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Abstract

We develop a fundamental model for spot electricity prices, based on stochastic processes for
underlying factors (fuel prices, power demand and generation capacity availability), as well as a
parametric form for the bid stack function which maps these price drivers to the power price.
Using observed bid data, we find high correlations between the movements of bids and the cor-
responding fuel prices. We fit the model to the PJM and New England markets in the US, and
discuss its performance, in terms of capturing key properties of simulated price trajectories, as
well as comparing implied forward prices with observed data.
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1 Introduction

The quest to model the unusual behaviour of electricity prices often leads to a choice between re-
alistic, but complicated, models and simpler reduced-form models with convenient pricing formulas.
In particular, due to the non-storability of electricity, there is a closer link between power and its
fundamental underlying price drivers (in particular fuel prices, load and generating capacity) than in
other markets. We propose a supply and demand based hybrid model, which exploits these links with
underlying factors and allows flexibility and realism, while still retaining tractability for derivative
pricing purposes.

Electricity spot prices typically exhibit periodicity (at annual, weekly and daily horizons), mean-
reversion, very high volatility and sudden price spikes, all of which can be traced to supply and
demand related causes. (see eg Burger et al (2007) and Eydeland and Wolyniec (2003)) Forward
prices show none of this volatile behaviour, but instead suggest the need for multi-factor models to
capture the movements of different parts of the forward curve; this is illustrated by the Principal
Component Analysis of Koekebakker and Ollmar (2005) and by discussions of volatility term struc-
ture by Clewlow and Strickland (2000). Furthermore, both forwards and longer-term spot dynamics
reveal close links with underlying drivers such as demand (or weather patterns) and especially fuel
prices. Burger et al (2007) and Emery and Liu (2002) discuss the apparent cointegration, rather
than the simple correlation of power and fuel prices, as long-term levels move together. All of these
characteristics suggest the importance of looking beyond historic price series to better understand
the dynamics of power prices in relation to fundamental drivers.

Nonetheless, the desire for analytic formulas and efficient pricing techniques has led to a large
literature on direct spot or forward price modelling. Early spot price models by Lucia and Schwartz
(2002), and Schwartz and Smith (2000) proposed a two-factor diffusion model to capture the different
short and long-term dynamics of power prices. However, the importance of electricity spikes has led
to the use of jump-diffusion processes by many authors, including Cartea and Figueroa (2005), and
Kluge (2006). An affine jump diffusion framework leads to convenient formulas for derivative prices;
see, for example Deng (1999), and Culot et al (2006), who also suggest regime-switching jumps to
capture the behaviour of short-lived price spikes. Pure regime switching models have also been studied
by De Jong and Huisman (2005) and Weron et al (2004), while an alternative approach is proposed
by Geman and Roncoroni (2006), forcing jumps to be downwards when prices are above a certain
threshold. While many of these models produce useful results and realistic price dynamics, they
often face calibration challenges due either to unobservable factors, choices of probability measure,
or to the complication of identifying historical spikes. In addition, they fail to capture the important
correlations between power prices and other energy prices.

The alternative category of structural, fundamental, or supply and demand based models consists
of a wide range of work including agent-based models of market power and bidding strategy (e.g.
Ruibal and Mazumdar (2008), Supatgiat et al (2001)), production cost based equilibrium models (eg
Bessembinder and Lemmon (2002)) and high-frequency analyses of the dominant spot price drivers
(eg Karakatsani and Bunn (2008)). Many authors have studied the impact on power prices of move-
ments in physical variables such as temperature, rainfall patterns and other demand-side factors (eg
Huisman (2008), Vevhilainen and Pyykkonen (2004)), while some have focused primarily on specify-
ing the correct shape of the electricity supply function (e.g. Kanamura and Ohashi (2004)). These
models all attempt to bridge the gap between pure power price models and the complex equilibrium
models used in industry to forecast prices based on detailed market knowledge such as specific gen-
erators’ costs, schedules and constraints. Amongst the class of stochastic, econometric style models
most useful for derivative pricing, Eydeland and Wolyniec (2003) discuss the role of hybrid models,
though they still rely on fairly detailed local market knowledge and large simulations. At the other
end of the spectrum, Barlow (2002) proposes a simple non-linear Ornstein-Uhlenbeck model consist-
ing of a mean-reverting demand process combined with a supply curve. A similar approach is taken
by Skantze et al (2000), Eydeland and Geman (1999), Villaplana (2004), and Cartea and Villaplana
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(2007), with the inclusion of capacity as a stochastic process, incorporated through an exponentially-
shaped supply curve. Burger et al (2004) consider a non-parametric supply curve, fitted using cubic
splines, and assumed to be a function of demand over capacity. A slightly different perspective is
gained by considering reserve margin (extra capacity available beyond demand) to be a key driver,
particularly as a low level of margin corresponds to a period of market strain, and consequently a
higher chance of a sudden price spike. This idea is exploited in a regime-switching framework by
Mount et al (2006) and Anderson and Davison (2008), a non-parametric approach by Boogert and
Dupont (2008) and a model which incorporates forward-looking margin information by Cartea et al

(2008).

While the appropriate choice of factors may vary across different markets, the articles above focus
mainly on load (demand) and capacity fluctuations, which are known to be the main short-term
drivers of power prices. Moving to medium or long term dynamics, data suggests that it is very
important to incorporate fuel price risks into the modelling framework. Pirrong and Jermakyan
(2005,2005) propose a fairly simple and intuitive model based on the two risk factors of demand and
natural gas price. As in our work, they study the PJM market and advocate the use of historical
generator bid data to estimate the transformation from underlying factors to power prices, suggesting
a simple non-parametric approximation to the bid curve, derived from the bid curve on the same date
of a previous year and adjusting by the ratio of gas prices (or forward gas prices) on the two dates.
We propose a more realistic, parametric approach to the bid stack function, allowing for the overlap
of bids from generators of different fuel types. Thus, our model extends their approach by allowing
multiple fuel prices as factors, as well as addressing capacity or margin issues such as outages. This
allows us to capture the rather complex dependence structure of power and fuel prices, as needed to
price a variety of cross-commodity spread options and other derivatives.

The remainder of the paper is organised as follows. Section 2 introduces the two North East US
markets used in our analysis. Section 3 presents our approach to modelling the bid stack function,
which links electricity spot prices to underlying drivers. We specify slightly different models for
PJM and NEPOOL and demonstrate the strong fit to historical bid data. Section 4 completes our
modelling framework by proposing stochastic processes for each of the underlying risk factors: fuel
prices, demand or load, and available capacity or margin. Section 5 assesses the performance of the
model through analysis of both simulated price paths and forward prices, in comparison to observed
data. Section 6 concludes.

2 Electricity Market Data Set

We shall focus on two US electricity markets: the PJM market (Pennsylvania, New Jersey and Mary-
land, plus parts of nine other Eastern states) and the NEPOOL market (the New England region).
While our methodology can be adapted to fit many different local characteristics, we choose these two
US markets primarily for the availability of historical bid data (at a six-month lag), as well as other
useful historical information also published on the PJM and NEPOOL websites.1 The availability
of bid data in a convenient form is still uncommon in power markets and is certainly central to the
methodology described here, but it is possible to imagine approximations or variations of the model
with parameters estimated for example from cost or heat rate data.

PJM is a large market currently serving over 50 million people, with a total capacity which grew
from 50,000 MW to 160,000 MW between June 2000 and July 2007. This time period forms our
dataset for parameter estimation, and we use PJM West price data throughout.2 The PJM market

1See http://www.pjm.com/markets/energy-market/historical-bid-data.html and http://www.iso-
ne.com/markets/hstdata/index.html for bid data.

2Power prices in PJM are complicated by the existence of Locational Marginal Prices (LMPs), corresponding to the
different regions of each market. Each LMP is determined by calculating the price required to deliver one extra unit of
power to that point on the grid. Factors such as local transmission constraints can lead to significant variation across
regions. In all our analysis, we use the PJM West region, as these prices are used to calculate the value of PJM futures
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has an interesting mix of fuel types (power sources), with a significant proportion of capacity coming
from coal, gas and oil, and nuclear. Table 1 illustrates how this fuel type breakdown has changed
slightly from year to year over the period considered.3

Table 1: Fuel breakdown (percent) in the PJM market (2002-06), and NEPOOL (2006)

Fuel Type Jan 02 Jan 03 Jan 04 Jan 05 Dec 05 Dec 06 NEPOOL
Nuclear 22 17.6 17.1 19.1 19.1 18.7 16
Hydro 5 5.3 5.4 3.6 3.6 4.6 12
Coal 34 37.9 36.2 42.1 41.2 40.7 9
Gas 4 7.5 6.8 16.2 15.6 16 16
Gas/Oil 14 15 18.9 9.6 10.5 10.5 16
Oil 18 15.5 14.3 8.5 8.4 8.9 12
Other 3 1.2 1.3 1 1 0.7 2

In contrast to PJM, New England has a much smaller and younger market with capacity fairly
stable around 30,000 MW throughout the dataset, which covers the time period March 2003 to
August 2007. NEPOOL has a simpler fuel mix than PJM, having little coal-powered generation.
Furthermore, gas and oil together represent nearly half of the capacity in the market, while the
remainder is primarily nuclear and hydro. Most nuclear and some hydro generators typically make
bids of zero as they have little flexibility in terms of switching on or off in response to demand. As
we shall see in Section 3, NEPOOL can therefore be treated in a simplified framework as a one-fuel
market, whereas PJM requires at least two fuel types to capture the dynamics realistically.
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Figure 1: Daily average real-time peak prices for PJM (left graph); Monthly average real time peak
prices for PJM and NEPOOL, as well as monthly average gas prices, multiplied by a factor of 10 for
comparison purposes (right graph). (Note that the highest daily PJM price achieved in the left graph
is $637, and there are 8 data points beyond $200, but only three since 2002, corresponding to the
first three days of August 2006, with a maximum price of $327.)

Figure 1 illustrates the dynamics of the real-time daily average peak price (average of hours 8-23,
weekdays only) for PJM. The dynamics for NEPOOL are slightly less volatile but generally similar in
appearance. Both real-time (RT) and day-ahead (DA) prices exist for both markets, with real-time
prices typically more volatile. We shall only consider peak prices, as the modelling methodology is

contracts traded on NYMEX.
3PJM data has been taken from annual generating capacity reports (http://www.pjm.com/services/system-

performance/operations-analysis.html) while NEPOOL data from Eydeland and Wolyniec (2003). Note that gas
generators that also have oil-based generation capability are listed separately. So if all of these choose to use gas,
the proportion of gas generators in the market is approximately 26% and 32% for PJM and NEPOOL respectively.

4



less well suited to describing off-peak prices, and thus a daily price will refer to a daily peak aver-
age. Although daily price series clearly reveal occasional price spikes, the magnitude and frequency
of spikes is much higher at an hourly level (i.e., before averaging), as a result of brief outages or
transmission constraints. The price series show high correlations with natural gas prices, also as
illustrated in Figure 1. Here we have removed the noise by considering only monthly average prices,
and obtain a remarkable visual correlation with monthly average Henry Hub gas prices. This link
between gas and power prices is extremely strong for the gas and oil-dominated New England market,
but also remarkably strong for PJM, as the market clearing price in peak hours is often set by the
bids from gas generators. Capturing this relationship accurately is one of the primary advantages of
our modelling approach.
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Figure 2: Sample bid stacks for PJM (left) and New England (right), showing movement as gas prices
change. (The region $600 to $1000 is not shown as the bid stack is almost vertical for this range.)

In Section 3, we introduce our model for the bid stack, which can be understood as the map from
the underlying random factors to the spot electricity price, and is thus the key component of the
power price model. We use daily bid data, consisting of day-ahead bids from all available generators
(close to 1000 for PJM, close to 300 for NEPOOL), for calibration.4 These bids describe the prices at
which the generator is willing to sell varying amounts of electricity. Thus each generator submits a
non-decreasing step function with a maximum of 10 steps, or price and quantity pairs. For example,
a generating unit which bids (200MW, $40), (300MW, $50), and (350MW, $80) is willing to sell its
first 200MW of power at $40, its next 100MW at $50, and its final 50MW at $80.5 By stacking all
bids from all generators in order from lowest to highest price, we can create the market bid stack,
typical examples of which are provided in Figure 2. The market administrator then determines the
hourly spot price by matching with the total demand for power. Note that some generators submit
‘must-run’ bids, which we treat as bids of $0, as they mean that the generator must sell its power no
matter what the price is.6 As peak prices typically stay above $30 but below $150 (for over 90% of the
hours observed during the most recent three years) the middle section of the bid stack is most relevant
in determining prices, though the right hand side becomes important in the event of spikes. Figure
2 also shows that significant movement can occur from month to month, especially during times of
large gas price increases, as was the case in both February 2003 and August 2005. We observe that

4Note that only daily observations of the bid stack are available for PJM, whereas hourly stacks are available for
NEPOOL, though intra-day variation is low. We create an average bid stack for each day before performing the
maximum likelihood estimation. Generator-specific issues such as start-up times and maximum run times per day are
ignored for simplicity. Details of the name of or type of generator making each bid are not revealed.

5In PJM, generators have the alternative of connecting these bid points linearly instead of using a step function.
6In fact, this requirement of some generators can very occasionally produce negative prices in electricity markets,

but this is only realistic during off-peak hours, which we do not model here.

5



during these months the majority of NEPOOL’s bid stack shifted upwards, while only the right hand
half of PJM’s was affected.

Clearly power generators adjust their bids according to changes in their generation costs. We
therefore expect a strong correlation between bid stack movements and fuel price changes, though
the possible impact of other factors such as the exercise of market power or strategic bidding should
be acknowledged. In order to understand this relationship, it is useful to consider the bid stack as
a histogram of bids, as shown in Figure 3. We simply add up the total amount of capacity in MW
that has been bid within each price bin.7 This provides an alternative perspective on the same data
shown in Figure 2, and interestingly reveals one main cluster of bids for NEPOOL, but a pair of
clusters for PJM separated by a region of few bids. We expect bids to be ordered roughly by fuel
type corresponding to the merit order for each market (Table 1). This suggests that most bids in
the left cluster of PJM’s histogram correspond to nuclear or coal generators, while the right cluster
is primarily gas and oil, although low gas prices in particular can cause these clusters to merge some-
what. While this clustering provides our primary motivation for studying the bid stack, it is also
important to discuss the far left and far right of the stack. The far left is less important as it consists
of zero bids (including ‘must-run’) or very low bids, both corresponding primarily to nuclear power
generators. This first 20-30% of capacity almost never determines the market clearing price during
peak hours. On the other hand, the far right of the stack typically consists of a scattering of bids
between about $250 and $1000 and therefore sets the price only during times of strain on the market.
As we have seen, these instances occur fairly frequently during peak hours, as they correspond to the
distinctive spikes visible in power prices. Our approach to modelling the entire bid stack focuses on
the movement of these clusters of bids as fuel prices change.

0

2000

4000

6000

8000

10000

12000

0 16 32 48 64 96 128 160 192 224 256 288 320 480 640 800

bid price ($)

bi
d 

am
ou

nt
 (

M
W

)

0

500

1000

1500

2000

2500

0 16 32 48 64 80 96 112 144 176 208 368 528 688 848

bid price ($)

bi
d 

am
ou

nt
 (

M
W

)

Figure 3: Sample histograms of bids for PJM (left) and New England (right). The quantity of bids
at zero (including ‘must-run’ bids) for NEPOOL is far beyond the scale of the graph, at 8580MW.

3 The Bid Stack Model

Let St represent the spot price at time t, and Dt ∈ [0, 1] the demand at time t, assumed to be
inelastic with respect to price, as is often the case for electricity. We model demand not in terms of
megawatt-hours but rather as a proportion of total market capacity, simplifying notation and allowing
for growth in the market size. For generator i of n, let xi be quantity supplied (again, normalised

by total capacity) and b
(i)
t (xi) be the bid curve at time t, where b

(i)
t : [0, cmax

i /cmax] → [0, pmax].

7In order to plot the entire bid stack, we have chosen to vary the histogram bin size for different parts of the stack.
For PJM, the bins covering the region [$0, $64] have width $4, while those covering [$64, $320] have width $8, and
finally those in [$320, $1000] have width $40. Similarly, for New England, the bins covering the region [$0, $112] have
width $4, while those covering [$112, $208] have width $8, and finally those in [$208, $1000] have width $40.
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Generator i’s maximum capacity is cmax
i , total market capacity is cmax =

∑

i cmax
i , and pmax is the

maximum bid allowed in the market (e.g. $1000 for PJM). Then the market clearing price which
allows supply and demand to match is given by

St = max
1≤i≤n

{

b
(i)
t (xi)

}

, where {x1 . . . xn} = argmin
x1,...,xn

{

max
1≤i≤n

(

b
(i)
t (xi)

)

:
n
∑

i=1

xi = Dt

}

.

Combining bid curves from different generators intuitively means stacking their component bids in
order from lowest to highest. If we assume that all bid curves are strictly increasing (and step
functions can be approximated by strictly increasing functions), then this corresponds to inverting
each bid curve, adding the inverses, and inverting the sum. Letting Bobs

t (·) denote the exact bid stack
observed in the market at time t, we can write

St = Bobs
t (Dt), where Bobs

t (x) = I−1
t (x), and It(x) =

n
∑

i=1

(

b
(i)
t

)−1

(x).

These equations provide a simplified description of an electricity market’s structure, but rarely
hold in practice. This is due to a variety of complications including generator outages, transmission
constraints, imports or exports, variations in geographical distribution of demand, possible demand
elasticity, and other rebalancing effects, especially for real-time prices. In order to capture these effects
yet retain tractability, we introduce a process Ct for capacity available at time t (again normalised
with cmax), and assume that now the bid stack is a function of Dt/Ct. In other words, any loss of
supply is assumed to be equally spread throughout the stack, an approach also taken by Burger et

al (2004). A fundamental requirement of this framework is that demand never exceeds capacity, so
0 < Dt/Ct < 1. Typically we also observe 0 < Dt < Ct < 1, though sometimes Ct > 1 (for example
through imports of capacity). The spot price is now given by8

St = Bt

(

Dt

Ct

)

, for 0 <
Dt

Ct

< 1, (1)

where the time dependence of the function Bt(·) is in fact a dependence on fuel prices, as these are
the primary drivers of generators’ bids. While this basic framework is only an approximation to the
complexities of electricity markets, it allows us to retain the direct link to supply and demand factors,
the flexibility to adapt to different markets, and the ability to price derivative products fairly easily.
We now introduce our model for this function Bt(·), which we estimate directly from available bid
data for PJM and NEPOOL.

3.1 General Case - fitting distributions to bids

As illustrated in Figure 3, a histogram of bids provides a useful alternative to simply observing the
bid stack directly in Figure 2, and motivates fitting a density function to these histograms. Bids from
generators with different fuel types are driven by different costs, leading to a mix of distributions in
the overall market, with weights corresponding to the breakdown of fuel types in the market. With
this new approach, the spot price St = Bt(x) can be reinterpreted as the x-quantile of our bid distri-
bution. Thus we fit a function to the density of bids and then deduce the quantile function (inverse
cumulative distribution function), as opposed to fitting the bid stack (or quantile function) directly.
One advantage is the wide range of well-known distributions that we can test. Furthermore, we can
link distributions’ parameters to the underlying fuel prices in an intuitive manner.

8We can interpret this spot price as being either a day-ahead or real-time price and either an hourly or daily average
price, depending on what we are interested in modelling. The framework of the model remains the same. In our
analysis, St is the hourly peak price process.
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In the most general case, let F1(x), . . . , FN (x) (Fi(x) : R → [0, 1]) be the proportion of bids below
$x for generators of fuel type i = 1, . . . , N , with weights wi, . . . , wN , summing to unity. Then the
spot power price St solves

F (St) =
N
∑

i=1

wiFi(St) =
Dt

Ct

,

and the bid stack is simply the inverse of the cdf, F (x), of the mixture distribution.

To improve the fit in the most relevant region of the bid stack, we may wish to truncate the domain
of Dt/Ct from (0, 1) to (bL, bU ) and ignore the tails of the bid distribution. This is only appropriate
if P [bL < Dt/Ct < bU ] = 1 (typically set bL = 0.2 or 0.3 and bU = 0.9 or 0.95). We then have

F (St) =
N
∑

i=1

wiFi(St) =
1

bU − bL

(

Dt

Ct

− bL

)

.

The requirement that Dt/Ct ∈ (bL, bU ) poses problems from a modelling perspective. Therefore, we
suggest an alternative approach of simply linearly rescaling both Dt and Dt/Ct such that for new
variables D̃t and C̃t, we require D̃t/C̃t ∈ (0, 1), just as in the untruncated case. In practice this
means that the lowest portion of both demand and capacity is fixed, and changes in both demand
and capacity only occur beyond this point in the stack. Moreover, any drop in available capacity is
now assumed to affect only the region (bL, bU ) of the bid stack. We then have

F (St) =

N
∑

i=1

wiFi(St) =
D̃t

C̃t

, where D̃t =
1

bU − bL

(Dt − bL) and
D̃t

C̃t

=
1

bU − bL

(

Dt

Ct

− bL

)

(2)
Note that C̃t 6= Ct, as C̃t represents the percentage availability of capacity in the relevant region of
the stack, not in the market in total.

We fit distributions to the bid data by maximum likelihood estimation, where a bid of q megawatts
at price p is treated as q separate observations of a bid at p. Let (pj , qj), j = 1, . . .M represent all

the price quantity pairs that make up the portion [bL, bU ] of bid stack. So
∑M

j=1 qi is (bU − bL)
times the total capacity of the market. Consider the general case of fitting a mix of N distributions,
with weights wi (where w1 + . . . + wN = 1), and two-parameter density functions fi(x; αi, βi), for
i = 1, . . . , N . Then the log-likelihood function (for a given day) is

L(w1, . . . , wN , α1, . . . , αN , β1, . . . , βN ) = log





M
∏

j=1

{

N
∑

i=1

wif(pj ; αi, βi)

}qj




=
M
∑

j=1

qj log

[

N
∑

i=1

wif(pj ; αi, βi)

]

.

We have compared results using the following distributions: Gaussian, logistic, Cauchy, and
Weibull. These all have appropriate humped shapes and only two parameters, one corresponding
at least roughly to the mean, and the other roughly to the standard deviation or shape. Hence we
use the notation mi, si, i = 1 . . .N for these parameters. The performance of the four distributions is
fairly similar in terms of both likelihood and capturing fuel price correlations, though thicker-tailed
distributions dominate for higher choices of the cutoff point bU , where the thin-tailed Gaussian per-
forms erratically. Ultimately, we advocate the logistic distribution (with mean mi and scale parameter
si equal to

√
3/π standard deviations) as the best choice, since it performs consistently for both mar-

kets and leads to the simplest mathematical expressions. For a mix of N logistic distributions, the
log-likelihood function is given by

L(w1, . . . , wN , m1, . . . , mN , s1, . . . , sN ) =

M
∑

j=1

qj log

{

N
∑

i=1

wi

4si

sech2

(

pj − mi

2si

)

}

. (3)
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3.2 One Fuel Case (N = 1) - NEPOOL

Beginning with the simpler NEPOOL case, the bids of generators can be split into bids of zero
(roughly 30%) by nuclear and some hydro producers, and a cluster of bids primarily from oil and
gas generators. Removing the lowest bids and considering the close relationship between gas and oil
prices, a single fuel model is reasonable. We therefore estimate the bid stack parameters for each
historical date as follows. Firstly, we ignore bids of below $10 and also the highest 5%, 10% or 15% of
bids, so [bL, bU ] ≈ [0.3, 0.95], [0.3, 0.9] or [0.3, 0.85].9 Then (for the logistic distribution), we maximise
with respect to m1 and s1 the likelihood function (3) with N = 1. We use a standard numerical
optimisation scheme in MATLAB, while noting that closed form expressions exist for m̂1 and ŝ1 only
in the Gaussian case.

Figure 4 illustrates the MLE results for m̂1 and ŝ1 with bU = 0.9, also showing Henry Hub natural
gas prices over the corresponding time period. Apart from two surprising spikes in bid levels in
January 2004 and 2005, the correlation with gas prices is very high, and as much as 95% in the
more recent data.10 The two spikes could perhaps have been caused by strategic bidding, though no
particular information has been found to explain these events.11 Nonetheless, the results strongly
suggest assuming a linear dependence structure between m1 and s1 and the natural gas price Gt:

m1 = α0 + α1Gt, s1 = β0 + β1Gt.
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Figure 4: NEPOOL estimation results (left graph) for the mean m̂1 and standard deviation
(

π√
3

)

ŝ1,

compared with Henry Hub natural gas prices (right graph).

Estimating the parameters {α0, α1, β0, β1} by regression produces slightly different results depend-
ing on the choice of distribution, upper cutoff of bids, bU , and time period considered. The upper
section of Table 2 shows the results for bU = 0.9, which appears to be a reasonable choice, reducing
the influence of the far right tail of the bid stack while keeping enough of the relevant region.12 The
results are very encouraging, showing high values of R2, particularly for m̂2, and particularly over
recent years, avoiding the two spikes described above.

While all four distributions studied share the useful property of having a fairly simple explicit
inverse cumulative distribution function, this is particularly true for the logistic case. As a result,

9We first remove all bids between $994 and $1000, as there are sometimes large clusters of irrelevant bids at these
levels which complicate matters if they are considered to be part of total capacity, cmax.

10Note also that correlations are higher if the gas price series has a lag of one day with respect to the bid stack
parameters, as we would expect for day-ahead bidding. Thus we use a one day lag in our regression as well.

11The PJM bid stack dynamics also show spikes in these months, but less dramatic ones. It is worth mentioning that
no spike was observed in January 06 so there is no reason to expect this behaviour every January.

12Tests reveal that as we increase bU from 0.8 to 1, values of R2 in the regressions remain stable before falling off
sharply after 0.9, in particular for ŝ1. For PJM, they increase gradually until about 0.95 before falling off, particularly
for ŝ2.
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the one-fuel model for NEPOOL leads to a convenient equation for the bid stack, and hence the spot
electricity price. Under the assumptions introduced above, (2) can be written as follows:

St = α0 + α1Gt + (β0 + β1Gt)
(

log(D̃t) − log(C̃t − D̃t)
)

. (4)

Thus we obtain a spot electricity price St which is linear in the natural gas price Gt, similar to the
model for PJM prices by Pirrong and Jermakyan (2005). However, this only occurs in the one-fuel
case in our model, so for NEPOOL, but not PJM. Note that the fairly simple form of (4) is very
appealing, particularly for the pricing of forwards presented in Section 4.

3.3 Two Fuel Case (N = 2) - PJM

As discussed briefly in Section 2 and illustrated in Figure 3, the variety of fuel types in the PJM mar-
ket suggests the use of at least two distributions to capture the behaviour of the bid stack. We choose
a pair of distributions to roughly represent the coal and gas portions of the market, and estimate the
bid stack parameters for each historical date as follows. Firstly set [bL, bU ] = [0.2, 0.85], [0.2, 0.9] or
[0.2, 0.95], such that we ignore the highest 5, 10 or 15% and lowest 20% of bids for each date. The low
bids in particular correspond primarily to the nuclear generators and hence do not move in the same
manner as the neighbouring coal bids.13 Next, calculate fixed weights w1 and w2 = 1 − w1 based on
the split of coal versus gas and oil in Table 1. These weights change only at a few discrete points in
time to reflect market changes. Finally (for the logistic distribution), maximise the likelihood function
(3) for N = 2 with respect to {m1, s1, m2, s2}.
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Figure 5: PJM estimation results (left graph) for the second distribution’s mean m̂2 and standard

devation
(

π√
3

)

ŝ2, compared with Henry Hub natural gas prices (right graph).

Figure 5 shows the gas distribution’s estimated mean m̂2 and standard deviation ŝ2 plotted against
time in the logistic case with bU = 0.95. As expected, both m̂2 and ŝ2 show a strong correlation with
the Henry Hub natural gas price, plotted again in Figure 5 over the corresponding time period. The
results are particularly encouraging using the more recent data, with correlation as high as 96%. The
results for m̂1 and ŝ1 are plotted in Figure 6, along with the changes in Appalachian coal prices over
the same period. Though not as striking as the gas correlation, some correlation is visible, particularly
with the period of significant increase during the year 2004.

As for New England, these results for PJM suggest a linear dependence structure of the form,

m1 = α̃0 + α̃1Pt, s1 = β̃0 + β̃1Pt, m2 = α0 + α1Gt, s2 = β0 + β1Gt,

13Tests reveal that including these lowest bids produces worse results by distorting the trends in coal parameters m̂1

and ŝ1. Tests with more than two distributions also do not appear to improve the results, and in fact tend to reduce
the stability of the parameters m̂i and ŝi over time.
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Figure 6: PJM estimation results (left graph) for the first distribution’s mean m̂1 and standard

devation
(

π√
3

)

ŝ1, compared with Appalachian coal prices (right graph).

where Pt and Gt are stochastic process for coal and gas prices respectively. Regression can again be
used to estimate the parameters {α̃0, α̃1, β̃0, β̃1, α0, α1, β0, β1}. Results are shown in the middle and
lower sections of Table 2, and are very positive, particularly for recent years. The R2 values for m̂2

are remarkably high, and explain the source of the high correlation observed earlier in the monthly
power and gas price series plotted in Figure 1. As before for NEPOOL, the standard deviation or
scale parameter (here ŝ2) shows a weaker relationship with gas prices than the mean, due in part to
the method of bid data truncation at bU .

Under the assumptions introduced above, our modelling framework from (2), can be written for
PJM in the logistic case as follows:

St = x such that B−1
t (x) =

D̃t

C̃t

,

where

B−1
t (x) =

1

2
+

w1

2
tanh

(

x − (α̃0 + α̃1Pt)

2(β̃0 + β̃1Pt)

)

+
1 − w1

2
tanh

(

x − (α0 + α1Gt)

2(β0 + β1Gt)

)

(5)

As this function is not invertible explicitly, we cannot write down the bid stack function, but can
easily solve for St numerically.

Table 2: Regression results for m̂1, ŝ1, m̂2, ŝ2 versus fuel prices, for NEPOOL (bU = 0.9) and PJM
(bU = 0.95)

Date range
m̂1 or m̂2 ŝ1 or ŝ2

inter slope R2 inter slope R2

NE (Gas)
Mar03-Aug07 17.35 7.67 0.701 7.36 1.29 0.168
Mar05-Aug07 27.36 6.58 0.908 8.63 1.11 0.557

PJM (Coal)
Jun00-Jul07 3.38 0.408 0.727 -1.57 0.123 0.703
Jun03-Jul07 6.43 0.355 0.487 -3.07 0.152 0.651
Jun05-Jul07 7.02 0.390 0.749 -5.32 0.198 0.869

PJM (Gas)
Jun00-Jul07 35.15 8.51 0.833 17.82 1.25 0.233
Jun03-Jul07 30.35 9.23 0.899 15.33 1.49 0.549
Jun05-Jul07 31.03 9.20 0.927 15.23 1.53 0.674
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3.4 Discussion

The high fuel price correlations observed in both PJM and NEPOOL bids justify the methodology of
the bid stack model, both in terms of the use of actual bid data and the representation of the bid stack
as an inverse cdf function. Furthermore, the use of Gaussian, logistic, Cauchy or Weibull distributions
with parameters linked to fuel prices can be understood intuitively in terms of the mix of different
heat rates for different generating units in the market. For example, suppose that for a given fuel, H is
a random variable describing the variety of heat rates existing among different generating units due to
factors such as age and technology. Suppose also that constant fixed costs A exist for each generator
per MWh of power generated. Finally suppose that generators make bids corresponding exactly to
their costs. Then the random variable Xt = A+HGt describes the bid of a randomly chosen gas gen-
erating unit given some gas price Gt. If H ∼ N(µH , σ2

H), then X ∼ N(A + µHGt, σ
2
HG2

t ). This gives
us precisely the Gaussian version of the model above, with parameters α0 = A, α1 = µH , β0 = 0 and
β1 = σH . With fixed costs A > 0 we expect α0 > 0, as we observe in our regressions for both coal and
gas. The observed mix of positive and negative values of β0 could be reproduced by letting A instead
have a Gaussian distribution correlated with H.14 Of course, this argument for heat rate distributions
would not work so conveniently mathematically using other distributions, but the intuition still holds.
Interestingly, the values we observe for α1 (7.67 and 8.51 for NEPOOL and PJM respectively) also
correspond closely to average PJM heat rates for gas generators, listed by PJM as approximately 7.3
MBtu/MWh in 2004 (PJM report (2005)). Similarly, α̃1 = 0.408 matches equally well with the coal
heat hate of 0.378 t/MWh used by Fehr and Hinz (2006). This suggests the possible use of heat rate
or cost data as an alternative to bid data, though it should be remembered that strategic bidding
could also have an influence on the parameters. Interestingly, recent work by Hortacsu and Puller
(2007) on strategic bidding suggests that while marginal cost curves often contain prominent flat or
vertical sections, optimal bid curves are typically smoothed to more closely resemble the bid stacks
above. Thus, even for a market with a very narrow range of heat rates, strategic bidding could result
in the fairly wide bid distributions we observe.

The results presented above for both PJM and NEPOOL strongly support the overall framework
of the bid stack model to connect electricity, gas and coal prices. However, there are several compli-
cations that should be handled carefully when estimating parameter values. Clearly, we need to find
a compromise between striving for a perfect fit of the bid stack and a rough approximation which
captures the basic relationships. The primary issues are the best choices for bU , bL and w1, and the
corresponding impact on spot price behaviour. The value of w1 is calculated from the percentages in
Table 1, and changes at six different dates during the time period, corresponding to times of market
expansion.15 The value of bL is much less significant than bU since the peak power price is much more
likely to be set in the far right than far left of the stack. Tests of regressions using different values of
bU confirm the choices of 0.9 (NEPOOL) and 0.95 (PJM) as appropriate. Only a few hourly prices
are set beyond these points, and Section 4.4 completes our methodology for capturing the far right
tail of the price distribution, by compensating for errors produced by truncating the bid data at bU .

4 Modelling the Price Drivers

The bid stack model is supplemented by stochastic processes for the primary risk factors which drive
the spot power prices: gas prices Gt (and coal prices Pt), demand (or load) Dt, and capacity available
Ct. An advantage of the supply and demand approach is that while choosing fairly simple processes
for the underlying factors, we can still replicate the unusual features of power prices through the

14Of course the distributions for H and A may change over time for example as technology improves, which suggests
that regressions over more recent data might be considered more useful.

15We make the assume that nuclear is grouped with coal and hydro with natural gas while ‘other’ is split equally
between coal and gas, before removing bL = 0.2 from coal/nuclear and rescaling. This process for w1 is then tested by
comparing with the value of w1 for each date which minimises the sum of squared errors between the central portion
(25%-75%) of the model bid stack and the observed stack. Results lend support the method of choosing w1 as described.
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choice of bid stack function.

4.1 Fuel Prices

For both the PJM and NEPOOL markets, the important fuel price to model is the US natural gas
price, as discussed earlier and confirmed by the results of the bid stack fit. Coal prices are less
important, even for PJM, because they are generally less volatile than gas, they drive a flatter and
lower region of the bid stack and they are less significant in setting prices particularly during peak
hours. Nevertheless, we propose a simple method for incorporating some coal price information
without increasing the complexity of the model. In a more general setting, other fuel prices and even
carbon emissions prices can also be included, as is clearly necessary for European power markets
today.

4.1.1 Gas Prices

We choose a standard approach to modelling gas prices, by fitting log gas prices with the Schwartz
2-factor model described by Schwartz (1997),16 capturing the mean-reversion which is widely believed
to exist in most commodity prices, as well as changes to the long term equilibrium level of prices.
Let X1

t and X2
t be the two independent stochastic factors driving the spot gas price Gt, and h(t) be

a seasonal component. Dynamics under the risk-neutral measure Q are given by

dX1
t = κ(µ1 − X1

t )dt + σ1dWt, (6)

dX2
t = µ2dt + σ2dW̃t,

Gt = exp(h(t) + X1
t + X2

t ).

Gas forward prices FG(t, T ) for delivery at a discrete point in time T have value at time t given by

EQ
t [GT ], the conditional expectation of GT under Q. Hence we have:

log(FG(t, T )) = log
(

EQ
t

[

eh(T )+X1

T +X2

T

])

= h(T ) + X1
t e−κ(T−t) + µ1

(

1 − e−κ(T−t)
)

+ X2
t + µ2(T − t) . . .

+
σ2

1

4κ

(

1 − e−2κ(T−t)
)

+
1

2
σ2

X(T − t) (7)

As X1
t and X2

t are unobservable factors, we use the Kalman Filter to calibrate our model to available
Henry Hub gas data (see eg Schwartz (1997), Lucia and Schwartz (2002) and Culot et al (2006) in
the electricity literature). The transition equation is easily written in vector form using the SDEs
in (6). As liquid futures or forward prices are widely available for the US gas market, (7) forms the
measurement equation, which importantly is linear in the state variables. NYMEX has provided us
with daily historical forward curves from January 2000 through November 2006. We use forward
prices for maturities of 1 month, 3 months, 6 months, 1 year, 2 years, 3 years (and when available 4,
5 and 6 years), thus keeping 6 to 9 forward prices for each historical date and reducing computation
time. We also assume that the forwards mature at the middle of each month, though in fact there is
a month-long delivery period.

The next step is to remove seasonality from the forward curves. Though the shape of the seasonal
pattern appears fairly consistently throughout the historical data, the amplitude varies significantly
over time for both the forward curve and log-forward curve. Thus, we cannot easily remove the
seasonality using the same function h(T ) throughout. Instead, we deseasonalise each forward curve
independently as follows. We firstly identify the linear trend in the curve beyond the one-year matu-
rity point, thus avoiding short end deviations. We then let the current month equal the base month,
and calculate for every other month the average difference between forwards with maturity in that

16This approach seems to give more reasonable parameter values than simply modelling Gt, particularly for recent
data where the positive skew in gas prices is significant. It also ensures that gas prices remain positive.
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month and the most recent base month forward. We account for linear trend in the process and
average from the one-year point onwards. Finally, we deseasonalise the forward curve by adding or
subtracting these average monthly differences as appropriate, relative to the mean of all months.

As is typical for the Kalman Filter, results are very sensitive to the choice of observation noise
σ3. Hence we perform the optimisation in two stages, similarly to the method of Culot et al (2006).
For fixed σ3, we implement the filtering with respect to {κ, µ1, σ1, µ2, σ2}, choosing initial parameters
X1

0 = 0.7, X2
0 = 0 for Jan 2000 (X1

0 = 1.2, X2
0 = 0.6 for Jan 2003), and the initial value of the

conditional covariance matrix of Xt to be 0.1I. Thus we find the parameter set that maximises
the total likelihood of observing the entire history of forward curves. We then vary σ3 and rerun
the filtering for each new value, in order to minimise the sum of squared errors of all natural gas
option prices available on NYMEX. As these are options on forward gas contracts and forwards are
lognormally distributed as in (7), option prices (with strike K, option maturity T1, forward maturity
T2, constant interest rate r) are given in closed form by

V G(t, T1, T2) = e−r(T1−t)Et

[

(FG(T1, T2) − K)+
]

= e−r(T1−t)

[

eµ̃+ 1

2
σ̃2

{

1 − Φ

(

log(K) − µ̃ − σ̃2

σ̃

)}

− K

{

1 − Φ

(

log(K) − µ̃

σ̃

)}]

,

where Φ is the standard Gaussian cdf,

µ̃ = h(T2)+X1
t e−κ(T2−t)+µ1

(

1 − e−κ(T2−t)
)

+X2
t +µ2(T2−t)+

1

2
σ2

X(T2−T1)+
σ2

1

4κ

(

1 − e−2κ(T2−T1)
)

,

and

σ̃2 =
σ2

1e
−2κ(T2−T1)

2κ

(

1 − e−2κ(T1−t)
)

+ σ2
2(T1 − t).

Table 3: Kalman Filter results for natural gas parameters
Date range κ µ1 σ1 µ2 σ2 σ3

Jan00 - Mar06 0.869 1.004 0.631 -0.034 0.141 0.059
Jan03 - Mar06 0.684 1.171 0.597 -0.036 0.121 0.079
Jan00 - Nov06 1.143 1.034 0.700 -0.044 0.136 0.066
Jan03 - Nov06 1.580 1.330 0.836 -0.053 0.114 0.079

The results are shown in Table 3 for different date ranges. The parameters seem fairly stable over
time, though the more recent data is characterised by a slightly higher volatility and faster speed of
mean reversion for X1 and larger negative drift for X2. Note that µ2 < 0 is necessary to account
for the fact that the gas forward curve was in backwardation (downward sloping) in 82.5% of the
observations in the dataset.

4.1.2 Coal Prices

As PJM is roughly 40% fuelled by coal, changes in coal prices can have a significant effect on the level
of power prices. However, as we have seen (e.g. Figure 6), coal prices move only gradually, suggesting
that volatility is low, and therefore that it is more important to capture the market’s expectations
of future trends in coal prices, than to capture the stochastic component. Hence we use NYMEX
Appalachian coal futures curves, and take the very simple approach of assuming that the coal price
at time T in the future will exactly equal the futures price FC(t, T ) with maturity T . Thus we have
effectively assumed a deterministic coal price model which is matched to the current forward curve.
While this seems artificially simple, it provides satisfactory results in the model without introducing
an additional stochastic factor which is likely to have little impact on power prices.
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Table 4: Results of fitting PJM and NEPOOL demand (Aug 04 - Jul 07)
Market κ̂Y µ̂Y σ̂Y

PJM (RT) 64.24 -0.001 1.393
PJM (DA) 52.311 -0.003 1.249
NEPOOL (RT) 81.69 -0.009 1.959
NEPOOL (DA) 132.06 -0.014 2.697

Market a1 a2 a3 a4 a5 a6

PJM (RT) -0.746 0 0.114 -0.862 0.186 -1.807
PJM (DA) -0.776 0 0.106 -0.858 0.170 -1.633
NEPOOL (RT) -0.894 0 -0.028 2.101 0.249 -1.826
NEPOOL (DA) -1.078 0 -0.134 1.490 0.264 -1.958

4.2 Demand (Load)

Demand or load is easily observable in all electricity markets, and is typically characterised by multiple
periodicities, at annual, weekly and intra-day levels. The lower lines in Figure 7 show average daily
peak demand (real-time) in PJM and New England respectively. As we use daily data, we have
averaged out intra-day effects and removed weekends and public holidays, so the primary seasonality
remaining is annual. Peaks occur in both summer and winter corresponding to higher air conditioning
and heating needs, with summer peaks larger than winter peaks, particularly for PJM. Initially we
model this deterministic behaviour through a linear trend and a combination of two cosine functions
with periods one year and six months. However, data shows that a linear trend is only necessary for the
early years of PJM when the market expanded significantly in size. Thus we instead choose the three
year period August 2004 to July 2007 and set a2 = 0 for both markets, as there is no significant trend.
Finally, the deseasonalised process is fitted by maximum likelihood estimation using an exponential
OU process, as shocks to demand are considered to revert rapidly to the seasonal level. We work
with rescaled demand D̃t throughout, with (bL, bU ) = (0.2, 0.95) for PJM, and (bL, bU ) = (0.3, 0.9)
for NEPOOL. Modelling log(D̃t) ensures that D̃t must remain positive, as required. Hence we have

log(D̃t) = f(t) + Yt (8)

f(t) = a1 + a2t + a3 cos(2πt + a4) + a5 cos(4πt + a6)

dYt = κY (µY − Yt)dt + σY dBt

where Bt is a Brownian Motion independent of Wt and W̃t in the gas process. We assume throughout
that fuel prices are independent of demand and capacity, which fluctuate on shorter time scales and
are driven by more local conditions; Pirrong and Jermakyan (2005) also suggest this to be a reason-
able assumption, though of course a prolonged cold spell over a large region is likely to impact both
power demand and gas prices.

Table 4 lists the results for both PJM and NEPOOL, and both real-time (RT) and day-ahead
(DA) demand, with t = 0 corresponding to June 1st 2000. The results show that mean-reversion
rates κY and volatility σY are higher for NEPOOL than PJM over the chosen period. Although we
are interested in hourly spot prices, we fit our demand model only to daily peak average demand as
intra-day movements are fairly small and dominated by the intra-day periodicity. This can easily be
incorporated into the model, for example with hourly indicator variables, but has very little effect.
Intra-day demand movements are ultimately overshadowed by intra-day capacity jumps, as discussed
below.

4.3 Capacity Available

As explained in Section 3, the process Ct (or C̃t) captures a variety of supply-side information relating
to outages, transmission constraints, exports, imports and other power delivery issues. Therefore it
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is not easily observable or even intuitively understood, though we can think of it simply as the
percentage of maximum capacity available. Since we observe hourly historical prices, demand and
bid stacks, we can calculate the implied capacity available Cimp

t which allows (1) to hold as closely
as possible.17 As Bobs(·) is non-decreasing, Cimp

t is uniquely defined by18

Cimp
t = max

{

c ∈ R+ : Bobs

(

Dt

c

)

≥ St

}

.
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Figure 7: Daily average peak demand Dt (lower line) and implied capacity available Cimp
t (upper line),

for PJM (left) and NEPOOL (right). (RT data is plotted for PJM, while DA is used for NEPOOL.)

The upper lines in Figure 7 show the historical evolution of the daily peak average implied ca-
pacity availability Cimp

t for both PJM and NEPOOL. It has clear seasonality matching roughly with
demand seasonality, thus dampening the seasonality of prices. This is due to generators’ maintenance
schedules which are designed to avoid high demand periods.19 Cimp

t thus incorporates both expected
and unexpected outages.

Using instead the truncated bid data and rescaled D̃t and C̃t involves solving for rescaled C̃imp
t

from (2) without breaking the condition 0 < D̃t/C̃imp
t < 1. This holds as long as Bobs(bL) < St <

Bobs(bU ) for all historical data, or equivalently, bL < Dt/Cimp
t < bU . However, for PJM, we find

that Dt/Cimp
t > 0.95 for 0.41% of recent hourly data, while for NEPOOL Dt/Cimp

t > 0.9 for 0.6%.
For these observations, we cannot define C̃imp

t as above, without breaking the restriction D̃t < C̃imp
t .

However, we can always define the (rescaled) model-implied capacity available C̃mod
t as the unique

solution to

St = B

(

D̃t

C̃mod
t

)

,

where B(·) is our model bid stack, as defined in (4) or (5). In general, we expect C̃mod
t to remain

close to C̃imp
t for the majority of data but to behave differently in the tails.

17Recall that Bobs is likely to be a step function, although some generators in PJM may bid continuous curves making
it really a combination of step functions and piecewise linear functions.

18Occasionally, we observe Dt > Dt/Cimp
t , implying excess capacity available in the market relative to normal

maximum capacity (Cimp
t > 1 in Figure 7). While this could realistically be caused by imports or slight demand

elasticity to price, it can be a modelling concern particularly for low values of Dt. In some of these cases our assumption
that the bid stack is a function of demand over capacity will lead to very high values of Cimp

t such as 1.5 or 2. In these

cases, we adjust Cimp
t by assuming that the extra capacity enters the market only in the portion of the bid stack below

where the price is set (as there would be no particular reason for the extra capacity to appear throughout the irrelevant

portion of the stack). Hence we set Cimp
t = Dt+(extra capacity in the right of the stack)= Dt + 1 − Dt/Cimp

t .
19While it might be expected that bid data should not include generators known to be undergoing maintenance,

historical bid data is in fact observed prior to the incorporation of scheduled outages.
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4.4 Margin

Given our model for D̃t in (8) above, modelling C̃t separately makes it difficult to satisfy our fun-
damental requirement that demand does not exceed capacity. One approach is to model D̃t/C̃t

directly, but this prevents us from disentangling demand and supply effects, and from using easily
observable and well behaved demand data D̃t. Furthermore, it still leaves us the problem of ensuring
D̃t/C̃t ∈ (0, 1). Instead we propose a stochastic process for the reserve margin M̃t = C̃t − D̃t, repre-
senting the amount of extra capacity available in the market but not needed to match demand. By
modelling both D̃t and M̃t as strictly positive processes, we automatically fulfil the required condition.

Hence we define (rescaled) implied margin M̃ imp
t and (rescaled) model-implied margin M̃mod

t as:

M̃ imp
t = C̃imp

t − D̃t and M̃mod
t = C̃mod

t − D̃t

Hourly historical data for M̃ imp
t suggests the need for a two-factor model for margin. The movement

of daily peak averages over weeks or months shows both mean-reversion and some clear negative
correlation with demand D̃t, as one would expect. Upward shocks to demand often lead to downward
shocks to margin, though market mechanisms such as imports, extra capacity reserves and transmis-
sion factors can dampen the effect and reduce the correlation. In addition, intra-day hourly margin
reveals quite noisy behaviour with sudden and short-lived jumps due to a variety of short-term effects
such as outages. We are interested less in describing the precise timing or autocorrelation of these
spikes than in describing their magnitude and likelihood. Therefore, we propose a simple regime-
switching model for log M̃t consisting of an OU process for the ‘normal regime’ and an independent
sample of a shifted exponential random variable for the ‘spike regime’:

log(M̃t) =

{

ZOU
t with probability 1 − pi

ZSP
t with probability pi

where the normal regime is given by

ZOU
t = κZ

(

µZ − ZOU
t

)

dt + σZdB̃t (9)

dBtdB̃t = ρ dt

and the spike regime is given by

ZSP
t = α − J , J ∼ Exp(λi), for seasons i = 1, 2, 3, 4.

Thus, each value of ZSP
t (in practice sampled hourly) is independent of previous values, and the prob-

ability of being in the spike regime in any future hour is also independent of the current regime.20

Data suggests that the left tail of the hourly margin distribution for PJM is significantly thicker in the
summer months, suggesting a higher chance of outages. Therefore we fit seasonal spike parameters
pi, λi : i = 1, 2, 3, 4 where i = 1 corresponds to winter (Dec - Feb), i = 2 to spring (Mar - May), i = 3
to summer (Jun - Aug) and i = 4 to autumn (Sep - Nov).

In order to estimate the parameters above, we firstly use daily average implied margin M̃ imp
t ,

which averages over intra-day spikes, to help better identify the behaviour of ZOU
t and especially its

correlation with D̃t. We estimate the parameters {κZ , µZ , σZ , ρ} by maximum likelihood, condition-
ing on the observed daily value of demand D̃t.

21 We use the same date range as for the MLE of the
demand process. We then move to hourly data to fit the spike regime through a moment matching
procedure. In order to estimate the point α beyond which the spike regime should operate, we exploit

20Tests of historical data using a more formal continuous time Markov Chain with transition matrix lead to an
expected duration of stay in the spike regime of approximately 2 hours for PJM and 3 hours for NEPOOL. Thus a
more complete regime switching model for M̃t leads to similar conclusions regarding the rapid speed of recovery from
spikes.

21We cap D̃t/C̃imp
t at 0.99 to the avoid the rare cases of negative M̃ imp

t when Dt/Cimp
t > bU and reduce the largest

downwards spikes in margin. This ultimately has little impact as the left tail of margin is captured in the second stage
of estimation.
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Table 5: Results of fitting PJM and NEPOOL margin (Aug 04 - Jul 07)
Market κ̂Z µ̂Z σ̂Z ρ̂ adjusted µ̂Z adjusted σ̂Z

PJM (RT) 133.59 -1.288 8.20 -0.358 -1.089 6.12
NEPOOL (DA) 76.00 -1.178 5.54 -0.125 -1.038 4.79

Market winter spring summer autumn

PJM (RT)

p̂i 0.090 0.103 0.174 0.109

λ̂i 1.340 1.727 0.712 1.896
α̂ -1.910 -1.910 -1.910 -1.910
R2 of fit 0.954 0.977 0.940 0.926

NEPOOL (DA)

p̂i 0.091 0.077 0.086 0.086

λ̂i 1.501 1.481 1.405 1.487
α̂ -1.830 -1.830 -1.830 -1.830
R2 of fit 0.949 0.937 0.983 0.900

the fact that ZOU
t has a Gaussian distribution and hence a skew of zero. In contrast, the historical

distribution of log M̃ imp
t has significant negative skew due to the thick left tail caused by outages.

We remove as many data points as necessary to obtain a non-negative skew and choose the last point
removed to be our parameter estimate for α. Since the remaining historical distribution (with points
log M̃ imp

t < α removed) is a more accurate representation of the invariant distribution of ZOU
t , we

re-estimate parameters for µZ and σZ to match the first two moments of this distribution. In other
words, we equate µZ to the mean of the truncated distribution, and σZ to its standard deviation
multiplied by

√
2κ̂Z , with κ̂Z as before. Essentially, we argue that parameter estimates κ̂Z and ρ̂ are

well fitted by our initial procedure, while the initial estimators µ̂Z and σ̂Z are distorted by the spikes
and require adjustment via moment matching. Therefore,

α̂ = min
{

α ∈ R : Skew
(

log
(

M̃ imp
)

1{log(M̃imp)≥α}

)

≥ 0
}

,

µ̂Z = E
[

log
(

M̃ imp
)

1{log(M̃imp)≥α̂}

]

, σ̂Z =
√

2κ̂Z StDev
(

log
(

M̃ imp
)

1{log(M̃imp)≥α̂}

)

.

The final step of the parameter estimation is to find seasonal spike regime parameters pi, and
λi, for i = 1, 2, 3, 4. Here we switch from using the left tail of the distribution M̃ imp to that of
M̃mod. This key step allows us to compensate for any errors made in fitting the tail of the bid stack,
in particular by not capturing the bids in the region (bU , 1). Though we may retain an artificially
steep tail for the bid stack, we correct this by allowing the left tail of the margin distribution to be
artificially stretched to produce the observed price spikes. Figure 8 shows log-histograms of log M̃mod

using the logistic distribution (and as usual bU = 0.9 for NEPOOL and bU = 0.95 for PJM). The
observed linearity in the left tail justifies the use of an exponential distribution for the outage regime.
Clearly for PJM the summer months require a different fit than other seasons, though for NEPOOL
the difference between seasons is much less. The parameters pi for each season are estimated simply
by finding the proportion of observations below α̂, while λi is estimated as the slope of an ordinary
least squares linear fit to the tail of the log-histograms.22 Table 5 lists all the estimated parameters
for the margin process (with RT data for PJM, and DA data for NE), as well as the R2 values for the
linear fits to the tail, which are all above 0.9. Unlike demand, margin appears to be more volatile and
‘spikier’ for PJM than for NEPOOL, with higher values for κZ and σZ , as well as the spike regime
probabilities pi. Finally, PJM’s values of p3 = 0.174 and λ3 = 0.712 confirm that much larger and
more frequent spikes occur in the summer, as also noted by Geman and Roncoroni (2006).

22Firstly, a slight correction is required for pi, since there exists a positive probability q = Φ
“

α̂−µ̂Z

σ̂Z

”

of values

below α̂ occurring in the non-spike regime. Hence, if p̄i is the percentage of observations below α̂, then pi = p̄i−q

1−q
.

Secondly, the regression to find λi has been performed over the ranges [α̂−3, α̂] and [α̂−1.5, α̂] for PJM and NEPOOL
respectively, each split into six equal width probability bins.
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Figure 8: Log histograms of model implied log-margin log M̃t for NEPOOL (left) and PJM (right),
over the three year period from August 04 to July 07.

At this stage it easy to demonstrate the additional convenience of choosing the logistic distribution
for our bid stack model in Section 3. Firstly, for the one-fuel case of NEPOOL, our equation for
electricity spot prices, (4), can be rewritten as follows:

St = α0 + α1Gt + (β0 + β1Gt)
(

log D̃t − log M̃t

)

As St is linear in log M̃t, for a given demand and gas price, the exponentially distributed left tail
of log-margin (from the spike regime) translates to exponentially distributed price spikes as well.
Moreover, for a fixed demand, writing

log M̃t = log D̃t −
St − m1

s1
,

we can translate the margin spike threshold α into a price spike threshold corresponding to a cer-
tain number of standard deviations in the bid distribution for gas.23 Unlike typical regime-switching
models for power prices (eg De Jong and Huisman (2005), Weron et al (2004)), we thus have an ex-
ponential ‘spike distribution’ for power prices which shifts over time as gas prices vary. For example,
Figure 1 suggests that while an hourly price of $150 could reasonably be considered a spike in early
2004, it could not be in late 2005 when high gas prices caused daily average peak prices to approach
these levels.

While formulas are not as simple in the two-fuel case for PJM, the linear relationship between St

and log M̃t still holds approximately for the tail, and hence the spike regime. This follows because
the influence of the coal distribution is negligible in the far right of the bid stack, so we can think of
using a one-fuel model as an approximation. Then

log ˜̃Mt ≈ log ˜̃Dt −
St − m2

s2
, (10)

where ˜̃Mt and ˜̃Dt (and ˜̃Ct below) represent a second rescaling of demand and margin from (bL, bU ) to
the gas-dominated portion of the bid stack (bL + w1(bU − bL), bU ). The rescaling technique introduced

23Ignoring the role of demand in determining price spikes is an approximation, but demand varies much less than

margin. As the bid stack is an increasing function of D̃t

D̃t+M̃t
, demand shocks combined with margin shocks will clearly

produce higher spikes than margin shocks alone.
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in (2) also implies

log( ˜̃Mt) = log

[

˜̃Dt

(

1
˜̃Dt/

˜̃Ct

)

− ˜̃Dt

]

= log( ˜̃Dt) + log

[

1 − w1

D̃t/C̃t − w1

− 1

]

= log( ˜̃Dt) + log





1 − D̃t

D̃t+M̃t

D̃t

D̃t+M̃t

− w1





= log( ˜̃Dt) + log(M̃t) − log
(

(1 − w1)D̃t − w1M̃t

)

≈ log( ˜̃Dt) + log(M̃t) − log(D̃t) − log(1 − w1)

where the last line holds for small margin M̃t. Thus, in the right tail of the bid stack, using (10),

log M̃t ≈ log D̃t + log(1 − w1) −
St − m2

s2
.

The approximate linear relationship between St and log M̃t again suggests that, holding gas and
demand constant, price spikes caused by margin spikes are also exponentially distributed.

5 Empirical Results

The performance of the model can be evaluated according to several different criteria for each of the
two markets considered. We firstly compare the properties of simulated electricity price paths with
those observed in the market, as is suggested by Geman and Roncoroni (2006). Typical statistics such
as mean, variance, skew and kurtosis are considered, but also other key features in power markets,
such as correlation with fuel prices and the probability of spikes above certain threshold prices. We
make comparisons of price series at various time-scales, since statistics such as correlation are most
relevant in terms of daily, weekly or even monthly averages. Though most of our state variables are
mean-reverting, the component X2

t of gas prices is simply a Brownian Motion with drift, implying
that no invariant distribution for spot prices St exists. Hence some statistics are likely to be unstable
over time and should be analysed with care. Our second tool for evaluating model performance is
a comparison of model-implied forward prices and observed forward prices. In power markets, it is
particularly important for a model to capture the forward curve accurately, a comparison we make
for the sample dates 30 December 2005, 31 March 2006, and 29 September 2006. These form a fairly
representative sample as they correspond to times of high, medium and low gas prices respectively,
and thus will also provide three different starting points for the simulation analysis.

Throughout this section, we use the logistic distribution for the bid stack model (bU = 0.9 for
NEPOOL, bU = 0.95 for PJM), with parameters given in Table 4. For the PJM gas distribution, we
use the regression results for {α0, α1, β0, β1} over the entire dataset June 2000 - July 2007. However
for the coal distribution, this leads to a consistent underestimation of m̂1 and ŝ1 during 2006. This
could be due in part to estimation difficulties during periods of significant gas and coal distribution
overlap (2004-05), or perhaps to a gradual change in the heat rates of coal generators over time. As
a result we use instead the regression results for {α̃0, α̃1, β̃0, β̃1} over the most recent period June
2005 to July 2007. For NEPOOL, we use the parameters {α0, α1, β0, β1} from regression over the
entire period March 2003 to August 2007. For the gas process Gt, we use parameters in Table 5 for
January 2000 - November 2006, making use of the most data. Finally, for demand and margin, we
use the parameters in Tables 6 and 7, noting that forward prices (taken from NYMEX) are settled
using real-time prices for PJM, but day-ahead prices for NEPOOL.
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5.1 Simulation Analysis

Tables 6 and 7 show a comparison of statistics for observed and simulated price data. We include two
different observed time periods (Mar 03 to Aug 07 and Mar 05 to Aug 07 for NEPOOL, Jun 00 to
Jul 07 and Aug 04 to Jul 07 for PJM) to illustrate the significant variation in all of these parameters
over time. In particular, the estimates of skew, kurtosis and the probability of hourly prices greater
than $100 are very unstable over time, and other statistics to a lesser extent. As discussed, part
of the problem lies in the the non-stationarity of gas prices, while other issues such as growth and
development of the market may also play a role. For the simulated statistics, we average over 2000
two-year Monte Carlo simulations of hourly prices with three different starting values for natural gas
prices, G0 = 4.11, 7.19 and 10.04.24 Note that while M̃t and D̃t are simulated under the real-world
measure P, gas prices Gt are simulated under the risk-neutral measure Q. Therefore, there is likely to
be some difference in simulated statistics and observed statistics due to the market price of natural
gas risk. In addition, comparing an average over 2000 gas trajectories with one observed historical
trajectory will inevitably lead to significant differences. As a result, we include a further simulation
which uses instead a fixed gas price trajectory matching the path of gas prices during the more recent
observed period for each market (05-07 for NE, 04-07 for PJM).

Table 6: NEPOOL statistics of observed and simulated paths
Observed Simulated

Time scale Statistic
03−07 05−07 05−07 Low G0 Mid G0 High G0 Fixed G
(DA) (DA) (RT) (Sep06) (Mar06) (Dec05) (05−07)

hourly mean 64.20 67.96 77.25 76.18 87.85 96.05 77.74
hourly st dev 25.90 28.49 35.00 24.36 28.68 30.71 20.47
hourly skew 2.72 0.61 12.18 0.83 0.88 0.86 1.47
hourly kurtosis 25.89 0.14 291.47 4.12 4.17 4.11 6.09
hourly prob>$100 9.07% 13.68% 15.62% 18.06% 27.98% 37.58% 12.61%
hourly prob>$200 0.10% 0.00% 0.26% 0.82% 1.80% 2.47% 0.03%
hourly prob>$300 0.08% 0.00% 0.10% 0.07% 0.18% 0.22% 0.00%
daily st dev 23.26 24.92 25.00 22.84 27.05 28.99 18.72
daily skew 3.20 0.85 3.94 0.61 0.68 0.67 1.40
daily kurtosis 28.40 0.34 36.79 3.16 3.26 3.27 5.24
daily corr with G 0.674 0.793 0.645 0.916 0.926 0.932 0.908
weekly corr with G 0.768 0.846 0.796 0.942 0.949 0.954 0.937
monthly corr with G 0.804 0.882 0.919 0.945 0.962 0.949 0.956

Overall, the results are satisfactory considering the weaknesses of the approach. In addition to
the non-stationarity of gas prices discussed above, statistics such as kurtosis are highly sensitive
to very rare but large spikes, implying that a very long historical time series is required to have
any confidence in our estimate. However, statistics such as correlation with natural gas prices can be
considered more reliable, and for these the model appears to capture the dynamics of the market quite
well. In particular, as expected, correlations increase as we move from daily to weekly to monthly
averages, since the impact of the shorter-term factors (demand and margin) diminishes. Also, the one-
fuel model for NEPOOL leads to higher correlations with gas than PJM’s two-fuel model. However,
the correlation is generally slightly overestimated, perhaps due to the grouping of oil with gas and
also the small amounts of other fuels present. For PJM, correlation is slightly underestimated by
the simulations except in the case of fixing the gas price path to match history. As expected, this
case produces the best overall results among the simulations by eliminating differences caused by the
gas price dynamics, and in particular shows a large improvement in the probabilities of hourly prices
above $100, $200 or $300. Finally, Tables 6 and 7 underscore the difficulty in comparing statistics

24These values are taken from the gas prices of 29 September 2006, 31 March 2006, and 30 December 2005 respectively,
and correspond to Kalman filter estimates of 0.67, 0.93 and 1.31 respectively for the mean-reverting component X1

0
.
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Table 7: PJM statistics of observed and simulated paths
Observed Simulated

Time scale Statistic
00−07 04−07 04−07 Low G0 Mid G0 High G0 Fixed G
(RT) (RT) (DA) (Sep06) (Mar06) (Dec05) (04−07)

hourly mean 57.25 71.02 65.38 67.46 75.97 83.54 67.71
hourly st dev 45.40 41.77 28.06 36.76 47.18 50.74 35.79
hourly skew 8.57 3.81 2.23 1.76 1.77 1.74 2.15
hourly kurtosis 143.69 37.59 9.97 9.09 9.77 10.22 11.32
hourly prob>100 8.99% 16.57% 8.61% 16.49% 22.03% 28.30% 14.54%
hourly prob>200 0.78% 1.28% 0.27% 1.25% 2.27% 3.10% 0.91%
hourly prob>300 0.26% 0.23% 0.06% 0.16% 0.40% 0.56% 0.10%
daily st dev 33.11 29.39 23.40 25.79 33.42 36.13 25.31
daily skew 5.84 2.39 2.09 0.78 0.93 0.96 1.41
daily kurtosis 74.31 11.87 8.86 3.35 4.23 4.40 5.30
daily corr with G 0.432 0.497 0.622 0.462 0.450 0.478 0.641
weekly corr with G 0.585 0.668 0.707 0.556 0.548 0.578 0.741
monthly corr with G 0.708 0.735 0.742 0.626 0.620 0.653 0.810

such as moments of price distributions, as these tend to vary significantly for different observed time
periods (and for real-time vs day-ahead), as well as for different starting values of simulations.

5.2 Forward Price Analysis

In the one-fuel logistic case of the bid stack model, forward electricity prices FP (t, T ) at time t with
maturity T can be found in closed form under the following assumptions. We first ignore delivery
periods by choosing T to be the midpoint of the delivery period [T1, T2]. In the case of monthly
forwards with maturity more than a month away, this should have little impact. Secondly, we assume
that the market prices of demand risk and margin risk are both zero. In other words, (8) and (9)
hold under both the real world measure P and the risk-neutral measure Q. (Note again that by using
the Kalman Filter, the dynamics of gas prices Gt in (6) are already under Q.) Thirdly, as mentioned
before, Gt (driven by X1

t and X2
t ) is assumed to be independent of both D̃t (driven by Yt) and M̃t

(driven by ZOU
t and ZSP

t ). Then, from (4), we have

FP (t, T ) = EQ
t [ST ]

= EQ
t

[

α0 + α1GT + (β0 + β1GT )
(

log D̃T − log M̃T

)]

= α0 + α1F
G(t, T ) +

(

β0 + β1F
G(t, T )

)

{

f(T ) + Yte
−κY (T−t) + µY

(

1 − e−2κY (T−t)
)

. . .

−(1 − pi)
(

ZOU
t e−κZ(T−t) + µZ

(

1 − e−2κZ(T−t)
))

− pi

(

α − 1

λi

)}

,

for seasons i = 1, 2, 3, 4, where FG(t, T ) is the forward gas price for the same maturity, and given by
(7). We can choose either to calculate FG(t, T ) based on our model or instead use observed Henry
Hub gas forwards.25

The top row of Figure 9 compares the model’s two-year forward curve with the observed two-
year peak forward curve for NEPOOL for the chosen historical dates.26 As expected, the use of
observed gas forward prices improves the fit of the model, lifting the model’s power forward curves

25Note that even when the gas forward curve is not matched exactly, we do calculate the gas model’s seasonality
function h(t) from the observed forward curve for that date.

26The end of the observed forward curve sometimes flattens out, because the forwards maturing in that particular
calendar year still have a one year delivery period, instead of monthly delivery periods. For the chosen dates, this
occurs for forwards maturing in Jan 2008 and beyond. For PJM, this effect occurs only at longer maturities.
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slightly. This suggests either higher future risk premiums or higher future expected gas prices, versus
the historical period used to calibrate the model. Overall, the results are encouraging, as both the
seasonality and upwards or downwards trend in the power forward curve are fairly well captured.
Note that the seasonality is a combination of gas price seasonality h(t) (annual with peaks in winter)
and demand seasonality f(t) (semi-annual with higher summer peaks), as well as small differences in
the margin spike regime. The model performs worst for forwards maturing in January or February,
perhaps because the market has priced in the risk of sudden spikes in bids, as was observed in Jan
2004 and 2005, and to a lesser extent in Feb 2007. Upwards trends (eg right graph) and downwards
trends (eg left graph) in the power forward curve match with trends in the natural gas forward curve,
as they are explained purely by whether Gt (and in particular X1

t ) is higher or lower than the mean
reversion level. Finally, the model suggests that a small demand or margin risk premium is present
in the New England market, with forward power prices generally slightly above expected spot prices,
on average by about $6.20 for the case of matched gas forwards. This is consistent with the fact that
the observed mean in Table 6 is only about $68 for 2005-07, while the NEPOOL forward curves in
Figure 9 generally lie above this level.
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Figure 9: Sample forward curves for NEPOOL (top row) and PJM (bottom row), corresponding to
the dates 30 December 2005 (left), 31 March 2006 (middle) and 29 Sept 2006 (right). The solid lines
with data points indicated by circles are observed prices. The other lines are model results, with the
smooth solid lines corresponding to matching the observed gas forward curve, and the dotted lines
corresponding to using the model’s gas forward curve.

The bottom row of Figure 9 shows the forward curves for PJM for the same dates. As no closed-
form solution for FP (t, T ) is available in the two-fuel case, these results have all been generated by
Monte Carlo simulation with 2000 runs. The mean reversion level µX is allowed to be time dependent
to match current gas forwards. The results are perhaps slightly stronger than for NEPOOL, with
both the seasonality and trends quite well captured. While the gas forward curve remains the main
determinant of the trend in the power forward curve, there is also some contribution from the direction
of the coal forward curve. Furthermore, unlike for NEPOOL, the differences in margin spike frequency
(particularly in the summer) play quite a significant role in determining the seasonality of power
forwards. There are certain months that are less well captured than others, as for example the
observed forward price in June is typically closer to May prices than July prices, while October and
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November tend to equal December. Observed data reveals other patterns which the model cannot
capture, such as the fact that neighbouring March and April forwards also tend to have identical
prices. However, we can definitely conclude that overall the model performs remarkably well in terms
of forward pricing. Finally, though less convincing than for NEPOOL, there is also some evidence of
a small demand or margin risk premium in PJM, since observed forward prices are on average $3.60
higher than simulated prices (using matched gas forwards).

6 Conclusion

The analysis of both the behaviour of simulated trajectories and the model’s prices for forward con-
tracts lends strong support to the methodology introduced in Sections 3 and 4, and its ability to
capture the dominant features of electricity prices. The bid stack model can now be implemented to
price a variety of different options and other derivative contracts. While we leave the details of option
pricing to future work, we outline here the benefits of the approach and the variety of extensions
possible using the basic underlying framework.

One of the biggest challenges in modelling electricity prices is to capture the variety of different
behaviour observed at different timescales, particularly if we are interested in hourly as well as daily
prices. It is well acknowledged in the literature (see eg Culot et al (2006) or Kluge (2006)) that
multiple factors are necessary with differing speeds of mean reversion. In our model, this conclusion
can be drawn directly from the parameter estimates in Section 4, with X2

t , X1
t , D̃t, ZOU

t and ZSP
t all

varying greatly in terms of mean reversion. Long-term behaviour (over monthly and annual horizons)
is driven by gas prices (and coal prices to a lesser extent), while medium-term behaviour (over daily
and weekly horizons) is largely driven by trends in demand and margin, and finally very short-term
behaviour (over hourly horizons) is primarily affected by the spikes in the margin process, which we
can think of as sudden outages or transmission constraints. As well as providing welcome intuition
for the price dynamics, these results can also simplify the pricing of certain derivative contracts. For
example, the value of long-term forwards (or options on long-term forwards) becomes independent of
current values of demand and margin. We only require current fuel prices and the invariant distribu-
tion of D̃ and M̃ , (or more specifically of D̃/C̃) to price these claims.27

In addition to describing the variety of different timescales in the market, the bid stack model
captures well the striking relationships presented earlier in Figure 1, as well as Tables 8 and 9. In
particular, by viewing power prices as a function of gas prices (via the bid stack), we capture a
more complex dependence structure than would be possible for example using correlated Brownian
Motions. While the longer-term trends of correlated processes will tend to diverge eventually, the
levels of cointegrated processes will continue to follow each other. The bid stack model explains
these characteristics while providing us with a more sophisticated approach than assuming a simple
linear relationship between power and gas. For example, in the two-fuel PJM model, the dependence
between power and gas becomes stronger during higher demand periods when the coal bids are less
relevant, whereas higher demand volatility can weaken it. Even in the one-fuel NEPOOL model,
where (4) leads to a linear dependence, the slope of this relationship is constantly changing due to
the seasonality of Dt/Ct. Thus we end up with a relationship which mimics cointegration, but is
somewhat more involved.

Another advantage of the bid stack model is that it exploits well-known relationships with un-
derlying observable driving factors in the power markets. This allows us to take advantage of more
available data for calibration, as well as to price power and gas derivatives, spark and dark spread
options, demand and weather dependent contracts, and even to value power stations in a single unified
framework. Finally, this framework is also flexible enough to incorporate local market information
which may or may not be available. For example, knowledge about anticipated structural changes

27Pirrong and Jermakyan (2005,2005) reach the similar conclusion that PJM options or forwards depend only on gas
prices until near maturity, as a result of the fast mean reversion rate of demand.
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(such as an anticipated increase in coal generators versus gas generators) can easily be added to the
model in a manner which would be very difficult for a pure spot price model to match. Alternatively,
if available, forward looking capacity or margin data could be incorporated through a time-dependent
mean reversion level µZ of the process ZOU

t . The use of such data has been shown to be particularly
important by Cartea et al (2008).

The weaknesses of the model include the large number of parameters to be estimated, and the
reliance on a large quantity of data. However, the complexity of electricity markets justifies a com-
plicated model and the use of more data avoids a large reliance on historical spot price data. The
estimation of risk-neutral dynamics for D̃t and M̃t has not been fully discussed here and is an extra
complication of the model, though calibration of the market prices of risk to available derivative
data is possible. In addition, the model simplifies the often complex structure of electricity markets
(including rebalancing effects, agent behaviour, learning and market power) by treating all factors
as exogenous, though possibly correlated, whereas in practice a much more involved set of interde-
pendencies may exist. Finally, the simplifying assumptions for the shape of the bid stack may be
unrealistic in some markets with many different overlapping fuel types or large amounts of imports
from abroad. In this sense the model shares some characteristics with reduced-form models, yet re-
tains strong intuition and clear links to underlying factors. The above issues in power markets imply
that there is of course an inevitable compromise between realism and model tractability, and we aim
to strike a balance between the two.

We conclude that the bid stack framework serves as an intuitive and realistic approach to modelling
electricity prices, tractable enough to obtain some closed-form expressions for forward prices and
simple numerical methods for pricing other derivatives. It is also flexible enough to adapt to different
markets, and to make use of a variety of data for calibration. We feel that its ability to describe well
the many features of the PJM and NEPOOL markets highlights the advantages of a more complicated
fundamental model over a pure reduced-form spot price model. In particular, the recent record price
levels and high volatility in global oil, natural gas and coal markets further emphasise the need to
treat power and other energy price dynamics through a single unified framework. We believe that the
bid stack model can be a useful tool in understanding and capturing the important interdependencies
that drive energy prices.
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