

with particle radius [45], the effect of attractive normal boundary conditions on the185

channel walls is also felt as the particle size increases. These two forces act in competition,186

with the viscous forces attracting the particle to the centre and the wall forces drawing187

the particle towards the walls. As a result, a critical particle size exists for which the drag188

force is maximum (R ≈ 0.56 for the parameters considered in Fig. 5c). For an isotropic189
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Figure 4: Profiles of the director orientation for (a) Er = 0.001 (weak flow), (b) Er = 0.1 (intermediate

flow), (c) Er = 10 (strong flow). The solid black lines show the director orientation in the channel.

The fluid flow is in the positive x direction. Due to symmetry we show only half of the channel. The

background colour contour represents the axial velocity field U . Here R = 0.3. The bottom edge of

the domain (Y = 0) is the symmetry condition. Homeotropic anchoring conditions are maintained

on the channel walls as well as on the particle surface (W → ∞). The values taken for all other

parameters used for the calculation are given in Table 1. (d) Schematic representation of the V and H

state configurations of the director alignment [16]. In (e) we show the location of the leading hyperbolic

hedgehog defect comparing the experimental observations [18] for a flow past a static micropillar (for large

aspect ratio, justifying the 2D setup) with the present calculations. The values used in this calculation

are corresponding to the experimental conditions [18].

Newtonian fluid, the drag force continues to increases with particle size, purely due to190

the viscous stresses. On the other hand, the drag force in the NLC medium is sensitive191

to the value of Er, the particle size and logW .192
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Figure 5: The axial force Fx on a static particle as a function of the (a) Ericksen number (Er) (the

snapshot of the director orientation in the channel at different Er = 0.001, 0.1, 10 is shown as insets);

(b) particle surface anchoring strength (logW ); and (c) particle size (R). The dotted line in (c) shows

the force for an isotropic Newtonian fluid. The reference values of the parameters are R = 0.3, Er = 1

and logW = 3. The values for all other parameters used for the calculation are given in Table 1.
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3.3. Particle dynamics with fluid flow193

3.3.1. Single particle194

Having characterized the effect of placing a static particle in an NLC we now study the195

director profiles and particle trajectories when we allow the particle to move in response196

to the nematohydrodynamic field. We fix the Ericksen number (Er = 0.02) where the197

NLC elastic forces dominate over viscous forces [15, 13, 43] and solve the transient set198

of Eqs. (20)–(23) together with the flow hydrodynamics in Eqs. (10), (15)–(19). The199

particles are initially stationary (ẊP = ẎP = 0) and released into the flow, and the initial200

condition for the NLC and the fluid flow is the equilibrium configuration for fixed particle201

position (as found in Section 3.2). We impose strong anchoring conditions on the particle202

surface. To compare this situation with a Newtonian fluid, we simply set the elastic203

constant, κ = 0 (thereby Er →∞).204

For the Newtonian case, the cross-plane position Y = 0 is a stable equilibrium: if we205

release a particle from Y 6= 0 then the particle will evolve towards the centre as a result206

of the viscous stress exerted on the particle [46]. This behaviour is also observed for the207

values of the NLC parameters considered here, with the relaxation time approximately208

following an exponential decay to Y = 0 (Fig. 6a). As found in the previous section,209

the particle experiences two opposing forces: a viscous force, which acts to restore the210

particle towards the centre [46] and an attractive force between the strongly anchored211

channel wall and the particle surface [47], the latter of which is not present in a Newtonian212

fluid. The attractive force opposes the particle motion towards the centre, reducing the213

cross-stream velocity and increasing the time taken to reach the centre, compared with214

a Newtonian flow field (Fig. 6a,b).215

Since there exists a competition between the NLC elastic stresses and the viscous forces216

on the colloidal particle, we hypothesize that there may be a critical vertical position217

for which the particle might migrate towards the wall instead of the centre. We analyse218

the lift force FY on the particle at T = 0 to determine whether it migrates towards the219

centre (FY < 0 since the particle is located at Y > 0 initially) or the wall (FY > 0).220

An unstable equilibrium is indeed found, at a critical vertical position, Y ∗P , for which the221

total lift force is zero (Fig. 6c). With increasing Er, the lift force approaches the limit of222

the Newtonian flow, where the particle always migrates towards the centre irrespective223

of its position. This suggests that, with a uniform particle distribution in the channel,224
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Figure 6: (a–b) Time evolution of a particle (black lines) that begins at position Y = 0.5 as it relaxes

towards the centre Y = 0 in an NLC: (a) vertical coordinate of particle centre and (b) Y -component of

the particle velocity. Here R = 0.3 and Er = 0.02. (c) The lift force (FY ) experienced by the particle at

different initial Y locations (of the particle centre) in the top half of the channel (Y > 0), for R = 0.3.

The three solid curves are for nematic liquid with Er = 0.02, 0.2 and 2. The anchoring conditions on

the particle and channel walls are homeotropic. If FY < 0 the particle migrates towards the centre. The

dotted line is the behaviour of the particle in a viscous Newtonian flow, obtained by setting the elastic

constant, κ = 0 leading to Er → ∞. In the case of the Newtonian liquid the particle migrates towards

the centre independent of its size [46]. (d) Variation of the critical Y position of the particle, Y ∗
P (at

T = 0 for which FY = 0) as a function of the Ericksen number for two different particle sizes. The values

taken for all other parameters used for the calculation are given in Table 1. The anchoring conditions

on the particle suraface and channel walls are homeotropic.

particles located on either side of the critical YP separate out, moving either towards225

the wall or towards the centre. This is somewhat similar to a Newtonian flow through a226

channel with porous walls, where the particles tend to flow towards the wall due to the227

transverse velocity induced by the suction (difference in pressure across the porous wall).228

However, all particles eventually deposit on (or penetrate) the wall in this case, while229
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for an NLC medium, a fraction of the introduced particles attach to the wall while the230

remainder move to the channel centre. The critical Y location is dependent on the size of231

the particle, anchoring strength and Ericksen number (Fig. 6d). With increasing particle232

size, the director interaction is stronger, yielding smaller values of Y ∗P , as observed from233

Fig. 6d.234
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3.3.2. Dual particle system235

When two particles are released side by side (with zero initial velocities ẊP = ẎP = 0236

starting from X = 0, Y = ±0.5) within the microchannel, the attractive NLC forces237

between two homeotropically anchored particle surfaces results in significantly increased238

velocities in the Y direction, with the particles eventually touching one another (Fig. 7239

and Fig. S2 in the Supplementary Information). The time evolution of the separation240

distance (see Fig. S2a) in the Supplementary Information) is qualitatively similar to the241

experimental observations in [10] for the case of the dominant elastic interactions (Er �242

1). Upon agglomeration, the overall drag force is adjusted according to Fig. 5c. There243

are two stages in the dynamics: the first stage corresponds to the two isolated particles244

attracting each other and moving towards each other in a straight line (T . 0.35). In245

the second stage, the agglomerate reorients due to the quadrupolar interactions (0.35 .246

T . 1.1) (Fig. S2) [9, 3]. Due to the quadrupolar interactions [9, 3], the particles reorient247

themselves with the angle of inclination θp ≈ 39o, with respect to the horizontal axis Y = 0248

measured in the anti-clockwise direction. This is corroborated by Mondiot et al. [48]249

who find an angle of inclination θp =
√

arccos(4/7) ≈ 40.9◦, obtained by minimizing the250

quadrupolar interaction energy. This dual particle reorientation is driven by the minimum251

energy configuration state as described in [49]. The experimental observations in the252

literature support the attractive force in the direction of the quadrupolar interactions253

[47, 50, 51, 52]. The calculation of the Landau-de Gennes free energy of the two isolated254

particles suggests that the minimum energy depends on θp and the separation distance255

[47].256

3.3.3. Triple-particle system257

Finally, we consider the nematohydrodynamic effects on the mechanics of a triple-particle258

system in an NLC medium, for particle radii R = 0.2 (Fig. 8). In the first example,259

one particle is placed at the centre X = Y = 0 while the other two particles are at260

X = −2, Y = ±0.5. Initially all the particles are stationary (ẊP = ẎP = 0 at T = 0).261

For T . 0.1 the two particles with initial position at X = −2, Y = ±0.5, aggregate before262

approaching the third (central) particle (Fig. 8a–c). When the two-particle agglomerate263

catches up with the single particle, the particles align themselves as an equiangular sys-264

tem (the centres form an equilateral triangle) to minimize the overall energy, due to the265

quadrupolar interactions (Fig. 8d). This is in close agreement with the experimental ob-266
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Figure 7: Snapshots showing the evolution with time of two particles placed in a microchannel located at

X = 0, Y = ±0.5, as they approach each another and agglomerate: (a) T = 0; (b) T = 0.125; (c) T = 0.5;

and (d) T = 1.5 (at which point the particles have reached their equilibrium configuration). Here R = 0.3

and Er = 0.02. The anchoring conditions on the particle and channel walls are homeotropic. The values

taken for all other parameters used for the calculation are given in Table 1. The boundary conditions

on the particle surfaces and channel walls are homeotropic. The fluid flow is in the positive x direction.

The background colour contour represents the magnitude of the axial velocity field U .

servations for colloidal assemblies in a 2D NLC system, where the interparticle orientation267

angle in a triplet aggregate is found to be 56± 1◦ [7].268

There are three distinct velocity zones in Fig. 8:269

(i) For T . 0.16, the two off-centred particles approach one another while accelerating270

towards the third, central, particle. After these two particles aggregate, the overall drag271

in the X direction increases (as predicted by Fig. 5c), since the cumulative size of the272

dual-particle agglomerate is less than the critical size in Fig. 5c. The isolated central273

third particle is largely unaffected by the two particles during this part of the motion.274

(ii) For 0.16 . T . 0.375, the agglomerate approaches the isolated particle at a higher275

X-velocity than the central particle. Since the timescale of the final re-orientation of276

the dual-particle system (due to the quadrupolar interactions) is longer (T ≥ 1 as seen277

in Fig. S2a), the two-particle globule catches up with the central particle before the278

transitional reorientation can occur as observed in the dual-particle system.279
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(iii) For T & 0.375, the three particles attach to each other to form a triple agglomerate280

that moves as a whole. We note that a triplet formed of individual particles (of size R)281

has an effective size of (1 +
√

3)R ≈ 0.54 (for R = 0.2), which is below the critical size282

that maximizes the drag, Rmax = 0.56 in Fig. 5c. This results in an increased velocity283

due to the enhanced drag as observed in Fig. 5c.284
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Figure 8: (a–d) Snapshots showing the evolution with time of three particles placed in a microchannel

located at X = −0.2, Y = ±0.5 and X = 0, Y = 0, relaxing towards the equilibrium: (a) T = 0; (b)

T = 0.1; (c) T = 0.3; and (d) T = 0.5 (at which point the three-particle system has reached equilibrium).

The fluid flow is in the positive x direction. The background colour contour represents the magnitude

of the axial velocity field U . (e–g) Trajectory information of the triplet system; (e) vertical coordinates

of particle centres; (f) Y -components of the particle velocities and (g) X-components of the particle

velocities. Here R = 0.2 and Er = 0.02. The anchoring conditions on the particle and channel walls are

strongly homeotropic. All other parameters used for the calculation are given in Table 1. The boundary

conditions on the particle surfaces and channel walls are homeotropic.

The initial configuration plays a key role in the subsequent dynamics of the triplet ag-285

glomeration. For a zig-zag combination of three particles with initially large interparticle286

separation distance there is an intermediate linear configuration of three particles (see287

Fig. 9). The intermediate system persists for a long time (T = 0.5− 2.7), which suggests288

that the linear state is relatively stable. The subsequent behaviour is then equivalent to289

the behaviour of an initial condition of three linearly placed particles. The final configura-290

tion is always found to be equiangular irrespective of the initial configuration (triangular,291

zig-zag or linear) or the interparticle separation distance (see Fig. 9a, b). However, the292
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orientation of the triangular agglomerate does depend on the initial state (Figs. 8d, 9a,b).293

(a) Initially (at T = 0) the particles are located at (from left) (X,Y ) = (-1,0.5), (0,-0.5) and (1,0.5)

(b) Initially (at T = 0) the particles are located at (from left)(X,Y ) = (-0.5,0.5), (0,-0.5) and (0.5,0.5)

Magnitude of the velocity field U

Magnitude of the velocity field U

T = 0 T = 0.3 T = 0.6

T = 0 T = 0.2 T = 0.5

T = 1.7 T = 2.2 T = 2.7

Figure 9: Snapshots showing the time evolution of the triplet arranged initially in a zig-zag configuration,

for an interparticle separation distance of (a) 5 particle radii; and (b) 2.5 particle radii. Here R = 0.2

and Er = 0.02. The anchoring conditions on the particle and channel walls are strongly homeotropic.

All other parameter values used for the calculation are given in Table 1. The fluid flow is in the positive

x direction. The background colour contour represents the magnitude of the axial velocity field U .

For large values of Er, the system is highly nonlinear and more topological defects are294

expected. Our results are valid for Er < 1; for Er > 1, the particle self-assembly295

is influenced by the topological defects [5]. For Re � 1 and Er & 200, unexpected296

phenomena such as cavitation around the particle has been observed [53].297

4. Conclusions298

In this paper we use a continuum Beris–Edwards framework to simulate the motion of299

particles immersed in an NLC microfluidic channel, motivated by recent experimental300

work. We first consider the response of the NLC director field when a particle is placed301

in the channel in the absence of a flow.302

The director orientation around the particle depends on the particle surface anchoring and303

the relative particle size. The system properties also depend on the Ericksen number, Er,304

which measures the relative effect of the viscous to NLC elastic forces. As the Ericksen305

22



number is increased, the hyperbolic hedgehog defect on the leading and trailing side of the306

particle moves further away from the particle surface, an observation that is supported307

by experiments [18]. The particle experiences forces due to the viscous drag and due to308

the interaction between the homeotropic anchored particle surfaces and channel walls. As309

the particle increases in size, the viscous the NLC elastic forces oppose each other and the310

drag force is maximum for a critical particle size. There is also a critical particle location311

that determines particle separation i.e. particles on either side of this critical location312

either migrate towards the channel walls or towards the channel centre. This gives us313

a potential mechanism for sorting a suspension of particles of different size, without the314

need for any manual separation, which is impossible in an isotropic fluid.315

We then consider a dual-particle system, and find that the particles align at an angle of316

around 39◦ relative to the walls, which is close to the experimentally reported value of317

41◦ [48]. When a third particle is added to the system, the particles form an equiangular318

triplet agglomerate, in agreement with experimental observations [10]. While the final319

particle arrangement appears to be independent of the initial configuration, the evolution320

towards this final state is sensitive to the initial state, and in some instances one can obtain321

interim locally stable configurations. For example, a set-up of linearly aligned particles322

appears to be locally stable.323

We illustrate a variety of physical phenomena that are not observed in isotropic fluids.324

Our numerical analysis demonstrates the rich hydrodynamic landscape for NLC microflu-325

idics and how the coupling between flow, anchoring, particle sizes and NLC order can be326

tuned to control the mechanisms of particle migration, self-reorganization and separation.327

We hope that our work will inspire future experimental study into particle separation and328

self-assembly mechanisms.329
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man, and I. Muševič. Interactions of quadrupolar nematic colloids. Phys. Rev. E,354

77(3):031705, 2008.355
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