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This paper investigates option prices in an incomplete stochastic

volatility model with correlation. In a general setting, we prove an

ordering result which says that prices for European options with convex

payoffs are decreasing in the market price of volatility risk.

As an example, and as our main motivation, we investigate option

pricing under the class of q-optimal pricing measures. The q-optimal

pricing measure is related to the marginal utility indifference price of an

agent with constant relative risk aversion. Using the ordering result, we

prove comparison theorems between option prices under the minimal

martingale, minimal entropy and variance-optimal pricing measures. If

the Sharpe ratio is deterministic, the comparison collapses to the well

known result that option prices computed under these three pricing

measures are the same.

As a concrete example, we specialize to a variant of the Hull-White

or Heston model for which the Sharpe ratio is increasing in volatility.

For this example we are able to deduce option prices are decreasing in

the parameter q. Numerical solution of the pricing pde corroborates

the theory and shows the magnitude of the differences in option price

due to varying q.

JEL Classification: D52, G13

Keywords: stochastic volatility, pricing measure, market price of volatility risk,

Heston model, Hull White model
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Stochastic volatility models were developed as it became apparent that the

Black Scholes option pricing formula exhibits pricing biases across moneyness and

maturity. In particular, the Black Scholes formula underprices deep out-of-the-

money puts and calls. Further, empirical evidence suggests that stock return dis-

tributions are negatively skewed with higher kurtosis than the lognormal distibu-

tion, see Bates (1996) and Bakshi et al (1997). The evidence for negative correla-

tion between asset and volatility is particularly strong in the equity markets, see

Nandi (1988) and Belledin and Schlag (1999). Stochastic volatility models provide

a potential explanation of both the skew and kurtosis effects.

In an incomplete market model, such as a stochastic volatility model, there are

no unique preference-independent prices for options. In recent years there has been

much research in the area of characterizing pricing measures in incomplete markets.

Of particular interest is the special case of option prices under stochastic volatility

models, since such models exhibit incompleteness without the additional compli-

cation of jumps. This paper adds to this literature by presenting a comparison

of option prices under various choices of pricing measures, or equivalently, various

market prices of volatility risk.

The contribution of this article is threefold. First, in a general setting of an

autonomous stochastic volatility model with correlation, we prove an ordering result

that the prices of options with convex payoff structures are decreasing in the market

price of volatility risk. This result should be compared with, and is an extension

of, the results of Bergman et al (1996), El Karoui et al (1998), Hobson (1998)

and Romano and Touzi (1997) which show that the option price is increasing in

volatility. The fact that the prices of puts and calls are decreasing in the market

price of volatility risk is intuitive, at least when the asset and its volatility are

uncorrelated. However, this fact needs proof, especially in a model with non-zero

correlation, where the result is less clear.

Second, we apply these results to the class of q-optimal pricing measures which

have received much attention recently in the mathematical finance literature. The

minimal entropy martingale measure (Fritteli, (2000)), the variance-optimal mar-

tingale measure (Föllmer and Sondermann, (1986)) and the minimal reverse entropy

martingale measure (Schweizer, (1999)) are all special cases of q-optimal measures.

The q-optimal measure is the risk-neutral or martingale measure which is closest

to the physical or real world measure, where the notion of close depends on a dis-
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tance metric based on the qth moments of the relative density. Prices under the

various q-optimal measures are the marginal (ie small quantity) utility-indifference

bid prices for agents with Hara utilities, so our results can be interpreted in terms

of utility maximizing agents.

Our goal is to prove comparison theorems between option prices under these

various pricing measures and under the minimal martingale measure (Föllmer and

Schweizer, (1991)). The analysis utilizes recent results of Hobson (2002) on char-

acterizing q-optimal measures in stochastic volatility models.

For example we find that if the Sharpe ratio is deterministic then in our

jump-free setting the q-optimal measures all collapse to the minimal martingale

measure. This class of models is often described as being ‘almost complete’, see

Schweizer (1999), and Pham et al (1998). More importantly, our paper analyzes

option price orderings outside this special ‘almost complete’ case.

Our third contribution is to undertake a numerical investigation of our results

in the Hull and White (1988) or Heston (1993) model. In this model we can write

down explicit forms for many of the quantities of interest (including the market

price of volatility risk, and the form of the q-optimal measure). One important

conclusion is that the market price of volatility risk is not constant but depends

on the level of volatility and maturity of the option to be priced. The numerical

results support the theory by illustrating the fact that option prices are monotonic

in the parameter q, and also provide evidence of the magnitude of the price changes

with respect to q.

Our theoretical results can be seen as an extension of the results in Hender-

son (2002). Henderson studies the special case when there is no correlation between

the asset and volatility. In her case, stronger ordering results are obtained, but only

under the restrictive assumption of zero correlation. As we remarked above this

is an unrealistic model in many markets. Our techniques also differ from Hender-

son (2002). We use partial differential equation (pde) arguments which generalize

more simply to non-zero correlation than the coupling methods of Henderson.

Similarly our numerical results can be seen as extensions of the results of Heath

et al (2001). These authors compare option prices under the variance-optimal

(q = 2) and minimal martingale measure (q = 0) in the Heston model with zero

correlation. Our paper extends their results to non-zero correlation and to arbitrary

values of q. Indeed we show that the computations in Heath et al are incorrect. The
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numerics of Heath et al are in contradiction with our main theorem, whereas our

numerics are consistent with our result. We cannot explain why their results are

incorrect but it may follow from a false statement about put-call parity on p404.

The remainder of the paper is organized as follows. Section 1 begins by defining

the class of stochastic volatility models under consideration in the paper and de-

scribes the form of the pricing measures. The general option price ordering result

is stated and proved in Section 2. In the following section, we specialize to the

class of q-optimal measures and summarize their properties. Section 4 employs the

general ordering result together with the characterization of the q-optimal measures

to compare option prices in a general stochastic volatility model. We can obtain

stronger results by specializing to the Heston (1993) stochastic volatility model,

and this is the subject of Section 5. Option prices are generated under the Heston

model and their dependence on the choice of q explained. Section 6 concludes the

paper. Proofs and various technical remarks are relegated to a pair of appendices.

1 Stochastic Volatility models

Let S be the price of the traded asset and let V be the stochastic volatility. Under

the assumption that the risk-free rate is non-stochastic, there is no loss of gener-

ality using discounted quantities, and S represents the discounted asset price. In

principle, S and V could be vector valued quantities, but in this paper we will only

consider the univariate case. Under the real world measure P let S and V solve:

dSt

St

= Vt (α(t, Vt)dt+ dBt) , dVt = a(t, Vt)dt+ b(t, Vt)dWt, (1)

where B,W are correlated Brownian motions with a constant correlation co-efficient

ρ. We assume ρ takes a value in (-1,1) and we write ρ̄ =
√

1 − ρ2 so that W can

be represented via dWt = ρdBt + ρ̄dZt where Z is a Brownian motion which is

independent of B.

We assume V is a non-negative process, this covers the main models in the

literature including Heston (1993) and Hull and White (1987, 1988). By convention,

we take b(t, Vt) > 0 throughout.

The model (1) is not the most general stochastic volatility model. For example

it is possible to let α, a and b be functions of S as well as V (or even to let them be

non-Markovian) and to let ρ depend on t, S or V . However the framework (1) does

include most of the standard stochastic volatility models in the literature and has
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the feature that the volatility process is an autonomous diffusion. It is this feature

that will allow us to prove many of our results.

The price process S in (1) has drift µ(t, Vt) = α(t, Vt)Vt and volatility Vt. In

such a parameterization, α(t, Vt) should be interpreted as the Sharpe ratio or equity

risk premium1. The variable α(t, Vt) will play an important role in our comparisons.

Our analysis takes place within a model in which the probabilities of real world

events are given by the physical measure P. Note that in many option pricing

papers the role of P is merely to determine the set of null events. Indeed sometimes

the physical measure P is never specified and the author begins by writing down

the dynamics under a pricing measure Q. In our case, because we choose the

pricing measure closest to P, a different choice of real world measure P will lead to

a different pricing measure Q and thus will have an effect on prices.

Since S is the only traded asset in the model, and V is not traded, it is not

possible under the model in (1) to perfectly replicate a derivative on the stock price

S. The market is incomplete, and potentially there are many probability measures

under which the traded asset is a martingale. Denote the set of such measures by

Q. Each element of Q is a candidate pricing measure.

In the appendix we follow Frey (1997) to characterize the family of equivalent

martingale measures. Each equivalent martingale measure is a candidate pricing

measure. Roughly speaking a probability measure Q ∈ Q is a martingale measure

for S on FT if
dQ

dP

∣

∣

∣

∣

FT

= MT (2)

where MT is the terminal value of a martingale Mt given by

Mt = exp

(
∫ t

0

[

−α(u, Vu)dBu −
1

2
α(u, Vu)2du− λudZu −

1

2
λ2

udu

])

(3)

for a suitable process λt.

The space of equivalent martingale measures is parameterized by the process λt

which governs the change of drift of Z. By Girsanov’s theorem, under the change

of measure MT we have two independent Q-Brownian motions BQ and ZQ defined

by

dBQ
t = dBt + α(t, Vt)dt, dZQ

t = dZt + λtdt,

1Put another way, we set α(t, Vt) = µ(t,Vt)
Vt

where µ(t, Vt) is the drift and Vt the

volatility. Since volatility is assumed positive, there is a one-to-one relationship between

α and µ.
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and then

dSt

St

= VtdB
Q
t ,

dVt = [a(t, Vt) − ρα(t, Vt)b(t, Vt) − ρ̄λt b(t, Vt)]dt+ b(t, Vt)dW
Q (4)

where dWQ = ρdBQ + ρ̄dZQ.

Under Q the change of drift on Z is λt, the associated change of drift on W is

ρα(t, Vt)+ ρ̄λt and the change of drift on V is (ρα(t, Vt)+ ρ̄λt)b(t, Vt). The quantity

ρα(t, Vt) + ρ̄λt

is termed the ‘market price of volatility risk’ or volatility risk premium. We some-

times call λt the market price of Z risk, also known in Lewis (2000) as the hedging

portfolio risk premium. Note that since ρ̄ is positive, then for a given model under

P, the market price of volatility risk is positively related to the market price of Z

risk.

We believe that given the representation of the risk neutral pricing measure

Q via (2) and (3) it is most natural to model the parameter λt and not to model

the market price of volatility risk directly. This makes no difference when ρ = 0,

but when ρ is non-zero arbitrarily choosing the market price of volatility risk to be

constant (say) implies quite a complicated form for the risk neutral pricing measure.

One simple example of a candidate equivalent local martingale measure is the

minimal martingale of Föllmer and Schweizer (1991). This is the measure which

corresponds to the choice λ ≡ 0. Intuitively, under the minimal martingale measure

the drifts of Brownian motions which correspond to traded assets are modified to

make those assets into martingales, but the drifts of Brownian motions which are

orthogonal to the traded assets are left unchanged.

We now turn to the question of option pricing within this model. A European

option with non-negative payoff h(ST ) can be priced by fixing Q in Q and then

taking expectation under Q. The time-t option price C(t, St, Vt) becomes

C(t, St, Vt) = E
Q
t h(ST )

where the superscript Q refers to the fact that we are taking expectations with

respect to Q and the subscript t refers to the fact that we are conditioning on

information at time t.

The advantages of fixing a martingale measure Q and using it for pricing are that

the pricing functional is linear and that it agrees with the arbitrage free price for
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those options which can be replicated. Given the characterization above, selecting

a particular Q is equivalent to choosing a market price of volatility risk, and the

key to identifying the price is understanding the dynamics in (4).

2 The Option Price Ordering Result

This section proves our main ordering result which says that convex option prices

are decreasing in the market price of Z risk parameter λt, or equivalently decreasing

in the market price of volatility risk. The intuition is that an increase in either λt

or the market price of volatility risk corresponds to a decrease in the drift of the

volatility under the pricing measure.

Henceforth we only consider changes of drift λt for the Brownian motion Z

which are Markov functions of the volatility process. Thus we suppose λt = λ(t, Vt).

We show in Section 3 that the market price of Z risk for the q-optimal measure

takes this form.

We begin this section by writing down a pair of stochastic volatility models

under a pricing measure. (Note that we began the previous section by writing

down a single model under the real world dynamics. The difference will be that

under the pricing measure S is a martingale.) Let the price process S and volatility

V satisfy
dSt

St

= VtdBt dVt = η(t, Vt)dt+ b(t, Vt)dW (5)

where, as before, dB dW = ρdt. Suppose that the drift on the volatility either

takes the form2 η(t, v) = η+(t, v) or η(t, v) = η−(t, v) and let E+ (respectively

E−) denote expectation with respect to the model with drift η+ (respectively η−.)

For a function h define J+(t, s, v) = E+[h(ST )|St = s, Vt = v], and similarly let

J−(t, s, v) = E−[h(ST )|St = s, Vt = v]. Suppose that the diffusion co-efficients for

both models satisfy the regularity conditions given in Appendix B.

Theorem 1 Consider the pair (S, V ) as defined in (5) and a convex function h.

If η+(t, v) ≥ η−(t, v) for all t and v, then

J+(t, s, v) ≥ J−(t, s, v).

2The variables η+ and η− are alternative specifications. The superscript + is used to

denote the larger of the two functions and the minus is designed to represent the smaller

quantity. These notations are not meant to represent the positive and negative parts of η.
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In particular, the prices of options with convex payoffs are higher under the model

with drift η+.

It is well known (see for example Bergman et al (1996)) that for calls and puts,

option prices are increasing in the volatility process. This theorem is an extension

of that result, but is similar in spirit. The volatility in the model with drift (on

volatility) η+ is higher than the volatility in the model with drift η− and, when

combined with Jensen’s inequality this leads to higher option prices. For convex

payoffs, greater uncertainty (volatility) leads to higher option prices.

The proof of this result is given in Appendix A. There are two main ways

in which Theorem 1 can be interpreted and applied. In both cases the theorem

compares the prices of European-style options with convex payoffs. The first in-

terpretation is to take the theorem literally and to compare two different models

(with the same volatility structure but a different drift on the volatility process),

where both models are specified under the pricing measure. The second interpreta-

tion, which we will use extensively later in the paper, is to consider a single model

under a real-world measure P and to consider this model under two alternative

specifications of equivalent martingale measure Q+ and Q−.

In particular suppose the stochastic volatility model is as given in (1), and there

are two candidate pricing measures defined via (λ+,Q+) and (λ−,Q−) respectively.

Then if we set η+ = a−ραb−ρλ+b and η− = a−ραb−ρλ−b and if λ+(t, v) ≤ λ−(t, v)

then we have η+ ≥ η−. It follows from Theorem 1 that convex option prices are

higher under the pricing measure Q+.

As an illustration, consider the example of the Hull and White (1987) model

with non-zero correlation:

dSt

St

= VtdBt dVt = aV dt+ bV dW (6)

where a and b are constants. Then, if we compare two models with different values

of parameter a, the expected payoffs of options (with convex payoffs) are higher

in the model for which a is higher. Further, if we consider the model (6) specified

under P, and if we consider the impact of pricing using a market price of volatility

risk given by a constant λ, then the prices of options are decreasing in λ.
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3 The Class of q-optimal pricing measures

For the remainder of this paper, we focus on a subclass of the risk neutral pricing

measures, namely the q-optimal measures. For a given q the q-optimal measure is

the equivalent martingale measure which is closest to the original real world measure

P in the sense of the qth moment; see Delbaen et al (1997) and Hobson (2002). The

q-optimal measure is also the pricing measure which gives the marginal prices for

agents with Hara utilities who price by utility indifference.

In later sections we will compare option prices under stochastic volatility models

of the form (1) where option prices are computed under various q-optimal measures.

Note that in order to calculate the q-optimal measure it is necessary to know the

real world dynamics and physical probability measure P.

The fundamental idea is to choose a martingale measure Q as close as possible

to P. For q ∈ R \ {0, 1} define

Hq(P,Q) =

{

E[ q
q−1 (MT )q] if Q ≪ P

∞ otherwise,

and for q ∈ {0, 1} define

Hq(P,Q) =

{

E[(−1)1+qM q
T ln(MT )] if Q ≪ P

∞ otherwise.

For q ∈ R the q-optimal measure is the measure Q(q) ∈ Q which minimizesHq(P,Q).

A number of well studied martingale measures are special cases in the q-optimal

class and, as such, this class provides a unifying framework. When q = 1, Q(1) is

the minimal relative entropy measure, see Frittelli (2000). There are strong links

between this pricing measure and pricing under exponential utility, see Delbaen et

al (2002). Taking q = 0 gives the minimal reverse entropy measure Q(0). (The

extra log terms when q = 0 and q = 1 can be related to log terms which arise

when we integrate xq−2 twice.) The case q = 2 gives the variance-optimal measure,

which is related to mean-variance hedging, see Föllmer and Sondermann (1986)

and Duffie and Richardson (1991). In a stochastic volatility context, the variance

optimal measure has been studied extensively by Laurent and Pham (1999), Biagini

et al (2000) and Heath et al (2001).

The case q = 0 has some special features. In a continuous setting such as

ours (and under certain regularity assumptions) Schweizer (1999) has shown that
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the measure which minimizes the reverse relative entropy is precisely the (Föllmer-

Schweizer) minimal martingale measure. This corresponds to the choice λ ≡ 0 and

implies that the non-hedgeable risk is not priced. We will recover this result in

Corollary 4 below.

Although the cases q = 0, 1, 2 have special properties, the criterion of choosing

Q to minimize Hq makes sense for all q in R. Further, for q 6= 0, 1 there are links

between pricing under the q-optimal measure and utility indifference pricing under

a power-law utility. The cases q < 1 correspond to strictly increasing, concave

utility functions defined on R+. More specifically, for q < 1, the price under the

q-optimal measure corresponds exactly to the marginal utility indifference price for

an agent with power utility U(x) = x1−R

1−R
with constant relative risk aversion R

where q = 1 − 1
R

or equivalently R = 1
1−q

. The case q = 0 corresponds to R = 1

and logarithmic utility.

To investigate the dependence of option prices on the choice of q-optimal mea-

sure, we need to be able to characterize such measures. Motivated by results in

Rheinländer (2002) for the minimal entropy case, Hobson (2002) derives a represen-

tation equation which characterizes the q-optimal measure. It remains to solve the

representation equation and to find the form of the market price of risk associated

with the q-optimal measure. In the variance-optimal case with zero correlation,

this was achieved by Laurent and Pham (1999) and Biagini et al (2000), and in the

minimal entropy case within the Stein-Stein volatility model (with non-zero corre-

lation) by Rheinländer (2002). Instead we follow Hobson (2002) who shows how

to solve the q-optimal representation equation for models with correlation, at least

for models of the form (1). In fact, he only considers q ≥ 1 but his representation

holds equally for q < 1 so we are able to treat all the special cases of the general

theory within the q-optimal setting. Defining Q = 1− qρ2, the identification of the

q-optimal measure Q(q) is given via the market price of Z risk,

λ(q)(t, Vt) = ρ̄b(t, Vt)fv(t, Vt) (7)

where f = 0 if q = 0 and otherwise

f(t, v) = −
1

Q
log Ê

[

exp

(

−
q

2
Q

∫ T

t

α(u, Vu)2du

)∣

∣

∣

∣

∣

Vt = v

]

(8)

or

f(t, v) = Ê

[

q

2

∫ T

t

α(u, Vu)2du

∣

∣

∣

∣

∣

Vt = v

]

(9)
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in the special case of Q = 0. Under P̂, V has dynamics

dVt = (a(t, Vt) − qρα(t, Vt)b(t, Vt))dt+ b(t, Vt)dŴ

with P̂-Brownian motion Ŵ . If ρ = 0 or q = 0 then P̂ is just the real world measure

P.

By the Feynman-Kac theorem, f solves the representation equation

q

2
α(t, v)2−qρb(t, v)α(t, v)fv−

Q

2
b(t, v)2(fv)2+a(t, v)fv +

1

2
b(t, v)2fvv + ḟ = 0 (10)

with f(T, v) = 0.

Consider the representation (8). If qQ > 0 (or equivalently, q > 0 and ρ2 < 1
q
)

then f is positive and finite, and the q-optimal measure is defined over all time

horizons. However, if qQ ≤ 0, additional conditions are necessary to ensure the

change of drift λ(q) is finite. Typically the function f explodes at a finite time-

horizon, beyond which the q-optimal measure ceases to be defined.

Under Q(q), the dynamics in (4) become

dSt

St

= VtdB
Q(q)

t

dVt = [a(t, Vt) − ρα(t, Vt)b(t, Vt) − ρ̄2b(t, Vt)
2 fv(t, Vt)]dt+ b(t, Vt)dW

Q(q)

t

with BQ(q)

t = Bt+
∫ t

0 α(u, Vu)du, ZQ(q)

t = Zt+
∫ t

0 ρ̄b(u, Vu)fv(u, Vu)du and dWQ
(q)

=

ρdBQ(q)

+ ρ̄dZQ(q)

. These are the general model dynamics for the class of q-optimal

measures.

4 Comparisons between the q-optimal pricing mea-

sures

The general ordering theorem says option prices are decreasing in λ, or equivalently

decreasing in the market price of volatility risk. Our task in this section is to analyze

λ(q) for the q-optimal class of measures and hence to compare option prices. As we

saw earlier, the q-optimal market price of Z risk may be written as

λ(q)(t, Vt) = ρ̄b(t, Vt)fv(t, Vt)

where f is given in (8) or (9) and solves the pde (10).
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We first investigate the sign of λ(q). Under suitable regularity conditions (see

Appendix B) we can prove the following theorem. The proof is again relegated to

Appendix A.

Theorem 2 Under stochastic volatility dynamics in (1), and for q ∈ R

(i) if qα(t, v)2 is non-decreasing in v, then λ(q) ≥ 0;

(ii) if qα(t, v)2 is non-increasing in v, then λ(q) ≤ 0;

(iii) the inequalities on λ(q) are strict if qα(t, v)2 is strictly increasing or decreasing

in v.

Combining this result with the general ordering of Theorem 1, and the fact that

λ(0) = 0 we can make the following conclusion on the ordering of q-optimal option

prices associated with convex payoffs.

Corollary 3 (i) Suppose for each t, α(t, v)2 is increasing in v. Then for q > 0,

option prices under the q-optimal measure are less than those under the minimal

martingale measure, and for q < 0, option prices under the q-optimal measure

are greater than those under the minimal martingale measure. Equivalently, the

marginal utility indifference prices for an agent with constant relative risk aversion

R > 1 are less than the marginal utility indifference prices for an agent with loga-

rithmic utility, and for R < 1 marginal prices are greater than those for logarithmic

utility.

(ii) Conversely, suppose for each t, α(t, v)2 is decreasing in v. Then for q > 0, op-

tion prices under the q-optimal measure are greater than those under the minimal

martingale measure, and for q < 0, option prices under the q-optimal measure are

less than those under the minimal martingale measure. Equivalently, the marginal

utility indifference prices for an agent with constant relative risk aversion R > 1 are

greater than the marginal utility indifference prices for an agent with logarithmic

utility, and for R < 1 marginal prices are less than those for logarithmic utility.

We can give a partial explanation for these results. Suppose 0 < q < 1, or

equivalently 1 < R = 1
1−q

< ∞ and that α is positive and increasing in V . If

we take a mean-variance viewpoint, then as R increases the agent is prepared to

sacrifice some expected returns in order to keep variance (and especially losses)

under control. Since the variance is driven by α2 which is increasing in V , the

agent hedges against increases in V . Therefore under the state price density, the
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probability of scenarios with large volatility are reduced. If we now consider small3

options transactions, then the fact that volatilities are reduced means that the

prices of options with convex payoffs are also reduced.

Corollary 4 If α is deterministic, then option prices under the q-optimal measure

are all equal to the minimal martingale measure option price, and the marginal

utility indifference price is the same for all agents with constant relative risk aver-

sion, assuming they all share the same model of the dynamics under the physical

measure.

In the light of Theorem 2, Corollary 3 and the results on the ρ = 0 case of

Henderson (2002), it is natural to make the following conjecture:

Conjecture 5 Option prices under the q-optimal measure are decreasing (respec-

tively increasing) in q if α2 is increasing (respectively decreasing) in v.

Although we cannot obtain a general result for the effect of q on λ(q) when

correlation is present, we can if we specialize to a particular model. In the next

section we consider the Heston model.

5 Option Price Comparisons under the square-

root model

In this section, we are interested in comparing various q-optimal option prices in

the Hull and White (1988) or Heston (1993) model. In this special case we can give

explicit formulæ for the market price of Z risk (and hence market price of volatility

risk) associated with the q-optimal measure. This allows us to analyze the effect of

choice of q, or equivalently the choice of constant relative risk aversion co-efficient

R on option prices.

The Heston model gives the squared volatility U as a squared Bessel process

under the real world probability measure P

dSt

St

= α(t,
√

Ut)
√

Utdt+
√

UtdBt,

dUt = 2κ(m− Ut)dt+ 2β
√

UtdWt

3Here “small” means that to first order, entering this additional transaction does not

affect the optimal investment portfolio
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with B and W correlated Brownian motions. Writing U = V 2 and m̄ = m−β2/2κ

we get

dSt

St

= Vt (α(t, Vt)dt+ dBt) dVt = κ(m̄/Vt − Vt)dt+ βdWt. (11)

This model is equivalent to taking a(t, Vt) = κ(m̄/Vt − Vt) and b(t, Vt) = β in our

original model. We assume β, κ > 0 and m ≥ β2/κ, the latter to guarantee that V

does not hit zero.

The choice of the Sharpe ratio α(t, Vt) in the model will have a direct impact

on the form of the q-optimal measure and hence the ordering of q-optimal option

prices, via the function f in (8) or (9). Before discussing the appropriate choice

of α(t, Vt), we will describe the martingale measure used by Heston for pricing.

In the original Heston (1993) model the Sharpe ratio term α(t, Vt) is of the form

α(t, Vt) = αH/Vt. To obtain a model under the risk neutral measure Heston adjusts

the drift on the traded Brownian motion B so that S is a Q-martingale and then

proposes that the effect of the change of measure on the volatility V is to adjust

the drift by a term λHV . Thus under the pricing measure the dynamics become

dSt

St

= VtdB
Q
t dVt = {κ(m̄/Vt − Vt) − λHVt}dt+ βdWQ

t . (12)

In particular, although Heston makes the choice α(t, Vt) = αH/Vt, his choice of

pricing measure makes this term disappear. Note that the market price of volatility

risk λHV/β is equivalent to a change of measure for which dWQ = dW +(λHV/β)dt

is a Q-martingale. In turn this corresponds to a change in drift on the orthogonal

martingale Z to make ZQ given by dZQ = dZ− 1
ρ̄
(ραH

V
− λHV

β
)dt into a Q-martingale.

(The Brownian motions B and W are correlated, so although the switch to the pair

(B,Z) is merely a reparameterization, we contend that it is more natural to consider

the effect of a change of measure in terms of the impact on the independent driving

Brownian motions.)

Under the Heston change of drift,

dVt = κ∗
(

m̄∗

Vt

− Vt

)

dt+ βdWt
Q

where κ∗ = κ + λH, m̄∗ =
κm− 1

2β2

κ+λH are risk adjusted parameters and WQ is a

Q-Brownian motion. Under this framework, Heston was able to obtain a pricing

formula via Fourier inversion techniques involving numerical integration of the real
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part of a complex function. However, Heston’s choice of pricing measure is es-

sentially arbitrary and, in terms of its effect on the Brownian motion Z, not very

natural. Certainly it is not one of the q-optimal measures. The choice does, however

allow him to obtain a tractable method for pricing options.

Returning to the question of the specification of Sharpe ratio α(t, Vt) in the

real world model (11), there are several possibilities. We disregard a constant

Sharpe ratio (α(t, Vt) = α0) case since Corollary 4 implies option prices under all q-

optimal measure prices are equal in this case. Heston (1993) takes α(t, Vt) = αH/Vt,

although as described, this has no impact in his model on option prices. The

third choice of Sharpe ratio α(t, Vt) = α1Vt is a popular one in the literature, and

appears as (H2) in Heath et al (2001), and as an example in both Hobson (2002)

and Henderson (2002). If α1 > 0, this specification implies a Sharpe ratio which is

increasing with volatility, a feature which is backed up empirically by Campbell and

Cochrane (1997). In this section we will focus on the specification of the Heston

model with α(t, Vt) = α1Vt.

Hobson (2002, Proposition 5.1) gives an explicit formula for the solution of (8)

and (9) (or equivalently (10)). In this case the solution to (10) is of the form

f(t, v) = v2F (T − t)/2 +G(T − t)

where F (0) = 0 = G(0) and F and G solve

Ḟ = qα2
1 − 2(κ+ qρβα1)F −Qβ2F 2, Ġ = κmF. (13)

The differential equation for F can be solved explicitly on a case by case basis

depending on the signs of q and Q. For example if q and Q are both positive,

F (τ) =
C

A
tanh

(

ACτ + tanh−1

(

AB

C

))

−B

for suitable constants A,B and C. This solution is finite for all time. For other

parameter values the function F may explode. It turns out that for any fixed

correlation ρ and maturity T there exists q∗ < 0 < ρ−2 < q∗ such that F explodes

before T for q outside the range [q∗, q
∗]. If F explodes then there is no q-optimal

measure.

We are interested in the market price of Z risk

λ(q)(t, V ) = ρ̄βVtF (T − t)

16



for the change of drift of V under the q-optimal measure. Note the market price of

risk is time-inhomogeneous.

We can now investigate the dependence of λ(q) on q under the Heston model.

The proof is in Appendix A.

Proposition 6 For the Heston model (11), with α(t, Vt) = α1Vt, the market price

of risk for the q-optimal pricing measure is increasing in q for q ∈ (q∗, q
∗).

Combining Proposition 6 and the general comparison result in Theorem 1, we

have (with R∗ = 1
1−q∗

< 1)

Corollary 7 Consider the Heston model (11) with α(t, Vt) = α1Vt. Over the range

(q∗, q
∗) for which the q-optimal measure is well defined we have that q-optimal

prices for European options with convex payoffs are decreasing in q. Further, over

the range (R∗,∞), marginal utility indifference prices for European options with

convex payoffs are decreasing in the co-efficient of relative risk aversion R.

This implies the highest option prices (within the class of q-optimal measure

prices) are attained with the measures which correspond to the smallest values of

q. In particular, the minimal martingale measure price is larger than the minimal

entropy price, which in turn is greater than the variance-optimal price. Put an-

other way, as the co-efficient of relative risk aversion increases, the marginal utility

indifference price goes down.

Having established the general relationship between option prices and the choice

of q in the q-optimal measure in the Heston model, we now investigate numerically

the magnitude of the differences in option prices. Our model parameters are ap-

propriate for the foreign exchange market, although our qualitative conclusions do

not depend on such a choice. Melino and Turnbull (1990) explore pricing in this

market with stochastic volatility, as do Hakala and Wystup (2002). In the foreign

exchange market, correlations tend to be small and positive. This differs from the

equity market where strong negative correlations are the norm. The leverage effect

is often cited to be the cause of this. As the stock price falls, debt to equity ratios

rise making the firm riskier and resulting in greater volatility, see Nandi (1998).

In Figure 1, we show how the price of an at-the-money put option depends on

the parameters q and ρ. As anticipated by Corollary 7, we observe the put price is

decreasing in q. The range of the graph represents about a 16% difference in prices

between the extreme points. If we examine special cases of moving from say q = 0
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Figure 1: Price of a 1 year at-the-money put option as a function of

the correlation ρ between the asset price S and the stochastic volatility V ,

and q, the parameter in the q-optimal measure related to the coefficient of

relative risk aversion. The prices are computed under the Heston model

where dSt = StVt(α1Vtdt + dBt) and dVt = κ(m̄/Vt − Vt)dt + βdWt with

parameters as follows: κ = 1, β = 0.1, m̄ = 0.05, V0 = 0.1, α1 = 4, S0 = 1.

Since interest rates are zero, the prices of calls will equal the prices of puts.

Over most of this range, q(1 − qρ2) > 0 and the q-optimal measure exists

for all time, and even for q = 5 and |ρ| = 0.5 the q-optimal measure exists

up to T = 1.

18



to q = 2, the price change is of the order of a couple of percent, depending on the

correlation. This is a non-trivial difference, and highlights the fact that choice of

pricing measure or adjustment for risk has an impact on option prices.

In the figure, put option prices are also observed to decrease with correlation. It

turns out that this is the case for ‘small’ q. Note that in the pricing pde (17), there

are two drift terms arising from the incompleteness, ρβα1v and ρ̄2β2vF (T − t).

In the small q case, the first of these is dominant. If correlation is negative, this

term has a positive effect on the option price, whilst the reverse is true for positive

correlation. Once q is no longer small, the ordering reverses. This is the case as

the drift term involving ρ̄2F (T − t) becomes dominant.

6 Conclusion

In this paper we have investigated the role of the market price of volatility risk and

the choice of pricing measure on the prices of options. In a final section we compared

these theoretical results for a general stochastic volatility model to numerical results

for the Hull and White (1988) or Heston (1993) model.

Our first result is that as the market price of risk on the unhedgeable source

of randomness Z increases, or equivalently as the market price of volatility risk

increases, the prices of European style options with convex payoffs decrease. At

least when ρ = 0, this result can be seen as an extension to an incomplete market

of the standard result that in a complete market (such as the Black Scholes model)

option prices are increasing in volatility.

As an application of this result we investigated how the market price of risk

changes with q when the pricing measure is chosen to be the q-optimal measure.

If the innovations process driving the volatility is independent of that driving the

traded asset then we recover the result of Henderson (2002) that if (the square of)

the Sharpe ratio is increasing in volatility then (European) options with convex

payoffs have prices decreasing in q. In the correlated case, the results are less clear,

but we are able to show that under the same conditions, the q-optimal price for

any positive q is smaller than that for any negative q.

Since there is a direct relationship between the q-optimal measure and the

marginal utility indifference price for an agent with HARA utility, these results

have an immediate interpretation for an agent with constant relative risk aversion.
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For example, we can conclude that if ρ = 0 and the Sharpe ratio is increasing in

volatility, then the marginal utility indifference price of an agent with CRRA for

a European option with convex payoff is decreasing in the risk aversion co-efficient

R.

We conjecture that in the correlated case, if α(t, v)2 is increasing in v then

option prices are decreasing in q or R (so that the result for the correlated case is

the same as when ρ = 0). The evidence for the conjecture is based on the ρ = 0

case and also on the analysis of the Heston model. However, this evidence is fairly

slim, and it would be extremely interesting if it were possible either to prove the

result or to find a counterexample. We hope this motivates the study of other

examples, particularly if they lead to further explicit solutions, as this should help

aid intuition.

Even when the correlation is zero we can have the following surprising result:

namely that as an agent becomes more risk averse (which corresponds to q increas-

ing) q-optimal option prices may go down or up. The precise effect of changing R

depends on the Sharpe ratio.

An important observation is that the market price of volatility risk correspond-

ing to the q-optimal measure is time-inhomogeneous. As a consequence, changing

q may have different effects for short and long maturity options. This additional

feature of the model may provide extra ability for the model to fit market data

and extra explanatory power. The issue of calibrating the model and inferring the

parameter q or risk aversion of the market is an extremely interesting one, and will

be addressed elsewhere.

Appendix A
Proof of Theorem 1

The function J+ solves L+J+ = 0 subject to J+(T, s, v) = h(s) where

L+ =
1

2
s2v2 ∂

2

∂s2
+ ρsvb(t, v)

∂2

∂s∂v
+
b(t, v)2

2

∂2

∂v2
+ η+(t, v)

∂

∂v
+
∂

∂t
.

Similarly, under the alternative dynamics the function J− solves L−J− = 0 subject

to J−(T, s, v) = h(s) where L− is obtained from L+ by replacing η+ with η−.

As a consequence, for any function g(t, s, v) we have L+g−L−g = (η+−η−)gv.

Here the subscript denotes a partial derivative. In general, a subscript t or u denotes

a time parameter, other subscripts are partial derivatives, and the partial derivative

with respect to time is denoted by a dot.
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Consider J̃ = J+ − J− so that J̃(T, s, v) = 0. Then

L−J̃ = L−(J+ − J−) = L+J+ − L−J− − (L+ − L−)J+ = −(η+ − η−)J+
v .

By the Feynman-Kac representation

J̃(t, s, v) = E−

[

∫ T

t

(η+ − η−)J+
v (u, Su, Vu)du

∣

∣

∣

∣

∣

St = s, Vt = v

]

,

and J̃ ≥ 0, provided J+
v ≥ 0.

It remains to show that the prices of options with convex payoffs are increasing

in the initial value of the volatility, or equivalently that J+
v ≥ 0. This result can be

found in the literature in a paper by Romano and Touzi (1997).

Proof of Theorem 2

If q = 0 then f ≡ 0 and λ(0) ≡ 0. Otherwise, consider first the case Q 6= 0.

Under the transformation g = e−Qf , g is given by

g(t, v) = Ê exp

(

−
q

2
Q

∫ T

t

α(u, Vu)2du

)

> 0,

see (8), and (10) becomes

−
q

2
Qα(t, v)2g + (a(t, v) − qρb(t, v)α(t, v)) gv +

1

2
gvvb(t, v)

2 + ġ = 0 (14)

subject to g(T, v) = 1. Now gv = −Qgfv and we can examine the sign of fv via an

analysis of gv. The above pde can be written as

0 = L̂g −
q

2
Qα(t, v)2g (15)

where

L̂ = (a(t, v) − qρα(t, v)b(t, v))
∂

∂v
+

1

2
b(t, v)2

∂2

∂v2
+
∂

∂t
.

Differentiating (15) with respect to v yields

0 =
[

L̂g −
(q

2
Qα(t, v)2

)

g
]

v

= L̂vg + L̂gv −
q

2
Q(2gααv + α2gv)

=

(

(av − qρbαv − qραbv)
∂

∂v
+ bbv

∂2

∂v2

)

g + L̂gv −
q

2
Q
(

2gααv + α2gv

)

.

Define

L‡ = L̂ + b(t, v)bv(t, v)
∂

∂v
.
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Then gv(T, v) = 0 and

0 =
(

av − qρbαv − qραbv −
q

2
Qα2

)

gv + L‡gv − qQααvg.

By the Feynman-Kac representation,

gv(t, v) = −qQE‡

[

∫ T

t

ααvg exp

(
∫ s

t

(av − qρbαv − qραbv −
q

2
Qα2)du

)

ds

]

where under P‡, V has drift (a− qραb + bbv). Now recall gv = −Qgfv so

fv =
q

g
E‡

[

∫ T

t

ααvg exp

(
∫ s

t

(av − qρbαv − qραbv −
q

2
Qα2)du

)

ds

]

.

Since g > 0 we have that

if qα(t, v)αv(t, v) > 0 then fv > 0;

if qα(t, v)αv(t, v) < 0 then fv < 0;

if qα(t, v)αv(t, v) = 0 then fv = 0.

It remains to consider the case Q = 0. In that case (10) becomes

q

2
α2 − qρfvbα+ afv +

1

2
b2fvv + ḟ = 0,

subject to f(T, v) = 0. Differentiating this equation with respect to v and assuming

that we can apply the Feynman-Kac formula we get

fv = qE‡

[

∫ T

t

α(t, v)αv(t, v) exp

(
∫ s

t

(av − qρbαv − qραbv)du

)

ds

]

and the same conclusions. �

Proof of Proposition 7

To decide the sign of (λ(q))q it is enough to know the sign of fvq. Further, since

f(t, v) = v2F (T − t)/2 +G(T − t) it is sufficient to know the sign of H = Fq where

F (0) = 0 and F solves (13). Differentiating (13) with respect to q gives

Ḣ = (α2
1 − 2ρβα1F + ρ2β2F 2) − 2(κ+ qρβα1)H − 2Qβ2FH = ψ + ΘH

where ψ = (α2
1 − 2ρβα1F + ρ2β2F 2) ≥ 0 and Θ = −2(Qβ2F + κ+ qρβα1). Since

H(0) = 0 and Ḣ(0) = α2
1 > 0 we conclude H(t, V ) > 0. �
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Appendix B

In this appendix we make various technical remarks on the sufficient conditions

which are necessary for our proofs to hold.

Our analysis takes place on a probability space (Ω,F , {Ft}t≤T+ ,P) which sup-

ports the pair of independent Brownian motions B and Z, and is such that these

processes generate the filtration (Ft). P is the real world probability measure. The

time T+ is a finite horizon time and we are interested in events up to the fixed time

T < T+ where T is the maturity of our option.

We need to assume that there exists a unique non-explosive strong solution

to (1). Unfortunately, in the parameterization (S, V ) the standard conditions for

existence and uniqueness of solutions to SDE’s (e.g Rogers and Williams (1987,

Theorem V 11.1) or Duffie (1996, Appendix E) do not apply. Instead to prove

the necessary properties it is convenient to find a reparameterization S = eX and

V = Υ(Y ) for some pair (X,Y ) and a suitable function Υ for which the standard

conditions apply. Once the existence and uniqueness of (X,Y ) has been proved,

these properties will carry over to S and V . We continue to work with S and V

since these are the economically significant variables.

Recall that the market is incomplete, and there are many probability measures

under which the traded asset is a (local) martingale. Each of these measures is

a candidate pricing measure. Denote the set of such measures by Ql and let the

set of pricing measures under which S is a true martingale be denoted by Q. A

necessary condition for the existence of any of these measures is that the Sharpe

ratio satisfies
∫ T

0 α(u, Vu)2 <∞, almost surely, under the real world measure P.

We follow Frey (1997) to characterize the family of equivalent martingale mea-

sures. A probability measure Q ∈ Ql equivalent to P on FT is a local martingale

measure for S on FT if and only if there is a progressively measurable process

λ = (λt)0≤t≤T and with
∫ T

0 λ2
sds < ∞ P a.s., such that the local martingale

(Mt)0≤t≤T with

Mt = exp

(
∫ t

0

[

−α(u, Vu)dBu −
1

2
α(u, Vu)2du− λudZu −

1

2
λ2

udu

])

(16)

satisfies EMT = 1 and MT = dQ
dP

on FT . The condition EMT = 1 guarantees that

M is a true P-martingale and that Q is a probability measure and Q ∈ Ql. If Mt is

of form (3), then S is in general only a Q-local martingale. If S is a true martingale
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then Q ∈ Q.

In Sections 2,3 and 4 we use the Feynman-Kac theorem (see Karatzas and

Shreve (1991, Section 5.7B) or Duffie (1996, Appendix E)) to convert the solution

of a Cauchy problem expressed via a pde into a stochastic representation. To use

this result we need to know that the solution exists, and is unique (at least among

the class of solutions satisfying a polynomial growth condition). The standard con-

ditions for the existence and uniqueness of a solution (see Friedman (1975, p147),

Karatzas and Shreve (1991) or Duffie (1996)) will not be satisfied in our parame-

terization. Again however, if S = eX and V = Υ(Y ), and if the pair (X,Y ) satisfy

appropriate regularity conditions, then the stochastic representation will hold. The

appropriate conditions include the fact that the co-efficients of the SDE are dif-

ferentiable and satisfy appropriate continuity, boundedness and growth conditions

(above and below) and that the payoff function h satisfies a growth condition. See

for example the discussion in Romano and Touzi (1997) and especially the con-

ditions (i) to (iv) on p401, or the paper by Heath and Schweizer (2000) which

discusses more generally the connection between pdes and the martingale approach

in finance. Note that these conditions are not satisfied by the Heston model but

in that case it is possible to justify the stochastic representations directly without

recourse to the pde approach: see (7) and (8). We also assume that the co-efficients

of the diffusion processes are sufficiently smooth so that we can differentiate the

related infinitesimal generators.

We now turn to the question of existence of q-optimal measures. This question

has been dealt with by a number of authors. When q = 1, Rheinländer (2002)

gives a necessary and sufficient condition for the existence of an equivalent measure

with finite relative entropy. A result of Frittelli (2000) then guarantees the mini-

mal entropy measure exists. When q = 2, existence is dealt with in Delbaen and

Schachermayer (1996). In the particular setting of our stochastic volatility model,

and given certain smoothness and boundedness conditions on the parameters, Hob-

son (2002), shows that if q(1 − qρ2) > 0 then the q-optimal measure always exists.

If, on the other hand q(1 − qρ2) ≤ 0 then it may be the case that the q-optimal

measure ceases to exist beyond a certain q-dependent time horizon. Hobson (2002)

also has a discussion of a set of sufficient conditions which ensure that the analysis

of Section 3 is valid.

Finally we make some remarks on the computations in Section 5. The numerical
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solutions are generated by solving the Heston pricing pde

Ċ + Cv

(

κ(m̄/v − v) − ρβα1v − ρ̄2β2vF (T − t)
)

+
1

2
(Csss

2v2 + Cvvβ
2 + 2Csvsvβρ) = 0 C(T, s, v) = h(s) (17)

using a Crank-Nicolson type finite difference method. We follow Kluge (2002) and

apply this scheme to the log spot transformed pde (x := log s) which is of convection

diffusion type. At the zero volatility boundary, v = 0, the diffusion term disappears

and only the convection remains. With the restriction m ≥ β2/κ, which implies

that the stochastic volatility process does not hit zero, it turns out that this is an

outflow boundary. That is why no boundary conditions can be imposed and we

use an upwind scheme at this boundary. All other boundaries are artificial due to

the fact that the log spot transformed pde lives in (x, v) ∈ R × R+ and have to be

set sufficiently far away from the area of interest. To further reduce the numerical

error a non-uniform grid in space and time dimension is used. Numerical accuracy

of this scheme was examined in Kluge (2002) for q = 0 and α1 = 0 and verified

against the Heston closed form solution.
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