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Abstract

In gene therapy, tumour growth is inhibited by viruses which are delivered
to the tumour via the blood stream. This therapy utilises the leakiness of the
tumour capillaries, which enables virus particles to pass through gaps between the
endothelial cells. Our models assess the key influences on the number of virus
particles which enter the tumour. We model on both the macroscale, where we
represent the tumour as a porous medium, and on the cellular scale, where we
consider a single virus particle entering a single gap. In both models, a proportion
of the virus particles are found to enter the tumour. Several types of virus particle
can be used for the therapy, and the size and physical characteristics of the virus
particle will affect its interactions with the blood flow. In particular, the fluid
stresses on an encapsulated virus particle cause the particle to deform. These
deformations influence the virus particle’s position within the capillary which in
turn is likely to affect the number of virus particles that enter the tumour.

1 Introduction

Cancer-specific viruses are able to replicate inside tumour cells and destroy them [9]. In
early clinical trials viruses have been injected straight into a single tumour nodule; these
trials exhibit encouraging anti-cancer activity and regression of the tumour. However,
the virus is unable to spread between the disseminated tumour masses, therefore this
technique is limited to isolated tumours. Unfortunately, most common cancer types
present with multiple metastatic tumours and it is often impractical to inject viruses
into each tumour nodule. Virus particles are generally not compatible with intravenous
administration because they are rapidly cleared by the immune system.

The group led by Dr Len Seymour in the Department of Clinical Pharmacology at
Oxford, has devised a novel way of treating virus particles with polymers to ensure the
particles are less susceptible to attack by the host immune system [3]. These polymer-
coated vectors are able to circulate in the blood stream for sufficient time to reach distant
tumours [5].

Functional capillaries exist in the proliferating zone toward the edge of the tumour.
The leaky vasculature associated with tumour structure lends itself to accumulation of
virus particles delivered via the blood stream. Unlike the continuous endothelium of most
normal tissues, the endothelial cells of tumour capillaries are discontinuous, with large
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gaps between cells [2]. The mean pressure in such a capillary is 15− 35 mmHg (1 mmHg
= 133.322 kg m−1s−2), the mean pressure in the tumour is about 15 mmHg and the mean
pressure in the draining blood capillaries is about 2 mmHg. Thus, due to the driving
pressure gradient, fluid and virus particles leave the capillary through the gaps between
the endothelial cells and enter the tumour stroma (the fluid bathing the tumour cells).
Small molecules such as water percolate though the tumour structure and leave through
the draining blood capillaries, but large particles are trapped in the tumour stroma by
a network of extracellular matrix proteins, effectively filtering and concentrating virus
particles [8].

Gene therapy may be delivered from a range of blood vessels; the leakiest vessels
(and therefore potentially the most useful for the present application) are the capillaries
supplying the tumour (radii 2.5 − 50 µm), although arterioles (radii 0.05 − 1 mm) which
pass through tumour tissues may also be leaky in places. In general therefore a range of
blood flow rates must be considered, though here we focus on the flow within a single
capillary, and so use parameter values appropriate to this situation. In a capillary the
endothelial gaps vary from around 50 to 1000 nm in diameter, and occur with variable
spatial frequency.

Many parameters may influence the number of virus particles entering the tumour,
not least the type of virus used. Examples of viruses used by the Seymour group include
the adenovirus and the vaccinia poxvirus. The adenovirus is small and rigid, with radius
rv ≈ 100 nm. It can be coated with a hydrophilic polymer which, depending upon the
amount of coating, can make the surface of the virus either rigid or highly deformable.
Alternatively, the vaccinia poxvirus is larger, with radius rv ≈ 350 nm. It has a small hard
centre (the core) surrounded by a fluid region (the tegument), which in turn is surrounded
by a loose membrane. The vaccina poxvirus may also be coated, but the influence of the
coating on the deformability of the particle remains to be studied. We focus on these two
virus particles, as typifying two extreme types in both size and physical characteristics.
They will henceforth be referred to as the small rigid and the large encapsulated virus
particles respectively. Such different virus types will obviously behave differently in the
blood flow, and hence the likelihood of virus particles entering an endothelial gap will
depend on the virus used.

This report aims to provide insight into the possible efficacy of the virus delivery
method. We consider virus particles flowing through the tumour in a single capillary.
When modelling blood flow on this scale a major issue is the influence of the red blood
cells. Red blood cells occupy approximately 50% of the blood volume and have diameters
of approximately 8 µm, thus are considerably larger than the virus particles (and could fill
up the entire vessel lumen). The red blood cells will certainly affect the transport of the
viruses through the endothelium and into the tumour, though for simplicity, throughout
this report the red blood cells are neglected and the fluid inside the capillaries is taken to
be blood plasma. We note however that further study is clearly needed to take account
of the effect of blood composition.

The report structure is as follows. In §2 we estimate the size of various relevant
dimensionless parameters in the problem. In §3 we consider the macroscale problem of
flow though an entire tumour. We model the tumour as a porous medium with a capillary
passing through it. We assume the virus particles are advected with the blood flow and
assess the amount of blood (and virus particles) which leaks from the capillary into the
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Figure 1: Diagram to show the parameters.

tumour. We focus on a smaller length scale in §4, considering the local flow into a single
gap between endothelial cells. In §4.1 the virus particles are taken to be point particles,
which are simply advected with the flow. In this case it is sufficient to solve for the flow
in a tube with a single side-branch at lower pressure. This problem was considered by
Tutty [10], and his solutions can therefore be used to determine the virus particle capture
in this situation. However there is a range of possible gap sizes; in §4.2 we assume the
size of a small rigid virus particle is comparable to the size of the gap, and therefore its
interaction with the flow is important. In this more complicated problem, we consider
only a single (rigid spherical) particle within the flow. The relevant fluid dynamical
problem was addressed by Wu et al. [11]. In both these cases the initial position of the
virus particle(s) within the capillary determines whether it enters the endothelial gap
(and thus the tumour). However an encapsulated virus will behave very differently to a
rigid virus. In §5 we briefly consider how the physical properties of a large encapsulated
virus affect the motion of the virus particle when it is close to the vessel wall.

2 Estimation of dimensionless parameters

We model blood plasma as a Newtonian fluid with kinematic viscosity µ = 1.35×10−3 kg
m−1s−2 and density ρ = 1060 kgm−3. In the axial direction along a typical capillary, the
mean velocity of blood is between 0.1 × 10−3 ms−1 and 15 × 10−3 ms−1, thus we take a
typical axial capillary velocity to be ū = 1 × 10−3 ms−1. There are several lengthscales
of interest, illustrated in figure 1. We take a typical tumour (and capillary) length to
be L = 0.025 m and the typical distance between endothelial gaps to be the maximum
diameter of an endothelial cell, de = 20 µm. All our models are relevant to a capillary
with radius R ≈ 2.5 µm. The aspect ratio of the capillary is then ε = R/L ∼ 1 × 10−4.
The virus radius rv will be taken to be 100nm for the small virus, and 350nm for the
large virus.
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The Reynolds number for the flow based upon the tumour/capillary lengthscale is

Recap =
ūLρ

µ
≈ 20. (2.1)

The reduced Reynolds number is then ε2Recap = 2.0 × 10−7, thus lubrication theory is
applicable to flow in the capillary (note that this assumes that the endothelial gaps do
not greatly disturb the axial flow in the capillary, so that L is indeed an appropriate
lengthscale for the axial flow).

For flow into a single gap in the endothelium the Reynolds number is

Regap =
ūdeρ

µ
= 0.016 � 1, (2.2)

therefore for the local problems considered in §4 inertia can be neglected.
In §4.2, the presence of a small rigid virus particle influences the blood flow close to

the gap, therefore we also have a particle Reynolds number given by

Repart =
ūrvρ

µ
= 7.9 × 10−5 for the small virus particles. (2.3)

The diffusion coefficient of the virus particles is given by

D =
kBT

6πµrv
, (2.4)

where kB = 1.38 × 10−23 JK−1 is the Boltzmann constant, and T = 310 K is the tem-
perature of the blood. On the length scale of the tumour/capillary the Peclet numbers
(which measure the relative importance of advection and diffusion) for each of the virus
particles are

Pe =
ūL

D
= 1.5 × 107 for the small virus particles. (2.5)

however the reduced Peclet numbers based on the capillary radius, ε2Pe, are 0.15 and
0.52 for the small and the large virus particles respectively. To enter an endothelial gap
particles have only to traverse the width of the capillary, thus for the large virus particle
we must consider the combined effects of advection and diffusion.

3 Flow through a capillary

3.1 Introduction

In this section we derive a model for flow through a capillary within a tumour. For
simplicity, since we seek only order-of-magnitude estimates for the degree of virus capture,
we consider a two-dimensional Cartesian coordinate system (x, y) in which the capillary is
represented as a straight channel, 0 ≤ x ≤ L, −R ≤ y ≤ R, surrounded by tumour tissue
occupying R ≤ |y| ≤ RT . We assume symmetry about the channel centreline y = 0, thus
we need only consider flow in 0 ≤ x ≤ L, 0 ≤ y ≤ RT . See figure 2 for a schematic.
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Figure 2: Schematic diagram for the model of the entire tumour.

We assume the thickness of the endothelium is sufficiently small (relative to R) that we
may consider both capillary and tumour interfaces to be at y = R. The blood is at
pressure p(x, y, t) and has viscosity µ; it flows into the capillary at x = 0, with a velocity
u = u(x, y, t) = u(x, y, t)x̂ + v(x, y, t)ŷ, driven by the pressure drop along the capillary.
We model the tumour as a porous medium with permeability k, pressure pT (x, y, t) and
fluid velocity uT(x, y, t) = uT (x, y, t)x̂ + vT (x, y, t)ŷ. The fluid surrounding the tumour
is at the pressure of the draining blood capillaries and, without loss of generality, we set
this equal to zero. We consider two different boundary conditions for this model, and
compare these two approaches by assessing their applicability to the biological problem
and their mathematical limitations.

For simplicity, we neglect the diffusion of the virus particles and assume they are
merely advected by the blood flow (but note that the relevant Peclet number may be
O(1) as shown in §2 above, therefore including diffusion would be a valuable extension
to this model). We are particularly interested in the quantity of fluid that will leak out
of the capillary into the tumour, as this enables us to estimate the proportion of injected
virus particles that will enter the tumour. Two possible simple models for this problem
are considered in turn, and their relative merits briefly discussed.

3.2 Model 1

The flow in the capillary is governed by the continuity and Navier Stokes equations.
Incompressible flow in the tumour is governed by Darcy’s law

∇.uT = 0, uT = −k

µ
∇pT , (3.1a,b)

which gives
∇2pT = 0. (3.2)
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We would typically specify the upstream flux into the capillary, Q. However, at the
capillary entrance, the flux is directly proportional to the pressure gradient (see (3.23)),
and, for convenience, we prescribe here the pressure gradient,

∂p(0, y)

∂x
= −G, for 0 ≤ y ≤ R, (3.3)

where G is a constant.
As well as the driving condition (3.3) at the capillary entrance, we impose symmetry

conditions on the channel centreline

∂u

∂y
= 0, v = 0, for y = 0, 0 ≤ x ≤ L. (3.4a,b)

At the interface between the capillary and the tumour we assume continuity of pressure
and normal velocity, and we also impose a third slip condition on the tangential velocity
(first proposed by Beavers & Joseph [1]), thus

v = vT , p = pT ,
∂u

∂y
= − α√

k
(u − uT ), on y = R. (3.5a-c)

The dimensionless quantity α in (3.5c) characterises the structure of the permeable ma-
terial within the boundary region [1], and k represents the permeability of the endothelial
cells that form the capillary wall; however we assume that this is the same as the perme-
ability of the tumour.

On the external tumour boundaries we should apply continuity of pressure, thus

pT (x,RT ) = 0, for 0 ≤ x ≤ L, (3.6)

and
pT (L, y) = 0, for 0 ≤ y ≤ RT . (3.7)

However, if we also apply pT (0, y) = 0 for R ≤ y ≤ RT there is a discontinuity in pressure
at (0, R); therefore on the boundary at x = 0 we expect a boundary layer, lying between
(say) 0 ≤ x ≤ x∗, R ≤ y ≤ RT , for some 0 < x∗ � L. Consequently, we will not impose
a boundary condition on the interface between the boundary layer and the main tumour
domain, but let this be part of the solution for pT in x∗ ≤ x ≤ L, R ≤ y ≤ RT . Due
to continuity of pressure across the capillary-tumour interface, by prescribing boundary
conditions (3.3) and (3.7) there is a pressure gradient along the capillary which drives
flow.

3.2.1 Asymptotic analysis

We nondimensionalise the system, exploiting the small aspect ratio ε = R/L and employ-
ing lubrication scalings in the capillary. Continuity of pressure and normal velocity at the
tumour-capillary interface determines the scalings for the pressure, pT , and the normal
velocity vT of the fluid in the tumour. By continuity, the normal and tangential velocity
components of the flow in the tumour are the same order. We thus scale as follows,

x = Lx′, y = Ly′ = εLY, u = uu′, v = εuv′,

uT = εuu′

T , vT = εuvT
′, p =

µu

ε2L
p′, pT =

µu

ε2L
pT

′,
(3.8)
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where u denotes the mean axial fluid velocity in the capillary at x = 0. The leading-order
governing equations for the capillary become, dropping dashes for convenience,

∂u

∂x
+

∂v

∂Y
= 0,

∂p

∂Y
= 0,

∂2u

∂Y 2
=

∂p

∂x
, (3.9a-c)

and those for the tumour fluid become

∂uT

∂x
+

∂vT

∂y
= 0, (3.10)

uT = −K∂pT

∂x
, vT = −K∂pT

∂y
, (3.11a,b)

∂2pT

∂x2
+

∂2pT

∂y2
= 0, (3.12)

where K = kL/R3 is a dimensionless tumour permeability.
The leading-order boundary conditions are:

∂u

∂Y
= 0, v = 0, on Y = 0; (3.13a,b)

v = vT , p = pT ,
∂u

∂Y
= −Au, on y = 0, Y = 1, (3.14a-c)

where A = αR/
√

k;
pT (1, y) = 0, for 0 ≤ y ≤ RT ,

where RT = RT/L;
pT (x,RT ) = 0, for 0 ≤ x ≤ 1; (3.15)

and
∂p(0, Y )

∂x
= −G, for 0 ≤ Y ≤ 1, (3.16)

where G = R2G/µu.

3.2.2 Typical parameter values

Experimental observations could be found only for the ‘vascular permeability’, that is
the permeability of the whole tumour including the arteries and capillaries within. We
estimate the permeability of the tumour tissue by modelling the space between tumour
cells as a tubular network. If the fraction of pore space is given by φ, and the mean cell
size is given by d, then (see [4]) the permeability

k ≈ φ2d2

72π
. (3.17)

The size and spacing of tumour cells is comparable with the size and spacing of endothelial
cells. With d = 5 µm and an intercellular spacing of 0.5 µm, we find that φ ≈ 0.25, giving
a permeability k ∼ 10−14 m2.
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Using values R = 2.5 µm (a typical capillary radius), L = 2.5 cm (a typical tumour
width), k = 1×10−14 m2; α = 0.05 [1] and RT = 2.5 cm (so we consider a square tumour),
gives

ε = 1 × 10−4, K = 16, A = 1.25, RT = 1. (3.18)

We also expect flow in the capillary to be close to Poiseuille flow, for which

G =
3µu

R2
, (3.19)

thus G ≈ 3. Therefore K, A, RT and G are O(1) quantities.

3.2.3 Solution of model 1

Considering first the flow in the capillary, (3.9b) gives p = p(x). Then (3.9a) and (3.9c)
yield, on application of (3.13),

u =
1

2

dp

dx
Y 2 + b, (3.20a)

v = −1

6

d2p

dx2
Y 3 − db

dx
Y, (3.20b)

where b = b(x) is an as yet undetermined function of integration.
We now consider the tumour. Using (3.14b) and (3.16) gives

∂pT (0, 0)

∂x
= −G. (3.21)

Substituting (3.20a) into (3.14b,c) we obtain an expression for b,

b(x) = −
(

1

2
+

1

A

)

∂pT (x, 0)

∂x
. (3.22)

Note that from (3.16), (3.20a), (3.21) and (3.22), the upstream flux into the capillary, Q,
is given by

Q =

∫ 1

0

u dY

∣

∣

∣

∣

x=0

= −
(

1

3
+

1

A

)

G. (3.23)

Substituting (3.11b), (3.20b) and (3.22) into (3.14a) we obtain

(

1

3
+

1

A

)

∂2pT (x, 0)

∂x2
= −K∂pT (x, 0)

∂y
. (3.24)

Hence we may solve Laplace’s equation (3.12) on the tumour domain 0 ≤ x ≤ 1, 0 ≤
y ≤ RT , subject to the boundary conditions (3.14), (3.15), (3.21) and (3.24), where we
are assuming that the pressure boundary layer lies at x = 0 to leading order. As already
noted, we do not impose a boundary condition on pT at x = 0, but let the value of pT (0, y),
0 ≤ y ≤ RT be a natural outcome of the solution where we impose just (3.21). Once we
have determined pT , the fluid velocity in the tumour can be calculated from (3.11); p(x)
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and b(x) can then be calculated using (3.14b) and (3.22), so we can determine the flow
in the capillary from (3.20).

We implement this procedure by seeking a separable solution of (3.12). Applying
(3.14) and (3.15) yields

pT = A sinh (c(x − 1)) sin (c(y −RT )) , (3.25)

where the constants A and c are fixed by conditions (3.21) and (3.24), giving

pT =
G sinh(c(x − 1))

c cosh(c) sin(cRT )
sin (c(y −RT )) , (3.26)

where c satisfies the transcendental equation

(

1

3
+

1

A

)

c tan(cRT ) = K. (3.27)

From (3.14b) the pressure in the capillary is then

p(x) = −G sinh(c(x − 1))

c cosh(c)
; (3.28)

from (3.20) and (3.22) the flow in the capillary is

u(x, Y ) =
G cosh(c(x − 1))

cosh(c)

(

1

2
− 1

2
Y 2 +

1

A

)

, (3.29a)

v(x, Y ) =
Gc sinh(c(x − 1))

cosh(c)

[

1

6
Y 3 −

(

1

2
+

1

A

)

Y

]

; (3.29b)

and the flow in the tumour is given by (3.11) as

uT (x, y) = −KG sinh(c(x − 1))

cosh(c) sin (cRT )
sin (c(y −RT )) (3.30a)

vT (x, y) = −KG sinh(c(x − 1))

cosh(c) sin (cRT )
cos (c(y −RT )) . (3.30b)

Thus, the ratio of the total fluid flowing from the capillary into the tumour to the flux
entering the capillary is

Qa =

∫ 1

0

v(x, 1) dx

∫ 1

0

u(0, Y ) dY

=
cosh(c) − 1

cosh(c)
. (3.31)

Both the flux entering the capillary and the flux from the capillary into the tumour are
proportional to the pressure gradient in the capillary, G, therefore we expect the ratio,
Qa, to be independent of this parameter, G, as seen in (3.31).
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Figure 3: The flow in the tumour.

3.2.4 Results and limitations of model 1

Figure 3 illustrates the flow field in the tumour, and figure 4 shows the components of
the fluid velocity in the capillary at different axial positions, along the capillary. We note
that this velocity profile is similar to Poiseuille flow, although due to the slip condition
at the interface between the capillary and tumour, the velocity is nonzero at the edges
Y = ±1. The decay of the blood pressure as we move down the capillary is highlighted
in figure 5.

The typical parameter values given in (3.18) yield Qa = 0.56 (2 s.f.). This model
thus predicts that approximately half of the fluid flowing through the capillary will enter
the tumour, suggesting a viable mechanism for the virus particles to enter the tumour.
(Note however that no account has been taken of the finite virus particle size, the implicit
assmption being that particles will leave the capillary with the blood plasma. We address
this issue in §4.)

The main shortcoming of this model is the boundary condition assumed on x = 0.
By assuming the existence of a boundary layer in the (nondimensional) region 0 ≤ x ≤
x∗/L � 1 we were able to avoid the discontinuous boundary condition produced by the
dimensionless conditions pT (0, y) = 0, 0 ≤ y ≤ RT and ∂pT (0, 0)/∂x = −G. This allowed
us to solve for the value of pT on x = x∗ = 0 (to leading order), rather than prescribing it.
To solve the problem fully would require detailed consideration of this boundary layer;
however for the purpose of obtaining a leading-order measure of the ratio of fluid entering
the tumour relative to the total fluid flux into the capillary, this is not necessary.

This model, which does not impose the boundary conditions at x = 0, 0 ≤ y ≤ RT ,
assumes that there is a boundary layer and so the pressure field is continuous. We
now consider an alternative approach and impose a boundary condition which results
in a discontinuity in the pressure. This second approach is probably more biologically
accurate.
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Figure 4: Graph illustrating the velocity profile in the capillary at various positions x down
the capillary. a) Velocity in the axial direction; b) Velocity in the radial direction.
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Figure 5: Graph illustrating the pressure profile in the capillary.
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3.3 Model 2

We consider a set-up similar to model 1 above, again nondimensionalising as in (3.8),
but we now apply the more physically realistic boundary condition pT = 0 on x = 0,
0 ≤ y ≤ RT . We also now prescribe the pressure gradient in the capillary in the form of
a total pressure drop along its length,

p(0, Y ) = P , p(1, Y ) = 0, (3.32a,b)

where P = R2P/µuL is the dimensionless pressure drop, given in terms of the actual
pressure drop P .

The analysis is similar to the previous model, with results (3.20) holding, however we
must now solve Laplace’s equation for the pressure in the tumour, (3.12) on 0 ≤ x ≤ 1,
0 ≤ y ≤ RT , subject to the boundary conditions

pT (0, y) = 0, pT (1, y) = 0, pT (x,RT ) = 0, pT (x, 0) = p(x),
∂pT (x, 0)

∂y
= −Bp′′(x),

(3.33a-e)
where (3.33e) comes from (3.24) with B = (1/3 + 1/A)/K. Using (3.16a-c) we seek a
separable solution to (3.12) to find

pT (x, y) =
∞

∑

n=1

an sin(nπx) sinh(nπ(y −RT )), (3.34)

where

an = − 1

2 sinh(nπRT )

∫ 1

0

p(x) sin(nπx) dx, (3.35)

from (3.16d). Substituting into (3.16e) then gives the following integro-differential equa-
tion for the capillary pressure p(x),

nπ sin(nπx) cosh(nπRT )

2 sinh(nπRT )

∫ 1

0

p(x) sin(nπx) dx = Bp′′(x). (3.36)

Writing p(x) in the form
p(x) = P(1 − x) + g(x), (3.37)

with g(0) = g(1) = 0, we may seek a Fourier series solution for g(x)

g(x) =
∞

∑

n=0

bn sin (nπx) . (3.38)

Substituting (3.37) and (3.38) into (3.36) gives

bn = − 2P coth (nπRT )

nπ coth (nπRT ) + n2π2B , (3.39)

and substituting (3.37) into (3.35) gives

an = − 2P
nπ sinh (nπRT )

− P
sinh (nπRT )

bn (3.40)

=
2P

nπ sinh(nπRT )

(

− 1 +
P coth(nπRT )

coth(nπRT ) + nπB

)

. (3.41)

Hence the pressure in the tumour, pT , is given by (3.34), where the series coefficients an

are given by (3.41).
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Figure 6: The direction of the flow in the tumour. (Note, in this figure the arrow lengths are
not related to the flow speed.)

3.3.1 Results and limitations of model 2

Figure 6 illustrates the direction of the flow within the tumour. Comparing figures 6 and
3, we see the main difference between the two models is the flow pattern near x = 0 for
0 ≤ y ≤ RT . In model 2, to achieve the boundary condition pT (0, y) = 0, we observe a
change in direction of the flow, which is perhaps more physically realistic. However, the
solution obtained for pT is less mathematically tractable, because pT is discontinuous at
(0, 0) due to the discontinuity between the boundary condition pT (0, y) = 0, for 0 ≤ y ≤
RT , and the condition pT (0, 0) = P . This results in numerical difficulty in extracting the
fluid velocities, and hence in obtaining a measure of the flux of fluid into the tumour.

4 Flow into a gap between endothelial cells

In this section we investigate the local problem of flow into a single gap between the
endothelial cells. There is a range of possible gap sizes, therefore we consider separately
the cases in which the small rigid virus particles do and do not affect the local flow into
the gap.

4.1 Gaps much larger than the virus particle

Here we assume that the virus particles may be treated as point particles, which are
simply advected with the flow, having no influence upon it. We consider the flow in
the neighbourhood of an isolated gap in the endothelium. We model the gap as a deep
circularly-cylindrical hole in the endothelial wall, assuming that the gap radius is suffi-
ciently small relative to the radius of curvature of the capillary that the local geometry of
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the capillary wall plus gap may be approximated by a circular well in a flat plane, with
shear flow above parallel to the plane and over the gap.

This local fluid dynamical problem was studied by Tutty [10], who solved for shear
Stokes flow in a half-space over a circularly cylindrical hole perpendicular to the bounding
plane. In addition to the imposed shear, flow was driven by suction into the hole, with
Poiseuille flow developing far down the hole. (The application considered by Tutty was
flow through an artery with a small side branch, the primary concern being the shear
forces applied to the walls of blood vessels in mammals.) The linearity of Stokes flow
means that the problem can be split into two independent two-dimensional subproblems:
the axisymmetric problem with fluid being purely sucked down the hole, with specified
flux; and a second problem where the shear flow in the half-space passes a hole with no
suction present.

Tutty [10] showed that the imposed pure shear flow produces a series of eddies running
down the hole, whose strength decays exponentially with distance down the hole. With
both shear and suction combined, the family of solutions is characterised by the parameter
Qb, the relative strength of suction down the hole versus shear flow over it.

Figure 7 (from [10]) shows a typical streamline pattern. Flux into the hole (driven by
the lower pressure within the tumour, in our application) suppresses the eddies that are
present when the flow is purely shear-driven. In fact with Qb > 0.027 all eddies are sup-
pressed, and even only a small flux into the gap suppresses all but the first eddy. When
left intact, this first eddy is reduced and compressed against the upstream wall of the
hole (figure 7a). Below a dividing stream surface cross-section all the fluid is sucked into
the hole. Figure 8 shows this dividing stream surface cross-section for several values of
the suction parameter Qb. Following it back upstream in the shear, the dividing surface
becomes parallel to the plane. The size of the entrainment region beneath the divid-
ing streamsurface increases with increasing suction. Figure 9 shows a three-dimensional
representation of the dividing streamsurface. In our application, with the assumption
of virus particles purely advected with the flow, particles that start out within the en-
trainment region will enter the gap, and thus the tumour. For a given shear-rate within
the capillary, and given pressure drop from the capillary to the tumour, the size of the
parameter Qb can be estimated, and, together with knowledge about the distribution of
virus particles across the capillary, Tutty’s results could be used to estimate directly the
quantity of virus particles entering the tumour under given conditions.

4.2 Gap size comparable to the virus particle size

The above analysis, using Tutty’s model [10], will only be valid if the virus particles
used are small compared to the size of the gaps in the endothelium. If the particles
are comparable to the gap size, the effect they have on the local flow near the gap will
be important and the interactions of virus particles with the flow must be considered.
Although adhesive forces may be present between the virus particle and the wall, we
neglect these forces for simplicity. A relevant local problem was considered by Wu et

al. [11], who considered the motion of a single rigid neutrally-buoyant sphere in a shear
Stokes flow past an infinite thin wall with a circular aperture (not an infinite well as in
the work of Tutty [10]). In addition to the shear, flow was also driven by an imposed
suction through the hole.
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a) b)

c)

Figure 7: The streamlines for which there is shear flow along the capillary and flux into the
gap, from [10]; a) Qb = 1/200, b) Qb = 0.11, c) Qb = 2

Figure 8: The entrainment region at y = −3, from [10].
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Figure 9: The dividing streamlines for Qb = 2, from [10]; (o) denotes the main tube wall and
(m) denotes the gap in the endothelial cells.

rg

rv

flow in capillary

flow through pore

Figure 10: The particle and the hole.

Almost as above, we may approximate the local geometry of capillary plus a single
isolated gap by a half-space with a circular aperture, with shear flow above and an
imposed suction through the aperture to model the pressure difference between tumour
and capillary. Treating the virus particle as a uniform, neutrally buoyant, rigid sphere,
we have the situation sketched in figure 4.2, and the work of Wu et al. [11] outlined above
is applicable.

Appealing to the linearity of the Stokes equations, Wu et al. [11] superimposed a
Sampson flow (suction through a circular aperture in an infinite thin wall) onto a shear
flow (an approximation to the base flow neglecting the particle), and combined with the
flow caused by the particle to give the total flow field. They then solved this problem
numerically to find the force and torque exerted by the fluid on the sphere, which allowed
them to calculate sphere trajectories, and hence the conditions for particle capture for
the flow. They identified two key parameters: a geometrical parameter rv/rg, where rv

is the radius of the virus particle and rg is the radius of the aperture, and (cf Tutty [10])
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a parameter characterising the effects of suction versus shear, defined to be

Q =
flux in pore

flux in capillary
. (4.1)

By calculating the dividing streamlines (which form a dividing streamsurface) we may
determine the particle capture tube, which encloses the volume of particle trajectories
that enter the hole. Wu et al. [11] find that there are a finite range of upstream particle
trajectories that bring the particles close to the wall before they “roll” into the hole. In
this report we assume the particle trajectory is aligned with the centre of the hole for
simplicity (probably a reasonable assumption since there are many gaps in the wall, and
a particle is much more likely to fall into a gap with which it is perfectly aligned).

The location of the dividing streamlines varies with Q, and rv/rg. If the suction is
strong the particle could come close to the wall downstream of the hole and roll backwards
into the hole, as shown in figure 11. For intermediate suction strength the dividing
streamline no longer impinges on the wall but enters the hole as shown in Figure 12. As Q
decreases towards Qmin (rv/rg), this dividing streamline moves upstream until it impinges
on the upstream rim of the hole for Q = Qmin (rv/rg). Therefore, for Q < Qmin (rv/rg)
no particles enter the hole. Wu et al. [11] calculate Qmin = 0.04 for rv/rg = 1/2.

�
�
�
�

�
�
�
�

Particles flow past hole

Particles flow through hole

Dividing streamline

Figure 11: A cross-section of the particle capture tube for large Q, the particle can flow past
the hole before being captured and pulled back.

4.2.1 Application to virus particle capture by tumour

Considering Sampson flow through the gap in the endothelial wall gives [6]

Q =
∆pr3

g/3µ

πR2ū
, (4.2)

from (4.1), where ∆p is the pressure drop from the capillary to the tumour, rg is the gap
radius, µ is the blood (plasma) viscosity, R is the capillary radius and ū is the mean axial
velocity in the capillary. Choosing typical values ∆p = 10 mm Hg, rg = 2rv (a worst case
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hits the rim of the hole, whereupon no particles may

enter the hole.

Qmin this line moves upstream until it
The dividing streamline. As Q decreases towards

Particles flow past hole

Figure 12: A cross-section of the particle capture tube for an intermediate value of Q.

scenario in the sense of virus-capture difficulty), rv = 100 nm, µ = 1.35 × 10−3kgm−1s−1

and u = 0.1 mms−1, gives

Q = 0.13 (2 s.f.) > Qmin (4.3)

and so some particle capture will occur. This calculation is based on a larger virus-to-
gap ratio than would typically be the case. Since we expect Qmin to increase with rv/rg

(thus decreasing with rg), and since Q increases with rg (see (4.2)) this is in some sense
the ‘worst case scenario’. We thus anticipate a non-empty particle capture tube, and so
if the virus comes sufficiently close to the gap in the endothelial wall the particle will
enter the tumour, even in this worst case. To evaluate the ‘cost’ of using the larger (but
more effective) viruses under consideration we would need to know how Qmin varies with
rv/rg. Unfortunately, Wu et al. [11] do not provide data on the variation of Qmin with
rv/rg; this could be calculated by following their computational methods, however this is
beyond the scope of the present report.

5 Encapsulated viruses

Thus far the work in this report has assumed either that the virus particles are advected
passively with the flow (an assumption valid in relatively large vessels where diffusion of
the particles is negligible), or that they behave as rigid spheres when they interact with
the flow in the vessel. However, as mentioned in the Introduction, an important class of
virus particles are encapsulated within a loose membrane coating. Essentially such viruses
behave as small rigid particles, contained within a fluid-filled inextensible membrane bag
(see figure 13, which also gives typical dimensions).

When in the regime where they are not passively advected with the flow, such viruses
will behave very differently from rigid particles in the way they interact with the flow.
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Figure 13: Sketch of an encapsulated virus, with typical dimensions.

In particular, we expect them to behave very differently in the vicinity of a vessel wall,
which is, of course, crucial for their capture by the tumour. In this section we consider
how such particles might be modelled, and suggest some possible approaches towards
solving the resulting models.

5.1 Encapsulated virus near a wall: Lubrication problem

When an encapsulated virus such as that shown in figure 13 is sufficiently near a vessel
wall, there is a thin layer of liquid between the virus and the wall. The set-up is sketched
in figure 14, which shows the whole geometry, and figure 15, which shows the local
“lubrication” geometry. For simplicity a two-dimensional problem is considered. The
vessel wall lies along y = 0, and the solid virus particle is centred at position (X3(t), Y3(t)),
which must be determined as part of the solution, as well as the unknown position of the
outer virus membrane.

Between the vessel wall at y = 0 and the lower membrane surface at y = H1(x, t)
(labelled region 1 in figure 15) is a layer of blood, of viscosity µ1. Inside the virus, between
the membrane at y = H1(x, t) and the rigid virus particle surface at y = H2(x, t) (labelled
region 2 in figure 15) is a layer of virus cytoplasm, of viscosity µ2.

If R denotes a typical membrane radius, U denotes a typical oncoming (axial) flow
speed, and ε = ho/R; the following scalings are employed:

x =
√

εRx̃, y = εRỹ, u = Uũ, v =
√

εUṽ, pi =
µiU

ε3/2R
p̃i. (5.1)

Defining a capillary number Ca = µ1U/(ε3/2γ), the leading-order equations and boundary
conditions for the flow and membrane shape in the dimensionless variables become (after
dropping the tildes)

pix = uiyy

piy = 0
uix + viy = 0







i = 1, 2, (5.2)
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Figure 14: Encapsulated virus near wall in shear flow.
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Figure 15: Sketch of “lubrication” geometry.
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representing the lubrication equations holding in each region;

H1t + u1,2H1x = v1,2

−p1 + µ̄p2 = 1

CaH1xx

u1y − µ̄u2y = Ts

u1 = u2 = Um















on y = H1(x, t), (5.3)

representing a kinematic condition at the deformable membrane, normal and tangential
stress balances respectively (where µ̄ = µ2/µ1 is the viscosity contrast of the two fluids,
T is the membrane tension, s is arc length and Um is the velocity of the membrane) and
the no-slip condition;

u2 = vp = Ẋ3 + ω ∧ (x − X3) at y = H2(x, t), (5.4)

representing continuity of velocity at the surface of the rigid virus core (vp represents its
translational velocity and ω its angular velocity), and

u1 = 0 at y = 0. (5.5)

Far-field conditions in regions 1 and 2 and a torque balance on the rigid virus core,
along wtih matching with the outer problem, complete the problem specification. This
problem will be studied further in due course, but its solution is beyond the scope of this
preliminary report.

5.2 The “full” problem: Formulation

Another idealised problem that can be considered, which has the advantage of enabling
the whole membrane to be modelled, is to solve for a fluid-filled bag within the blood
flow. In this case we neglect the solid virus core, and again consider a two-dimensional
model for simplicity.

Since Reynolds numbers for blood flow in a capillary are typically small, and certainly
the Reynolds number for the cytoplasm within the bag will be small, both fluids may be
modelled using the Stokes (slow-flow) equations.

The neatest formulation for this problem is in terms of the Airy stress function A for
both fluid regions, in terms of which the stress tensor in the fluid may be written as

σ =

(

Ayy −Axy

−Axy Axx

)

. (5.6)

Using subscripts 1 and 2 to denote the blood and cytoplasm regions respectively, n to
denote the vector in the direction of the outward normal to the membrane (with n the
corresponding scalar coordinate), t(s) to denote the anticlockwise tangent vector at the
membrane surface (with s the corresponding scalar coordinate), and γ(s) to denote the
tension in the membrane, the problems to be solved in each region are as follows [7]:

∇4Ai = 0 in region i, i = 1, 2, (5.7a)

[A]12 = 0, (5.7b)
[

∂A

∂n

]1

2

= γ(s), (5.7c)

∂

∂s
(um · t) = 0, (5.7d)
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the last condition representing the inextensibility of the membrane, with um the mem-
brane velocity, which must also equal the fluid velocity at the boundary on either side of
the membrane.

The problem is closed by specifying far-field conditions on the velocity in region 1,
and an initial condition on the geometry. In general one has to solve for A1, A2, γ(s) and
the membrane position.

5.3 Concluding remarks

The membrane encapsulating the virus greatly complicates the fluid dynamics of the full
virus transport problem, making it much harder to analyse mathematically. The problems
outlined in sections 5.1 and 5.2 above represent realistic steps towards a more tractable
problem, but are still far from trivial to solve. Furthermore, one might argue that, in
simplifying to obtain a more tractable model, we are losing sight of the situation of most
interest, when the virus is near a gap in the wall, experiencing a slight suction towards it
due to the lower pressure within the tumour. Such a suction force could be incorporated
into the lubrication model above without difficulty, but the issue of how a virus might
manoeuvre itself through a gap (which might entail it deforming to squeeze through)
is clearly very difficult to address. Nonetheless, problems of the kind outlined above
should (when solved) provide valuable insight into the difference in behaviour between
encapsulated and non-encapsulated viruses.

6 Conclusions

In this report we focused on three different aspects of the biological problem. Firstly, in
§3 we studied the macroscale problem of flow through an entire tumour. We modelled
the tumour as a porous medium and we assumed the virus particles are point particles
which are passively advected by the blood flow. Although there were physical limitations
in the tractable boundary conditions, we found a significant proportion of the blood (and
therefore the virus particles) leaks from the capillary into the tumour.

Secondly, in §4 we studied the flow into a single gap between endothelial cells. As-
suming the virus particles are small compared with the size of the gap and are passively
advected with the blood flow, we found virus particles within an entrainment region would
enter the tumour. The size of the entrainment region, and therefore the number of virus
particles entering the tumour, increases with increasing suction into the gap. However
if the gap size is comparable to the virus particle size, the presence of the virus particle
influences the blood flow. In this case, the suction into the gap is sufficient to capture
some of the virus particles.

Finally in §5 we studied the encapsulated virus particle. Stresses from the blood flow
will deform the virus’s membrane. Thus the physical properties of the virus particle
influence its motion close to the wall and this motion may significantly affect the number
of virus particles which enter the tumour.
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