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Abstract Cell proliferation within a fluid-filled porous tissue-engineering scaffold depends on a
sensitive choice of pore geometry and flow rates: regions of high curvature encourage cell proliferation,
while a critical flow rate is required to promote growth for certain cell types. When the flow rate is
too slow the nutrient supply is limited; too fast and cells may be damaged by the high fluid shear
stress. As a result, determining appropriate tissue-engineering-construct geometries and operating
regimes poses a significant challenge that cannot be addressed by experimentation alone. In this
paper, we present a mathematical theory for the fluid flow within a pore of a tissue-engineering
scaffold, which is coupled to the growth of cells on the pore walls. We exploit the slenderness of
a pore that is typical in such a scenario, to derive a reduced model that enables a comprehensive
analysis of the system to be performed. We derive analytical solutions in a particular case of a
nearly piecewise constant growth law and compare these with numerical solutions of the reduced
model. Qualitative comparisons of tissue morphologies predicted by our model, with those observed
experimentally, are also made. We demonstrate how the simplified system may be used to make
predictions on the design of a tissue-engineering scaffold and the appropriate operating regime that
ensures a desired level of tissue growth.
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1 Introduction and motivation

In vitro tissue engineering aims to create functional tissue and organ samples external to the body to
replace damaged or diseased tissues and organs needed in multiple clinical therapies [17,27]. By using
autologous cell sources, often seeded within a porous scaffold that acts as a template for the devel-
oping tissue, tissue-engineered products have many advantages over traditional approaches such as
donor tissue and organ transplantation that can elicit an adverse immune response. The development
of the growing tissue construct – the combination of scaffold, cells, and extracellular matrix (ECM)
with biological cues – often occurs within a bioreactor. In perfusion-bioreactor systems, a flow of
culture medium (nutrient-rich fluid) is driven through the porous scaffold. This serves two purposes.
Firstly, the flow imposes fluid mechanical forces (shear stress, pressure) on mechanosensitive cells
found in, for example, bone, cartilage, muscle, liver and blood vessels [18]. The mechanical envi-
ronment that cells experience affects their differentiation, proliferation, orientation, gene expression
and a host of other activities: the mechanical stimuli are integrated into the cellular response via a
process known as mechanotransduction. For example, fluid shear stress has been shown to enhance
extracellular matrix formation in vitro [2, 11,38], and stimulation by hydrostatic pressure promotes
stem cell differentiation down the chondrogenic lineage to form cartilaginous tissues [6]. Additionally,
fluid flows are employed to ensure adequate solute delivery to the cells within the porous scaffold.
A variety of dynamic flow-perfusion bioreactors have been developed, including direct and free-flow
perfusion systems, and the Rotary Cell Culture System (RCCS) (see [17] and references therein). By
selecting an appropriate bioreactor system, tissue engineers aim to provide the optimum stimulatory
environment for in vitro tissue growth to engineer a tissue construct that remains functional for
significant periods of time.

In addition to the selection of perfusion bioreactor, the scaffold properties are of central impor-
tance to the tissue engineering approach. Scaffolds with a highly porous, interconnected structure
encourage cell penetration, vascularization of the construct from the surrounding tissue (when im-
planted in vivo) and efficient mass transfer of nutrients and waste products. The scaffold material
must be compatible with the host material, so that it does not elicit an adverse immune response
upon implantation [29]. The scaffold plays the role of the extracellular matrix (ECM) in tissues and
defines its mechanical properties (e.g., the collagen and elastin fibres present in ECM, or the calcium
hydroxyapatite that lends bone tissue its rigidity). One challenge is to select the appropriate material
properties for the scaffold (porous, poroelastic, viscoelastic, etc.) to ensure that the cells experience
the appropriate mechanical environment when the construct is subjected to an applied load. Another
challenge is to ensure that the scaffold is sufficiently porous without compromising its mechanical
integrity. Additionally, the rates of scaffold degradation (e.g., due to hydrolysis) must be matched to
the rate of nascent tissue growth in vivo, so that once the construct is in vivo the artificial scaffold
is replaced by native ECM and the mechanical integrity of the construct is maintained. Finally,
both topographical and biochemical characteristics of the porous scaffold have been exploited to
enhance cell–scaffold adherence, and to direct cell movement or differentiation [29,36]: e.g., scaffolds
can deliver growth factors or DNA [35], or contain specific cellular recognition molecules [7]. For a
comprehensive discussion of scaffolds for tissue engineering applications see [1, 9, 10] and references
therein.

The motivation for this work is the experimental observation that tissue growth is strongly af-
fected by the geometrical features of the pores in an artificial 3D tissue scaffold [28], which has
formed the focus of many recent studies (see, for example, [3, 12, 14, 37], among many others). For
example Bidan et al. [3] emphasized how geometric constraints may guide tissue formation in vitro
and showed that optimizing scaffold architectures may improve tissue formation independently of
the scaffold material used. Furthermore Werner et al. [37] systematically investigated the influence
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of 3D surface curvature on cell and nucleus morphology and the subsequent effect on the migratory
and differentiation behaviour of human mesenchymal stem cells. Key to successful tissue engineering
is the coordination of the various cellular cues to enhance tissue growth. Mechanistic mathemati-
cal modelling has an important role to play in this regard, elucidating mechanisms and providing
quantitative information about the cellular microenvironment (e.g., the shear-stress field) that is
not straightforward (or even possible) to measure experimentally. Mathematical models may be
validated against measurable experimental data, such as perfusion flow rate or bioreactor outlet
nutrient concentration, and then exploited to reveal details of the mechanical and biochemical fields
within the scaffold and bioreactor system. The quantitative models can be used to predict the out-
come of a particular experimental scenario (limiting the need for numerous and expensive bioreactor
experiments, potentially saving time and resources) and to optimize tissue-engineering protocols.

There has been a large body of work using mathematical models to understand the relationship
between flow, associated transport, and tissue growth in perfusion-bioreactor systems with a porous
scaffold. Numerous macroscale continuum models for bioactive porous media have been proposed for
artificial tissue growth, with many accounting for the influence of fluid shear stress on tissue growth
(see [19] and references therein). Multiphase models account for multiple phases explicitly (e.g., fluid,
scaffold, cells, etc.). The governing equations are derived from conservation of mass and momentum
for each phase, and appropriate constitutive laws are specified to capture the interactions between
the phases, enabling a wide variety of biological systems to be modelled [20, 22]. An alternative
approach is to include the effect of cell growth on the fluid flow implicitly, by prescribing the scaffold
porosity to be a function of cell density, which satisfies a conservation-of-mass equation [5, 24, 25,
32]. Fluid flow through the porous scaffold is then governed by Darcy’s law. In these macroscale
approaches, constitutive assumptions relate microscale processes, such as cell growth, to macroscale
parameters. Alternatively, homogenization techniques have been proposed to capture the precise
relationship between macroscopic parameters in continuum models, such as porosity, and pore-scale
growth and flow processes [21, 23, 33]. As an alternative to continuum models, network models
have been proposed for artificial tissue growth, particularly where the scaffold biomaterial contains
relatively few pores [15, 16]. These continuum and network approaches complement computational
and algorithmic approaches employed to model various aspects of tissue engineering; see [8] for a
comprehensive review.

The above studies consider tissue growth on the scale of the tissue construct. Although there are
studies that have mapped the shear stress at the pore scale for realistic flows through a perfusion
bioreactor (see e.g. [26]), to the best of our knowledge, no mathematical studies have considered the
interplay between fluid shear stresses and pore curvature on cell growth at the scale of an individual
pore. In this paper, we will focus on the combined roles of fluid shear stress and topographical cues,
in particular pore curvature, on tissue growth within a single pore of a scaffold. The paper is laid out
as follows. In §2 we introduce a mathematical model for flow through a pore of a tissue-engineering
scaffold. The governing equations describing the flow of nutrient-rich solution and tissue growth are
presented §2.1 and §2.2 respectively. The model is analyzed in §3 by using an asymptotic approach
exploiting the small aspect ratio of the pore. Asymptotic and numerical techniques are used to obtain
solutions for the tissue growth in §4. We also discuss which initial internal pore morphology gives
more tissue growth in §4.4. Finally we conclude in §5 with a discussion of our model and results in
the context of pores within a real tissue-engineering scaffold.
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2 A mathematical model for flow within a scaffold pore

We consider a single scaffold pore lined with cells, through which nutrient-rich culture medium flows.
Over time, the cells proliferate and the pore will constrict as the tissue layer lining it thickens. We
consider the dynamics of the system on the timescale of cell proliferation, as the cells lining the pore
wall grow on a much longer timescale than that associated with the transport of fluid through the
pore (see values presented in Table 1 later). Thus, the pore wall may be considered stationary when
considering the fluid flow; a quasi-static assumption.

The fluid–cell-layer interface is of length L̂ and has typical radius R̂ (hats will be used through-
out to distinguish dimensional quantities from their dimensionless equivalents). We define the aspect
ratio ε = R̂/L̂ � 1. We will explore how modifications in fluid–cell-layer interface geometry influ-
ence the resulting tissue growth. We will assume that the initial cell layer is sufficiently thin that
its internal configuration reflects the underlying substrate geometry, which we assume to be ap-
proximately circular with small azimuthal and axial variation. We consider the regime in which the
fluid–cell-layer interface remains nearly circularly cylindrical, so that deviations of the circumference
geometry from circular are small (see figure 1).

Nutrient is assumed to be present in excess so that no significant depletion occurs over the
length of the pore. In many applications the flux of fluid is held constant to ensure a continued
supply of nutrient [22, 32]; we assume this throughout. Specifically, we prescribe the inlet flux Q̂i
and the downstream pressure P̂d. The nutrient-rich culture medium is modelled as an incompressible
Newtonian viscous fluid of (dynamic) viscosity µ̂ and density ρ̂.

We work in cylindrical coordinates (r̂, θ, ẑ), where ẑ is aligned with the pore axis, and ei corre-
spond to the unit vectors in the i direction. The fluid–cell-layer interface is described by r̂ = â(θ, ẑ, t̂),
and the initial configuration r̂ = â(θ, ẑ, 0) is prescribed.

2.1 Fluid dynamics

The fluid flow has velocity û = ûer̂ + v̂eθ + ŵeẑ and pressure p̂. Neglecting flow inertia within the
pore [4, 13], we assume the flow is governed by the Stokes equations. We introduce the following
scalings:

û =
Q̂i

πR̂2
u =

Q̂i

πR̂2
(εu, εv, w), p̂ =

µ̂L̂Q̂i

πR̂4
p+ P̂d, (r̂, â, ẑ) = L̂(εr, εa, z). (1)

The dimensionless governing flow equations are then
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holding in the flow domain 0 ≤ r ≤ a(θ, z, t), 0 ≤ z ≤ 1. These equations must be solved subject to
the following boundary conditions:

u = v = w = 0 on r = a(θ, z, t), (6)
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Fig. 1 Schematic diagram of a possible geometry of a tissue-lined pore within a tissue-engineering construct.

enforcing no slip and no penetration at the fluid–cell-layer interface, and the symmetry conditions

u = v =
∂w

∂r
= 0 at r = 0. (7)

We assume that the (dimensionless) pressure drop across the length of the pore is given by ζ(t), which
will increase monotonically to sustain the constant flux as the pore constricts under cell growth. The
system is thus closed by applying the boundary conditions

p|z=0 = ζ(t), p|z=1 = 0, (8)

and enforcing constant fluid influx,∫ 2π

0

∫ a

0

w(r, θ, 0, t)r drdθ = π. (9)

Note that setting ζ(t) = 1 in (8), and dropping the condition (9), describes the alternative scenario
in which the pressure drop is constant.

2.2 Tissue growth

For the cell proliferation (tissue growth) within the pore, we prescribe a phenomenological law based
on experimental observations. Specifically, cells proliferate more quickly when exposed to higher shear
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stresses at their surface (mechanotransduction) and in regions where the underlying substrate has
higher curvature (see, for example, O’Dea et al. [20] and references therein; and Rumpler et al. [28]).
In the original dimensional variables, we propose

∂â

∂t̂
= −λ̂κ̂f(σ̂ŝ). (10)

Here, κ̂ = ∇̂·n is the mean curvature, with ∇̂ the dimensional gradient operator and n the unit
normal to the fluid–cell-layer interface (in the direction pointing into the fluid), given by

n =
∇̂(r̂ − â)

|∇̂(r̂ − â)|
. (11)

The characteristic growth rate (m2s−1) is given by λ̂ and the function f captures the specific de-
pendence of tissue growth on the total fluid shear stress at the fluid–cell-layer interface, σ̂ŝ. We will
explore physically realistic expressions for f in §4 and discuss the limitations of the growth-law (10)
in the Conclusions section, §5.

Without the shear stress dependence (f(σ̂ŝ) = constant) (10) is precisely the growth law consid-
ered by Rumpler et al. [28]. Note also that, for cylindrical pores, κ = 1/a and (10) then implies that
the rate of change of tissue volume depends only on shear stress, i.e.,

d

dt̂

(
π(â2|t̂=0 − â

2)
)

= 2πf(σ̂ŝ). (12)

At the fluid–cell-layer surface, the stress vector τ̂ is given by

τ̂ = σ̂ · n, (13)

where

σ̂ = −p̂I + µ̂

(
∇̂û+

(
∇̂û
)T)

(14)

is the Cauchy stress tensor for the fluid, where I is the identity matrix. The magnitude of the stress
vector in the normal direction is given by

σ̂n = τ̂ · n. (15)

The total shear stress at the fluid–cell-layer interface, σ̂ŝ, is then given by

σ̂ŝ =
√
τ̂ · τ̂ − σ̂2

n. (16)

Using the non-dimensionalization presented in (1) together with the additional scales
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gives the dimensionless growth law
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The unit normal to the fluid–cell-layer interface, using (11), is given in dimensionless form by
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3 Model analysis

3.1 Asymptotic ansätze

The full system outlined in §2 can be solved numerically for a specified growth function f . How-
ever, this would be computationally costly, limiting the parameter ranges that can be explored and
affording only limited insight into the effects of model parameters. We therefore take an alternative
asymptotic approach, exploiting the smallness of the typical pore aspect ratio, ε = R̂/L̂ � 1. This
enables us to make analytical progress, leading to a more tractable model, which can be solved
cheaply to provide insights into the dynamics of the system.

In addition to the assumption of small pore aspect ratio, we assume that the initial cell-layer is
sufficiently thin that its internal configuration reflects the underlying substrate geometry, which we
assume to be approximately circular with small azimuthal and axial variation. This motivates rele-
gation of spatial variations in the fluid–cell-layer interface to first (axial) and second (azimuthal and
axial) order in the aspect ratio. Below we find that the leading-order fluid velocity is unidirectional
and independent of the axial coordinate z. As a result, the leading-order shear stress at the fluid-
cell-layer interface is independent of z. We make the quasi-static assumption of slow tissue growth
compared with the timescale of nutrient transport through the scaffold, and the further assumption
that there is a plentiful supply of nutrient so that all parts of the growing tissue experience the
same concentration. As a result, the cell layer grows in a spatially uniform manner with time to
leading order in the pore aspect ratio. Continuing the analsis to higher order in the aspect ratio we
determine the dependence of the tissue growth on the axial and azimuthal coordinates at first and
second order in the pore aspect ratio respectively.

We therefore assume that the fluid–cell-layer interface may be expressed as

a(θ, z, t) = a0(t) + εa1(z, t) + ε2a2(θ, z, t) +O(ε3). (20)

We further assume that a2 is of the form

a2(θ, z, t) = Λ2(z, t) cosnθ + Υ2(z, t), (21)

where Λ2(z, t) and Υ2(z, t) are functions to be determined and n is an integer. This form corresponds
to periodic perturbations of the pore from a circular cross-section that has n lobes. While this ansatz
clearly imposes constraints on the type of tissue growth we study, we will find that this strikes a
balance between allowing us to make substantial analytical progress while retaining a suitable level
of generality to the form of the cross-sectional profile.

We assume that the initial fluid–cell-layer interface shape a(θ, z, 0) is given, then determine its
subsequent evolution via equation (18).

In the following section we pose asymptotic expansions of the form

u = u0 + εu1 + ε2u2 + · · · , (22)

and similarly for v, w, p, ζ, σs and κ, and systematically examine the system at each order to
determine reduced equations.

3.2 Asymptotic analysis for the flow

3.2.1 Leading-order analysis

For the fluid–cell-layer interface configuration (20), the flow will be independent of θ to leading order
in ε. Substituting the asymptotic expansions (22) into equations (2)–(5) and conditions (6)–(9) and
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retaining leading-order terms gives a system of equations for the leading-order velocities, u0, v0
and w0, pressure p0, and ζ0 (the leading-order pressure at the pore inlet, determined as part of the
solution in our specified-flux scenario):

u0 = 0, v0 = 0, w0 =
ζ0
4

(a20 − r2), p0 = ζ0(1− z), ζ0 =
8

a40
. (23)

3.2.2 First-order analysis:

At O(ε), based on the ansatz (20), we seek a θ-independent solution to the governing equations,
finding

u1 =
∂a1
∂z

ζ0
4a0

r
(
a20 − r2

)
, v1 = 0, w1 =

a1ζ0
2a0

(
2r2 − a20

)
, (24)

p1 = −4ζ0
a0

∫ 1

z

a1(z̃, t) dz̃, ζ1 = −4ζ0
a0

∫ 1

0

a1(z, t) dz. (25)

3.2.3 Second-order analysis:

Considering equation (4) at O(ε2) motivates seeking a solution w2 of the form

w2 =

[
Λ2

2
a1−n0 rn cosnθ + w̃2(r, z, t)

]
ζ0. (26)

Using (4) and (6), we find
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)
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2
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Imposing the boundary conditions (6)–(8) and the flux condition (9) gives, after some manipulation,

a40
4
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and the axial velocity is given by

w2 =

[
Λ2

2
a1−n0 rn cosnθ +

1
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(
−3a20a

2
1 + a30Υ2 −

a41
4

)
(r2 − a20)− 7

4
a21 +

a0Υ2
2

]
ζ0. (30)

Note that u2 and v2 may also be determined, but are not required in the analysis that follows.

3.2.4 Summary

The flow within the pore defined by

r = a0(t) + εa1(z, t) + ε2(Λ2(z, t) cosnθ + Υ2(z, t)) +O(ε3), 0 ≤ z ≤ 1, (31)

and driven by constant flux, is

u = (εu, εv, w) = (ε2u1 +O(ε3), O(ε3), w0 + εw1 + ε2w2 +O(ε3)), (32)

where w0, u1, w1 and w2 are given by (23), (24) and (30). The corresponding pressure drop between
z = 0 and z = 1 is ζ = ζ0 + εζ1 + ε2ζ2 + . . ., where ζ0, ζ1, ζ2 are given by (23), (25) and (29)
respectively.
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3.3 Asymptotic analysis for the tissue growth

Equation (19) yields the asymptotic expansion of the unit normal,

n =
[
er − ε2

a2θ
r
eθ − ε2a1zez

]
r=a0

+O(ε3). (33)

Substituting (17), (32) and (33) into (16), we obtain the dimensionless shear stress at the fluid–cell-
layer interface as

σs(θ, z, t) = σs0(t) + εσs1(z, t) + ε2(σs2a(z, t) cosnθ + σs2b(z, t)) +O(ε3), (34)

where

σs0 =
a0
2
ζ0, σs1 = 2a1ζ0, σs2a =

nΛ2ζ0
2

, σs2b =
1

a30

(
−6a20a

2
1 + 2a30Υ2 −

a41
2

)
ζ0. (35)

The dimensionless mean curvature is given by

κ = κ0(t) + ε2κ2(z, t) cosnθ +O(ε3), (36)

where

κ0 =
1

a0
, κ2 =

n2Λ2

a20
. (37a,b)

We integrate the growth-law equation (18), to yield an explicit expression for the fluid–cell-layer
interface shape,

a(θ, z, t) = a(θ, z, 0)−
∫ t

0

κ(θ, z, t′)f(σs(θ, z, t
′)) dt′. (38)

Substituting our asymptotic expansions for a, σs and κ, equations (20), (34) and (36) respectively,
into (38), gives

a0(t) = a0(0)−
∫ t

0

κ0(τ)f(σs0(τ)) dτ, (39)

a1(z, t) = a1(z, 0)−
∫ t

0

κ0(τ)σs1(z, τ)f ′(σs0(τ)) dτ, (40)

Λ2(z, t) = Λ2(z, 0)−
∫ t

0

[
κ2(z, τ)f(σs0(τ)) + κ0(τ)σs2a(z, τ)f ′(σs0(τ))

]
dτ, (41)

Υ2(z, t) = Υ2(z, 0)−
∫ t

0

κ0(τ)
[
σs2b(z, τ)f ′(σs0(τ)) +

σ2
s1(z, τ)

2
f ′′(σs0(τ))

]
dτ. (42)

Here, primes denote differentiation with respect to the argument and arise due to a Taylor expansion
of f , while σs0, σs1, σs2a, σs2b, κ0 and κ2 are given by (35) and (37).
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Fig. 2 Growth function f defined in (43) that appears in the growth law (18), with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15
for different values of m.

4 Results

In this section we present simulations of the model (39)–(42) for a physically realistic growth law.
Specifically, we choose f (see equation (18)) to be of the form:

f(x) = F1 + (F2 − F1)

[
1 + tanh(m(x− σ1))

2

]
− F2

[
1 + tanh(m(x− σ2))

2

]
, (43)

where F1 < F2, σ1 < σ2 and m� 1. Based on the shear-stress scaling in (17), σ1 and σ2 will typically
be order-one quantities [28]. For large values of m, this corresponds to a function that has three
regions in which it is approximately constant, connected by rapid but smooth transition regions (see
figure 2). Similar constitutive laws have been considered elsewhere (see, for example [15,16,22]). This
captures low growth at small shear stresses (f ≈ F1 for σ < σ1), enhanced growth at intermediate
shear stress (f ≈ F2 > F1 for σ1 < σ < σ2), and the adverse impact of high shear stress on growth
(f ≈ 0 for σ > σ2). We note that our analysis readily generalizes for non-zero growth, or even
negative growth (capturing cell death and degradation), for high stresses, but we do not consider
this here. We note that, as m becomes large, gradients in f become large (order m). However, our
Taylor series expansion in (39)–(42) remains valid, since the window over which the gradient is large
is only of width 1/m. Thus, our asymptotic expansion in ε holds, irrespective of the size of m.

From equations (23) and (35), σs0 = 4/a30 and since the initial leading-order term for the fluid–
cell-layer interface position a0(0) is prescribed, the leading-order shear stress, σs0, is known initially.
Therefore, in order to observe the transition between the different growth regimes, we investigate
two possible scenarios for σ1 and σ2:

– Case (i): σ1 and σ2 are chosen such that σs0(0) < σ1 < σ2.
– Case (ii): σ1 < σs0(0) < σ2.

In Case (i) tissue growth begins in the first (low growth-rate) phase at a rate F1. The tissue
growth leads to pore shrinkage, hence (with the imposed constant fluid flux), increased shear stress.
The growth rate thus transitions into the second phase, where growth occurs at a higher rate F2,
before finally transitioning into the third phase, where growth ceases. In Case (ii), tissue growth
starts in the second phase (at a rate F2) and, as shear stress increases, moves into the third phase,
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where growth stops. Note that for most of our simulations, we choose the values F1 = 1, F2 = 3,
σ1 = 7 and σ2 = 15 for the growth function f given by (43). How the choice of these parameters
affects model results is discussed further below.

Parameter Description & formula Typical value

Q̂i Inlet flux 1 ml/min

R̂ Fluid–cell-layer interface radius 500 µm

L̂ Fluid–cell-layer interface length 2 mm

λ̂ Characteristic growth rate 3.6× 10−14 m2/s

Wall growth time scale, R̂2/λ̂ (see (18)) 80 days

Fluid flow time scale, πR̂2L̂/Q̂i 0.05 s

Shear stress scale, µ̂Q̂i/(πR̂
3) 0.05 Pa

ε Dimensionless fluid–cell-layer interface aspect ratio 0.05− 0.5

Table 1 Dimensional and dimensionless parameters and approximate values (from [28, 34]). All parameters depend

on the specific application; here, sample values have been taken, and λ̂ was extracted from the gradient of projected
tissue area versus time graph in figure 4(b) of [28].

Our model contains two dimensionless geometrical parameters: the pore aspect ratio, ε, and the
azimuthal wavenumber n that appears in the perturbation a2 in equation (21). The pore aspect
ratio, ε, is unknown for the experiments of [28] and varies between scaffolds: here we set ε = 0.2 for
most of our simulations to highlight more clearly the effects of pore shape on the tissue growth in
the θ direction. This appears to be a reasonable choice, based on the qualitative comparison made
in Figure 7 later. We consider a range of positive integer values for n to gain insight into the role it
plays in the total amount of tissue growth and final patterns obtained.

4.1 Case (i): σs0(0) < σ1 < σ2

While the system (39)–(42) may be readily solved numerically for any suitably smooth differentiable
function f , we begin by considering the specific functional form of f , given by (43), when m→∞.
This corresponds to the case where the tissue growth rates undergo jump discontinuities at critical
values of the shear stress. We can then solve the system analytically for the three separate constant-
growth-rate regions corresponding to σs < σ1 (when f = F1), σ1 < σs < σ2 (when f = F2),
and σs > σ2 (when f = 0). Finally, we connect these regions to determine the full solution. This
analytical approach provides physical insight into the parametric dependence of the system growth.

From equations (23) and (35), σs0 = 4/a30, therefore (37), (39) and (43) give

a0(t) =
√
a20(0)− 2F1t for 0 ≤ t < t∗01, (44)

when σs0(0) < σ1. Here t∗01 is the time at which σs0 = σ1, determined by a0(t∗01) = (4/σ1)1/3, and
so may be explicitly written as

t∗01 =
a20(0)− (4/σ1)2/3

2F1
. (45)

At this time, the cell growth transitions into the second phase, where σ1 ≤ σs0 < σ2. Equation (39)
then gives

a0(t) =
√
a20(0)− 2(F1 − F2)t∗01 − 2F2t for t∗01 ≤ t < t∗02, (46)
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where a0(t∗02) = (4/σ2)1/3 and

t∗02 =
a20(0)− 2(F1 − F2)t∗01 − (4/σ2)2/3

2F2
. (47)

Equation (47) provides an explicit prediction for the time at which tissue growth stops and its
dependence on the model parameters σ1, σ2, F1 and F2 in the limit m→∞. We note that, when we
substitute for t∗01 using (45), there is a rather complex dependence on each of the parameters that
appears in our tissue-growth ansatz, (43). However, importantly, order-one changes in any of these
parameters will lead to order-one changes in the time taken for the tissue growth. This highlights
the need to determine the value of these parameters for a given experimental scenario if this model
is to form a predictive tool. We emphasize that in the subsequent examples, the values taken for
these parameters are illustrative, but give qualitatively similar behaviour to results in the literature.
Repeating the previous procedure for t ≥ t∗02, we obtain the leading-order fluid–cell-layer interface
position:

a0(t) =


√
a20(0)− 2F1t if 0 ≤ t < t∗01,√
a20(0)− 2(F1 − F2)t∗01 − 2F2t if t∗01 ≤ t < t∗02,

(4/σ2)
1/3

if t ≥ t∗02.

(48)

We thus see that, to leading order, the position of the fluid–cell-layer interface is (4/σ2)1/3. This
means that, for a given underlying pore structure, the total amount of tissue grown is independent
of F1, F2 and σ1. These additional parameters only control the rate at which the final state is
approached. Note that when substituting the functional form of f defined in (43) in equations (40)
and (42) we find that a1 and Υ2 do not depend on time and therefore retain their initial values
throughout, i.e. a1(z, t) = a1(z, 0) and Λ2(z, t) = Λ2(z, 0). (This is because the integrals in (40) and
(42) involve first and higher derivatives of the growth function f , which are thus zero.) This allows
for the possibility of axial variations in the equilibrium fluid–cell-layer interface.

Following a similar process to that used above to determine a0, Λ2(z, t) may be found from (35),
(37), (41) and (43) as

Λ2(z, t) =


Λ2(z, 0)

[
1− 2F1t/a

2
0(0)

]n2/2
if 0 ≤ t < t∗01,

Λ2(z, 0)
[
1− (2(F1 − F2)t∗01 − 2F2t)/a

2
0(0)

]n2/2
if t∗01 ≤ t < t∗02,

Λ2(z, 0)
[
1− (2(F1 − F2)t∗01 − 2F2t

∗
02)/a20(0)

]n2/2
if t ≥ t∗02.

(49)

Thus, the evolving cross-sectional profile of the tissue structure is given by

a(θ, z, t) = a0(t) + εa1(z, 0) + ε2
(
Λ2(z, t) cos(nθ) + Υ2(z, 0)

)
, (50)

where a0(t) and Λ2(z, t) are given by (48) and (49), respectively. Note that if the nutrient solution
is supplied under conditions of specified pressure drop rather than specified flux (so that ζ(t) = 1),
then an identical analysis holds, except with

t∗01 =
a20(0)− 4σ2

1

2F1
, t∗02 =

a20(0)− 2(F1 − F2)t∗01 − 4σ2
2

2F2
. (51)

We now compare the above (rather general) analytical solution with numerical simulations to
the system (39)–(42) in the appropriate parameter regimes in the following analysis. We relax our
assumption of m→∞ in the expression for the growth function f given in (43) and consider finite
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Fig. 3 Solutions to (39) and (41) for a0 and Λ2 in the expression (20) for the fluid–cell-layer interface, for Case (i),
§ 4.1. Here, ε = 0.2, n = 4; the initial conditions are as in (52) with a0(0) = 0.9, a1(z, 0) = −z−0.5, Λ2(z, 0) = −z + 2,
Υ2(z, 0) = −z + 2 and growth function f given in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15. The black graphs
in subfigure (a) show the numerical solution for a0 for several different values of m, while the analytical solution
(m → ∞) is given by the red dashed graph (see (48)). Subfigure (b) shows Λ2(z, t) at several different times, where
black and red graphs are numerical (for m = 1000) and analytical (m→∞) solutions, respectively. Here, tf = 0.25 is
chosen to be sufficiently large that the system has reached an approximate steady state and tissue growth stops.

values of m, so that the tissue growth transitions smoothly between the three growth rate regions
as shear stress increases. We first consider an initial fluid–cell-layer interface that is cylindrical to
leading order, but for which higher-order corrections are all chosen to be linearly decreasing along
the pore axis (see (31)):

a0(0) = 0.9, (52a)

a1(z, 0) = −z − 0.5, (52b)

Λ2(z, 0) = −z + 2, (52c)

Υ2(z, 0) = −z + 2. (52d)

We choose σ1 such that the initial leading-order shear stress σs0(0) < σ1, and so, as the fluid–cell-
layer grows, with attendant increase in shear stress, we sweep through all three regions of the growth
function f , given by (43).

In the simulation illustrated in figure 3, the wavenumber n = 4 is used in the azimuthal per-
turbation to the fluid–cell-layer interfacial profile (see (21)) and the initial fluid–cell-layer interface
configuration is given by equations (52). The black curves in figure 3(a) show the numerical solution
to (39) for the leading-order fluid–cell-layer interface a0(t) versus time t, for several different values
of m, while the red graph shows the analytical solution (see (48)). Our results here confirm that, as
the value of m increases, the numerical solution to (39) converges to the analytical solution for a0
in (48). Furthermore, figure 3(b) confirms that when m � 1 (m = 1000 is used here), the numeri-
cal solution to (41) for Λ2 is almost identical to the analytical solution in (49). Therefore, for the
remainder of the paper we use the analytical solutions (m→∞) to (39)–(42) for both Case (i) and
(ii).

Figure 4 illustrates the analytical results to (39)–(42) (m → ∞) as obtained in (44)–(50) for
the initial fluid–cell-layer interface configuration in (52) (the results of figure 4(a,c) were already
shown in figure 3 above, but we now discuss them in more detail). The leading-order radius of
the fluid–cell-layer interface, a0(t), decreases approximately linearly with t (figure 4(a)), which is
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Fig. 4 Analytical solution to (39)–(42) (m→∞) as obtained in (44)–(50) for Case (i), § 4.1 σs0(0) < σ1 < σ2: (a),
(b), (c) and (d) are profiles for a0, a1, Λ2 and Υ2, respectively, for the fluid–cell-layer interface (20), with ε = 0.2,
n = 4 and initial conditions (52), with a0(0) = 0.9, a1(z, 0) = −z − 0.5, Λ2(z, 0) = −z + 2 and Υ2(z, 0) = −z + 2; (e)
and (f) are shear stresses at leading and ε orders, σs0(t) and σs1(t) (see (23) and (35)), respectively, and (g) and (h)
are the fluid–cell-layer interfacial cross-sections at initial and final times (tf = 0.25, chosen to be sufficiently large that
the system has reached an approximate steady state and tissue growth stops) respectively, for the growth function f
given in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15 and m→∞. Here, (x, y) = (r sin θ, r cos θ). The red dashed lines
in figures (a) and (e) correspond to the transition times and the values of σ1, σ2 respectively.
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consistent with a Taylor expansion of (44) for small time. The leading-order shear stress, σs0, also
increases approximately linearly, until it surpasses the value σ1 and we enter the regime of maximal
tissue growth rate (σ1 ≤ σs0 < σ2) (figure 4(e)). The fluid–cell-layer interfacial radius then decreases
rapidly, so that the shear stress also rapidly increases further, until finally it exceeds σ2 and the
growth is halted (see the solution for a0(t) in figure 4(a)).

Since the function f , given by (43), is piecewise constant for our chosen limit m → ∞, a1 and
Υ2 do not vary in time, as discussed in our analytical work above (see figures 4(b) and (d)). The
evolution of Λ2(z, t) is shown in figure 4(c) (see (49)): this function retains its linear dependence on
the axial coordinate z, while approaching zero smoothly as time progresses. The evolution of the
leading- and second-order shear-stress components, σs0 and σs1, are shown in figures 4(e) and (f),
which are obtained from (23) and (35).

The overall picture may be visualized by considering the fluid–cell-layer interfacial profile at
several different cross-sections along the scaffold, both initially, and when the system has reached
equilibrium (figures 4(g,h), respectively). As observed, the tissue will grow so that ultimately the
tube is circular in cross-section, but the radius may vary along the axis at O(ε) due to the initial
choices of a1 and Υ2.

We next consider an initial configuration in which the initial profiles for a1, Υ and Λ all increase
rather than decrease with distance along the pore axis (the direction of flow):

a0(0) = 0.9, (53a)

a1(z, 0) = z − 0.5, (53b)

Λ2(z, 0) = z − 2, (53c)

Υ2(z, 0) = z − 2. (53d)

As in the previous example, during the tissue growth, the shear stress attains values in all three
regions of the domain of the growth function f , taking the tissue growth through regimes of moderate,
fast, and ultimately cessation of growth. The final fluid–cell-layer interfacial profile is again circular
in cross-section, though with radius that varies along the length of the pore. The evolution towards
this final configuration is shown in figure 5.

4.2 Case (ii) σ1 < σs0(0) < σ2

When σ1 < σs0(0) < σ2, cell growth begins in the second of the three regions of the domain of
the growth function f illustrated in figure 2 (fast initial growth). As in §4.1, we examine the case
m→∞ in which analytical progress is possible. Substituting (23), (35), (37) and (43) into (39)–(42)
and following a similar approach to that of §4.1 gives

a0(t) =

{√
a20(0)− 2F2t if 0 ≤ t < t∗0,

(4/σ2)
1/3

if t ≥ t∗0,
(54)

and

Λ2(z, t) =

{
Λ2(z, 0)

[
1− 2F2t/a

2
0(0)

]n2/2
if 0 ≤ t < t∗0,

Λ2(z, 0)
[
1− 2F2t

∗
0/a

2
0(0)

]n2/2
if t ≥ t∗0,

(55)

where

t∗0 =
a20(0)− (4/σ2)2/3

2F2
. (56)
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Fig. 5 Analytical solution to (39)–(42) (m→∞) as obtained in (44)–(50) for Case (i), § 4.1 σs0(0) < σ1 < σ2: (a),
(b), (c) and (d) are profiles for a0, a1, Λ2 and Υ2, respectively, in the fluid–cell-layer interface (20), with ε = 0.2,
n = 4 and initial conditions (53) with a0(0) = 0.9, a1(z, 0) = z − 0.5, Λ2(z, 0) = z − 2 and Υ2(z, 0) = z − 2; (e)
and (f) are shear stresses at leading and ε orders, σs0(t) and σs1(t) (see (23) and (35)) respectively, and (g) and (h)
are fluid–cell-layer interface cross-sections at initial and final times (tf = 0.25, chosen to be sufficiently large that the
system has reached an approximate steady state and tissue growth stops) respectively, for the growth function f given
in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15 and m → ∞. Here, (x, y) = (r sin θ, r cos θ). The red dashed lines in
figures (a) and (e) correspond to the transition times and the values of σ1, σ2 respectively.



Curvature- and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore 17

Note that a1 and Υ2 again do not depend on time, i.e., a1(z, t) = a1(z, 0) and Λ2(z, t) = Λ2(z, 0),
as discussed earlier in §4.1. As in Case (i), the position of the fluid–cell-layer interface is given, to
leading order, by (4/σ2)1/3, (54). Hence, for a given underlying pore structure, the leading-order
amount of tissue grown will be independent of F1, F2 and σ1. Equation (56) provides a prediction
for the time at which tissue growth stops in this regime and its dependence on the model parameters
in the limit m→∞. Since this scenario is simpler than Case (i), the dependence of the time taken
for the tissue to complete growth is less complex. In particular, in this case the time to cessation
of growth is independent of σ1 and F1, and depends on F2 in an inversely proportional fashion.
Nevertheless, as outlined in Case (i) in §4.1, there is a clear need to determine the values for σ2 and
F2 if this model is to form a reliable predictive tool.

In figure 6, we consider an initial configuration identical to that used in figure 4, given by
equations (52), except that the leading-order fluid–cell-layer interfacial radius is slightly smaller,
a0 = 0.8. This ensures that the initial leading-order shear stress σs0(0) is sufficiently large to lie
within the second region of the domain of the growth function f in (43) for identical values of σ1,
σ2, F1 and F2. The tissue growth here is initially faster than in the previous cases: the fluid–cell-layer
interfacial profile shrinks rapidly and we quickly transit to region three of the domain of the growth
function, in which growth is suppressed.

Note that, similar to what was shown in figure 3, excellent agreement was again obtained between
the numerical solutions of the system (39)–(42) (for m = 1000) and the analytical asymptotic
prediction (54) and (55) for the leading-order fluid–cell-layer interfacial radius a0 as a function of
time and the perturbation function Λ2(z, t) versus z at several different times (results not shown
here).

4.3 Comparison with experimental results

Figure 7 shows a direct comparison between experimental results visualized under a confocal laser
scanning microscope by Rumpler et al. [28], and analytical solutions of our model for several different
values of the polygonal cross-section n (the wavenumber in the azimuthal perturbation to the initial
fluid–cell-layer interfacial profile (see (21)). The results show that our model gives a reasonable
qualitative agreement with the experimental results, illustrating the tendency of the fluid–cell-layer
interface to become ultimately circular, independent of the underlying pore geometry. Note that here
the experimental tissue grown (in Figure 7 (a–c)) is shown after 21 days, while in our simulation the
dimensionless time at which the tissue growth is observed to stop is tf = 0.25 (see figures 4–6), which
corresponds to a dimensional time of 20.5 days using the time scale identified in Table 1. Furthermore,
as shown in figure 7 (and as expected from the form of the growth-law) more tissue grows at the
corners of the scaffold structure so that the fluid–cell-layer interface subsequently becomes more
circular. This behaviour leads to the formation of a final round fluid–cell-layer interface, regardless
of the original shape (at least for the parameters chosen here).

4.4 Optimization and parameter sensitivity

A question of interest to tissue engineers is the optimal scaffold configuration, in terms of internal
pore morphology (pore size and shape) that maximizes net tissue yield over the course of an exper-
iment. To answer this question, we first identify a metric for tissue growth. The total volume V (t)
of tissue grown within the pore by time t is given by

V (t) =

∫ 1

0

∫ 2π

0

1

2

(
a2(z, θ, 0)− a2(z, θ, t)

)
dθ dz. (57)
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Fig. 6 Analytical solution to (39)–(42) (m → ∞) as obtained in (44)–(50) for Case (ii), § 4.2, σ1 < σs0 < σ2: (a),
(b), (c) and (d) are profiles for a0, a1, Λ2 and Υ2, respectively, in the fluid–cell-layer interface (20), with ε = 0.2,
n = 4 and initial conditions (52) with a0(0) = 0.8, a1(z, 0) = −z − 0.5, Λ2(z, 0) = −z + 2 and Υ2(z, 0) = −z + 2;
(e) and (f) are shear stresses at leading and ε orders, σs0(t) and σs1(t) (see (23) and (35)) respectively, and (g) and
(h) are fluid–cell-layer interface cross-sections at initial and final times (tf = 0.25, chosen to be sufficiently large that
the system has reached an approximate steady state and tissue growth stops) respectively, for the growth function f
given in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15 and m→∞. Here, (x, y) = (r sin θ, r cos θ). The red dashed lines
in figures (a) and (e) correspond to the transition time and the value of σ2 respectively.
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the migration of single cells into the scaffold but also
provides sufficient space for the formation and growth of
new tissue with a cellular and structural organization
similar to that seen in vivo (Woesz et al. 2005; Rumpler
et al. 2007). Studies investigating the effect of pore size
at the micrometre level have focused on cell attachment,
migration and cell division with respect to biocompat-
ibility (Van Eeden & Ripamonti 1994). Pore channels in
scaffold materials can vary between round and irregular
cross-sections (Jin et al. 2000; Habibovic et al. 2005),
but the effect of pore shape on tissue formation has not
yet been investigated systematically. An understanding
of the effect of geometry on tissue growth could assist in
the optimization of porous scaffolds for tissue engin-
eering as well as help improve understanding the
processes of bone remodelling and healing.

This paper investigates a model system for tissue
growth consisting of three-dimensional hydroxylapatite
(HA) plates of controlled architecture placed within a
culture of murine osteoblast-like cells. These cells are
known to undergo differentiation from an immature pre-
osteoblastic to a mature osteoblastic phenotype in vitro,
accompanied by the expression of characteristic marker
proteins at each stage of development (Quarles et al.
1992). Furthermore, they are capable of building an
extracellular matrix consisting of densely packed and
well-organized collagen fibrils with representative non-
collagenous matrix proteins known from bone tissue
(Choi et al. 1996; Rumpler et al. 2007). The aim of this
paper is to investigate the impact of geometrical features
(channel shape and size) on new tissue formation in vitro.

2. MATERIAL AND METHODS

2.1. Production of the HA plates

HA plates (2 mm thick) containing four channel shapes
(triangular, square, hexagonal and circular) and three

channel sizes (perimeter PZ3.14, 4.71 and 6.28 mm)
were produced by slurry casting. Casting moulds were
designed using computer-aided design (CAD) software
(Pro/Engineer PTC, USA) and produced using a three-
dimensional wax printer (Solidscape, Model Maker II)
as described in Manjubala et al. (2005). The moulds
were then filled with a slurry of HA particles, dried in
air and then heated to 6008C to remove the wax moulds.
A final sintering treatment was performed at 13008C
for 1 hour (Woesz et al. 2005).

2.2. Cell culture

Murine pre-osteoblastic cells, MC3T3-E1, were seeded
with a density of 80 000 cells cmK2 on the surface of the
HA plates and cultured in a-MEM (Sigma) supple-
mented with 10% foetal bovine serum, 30 mg mlK1

ascorbic acid and 30 mg mlK1 gentamicin in a humidi-
fied atmosphere, 5% CO2 at 378C.

2.3. Visualization of actin stress fibres

Cell cultures were washed with phosphate buffered
saline, fixed with 4% paraformaldehyde, permeabilized
with 0.1% Triton-X100 and incubated with 4!10K6 M
phalloidin–fluorescein isothiocyanate for 30 min at 48C.
Images of the stress fibres were obtained using a
confocal laser scanning microscope (Leica).

2.4. Quantification of the tissue area

The projected tissue area was determined by trans-
mission light microscopy in combination with image
analysis for each channel and time point.

2.5. pO2 measurements

Oxygen concentrations were measured using a fibre-
optic oxygen micro-sensor with a tip diameter of

(a) (i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)(b)

200 µm
200 µm 200 µm 200 µm

123

Figure 1. (a) New tissue formed in three-dimensional matrix channels. Actin stress fibres are stained with phalloidin-FITC and
visualized under a confocal laser scanning microscope. Here, the tissue formation is shown (i–iii) after 21 days and (iv) after
30 days of cell culture in the channels of a (i) triangular, (ii) square, (iii) hexagonal and (iv) round shape introduced into a HA
plate in vitro. (b) Numerical simulation of tissue formation within channels of various shapes: (i) triangular, (ii) square,
(iii) hexagonal and (iv) round. The lines (early time point 1, ongoing times 2 and 3) mark the simulated development of tissue
formation due to ongoing culture time, which corresponds closely to the observed development of new tissue formation in vitro.
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with 0.1% Triton-X100 and incubated with 4!10K6 M
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Figure 1. (a) New tissue formed in three-dimensional matrix channels. Actin stress fibres are stained with phalloidin-FITC and
visualized under a confocal laser scanning microscope. Here, the tissue formation is shown (i–iii) after 21 days and (iv) after
30 days of cell culture in the channels of a (i) triangular, (ii) square, (iii) hexagonal and (iv) round shape introduced into a HA
plate in vitro. (b) Numerical simulation of tissue formation within channels of various shapes: (i) triangular, (ii) square,
(iii) hexagonal and (iv) round. The lines (early time point 1, ongoing times 2 and 3) mark the simulated development of tissue
formation due to ongoing culture time, which corresponds closely to the observed development of new tissue formation in vitro.
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Fig. 7 (a), (b) and (c) show new tissue formed in three-dimensional matrix channels visualized under a confocal laser
scanning microscope by Rumpler et al. [28]. (d), (e) and (f) show the upstream side (z = 0) of the fluid–cell-layer
interfacial cross-section at initial and final times (tf = 0.25, chosen to be suitably large such that the system has
reached an approximate steady state) for n = 3, n = 4 and n = 6 respectively, with ε = 0.2 and for the initial
conditions in (52) with a0(0) = 0.9, a1(z, 0) = z − 0.5, Λ2(z, 0) = z − 2 and Υ2(z, 0) = z − 2, the growth function f
given in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15 and m→∞. Here, (x, y) = (r sin θ, r cos θ).

To gain insight into the influence of the pore shape on the tissue growth, we first consider the
dependence of V (t) on the value of n, the number of azimuthal modes in the internal fluid–cell-layer
configuration within the pore, in figure 8(a). These results indicate that introducing regions of high
curvature in the fluid–cell-layer interfacial structure, enables tissue to be formed more quickly in the
structure over the intermediate growth period. During the initial growth phase, V (t) is an increasing
function of n: for t = 0.025 for example, the volume of tissue with n = 6 is approximately double
that with n = 2. However, as t increases the volumes for all n values equalize, and the final amount of
tissue growth is largely independent of the number of lobes, n. Thus we may conclude that if the rate
of tissue growth is a primary objective, then increasing the number of lobes in the tissue-engineering
construct is advantageous. However, if the concern is only with the final volume of tissue grown then
the pore shape is less important.

In order to further study the model’s parameter sensitivity, we also investigate how our results
depend on ε, the fluid–cell-layer interfacial aspect ratio. A graph showing the total amount of tissue
grown within the pore, V (t), as a function of ε, is shown in figure 8(b). Here our results show that
the final amount of tissue grown increases with ε (though only by about 10% over the model’s range
of validity). The variation of total tissue grown with ε manifests itself through Λ2, given by (49) and
(55) for cases (i) and (ii) respectively.

The temporal dependence of tissue growth on the parameters F1 and F2, and σ1 and σ2 is shown
in figure 8(c) and (d) respectively. The final position of the fluid–cell-layer interface was seen to be
given to leading order by (4/σ2)1/3 (equations (48) and (54) for Cases (i) and (ii) respectively). This
indicates that, for a given underlying pore structure, the total amount of tissue grown is independent
of F1, F2 and σ1 to leading order, which is confirmed in figure 8(c) and (d).
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Fig. 8 Total volume of tissue, V (t) (defined in (57)) versus time, for fluid–cell-layer interfacial profile (20), with
the initial fluid–cell-interface configuration given in (52), a0(0) = 0.9, a1(z, 0) = −z − 0.5, Λ2(z, 0) = −z + 2,
Υ2(z, 0) = −z + 2 and for (a): several different values of the polygonal cross-section n (the wavenumber in the
azimuthal perturbation to the fluid–cell-layer interfacial profile (see (21)); (b): fluid–cell-layer interfacial aspect ratio
ε; (c): F1 and F2 (see (43)); and (d): shear stresses σ1 and σ2 (see (43)). In (a), ε = 0.5; in (b), n = 4 and the growth
function f is as given in figure 2 with F1 = 1, F2 = 3, σ1 = 7 and σ2 = 15. In (c) and (d), ε = 0.5 and n = 4. In all
cases m→∞.

5 Conclusions

We have presented a simplified mathematical model for the growth of tissue in a tissue-engineering
scaffold to gain insight into the effect of pore morphology on the tissue growth. The flow of nutrient
to the cells was captured by the Stokes equations while the cell proliferation was modelled by a law
that accounted for the effects of the underlying fluid–cell-layer interface curvature, and fluid shear
stress at the growing tissue surface, on the rate of tissue growth. Exploiting the geometrical features
of a typical scaffold, namely a structure composed of a series of pores that are nearly cylindrical,
allowed us to proceed via an asymptotic approach that led to a reduced system of four simple
differential equations for the tissue growth. The resulting equations were analysed numerically and
analytically for a typical growth law, and an analytic expression was obtained when the growth law
was piecewise constant. The analytic solution was shown to agree with the numerics, supporting
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its use for rapid testing and analysis of the system in comparisons with experimental data from
Rumpler et al. [28].

Increasing the perturbation parameter n, the number of azimuthal modes in the initial fluid–cell-
layer interface profile (which we take as a proxy for the shape of the underlying scaffold pore), was
found to be largely independent of the pore shape. These results suggest that focusing effort into
engineering the pore geometry may be beneficial if the rate of tissue growth is a principal concern,
but if maximizing the final volume of tissue that can be grown is the main objective, then the details
of the shape of the (nearly cylindrical) pore within the scaffold are not important. In contrast,
the total amount of tissue grown depends on ε, the fluid–cell-layer interface aspect ratio, with the
amount of final tissue grown increasing with increasing ε.

The results of this work, once calibrated against available data, offer a simple framework for
testing the behaviour of different scaffold pore geometries without the need for many complex ex-
periments to be conducted. The model should ultimately allow for the prediction of regimes in which
tissue growth may be enhanced, offering improvements and additional insight into the current op-
erating strategies used. To compare our theoretical results with experiments requires an estimate
of λ̂, the growth-rate parameter in Eq. (10), for the dataset under consideration. This parameter
depends on many experimental details, including cell type, the physical characteristics of the tissue-
engineering scaffold and the concentration of the nutrient in the culture fluid. In principle, λ̂ could
be measured or estimated directly from a suitable experimental dataset, as we did for the data of
Rumpler et al. [28]. Here, λ̂ was estimated by extracting the gradient of the projected tissue area
versus time graph in figure 4(b) of [28]. The time taken for the tissue to form and the total amount
of tissue grown were inherently linked to the parameters in our tissue-growth ansatz. For this model
to form a reliable predictive tool, the parameters that appear in the growth ansatz need to be deter-
mined experimentally. While this is possible in principle by examining temporal data, in this paper
we had access only to final-time shapshots. A close collaboration between experimentalists would be
necessary to pin down these parameters more accurately, and represents a future research direction.

The model presented in this paper has the advantage of simplicity, but obviously fails to capture
many details of the real experimental system, which may be important in some scenarios. For
example, throughout this study, the nutrient is assumed to be present in excess so that cells always
have sufficient nutrient to proliferate, and no significant nutrient depletion occurs over the length
of the pore. If nutrient is present in low concentration, this may not be true. In such cases, our
model could be generalized to capture the effect of nutrient concentration gradients [30, 31]. While
significant gradients in nutrient concentration are unlikely to arise at the single-pore scale, they
could certainly be present over the scale of an entire scaffold, consisting of many pores. One could
consider scaling-up our model to describe an entire scaffold, with the nutrient flux varying in both
time and spatial location within the scaffold. The growth parameter λ̂ (see (10)) would then be
considered a function of the local nutrient concentration, again informed by available data.

Furthermore, our growth model is empirical, based purely on experimental observations of how a
tissue interface grows within pores of differing curvatures. Though these observations were validated
across a range of different pores [28], one could argue that a more complete model is needed, which
accounts for the details at the cell-scale and the underlying mechanisms that drive cells to proliferate.
Much remains to be done in terms of building such a detailed predictive model, which could offer
improved insight into how the structural details of an underlying scaffold impact tissue engineering
outcomes. Nonetheless, we believe that this model, which is characterized through a simple yet
descriptive growth-law that may be connected to data through the growth parameter λ̂ and can be
solved with minimal computational effort, offers some utility in addressing scaffold design questions.
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