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Membrane filtration is a vital industrial process, with applications including air
purification and blood filtration. In this paper, we study the optimal design for a
concertinaed filtration membrane composed of angled porous membranes and dead ends.
The geometry of the filter motivates a lubrication scaling for the flow, leading to a system
of coupled (modified) Reynolds equations. By analysing this reduced system, we examine
how the filter performance depends on the angle, position, thickness and permeance of
the membrane, using a combination of numerical and asymptotic approaches, the latter in
the limit of a slightly angled membrane. We find that, for a membrane of fixed angle and
physical properties, there can exist multiple membrane positions that maximise the flux
for an applied pressure difference. More generally, this shows how coupled problems in
lubrication flow can exhibit non-trivial bifurcating optima. For the particular application
on which we focus, we show that, while the maximal flux achievable depends on the
membrane thickness and permeance, the optimal membrane configuration is always in one
of two set-ups: centred and diagonal across the full domain; or angled and in the corner of
the domain.

Key words: porous media, lubrication theory

1. Introduction

Membrane filtration is a process used for the clarification, purification and separation of
fluid mixtures (Noble & Stern 1995). This field has many important applications from
filtering of blood to purifying water and air (van Reis & Zydney 2007; Lee, Arnot &
Mattia 2011). In a typical filtration system, a mixture of fluid and contaminant particles
is passed through a porous membrane; the fluid passes through while the particles are
retained, either on the surface of the membrane or within the membrane structure.

† Email address for correspondence: ian.griffiths@maths.ox.ac.uk
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Filtration membranes can be divided broadly into two main types: fibre-based
membranes comprise a random network of fibres, and membrane surfaces are
manufactured with pores. While fibre-based membranes have historically been easier to
manufacture, they come with several drawbacks. For example, there is minimal control of
their pore structure and they have a large environmental footprint since the fibres clog and
have to be discarded, increasing waste to landfill. As such, the second type of manufactured
membranes, which has the benefit of a controlled pore structure and the potential to
be cleaned and reused, is often the preferable choice. Furthermore, new techniques are
emerging to manufacture such membranes more easily (Smart Separations Ltd 2020).

As the unwanted particles are filtered out of the fluid mixture, the membrane blocks over
time. There are two main blocking mechanisms: caking is the build-up of large particles
on the surface of the membrane, and internal blocking is the clogging inside the actual
pore. Blocking is inevitable in filtration. It affects the flux of fluid through the membrane,
and consequently the efficiency of a filter is strongly coupled to any blocking.

The blocking of filters motivates the study of filtration devices, with the goal of
finding the optimal filter design, i.e. the design that maximises flux through the filter
and minimises the effect of blocking. Filtration devices can be classified by the direction
of flow: fluid mixtures are passed through filtration membranes with the flow either
perpendicular to the membrane surface in what is called dead-end flow, or parallel to
the surface in cross-flow (Noble & Stern 1995).

When using a filter in dead-end flow, all of the components of the fluid mixture are
either passed through or retained by the membrane. While dead-end flow is simple to use,
the technique is unsuitable for processing high volumes as the normal flow results in cake
layers building up quickly. In cross-flow devices, the fluid mixture is passed parallel to
the membrane surface; the predominant flow direction is parallel to the membrane with
some of the flow travelling into the membrane. The fluid mixture is therefore processed
slower through a cross-flow device than a dead-end flow device. The advantage of the
predominant flow direction being parallel is that the flow continuously ‘washes’ the
membrane surface and thereby inhibits cake build-up. Thus, although slow, cross-flow
devices can be used to process higher volumes of fluid than direct flow. The disadvantage
of this method is that the process requires recirculation of the fluid, and is consequently
more complex and energy consuming.

Direct-flow filtration devices consist of cross-flow membranes with capped ends. This
design therefore also benefits from reduced cake build-up. The capped ends act to drive
the fluid mixture through the membrane thereby also utilising the dead-end technology
resulting in a more economical and more energy efficient filtration device than cross-flow
devices. Typically, direct-flow devices comprise vertically stacked filtration membranes.

There have been numerous studies into the mathematical modelling of vertically stacked
direct-flow filtration devices (Herterich et al. 2017; Wang, Mondal & Griffiths 2017; Xu,
Pearce & Field 2017). Of particular relevance to this paper is Herterich et al. (2017), who
developed a mathematical model for flow through a direct-flow device comprising a system
of stacked cylinders, where the porous cylinder walls provide the parallel membrane
surfaces for cross-flow. A key observation was that when the membranes were stacked
too closely or too sparsely, the total flux through the device was reduced and hence there
was an optimal stacking distance.

In this paper we will examine how the design set-up affects the flow through a
direct-flow device with angled membranes. An industrial example and motivation for this
is the direct-flow device designed by Smart Separations Ltd (2020). A schematic for this
filter is shown in figure 1(a). There are similarities between a direct-flow device with
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â

ĥ
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Figure 1. Schematic of the concertinaed filtration device. Panel (a) shows the full three-dimensional device;
reproduced from Smart Separations Ltd (2020) with permission. Panel (b) depicts the two-dimensional domain
of a single filtration module; the centre of the domain (x̂, ẑ) = (X̂/2, Ẑ/2) is indicated by a cross.

angled membranes and a pleated filtration membrane. The main distinction between the
two is that fluid can travel through the full porous pleated membrane structure, whereas
direct-flow devices comprise dead ends (see figure 1) through which the flow cannot travel.
The dead ends change the flow structure within the filter. There has been research studying
the flow through pleated membranes to determine the optimal pleat density in such a
membrane (Chen, Pui & Liu 1995; Rebaï et al. 2010). Additionally, previous studies have
examined the effect of the geometry on the pressure drop achieved across a single pleat
for a given flux (Caesar & Schroth 2002; Saleh, Tafreshi & Pourdeyhimi 2016; Théron,
Joubert & Le Coq 2017).

Recent relevant studies by Sanaei et al. (2016) and Sun et al. (2020) model the flow
and blocking mechanisms in pleated devices, adopting the assumption of Darcy flow
throughout the whole domain composed of rectangular pleats. The focus of these works
was to find the filter design that optimised the lifetime of the filter accounting for transient
blocking dynamics. Earlier work by King & Please (1996) also models the flow through a
pleated filtration membrane. The authors account for Stokes flow between the membranes
driven by a prescribed flux through rectangular pleats with porous walls and ends, with a
focus on the shape of cake build-up along the membrane surface.

The distinction between previous work on examining the transient flow through a
pleated device and the work presented here is that we focus specifically on understanding
how filters can be designed to optimise filtration, and on exploring how the optimal
design changes as operating parameters vary. This is particularly useful for direct-flow
devices since their geometry can be precisely controlled through modern manufacturing
techniques. Specifically, we examine how the angle and position of the membrane affect
the steady flow driven by a prescribed pressure drop. The model we develop here is relevant
for new filters over time scales before blocking becomes important (i.e. months), and for
filters where blocking is not relevant. An example of the latter is Smart Separation Ltd.’s
novel virus filter, which works through neutralisation of the viruses without changing the
physical properties of the filtration system through blocking (Smart Separations Ltd 2020).

1.1. Problem statement
In this paper, we present a comprehensive study of a direct-flow device with angled
membranes. The angled membranes increase the membrane surface area in a concertinaed

913 A28-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

26
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 B
od

le
ia

n 
Li

br
ar

ie
s 

of
 th

e 
U

ni
ve

rs
ity

 o
f O

xf
or

d,
 o

n 
20

 O
ct

 2
02

1 
at

 1
0:

40
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.26
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


V.E. Pereira and others

filtration device, as shown in figure 1(a). Our main objective is to determine the optimal
set-up to maximise the flux for a given pressure drop.

We develop a mathematical model of flow through a filtration device with openings
through which the fluid is introduced and removed, closed ends, and porous membranes.
The concertina structure comprises repeated single modules, as shown in figure 1(a). The
flow is driven by a pressure gradient, and we study how the optimal flow depends on the
system parameters defining a single repeated module.

We build on the modelling approach used by Herterich et al. (2017), who considered
the similar problem of an applied flux through horizontal walls, to study the design of an
angled membrane module that maximises the flux for a given applied pressure difference.
The structure of this paper is as follows. In § 2 we formulate the coupled lubrication flow
problem through a single repeated module. In § 3, we consider an infinitely thin membrane
with a specified angle and permeance. The permeance is defined as the inverse of the
resistance and determines the ease in which fluid may pass through the membrane. We
determine the membrane position within the module that results in the maximum flux.
We analyse two parameter regimes: the first for a slightly angled membrane in § 3.1, and
the second for an arbitrarily angled membrane in § 3.2. In § 4, we determine the optimal
angle and position associated with the maximum flux through a membrane of specified
thickness and permeance. We first consider vanishingly thin membranes and study the
role of permeance in § 4.1. We then extend our study to membranes of finite thickness in
§ 4.2. In § 5 we discuss the implications and conclusions of our work, as well as avenues
of future work.

2. Model development

We model the flow through a single repeated module of the filtration device shown in
figure 1(a). The system geometry is such that the vertical length X̂ is significantly smaller
than the horizontal height Ẑ and lateral depth Ŷ (see table 1). We assume no flow in the
ŷ-direction and therefore focus our attention to the two-dimensional domain in (x̂, ẑ)-space
depicted in figure 1(b). We denote dimensional and dimensionless quantities with and
without hats, respectively. The position of the membrane is described by the upstream
side of the membrane wall x̂ = m̂(ẑ) given by

m̂(ẑ) = â + 1
2

(
Ẑ tan β̂ − ĥ

)
− ẑ tan β̂, (2.1)

where ĥ is the membrane thickness, and β̂ is the angle of the membrane; see figure 1(b).
The midpoint of the membrane at (x̂, ẑ) = (â, Ẑ/2) is specified by the parameter â, which
is used to prescribe the distance between the centres of the membranes in neighbouring
modules. In the specific case that the midpoint of the membrane coincides with the
midpoint of the domain, i.e. â = X̂/2, the membranes will be equally spaced.

The flow domain comprises two subdomains

Ω̂1 = {x̂ ∈ [0, m̂(ẑ)], ẑ ∈ [0, Ẑ]}, (2.2a)

Ω̂2 = {x̂ ∈ [m̂(ẑ) + ĥ, X̂], ẑ ∈ [0, Ẑ]}. (2.2b)

Note that, while X̂ and Ẑ are specified constants, the membrane length L̂ is coupled to the
prescribed angle β̂ and horizontal height Ẑ via L̂ = Ẑ/ cos β̂. In this paper, the angle β̂

will constitute a key experimental parameter that can be varied. Moreover, without loss of
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Parameter Value

Horizontal height, Ẑ 50 mm
Lateral depth, Ŷ 50 mm
Vertical length, X̂ 3.6 mm
Membrane thickness, ĥ 1.2 mm
Air viscosity, μ̂ 1.81 × 10−5 Pa s
Air density, ρ̂ 1.2 kg m−3

Horizontal velocity scale, Ŵ0 50 mm s−1

Table 1. Parameter values for air flow through the filtration device shown in figure 1; values for Ẑ, Ŷ , X̂, ĥ
and Ŵ0 provided by Smart Separations Ltd (2020).

generality, we consider β̂ > 0 and note that neighbouring modules have β̂ < 0 with the
subdomains switched for symmetric flux, as can be seen in figure 1(a).

The flow enters Ω̂1 at ẑ = 0 with constant inlet pressure p̂in, and exits Ω̂2 at ẑ = Ẑ
with constant outlet pressure p̂out. The pressure difference ( p̂in − p̂out) > 0 drives the flow
through the porous membrane, and a particular quantity of interest is the flux through the
domain.

2.1. Governing equations

The ratio between the vertical and horizontal domain lengths is ε = X̂/Ẑ. Using the
parameter values given in table 1, we find that ε � 1. Moreover, the values in table 1
yield a small reduced Reynolds number ε2Re = ε2ρ̂Ŵ0Ẑ/μ̂. We therefore use the Stokes
flow equations to describe the flow in Ω̂1 and Ω̂2:

μ̂∇̂2û − ∇̂p̂ = 0, (2.3a)

∇̂ · û = 0, (2.3b)

where û(x̂, ẑ) = (û(x̂, ẑ), ŵ(x̂, ẑ)) is the velocity, p̂ is the pressure and μ̂ is the constant
fluid viscosity. We seek steady solutions in both subdomains denoting the variables in Ω̂1
by (û1, ŵ1, p̂1) and those in Ω̂2 by (û2, ŵ2, p̂2).

As described above, the flow enters the domain along ẑ = 0 into Ω̂1, passes through the
membrane at x̂ = m̂(ẑ) and exits along ẑ = Ẑ from Ω̂2, driven by a pressure gradient. The
boundary conditions at the inlet and outlet are

p̂1 = p̂in at ẑ = 0, x̂ ∈ [0, m̂(0)], (2.4a)

p̂2 = p̂out at ẑ = Ẑ, x̂ ∈ [m̂(Ẑ) + ĥ, X̂]. (2.4b)

There are closed ends at ẑ = Ẑ in Ω̂1 and at ẑ = 0 at Ω̂2 through which the flow cannot
penetrate. The following boundary conditions enforce no penetration as well as no slip

û1 = 0 at ẑ = Ẑ, x̂ ∈ [0, m̂(Ẑ)], (2.5a)

û2 = 0 at ẑ = 0, x̂ ∈ [m̂(0) + ĥ, X̂]. (2.5b)
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Since the entire filter consists of a periodic array of modules, we impose symmetry
conditions across x̂ = 0 and x̂ = X̂, yielding

û1 = 0,
∂ŵ1

∂ x̂
= 0 at x̂ = 0, (2.6a)

û2 = 0,
∂ŵ2

∂ x̂
= 0 at x̂ = X̂. (2.6b)

The normal flow through the filter is modelled as a porous flow (i.e. governed by the
pressure difference and permeance). Thus, employing Darcy flow across the membrane
provides the boundary condition for the velocity in Ω̂1

û1 · n = κ̂
[
p̂1(m̂, ẑ) − p̂2(m̂ + ĥ, ẑ)

]
at x̂ = m̂(ẑ), (2.7)

where n = (cos β̂, sin β̂) is the unit normal vector to the membrane and κ̂ = k̂/μ̂ĥ is the
membrane permeance, where k̂ is the permeability of the membrane. Note that the flow
resistance due to the membrane is R̂ = 1/κ̂ .

A flux balance through the membrane provides the corresponding boundary condition
for the velocity in Ω̂2

û1|x̂=m̂ = û2|x̂=m̂+ĥ. (2.8)

Finally, we need conditions at the permeable membrane layer. While Beavers & Joseph
(1967) provide an appropriate tangential slip-flow boundary condition, Griffiths, Howell
& Shipley (2013) show that including slip does not have a significant effect on the flow.
Hence, for simplicity, we impose no slip on both sides of the membrane

û1 · t = 0 at x̂ = m̂(ẑ), (2.9a)

û2 · t = 0 at x̂ = m̂(ẑ) + ĥ, (2.9b)

where t = (− sin β̂, cos β̂) is the unit tangent vector to the membrane.

2.2. Dimensionless model
We non-dimensionalise the system (2.3)–(2.9) by introducing the following scalings:

ẑ = Ẑz, x̂ = εẐx, β̂ = εβ, û = εŴ0u, ŵ = Ŵ0w, p̂ = μ̂Ŵ0

ε2Ẑ
p + p̂out;

(2.10a–f )
recalling that ε = X̂/Ẑ. Note that the pressure difference is directly related to the velocity
scale W0 through (2.10a–f ). Applying (2.10a–f ) to (2.3) and taking the limit ε → 0 yields

px = 0, wxx − pz = 0, ux + wz = 0. (2.11a–c)

Hence, in both subdomains the lubrication equations govern the flow.
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The leading-order position of the membrane (2.1) becomes

m(z) = a − 1
2 h + β

(
1
2 − z

)
, (2.12)

where m = m̂/X̂, a = â/X̂, h = ĥ/X̂ and the dimensionless membrane angle is β ∈ [0, 1].
The corresponding dimensionless subdomains from (2.2) are given by

Ω1 = {x ∈ [0, m(z)], z ∈ [0, 1]}, (2.13a)

Ω2 = {x ∈ [m(z) + h, 1], z ∈ [0, 1]}. (2.13b)

The dimensionless domain is identical to that shown in figure 1(b) with the hats removed
and with the dimensionless vertical and horizontal lengths such that X = Z = 1. Recall
that, while the domain size specified by Z and X is fixed, the membrane length varies with
β.

Applying the scaling (2.10a–f ) to the boundary conditions prescribed above, the
pressure conditions (2.4) become

p1 = 1 at z = 0, x ∈ [0, m(0)], (2.14a)

p2 = 0 at z = 1, x ∈ [m(1) + h, 1], (2.14b)

and the boundary conditions at the closed walls (2.5) become

w1 = 0 at z = 1, x ∈ [0, m(1)], (2.15a)

w2 = 0 at z = 0, x ∈ [m(0) + h, 1]. (2.15b)

We note that information regarding the tangential velocity on the closed walls in (2.15)
is lost since we are working in the lubrication regime. The dimensionless symmetry
conditions from (2.6) are

u1 = 0,
∂w1

∂x
= 0 at x = 0, (2.16a)

u2 = 0,
∂w2

∂x
= 0 at x = 1. (2.16b)

We define the dimensionless permeance by κ = μ̂κ̂/ε3Ẑ, and the dimensionless
permeability by k = k̂/ε3ẐX̂. With these definitions, the dimensionless permeance is
κ = k/h. The Darcy flow condition through the membrane (2.7) becomes

u1 = κ[p1(m, z) − p2(m(z) + h, z)] at x = m(z), (2.17)

where the dimensionless membrane resistance is R = 1/κ . The flux-balance boundary
condition across the membrane (2.8) becomes

u1|x=m = u2|x=m+h. (2.18)

Finally, the dimensionless no-slip condition (2.9), exploiting the small angle of the
membrane, is

w1 = 0 at x = m(z), (2.19a)

w2 = 0 at x = m(z) + h. (2.19b)
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2.3. Model reduction
Since p1 = p1(z) and p2 = p2(z) from the momentum equation in the x-direction (2.11a),
we can reduce the full problem (2.11)–(2.19) to modified Reynolds equations. Since we
have two coupled domains, we derive two coupled second-order ordinary differential
equations (ODEs) for the pressure; one ODE for each subdomain. The details are as
follows.

In the region Ω1 we solve the momentum equation in the z-direction (2.11b) and the
continuity equation (2.11c) with the symmetry and no-slip boundary conditions (2.16a)
and (2.19a) to find the following relationships between the velocities and the pressure:

u1 = 1
2 x

[
(p′

1m2)′ − 1
3 x2p′′

1

]
, (2.20a)

w1 = 1
2 p′

1(x
2 − m2), (2.20b)

where ′ denotes differentiation with respect to z and recalling that m = m(z) given in
(2.12). We derive an equation for the pressure in Ω1 by applying the Darcy flow boundary
condition at the membrane (2.17)

1
3

(
p′

1m3
)′ = κ (p1 − p2) . (2.21)

The inlet pressure and closed end at z = 1 from (2.14a) and (2.15a) provide the two
necessary boundary conditions for the pressure in Ω1

p1 = 1 at z = 0, (2.22a)

p′
1 = 0 at z = 1. (2.22b)

Similarly, in Ω2, we solve the momentum (in the z-direction) and continuity equations
(2.11b) and (2.11c) using the symmetry and no-slip boundary conditions (2.16b) and
(2.19b) to derive

u2 = 1
2(x − 1)

[(
p′

2(m + h − 1)2
)′ − 1

3 (x − 1)2p′′
2

]
, (2.23a)

w2 = 1
2 p′

2

[
(x − 1)2 − (m + h − 1)2

]
. (2.23b)

The flux-balance boundary condition across the membrane (2.18) provides an equation for
the pressure in Ω2

1
3

[
p′

2(m + h − 1)3
]′ = κ (p1 − p2) . (2.24)

The governing equation (2.24) is coupled to the following boundary conditions, which
arise from the outlet pressure (2.14b) and closed end at z = 0 (2.15b):

p2 = 0 at z = 1, (2.25a)

p′
2 = 0 at z = 0. (2.25b)

Thus, the problem is reduced to solving (2.21) and (2.22) for p1 in Ω1 and (2.24) and
(2.25) for p2 in Ω2. The parameters in the reduced system are the membrane permeance
κ , the membrane thickness h and the position of the membrane described by a and β in
(2.12).
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Optimising flow in a concertinaed filtration membrane

Our goal is to understand how to maximise the flux through the filter for an applied
pressure difference across the filter. As such, it is helpful to define the dimensionless flux
through the system, calculated at the inlet z = 0 as follows:

Q =
∫ m

0
w1|z=0 dx = −1

3

(
p′

1m3
)

|z=0. (2.26)

The system parameters are a, β, κ and h; our goal is therefore to find the system set-up
that maximises Q(a, β, κ, h). We note that the analysis of this system is much clearer in
the limit of small h. Moreover, this limit is a regular perturbation and a finite h will only
slightly change the quantitative results. We consequently consider the case h = 0 in § 3.
However, as is realistic for the physical problem, we examine the quantitative changes that
arise from accounting for h > 0 in § 4.

3. The effect of angling the membrane

In this section, we seek to understand the effect of the membrane angle on the flux
through the device. We consider a set-up in which we prescribe the membrane permeance
κ and thickness h, and study the dependency of the maximum flux achievable and the
associated membrane position on the membrane angle. We consider the regular limit of
a thin membrane, taking h = 0. Taking this limit greatly simplifies the analysis, and, as
previously mentioned, the results we obtain are qualitatively consistent for h /= 0.

In § 3.1, we first explore the limit of a slightly angled membrane within the
dimensionless domain, corresponding to β � 1. Recall that β̂ = εβ so the dimensional
membrane angle is always small due to the long and thin domain and the dimensionless
angle is such that β ∈ [0, 1]. In § 3.2, we then examine the full angle domain β ∈ [0, 1] to
find the optimal position and angle associated with the maximum flux.

3.1. Slightly angled membrane: β � 1
We first consider the limit in which the membrane is slightly angled away from the
horizontal. Since we are able to make analytical progress in this limit, this provides
insight into the benefit of angling membranes. Within this limit, there are two important
sub-limits, corresponding to the membrane being either far from or close to the symmetry
line at x = 0. Mathematically, these correspond to a = O(1), for a centred membrane, and
a = O(β), for a membrane positioned near the corner of the domain.

3.1.1. Membranes positioned close to the centre: a = O(1)

We start by considering the limit β � 1 with a = O(1), where the membranes are slightly
angled but well separated. This limit is a regular perturbation of the problem considered
in Herterich et al. (2017), but imposing a constraint on the pressure difference across the
filter rather than the flux. We pose the following asymptotic expansions:

p1 = p10 + βp11 + O(β2), (3.1a)

p2 = p20 + βp21 + O(β2). (3.1b)

Substituting (3.1) into the governing equations (2.21) and (2.22) for p1 and (2.24)
and (2.25) for p2 enables derivation of explicit analytic expressions for p10, p20, p11
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and p21

p10 = a11 + a12z + a13 cosh(Mz) + a14 cosh(M(z − 1)), (3.2a)

p20 = a21 + a22z + a23 cosh(Mz) + a24 cosh(M(z − 1)), (3.2b)

p11 = b11(z) + b12(z)z + b13(z) cosh(Mz) + b14(z) cosh(M(z − 1)), (3.2c)

p21 = b21(z) + b22(z)z + b23(z) cosh(Mz) + b24(z) cosh(M(z − 1)), (3.2d)

for constants aij and functions bij(z) where i = 1, 2 and j = 1, . . . , 4. The details of the
calculation and explicit expressions for aij and bij are given in Appendix A.1.

Using the asymptotic expansion (3.1) we can derive an expansion for the flux
from (2.26)

Q = Q0 + βQ1 + O(β2). (3.3)

From the solutions p10, p20, p11 and p21 in (3.2) we have an explicit analytic
form for Q0 and Q1. Importantly, this procedure results in Q1 > 0. Therefore, tilting
a horizontal membrane (so that β > 0), will always improve the flux. This can
be understood physically by noting that tilting elongates the membrane, increasing
its surface area and, consequently, providing an easier transport route through the
domain.

3.1.2. Membranes positioned close to the corner: a = O(β)

We now consider the limit where β � 1 and a = O(β), where the membrane is still
slightly angled but is now positioned close to the corner of the domain (i.e. pairwise
close). This regime is not a sub-limit of that studied in § 3.1.1 above, but a distinct limit in
of itself. This can be seen mathematically by noting that the asymptotic results in § 3.1.1
may switch asymptotic orders as a → 0. Here, the presence of an apparent corner in the
domain is important but the finite extent of the full domain cannot be realised. We derive
the following analytical solutions to the governing equations (2.21), (2.22) and (2.24),
(2.25) in this regime

p1 = exp

⎡
⎢⎣−

⎛
⎜⎝ 3κ(

a + 1
2β

)3

⎞
⎟⎠

1/2

z

⎤
⎥⎦ , (3.4a)

p2 = 0. (3.4b)

The details of the relevant boundary layer analysis are presented in Appendix A.2. The
solutions (3.4) show that the pressure drop in this parameter regime only occurs in Ω1
over a boundary layer of size β3/2. We examine the effect of this result on the resulting
flux below in § 3.1.3.

3.1.3. Numerical solutions
In this section we present numerical results to (2.21) and (2.22) for p1 in Ω1 and (2.24)
and (2.25) for p2 in Ω2, using h = 0 and κ = 1. We solve this system for p1 and p2 using
MATLAB’s bvp4c solver (figure 2a). Using the solution for the pressures, we can calculate
the velocity field in each subdomain using (2.20) and (2.23). A helpful way to visualise the
qualitative behaviour of the flow through the domain is through its streamlines (figure 2b).
We also present the flow field predicted by our asymptotic results (3.1) and (3.2) for
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0.5 1.0
z

p1

p2

0

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.5 1.0
z

x

0

(b)(a)

Figure 2. Behaviour of the system governed by (2.21), (2.22) and (2.24), (2.25) for β = 0.05, a = 0.5, κ = 1
and h = 0. The pressure profiles p1, p2 are shown in (a). The membrane position (dotted green line) as given
in (2.12) and streamlines are shown in (b). We show both numerical solutions (solid) and asymptotic solutions
(3.1) and (3.2) (dashed) and see excellent agreement.

0.5 1.0

Increasing β

Increasing β

a
0

0.08

0.06

0.04

0.02

0

0.08

0.06

0.04Q

0.02

0.1 0.2 0.3
a

(b)(a)

Figure 3. Flux Q given by (2.26) calculated from (2.21), (2.22) and (2.24), (2.25). Numerical solutions (solid
line) compared with asymptotic results for β � 1 and a = O(1) given by (3.1) and (3.2) (dashed line) and for
β, a � 1 given by (3.4) (dotted). Results shown for a = O(1) in (a) and for a � 1 in (b) with κ = 1, h = 0
and β = 0.04, 0.1, 0.16, 0.22.

β � 1, a = O(1), derived in § 3.1.1, which shows excellent agreement with the numerical
predictions.

We compare the flux (defined in (2.26)) predicted by the numerical results to that
predicted by our asymptotic analysis for the two cases of a = O(1) (in § 3.1.1) and a =
O(β) (in § 3.1.2). The physically possible positions depend on the angle of the membrane:
a ∈ [β/2, 1 − β/2]. We note, however, that values of a close to the boundaries of this
interval are difficult to resolve numerically due to the presence of corners in the domain.
We therefore solve for values of a ∈ [β/2 + δa, 1 − β/2 − δa] for some small δa > 0, and
for all the results presented herein we take δa = 0.01. To visualise the results we sample
values of β � 1 and plot the resulting flux as a function of a.

There is excellent agreement between the numerical and analytic results for a = O(1)

derived in § 3.1.1 (figure 3a). Importantly, we see that the flux is symmetric about a =
a∗ := 0.5 where the midpoint of the membrane coincides with the midpoint of the domain.
Moreover, for small β, the optimal flux occurs exactly at a = a∗, and so it is optimal to
centre the membrane in the domain.

As we increase β (while still keeping β small), the curve flattens around a =
a∗ and the flux becomes fairly insensitive to variations in a near a∗ (figure 3a).
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Eventually, ∂2Q/∂a2(a∗, β, 1, 0) > 0, indicating that the optimal location is no longer at
a = a∗. However, the benefits of this optimal design over a centred design for β � 1 are
marginal. In figure 3(b), we focus on the parameter regime where a � 1. As in the case
when a = O(1), we find that increasing the angle leads to higher fluxes. Moreover, our
asymptotic results from § 3.1.2 show good agreement with the numerical results until β

gets too large.
The analysis of this section reveals two results: first, we can increase the flux through the

device for the same applied pressure difference by tilting a horizontal membrane; second,
for a small tilt, the flux is maximised when the membrane is located centrally, but as the
membrane angle is increased the optimal location moves away from the centre. These
observations motivate us to broaden our search to study the behaviour of the system for
wider angled membranes in the following section.

3.2. Investigating the full angle domain
We now investigate the full angle domain, and examine the dependency of the optimal
membrane position on the membrane angle. We continue to use h = 0 and κ = 1 in this
section, but consider general values of these in § 4. We present numerical solutions to
(2.21) and (2.22) for p1 in Ω1 and (2.24) and (2.25) for p2 in Ω2 for all values of a and
β in figure 4. Note that β ∈ [0, 1] and a ∈ [β/2, 1 − β/2]. As mentioned in the previous
section, numerical results are difficult to resolve for this system set-up when corners are
present in the domain. We therefore explore the solution landscape for β ∈ [0, 1 − δβ], for
some small δβ > 0 and extrapolate our results to the full domain β ∈ [0, 1]. In this paper,
for all results shown, we take δβ = 0.04. Our domain for a remains the same as before:
a ∈ [β/2 + δa, 1 − β/2 − δa], and we extrapolate our conclusions to a ∈ [β/2, 1 − β/2].

In § 3.1.3 we show that the flux increases with β for small β, and this trend remains
true for larger values of β (figure 4a). Moreover, in the same limit, we also show that the
membrane position that maximises the flux moves away from the centre for increasing
β. This trend continues in the full angle domain presented here; the optimal membrane
position moves significantly off-centre as β increases, bifurcating into two distinct optima
symmetric about the centre of the domain for larger values of β (figures 4(a) and 4(b)).

We define the position corresponding to the maximum achievable flux for a given angle
by amax(β). As β increases, there is a bifurcation point β = βb at which the single,
centred optimal design bifurcates into two off-centre optima, which drift further from
the centre toward the corners of the domain as β increases further (figure 4c). Thus, the
bifurcation point β = βb marks a fundamental change in the optimal filter design. Due
to the reversibility of Stokes flow, if one off-centre optimum exists then a second optimal
configuration must exist in a set-up that is symmetric about a = a∗.

At a second critical value β = βc > βb, the two optimal positions reach the corners of
the physical domain, where they remain as β increases further (figure 4c). We refer to
βb and βc as the bifurcation and critical points, respectively. For β > βb, we define the
two optimal (off-centre) positions by a− and a+ (with a− < a+ and a− + a+ = 1). When
β > βc, and the optimal membrane position consists of one membrane end residing at a
corner of the domain, and we have a− = β/2 and a+ = 1 − β/2.

As βb is the lowest value of β at which there is a local minimum in the flux at a = a∗, and
recalling that the flux is symmetric about a = a∗, βb is implicitly defined by the condition

∂2Q
∂a2 (a∗, βb, κ, h) = 0, (3.5)
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β
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Figure 4. Solutions to (2.21), (2.22) and (2.24), (2.25). Numerical results (black, solid) and asymptotic
solutions from (3.1) and (3.2) (orange, dashed) for β ∈ [0, 1], a ∈ [β/2, 1 − β/2] with κ = 1 and h = 0. The
dash-dotted lines indicate βb and the dotted lines indicate βc. Panel (a) shows the flux Q (2.26) for equally
spaced β ∈ [0, 0.87] inclusive, and (b) gives the contour plot of Q in (a, β)-space. The optimal membrane
position amax corresponding to the maximum flux achievable Qmax (3.6) as a function of angle β are shown in
(c) and (d) respectively.

for a given κ and h. We determine βc by calculating the lowest value of β for which the two
off-centre optima are such that a− = β/2 and a+ = 1 − β/2. Finally, to understand how
the flux varies as these key values of β are crossed, it is helpful to define the maximum
flux achievable over a-space

Qmax(β, κ, h) = max
a

Q(a, β, κ, h), for a ∈ [β/2, 1 − β/2], (3.6)

which occurs at a = amax(β, κ, h).
For a membrane with permeance κ = 1 and thickness h = 0, we see that Qmax increases

as β increases (figure 4d). There does not appear to be any change in the qualitative
behaviour of Qmax around βb, and this is consistent with the definition of βb in (3.5).
That is, as the first and second derivatives of Q with respect to a both vanish at this critical
point, Q is fairly insensitive to a near a = a∗, β = βb. However, as β passes through βc,
there is a change in the qualitative behaviour of Qmax. In particular, the slope of the curve
decreases after this point, although we note that it does remain positive for these parameter
values (κ = 1, h = 0). We will show later in § 4.1 that this is not always the case. Thus
there are diminishing returns for Qmax in terms of increasing β beyond βc.

In figures 4(c) and 4(d) we also present the small-β results derived in § 3.1.1 alongside
the numerical results from the full system. The asymptotic results agree very well with
the numerical results for amax and Qmax up to β ≈ 0.2, and do predict the general trend
thereafter, including the presence and effect of βb and βc.
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0
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0.12

Qmax
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0.2 0.4 0.6 0.8

Increasing κ

β

Figure 5. Maximum flux achievable Qmax given by (3.6) calculated from (2.21), (2.22), (2.24), (2.25) and
(2.26). Results shown as a function of β with h = 0 and κ = 1, 2, 5, 10, 20. The dashed line indicates βc.

The results presented in this section show that angling the membrane away from
horizontal can significantly increase the flux through a direct-flow device for the same
applied pressure difference. Specifically, for a membrane with κ = 1 and h = 0, angling
the membrane away from horizontal can provide a 40 % increase in the maximum
achievable flux (figure 4d). Moreover, we found that, while the optimal position for slightly
tilted angles (with small β) is in the centre of the domain with a = a∗, the optimal position
for increasing membrane angles bifurcates into two off-centre positions that move to the
corner of the domain. Finally, the analysis of this section reveals the optimal set-up that
maximises the flux through the membrane with κ = 1 and h = 0 to be a membrane centred
and diagonal across the full domain (with a = a∗ and β = 1). We now turn to the wider
aim of seeking the maximum achievable flux for a membrane of finite thickness and
varying permeance by varying both the membrane position a and the angle β.

4. Optimal position for a membrane of fixed properties

In this section we address the key motivating aim of determining the position and angle
of a membrane of specified permeance and thickness that maximises the flux. In § 4.1, we
retain our simplification of h = 0 and study membranes with varying permeance. In § 4.2
we relax this condition and examine the full problem with h > 0.

4.1. Vanishingly thin membranes: h = 0
For a vanishingly thin membrane, we seek the optimal position and angle of a membrane
of specified permeance κ . We solve (2.21), (2.22) and (2.24), (2.25) numerically for h = 0,
and examine the flux (2.26) as we vary κ . Recall that the dimensionless resistance is simply
the reciprocal of the permeance: R = 1/κ . Therefore, increasing the permeance decreases
the resistance, and we observe the expected increase in the maximum flux achievable for
a given β (figure 5).

There is a quantitative change in the profiles of Qmax as a function of β for increased
κ (figure 5). For small κ , the flux increases monotonically with β and the optimal flux
is achieved for β = 1 where the membrane is diagonal across the domain and centralised
(a = a∗). For large κ , however, the highest flux is achieved when β < 1.
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Inflow

Outflow

Inflow

Outflow

(b)(a)

Figure 6. Schematics of the two dimensionless set-ups associated with optimal flux. The first, achieved for low
permeances, is a centred membrane diagonal across full domain with β = 1 − h and a = a∗ as shown in (a).
The second is an angled membrane in the corner with β < 1 and a = (β + h)/2 as shown in (b). Note that the
optimal configuration shown in (b) has an equivalent optimal configuration for the same optimal angle β < 1
with a = 1 − (β + h)/2. The full concertinaed device comprises repeated modules, and we illustrate this with
faded schematics for the modules neighbouring the domain of consideration.

To examine at what position a this optimal flux is achieved, in this section we consider
the critical angle βc. We present the analysis of how the corresponding bifurcation angle
βb varies with κ in Appendix B. Recall that, for β ≥ βc, the maximum flux is achieved
when either end of the membrane is positioned in a corner of the domain. We find that
the optimal flux is achieved for angles slightly larger than βc, and thus, for large κ ,
the optimal membrane position involves one end being in a corner of the domain. The
associated optimal angle is predicted by the model equations (2.21), (2.22), (2.24), (2.25)
and (2.26) through maximising Qmax (3.6) as shown in figure 5. This result highlights
the underlying physics in the problem. When optimising the flux, there is an inherent
trade-off between maximising the length of the membrane and maximising the available
space in one subdomain. Maximising the length of the membrane maximises the available
surface area for ease of transport through the domain. Maximising the available space in
either subdomain increases the transmembrane pressure drop. We find that for small κ ,
where the flow resistance is increased, it is more important to maximise the surface area
of the membrane. Thus the optimal set-up is for the membrane to be diagonal across the
full domain, thereby maximising the membrane length (figure 6a). For large κ , however,
the membrane resistance is lower. In this case, it is more important to maximise the
transmembrane pressure drop by shifting the membranes into the corners with increased
available space in either subdomain (figure 6b). Thus, for large κ , the optimal angle is
slightly larger than βc which is due to the trade-off between elongating the membrane and
maximising the available space in either subdomain (figure 5).

4.2. Membranes of finite thickness
We have so far restricted our attention to infinitely thin membranes, but in practice
membranes have a finite albeit small thickness. We now relax this assumption to consider
the effect of membrane thickness on the device behaviour. Hence, the new angle domain is
β ∈ [0, 1 − h]. We solve (2.21), (2.22) and (2.24), (2.25) numerically. As before, to avoid
numerical complications arising from the presence of corners, we solve for β ∈ [0, 1 −
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0
0.04

0.06

0.08

0.10 Increasing h
Increasing h

0.12

0.04
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0.12

0.2 0.4

Qmax

0.6 0.8 0 0.2 0.4 0.6 0.8
β β

(b)(a)

Figure 7. Maximum flux achievable Qmax given by (3.6) calculated from (2.21), (2.22), (2.24), (2.25) and
(2.26). Results shown for h = 0, 0.025, 0.05, 0.075, 0.1 with fixed permeance κ = 1 in (a), and for h = 0.01,
0.02, 0.03, 0.04, 0.05 with κ = 0.01/h (i.e. fixed permeability) in (b).

h − δβ ] and a ∈ [(β + h)/2 − δa, 1 − (β + h)/2 − δa)], for some small δβ, δa > 0, and
extend our conclusions to the full domain with δβ, δa → 0.

In § 4.2.1, we first specify the permeance and focus on the effect of varying h. In § 4.2.2,
we then examine the combined effect of a finite thickness for varying permeance.

4.2.1. Investigating the effect of membrane thickness
We first examine the effect of a finite membrane thickness by varying h while holding
κ fixed. This corresponds to filters with different thicknesses but equal permeance, or
equivalently equal net resistance. A helpful metric for comparison is Qmax(β, κ, h), defined
in (3.6), for varying h. For fixed permeance (and resistance), with κ = 1, the maximum
flux increases monotonically with β and decreases as h increases (figure 7a). Fixing the
resistance isolates the effect of the geometry; as the membrane thickness increases, the
membrane physically takes up more space and consequently inhibits the flow. We then
consider the case where we vary h and set κ = 0.01/h. Experimentally, this corresponds to
comparing membranes made of the same material, so the permeability is the same, but the
permeance or resistance changes accordingly with thickness. Increasing the thickness and
decreasing the permeance (i.e. increasing the resistance) while holding the permeability
constant decreases the maximum flux (figure 7b).

4.2.2. Quantifying the optimal design over experimental parameter space
Finally, we explore the full parameter space to understand what angle and position
maximise the flux through the filter for a membrane of given thickness and permeance.
We address this through consideration of the maximum achievable flux defined by

Q∗
max(κ, h) = max

a,β
Q(a, β, κ, h) for β ∈ [0, 1 − h],

and a ∈ [(β + h)/2, 1 − (β + h)/2],

⎫⎬
⎭ (4.1)

which we say occurs at β = β∗
max and a = a∗

max. Note that our earlier definition of Qmax in
(3.6) was introduced to find the optimal position associated with the maximum achievable
flux for a membrane of specified angle, thickness and permeance. The definition of Q∗

max in
(4.1), however, seeks the optimal angle and position for a membrane of specified thickness
and permeance.
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0 0
0.2

0.4

0.6

Increasing h Increasing h

1.0
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0.1

0.2

0.3

0.4

0.5

10

β∗
max a∗

max

20 30 10 20 30

(b)(a)

κ κ

Figure 8. Angle β∗
max (a) and position a∗

max (b) associated with the maximum achievable flux Q∗
max defined

by (4.1) calculated from (2.21), (2.22), (2.24), (2.25) and (2.26). Results shown as a function of κ for different
thickness h = 0, 0.025, 0.05, 0.075, 0.1.

The optimal angle and position are shown in figure 8. We immediately see that
the profiles are discontinuous and this corresponds to the jump between the optimal
positions depicted in figure 6. For smaller κ , the optimal angle is β∗

max = 1 − h with
the corresponding optimal position at a∗

max = a∗ (figure 8). (In fact, figure 8 shows that
β∗

max = 1 − h − δβ which represents our numerically tested domain β ∈ [0, 1 − h − δβ ].
We extrapolate our conclusions to the domain β ∈ [0, 1 − h].) The set-up with β∗

max =
1 − h is associated with the maximum achievable flux occurring for a centred membrane
diagonal across the domain (as shown in figure 6a). As κ increases, there is a critical value
of κ over which the optimal position jumps from the centre to the corner of the domain
with the optimal angle occurring at β∗

max < 1 − h, which is determined by our model, and
the associated optimal position at a∗

max = (β∗
max + h)/2 (as shown in figure 6b). Sweeping

across the full β-space (shown in figure 7) enables us to draw the conclusion that there
exists a single optimal angle for all values of κ except that at the transition point depicted
by the discontinuity in figure 8(a).

Note that we have, without loss of generality, presented results for the branch of
solutions corresponding to a∗

max = (β∗
max + h)/2 only, but each off-centre optimal position

is associated with a secondary optimal position symmetric about a = a∗, at a∗
max =

1 − (β∗
max + h)/2 for the same β∗

max. Thus, for κ above the critical value, the maximum
flux is achieved for an angled membrane in the corner of the domain and the angle is
determined by our model. Increasing h results in the critical jump occurring for smaller κ

(figure 8).
The maximum achievable flux Q∗

max over a wide range of physical membrane properties
is shown in figure 9. We observe that the global maximum Q∗

max is achieved for h → 0,
κ → ∞, with a horizontal membrane positioned in the corner (figures 8 and 9). Physically,
this corresponds to maximally spaced infinitely thin membranes with zero resistance.
In this case, the flux is maximised due to the pressure drop occurring almost entirely
across the membrane. In practice, however, membrane design is limited in permeance and
thickness. While figure 9 confirms that thinner, more permeable filters allow for greater
flux, it provides a quantitative measure of how to design these filters for given membrane
characteristics.

Importantly, for any thickness and permeance, the maximum flux is achieved either for
a centred membrane diagonal across the domain ((κ, h)-values to the left of the dashed
line in figure 9) or for an angled membrane in the corner of the domain ((κ, h)-values to
the right of the dashed line in figure 9); i.e. the dashed line in figure 9 corresponds to
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–2
0

0.1

0.2

0.3

0.4 0.14

0.02

0 2
log κ

h

Figure 9. Maximum achievable flux Q∗
max in (κ, h)-space defined by (4.1) calculated from (2.21), (2.22),

(2.24), (2.25) and (2.26). The dashed line corresponds to the critical value of κ at which there is a discontinuous
jump from centred membranes to membranes in the corners. To the left of the dashed line, the maximum flux is
achieved at centred membranes diagonal across the full domain; and to the right, the maximum flux is achieved
at angled membranes in the corners of the domain.

the critical value of κ over which there is a discontinuous jump in optimal design. Thus, a
practitioner may use the model developed herein for a membrane of specified thickness and
permeance to find the maximum achievable flux and the required angle and position that
the membrane should take to achieve this flux. Specifically, if the membrane properties
are to the left of the dashed line in figure 9, the optimal configuration is centred and
diagonal across the domain, with angle β∗

max = 1 − h and position a∗
max = a∗ (as depicted

in figure 6a). If the membrane properties are to the right of the dashed line in figure 9,
the optimal configuration is in either corner, and the angle β∗

max associated with maximum
flux is provided by figure 8(a). The resulting optimal position is then a∗

max = (β∗
max + h)/2

(or equivalently a∗
max = 1 − (β∗

max + h)/2) as shown in figure 6(b).

5. Conclusions

In this paper, we studied the steady flow through a concertinaed direct-flow filtration
membrane. The aim of the work was to find the geometry of the filtration membrane
within a single repeating module that maximised the flux for a given pressure drop.
The physical set-up facilitated a systematic asymptotic reduction of the mathematical
system governing the flow. This resulted in a flow problem governed by two coupled
lubrication-type equations. This system was characterised by four dimensionless parameter
groupings, each representing different membrane properties; position a, angle β, thickness
h and permeance κ .

We found that angling the membrane away from horizontal can greatly increase the flux
through a direct-flow filtration device. For example, adjusting the device geometry for an
infinitely thin membrane with fixed permeance κ = 1 can increase the flux through the
device by up to 40 %. Moreover, for this specific membrane, we found that for slightly
tilted membranes (with a small angle) the optimal position is in the centre of the domain.
Increasing the membrane angle, however, results in the optimal position bifurcating to two
off-centre optima which move to the corners of the domain as the angle increases. The
global optimal set-up for this membrane was found to be a centred membrane diagonal
across the full domain.

Extending our results to membranes of general physical characteristics, we found that
there were two optimal membrane configurations. Below a critical permeance threshold,
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which we quantify, the membrane should be placed diagonally in a module in order
to maximise membrane surface area. However, above this critical permeance threshold,
the membrane should be placed in the corner of the module at an angle that depends
on the system parameters, in order to maximise the transmembrane pressure drop. This
discontinuity in the optimal system behaviour is summarised in figure 9, which provides
a guide on which behaviour is optimal for given membrane properties and resulting
maximum flux.

More generally, this work provides an example of a coupled problem in lubrication flow
that exhibits non-trivial bifurcating optima symmetric about the centre of the domain.
Although it is well known that free-boundary lubrication problems can yield interesting
nonlinear results, our work shows that nonlinear outputs can also occur for coupled
lubrication problems with fixed boundaries.

In practice, the filtration device we modelled is used to separate fluid mixtures. In
this paper, we have studied the steady-state system relevant for early-time operation of
newly manufactured filters, before blocking is significant, or for scenarios such as virus
neutralisation where blocking never takes place. There are many applications of filtration,
where later-time transient blocking can change the permeance and effective shape of the
membrane separating the two fluid domains. A natural extension of the work presented
here is to include transient blocking dynamics and study the optimal design of the filtration
device to maximise the lifespan of these filters.

The findings in this paper can be used for any direct-flow filtration device with angled
membranes. Practitioners may use the model presented herein to derive the optimal
configuration for a membrane of specified thickness and permeance corresponding to the
maximum possible flux through the device.
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Appendix A. Asymptotic analysis

A.1. Membranes positioned close to the centre: a = O(1)

Applying the asymptotic expansion (3.1) to the governing equations (2.21) and (2.22) for
p1 and (2.24) and (2.25) for p2, and the membrane position m(z) (2.12), gives the following
leading-order problem:

a3p′′
10 = 3κ(p10 − p20), p10(0) = 1, p′

10(1) = 0, (A1a)

(a − 1)3p′′
20 = 3κ(p10 − p20), p20(1) = 0, p′

20(0) = 0. (A1b)
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We solve the coupled system of ODEs (A1) analytically, to yield

p10 = 1
N

[
a3(1 − a)3 + a6 cosh(M) + (1 − a)6 cosh(M(z − 1))

+ a3(1 − a)3 cosh(Mz) − a3(1 − a)3M(z − 1) sinh(M)
]
, (A2a)

p20 = 1
N

[
a3(1 − a)3 + a6 cosh(M) − a3(1 − a)3 cosh(M(z − 1))

− a6 cosh(Mz) − a3(1 − a)3M(z − 1) sinh(M)
]
, (A2b)

where

κ1 = 3κ

a3 , κ2 = 3κ

(1 − a)3 , M = √
κ1 + κ2,

N =
[
(a6 + (1 − a)6

]
cosh(M) + a3(1 − a)3(2 + M sinh(M)).

⎫⎪⎬
⎪⎭ (A3)

Since this limit is a regular perturbation around β = 0, (A2) exactly solves the full problem
described by (2.21), (2.22) and (2.24), (2.25) for a horizontal membrane.

At O(β), we obtain the following system of ODEs and boundary conditions:[
a3p′

11 + 3a2
(

1
2 − z

)
p′

10

]′ = 3κ(p11 − p21), p11(0) = 0, p′
11(1) = 0,

(A4a)[
(a − 1)3p′

21 + 3(a − 1)2
(

1
2 − z

)
p′

20

]′ = 3κ(p11 − p21), p21(1) = 0, p′
21(0) = 0.

(A4b)

Using variation of parameters, we derive the following analytic solutions to the system
(A4):

p11 = α1(z) + α2(z)z + κ1α3(z) cosh(Mz) + κ1α4(z) cosh(M(z − 1)), (A5a)

p21 = α1(z) + α2(z)z − κ2α3(z) cosh(Mz) − κ2α4(z) cosh(M(z − 1)), (A5b)

where αi(z) = fi(z) + ci for i = 1, 2, 3, 4, with

f1(z) = − 1
M2

∫ z

0
s(κ2F1(s) + κ1F2(s)) ds, (A6a)

f2(z) = − 1
M2

∫ 1

z
(κ2F1(s) + κ1F2(s)) ds, (A6b)

f3(z) = csch(M)

M3

∫ 1

z
cosh(M(s − 1))(F2(s) − F1(s)) ds, (A6c)

f4(z) = csch(M)

M3

∫ z

0
cosh(Ms)(F2(s) − F1(s)) ds, (A6d)

functions F1 and F2 defined as

F1(z) = −3
a

[(
1
2

− z
)

p′
10

]′
, (A7a)

F2(z) = 3
1 − a

[(
1
2

− z
)

p′
20

]′
, (A7b)
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and constants c1, c2, c3, c4 that satisfy
0 = c1 + κ1( f3(0) + c3) + c4κ1 cosh(M), (A8a)

0 = c2 + κ1c3M sinh(M), (A8b)

0 = f1(1) + c1 + c2 − κ2c3 cosh(M) − κ2(c4 + f4(1)), (A8c)

0 = f2(0) + c2 + κ2c4M sinh(M). (A8d)
The system (A8) is derived from applying the boundary conditions in (A4) to (A5).

Since p10 and p20 are given explicitly in (A2) and the system (A8) is linear, the solution
(A5) represents an analytic solution to the O(β) problem. Moreover, we note that the
integrals in (A6) can be evaluated explicitly, so our solution (A5) can be rewritten in
closed form. However, the full expression is unwieldy, and does not provide any additional
physical insight, so we do not present it herein. Hence, we have derived asymptotic
solutions to the system (2.21), (2.22) and (2.24), (2.25) that are accurate up to O(β2).

A.2. Membranes positioned close to the corner: a = O(β)

In this regime we can rewrite the membrane position (2.12) as

m(z) = β
(

A + 1
2 − z

)
, (A9)

where A = a/β and simply consider the single limit β → 0 with A = O(1). Using (A9),
the governing equations (2.21) and (2.22) for p1 and (2.24) and (2.25) p2 become

β3
[
p′

1(A + 1
2 − z)3

]′ = 3κ(p1 − p2), p1(0) = 1, p′
1(1) = 0, (A10a)

[
p′

2(β(A + 1
2 − z) − 1)3

]′ = 3κ(p1 − p2), p2(1) = 0, p′
2(0) = 0. (A10b)

In the limit of β → 0, the majority of the pressure drop across the system occurs near
z = 0. That is, there is a boundary layer of width O(β3/2), where p1 drops from 1 to being
of O(β3/2), and p1 = O(β3/2) away from this boundary layer. Moreover, p2 = O(β3/2)
everywhere in Ω2. To derive the solution in this boundary layer we introduce the boundary
layer variable

z = β3/2Z, (A11)
which scales the system of ODEs (A10) to obtain the leading-order boundary layer
problem (

A + 1
2

)3 d2p1

dZ2 = 3κ(p1 − p2), p1(0) = 1, p′
1(∞) = 0, (A12a)

−d2p2

dZ2 = 0, p2(∞) = 0, p′
2(0) = 0, (A12b)

where the conditions as Z → ∞ arise from matching into the outer regions where p1, p2 =
O(β3/2). The system (A12) is solved by

p1 = exp

⎡
⎢⎣−

⎛
⎜⎝ 3κ(

A + 1
2

)3

⎞
⎟⎠

1/2

Z

⎤
⎥⎦ = exp

⎡
⎢⎣−

⎛
⎜⎝ 3κ(

a + 1
2β

)3

⎞
⎟⎠

1/2

z

⎤
⎥⎦ , (A13a)

p2 = 0, (A13b)

and we note that the O(β3/2) terms can be calculated if required.
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Figure 10. Phase diagram showing where one optimum membrane configuration exists in Λ1 and where
two optimum configurations exist in Λ2 in (β, κ)-space; Λ2 indicates the values (β, κ) for which
∂2Q/∂a2(a, β, κ, 0) > 0, where Q is calculated from (2.26) using the solutions from (2.21), (2.22) and (2.24),
(2.25). The numerical results show the two shaded regions, and the analytical results are used to plot the
black-dashed curve between them.

Appendix B. Bifurcation point

In this appendix, we consider infinitely thin membranes with h = 0, and examine the
maximum flux achievable for membranes of varying permeance κ . Specifically, we are
interested in the values of β and κ for which there exists a bifurcation point βb. This
is calculated by formulating the flux function Q(a∗, β, κ, 0) from (2.26) and deriving the
domain corresponding to ∂Q2/∂a2(a∗, β, κ, 0) > 0, for which a minimum exists at a = a∗
and consequently where two distinct optima co-exist. Thus we construct a phase diagram
in (β, κ)-space (figure 10). We denote the domain in which one finds a single optimal
position by Λ1 and that in which there are two optimal positions by Λ2.

For permeances κ � 1.2, the presence of the Λ2 region indicates that there are two
distinct optimal positions for the membrane angles β � 0.96 (figure 10). For 0.96 �
β ≤ 1, there is a single optimal position. This is because larger values of β provide
tighter constraints on the membrane position within the domain, and so only one position
is possible, namely the centred membrane, a = a∗. For permeances κ � 1.2 there is
a distinctive curve separating the two regions, across which a single optimal position
bifurcates into two off-centre optimal positions. Thus we conclude that βb exists only
for small κ � 1.2.

We also show the equivalent analytic results from § 3.1.1 in figure 10. Using the analytic
expressions for the pressure in (3.1), we are able to calculate an explicit form for the
curve ∂Q2/∂a2(a∗, β, κ, 0) = 0, which we show in figure 10 as a dashed line. This shows
excellent agreement with the numerical results even up to intermediate values of β, despite
the asymptotic results only being valid for small β. The asymptotic results do diverge
significantly after β � 0.96, since the asymptotic results do not account for the constraints
in membrane position that occur at larger values of β.
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