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Abstract

Most electricity markets exhibit high volatilities and occasional distinctive price spikes,
which result in demand for derivative products which protect the holder against high
prices. In this paper we examine a simple spot price model that is the exponential
of the sum of an Ornstein-Uhlenbeck and an independent mean reverting pure jump
process. We derive the moment generating function as well as various approximations to
the probability density function of the logarithm of the spot price process at maturity
T . Hence we are able to calibrate the model to the observed forward curve and present
semi-analytic formulae for premia of path-independent options as well as approximations
to call and put options on forward contracts with and without a delivery period. In order
to price path-dependent options with multiple exercise rights like swing contracts a grid
method is utilised which in turn uses approximations to the conditional density of the
spot process.

1 Introduction

A distinctive feature of electricity markets is the formation of price spikes which are caused
when the maximum supply and current demand are close, often when a generator or part
of the distribution network fails unexpectedly. The occurrence of spikes has far reaching
consequences for risk management and pricing purposes. In this context a parsimonious
model with some degree of analytic tractability has clear advantages, and in this paper we
propose and examine in detail a simple mean-reverting spot price process exhibiting spikes.

In our model the spot price process S is defined to be the exponential of the sum of three com-
ponents: a deterministic periodic function f characterising seasonality, an Ornstein-Uhlenbeck
(OU) process X and a mean-reverting process with a jump component to incorporate spikes
Y :

St = exp(f(t) + Xt + Yt),

dXt = −αXt dt + σ dWt,

dYt = −βYt− dt + Jt dNt,

(1)

where N is a Poisson-process with intensity λ and J is an independent identically distributed
(iid) process representing the jump size. We assume W , N and J to be mutually independent
processes.
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Our model generalises a number of earlier models. For example, the commonly used model
of [Lucia and Schwartz, 2002] is obtained by setting β = 0 and taking J = 0. In this model
St is log-normally distributed giving analytic option price formulae very similar to those
in the Black-Scholes model. To allow for a stochastic seasonality a further component can
be inserted into the model and, as long as this process has a normal distribution, analytic
tractability is maintained.

The main disadvantage of the Lucia and Schwartz models is their inability to mimic price
spikes. To overcome this, jumps can be added to the model; for example the case β = 0 in
our model,

dXt = −αXt dt + σ dWt + Jt dNt, St = exp(f(t) + Xt). (2)

This model is briefly mentioned in [Clewlow and Strickland, 2000, Section 2.8]. Analytic re-
sults are given in [Deng, 2000] based on transform analysis described in [Duffie et al., 2000].
Calibration to historical data and the observed forward curve is discussed in [Cartea and Figueroa, 2005]
where practical results for the UK electricity market are given. For these models to exhibit
typical spikes the mean-reversion rate α must be extremely high, otherwise the jumps do not
revert quickly enough.

In [Benth et al., 2005] a set of independent pure mean-reverting jump processes of the form

St =
∑

i

wiY
(i)
t , dY

(i)
t = −αiY

(i)
t dt + σi dL

(i)
t ,

are introduced, where wi are some positive weights and the L(i) are independent increasing
càdlàg pure jump processes. The spot price process is a linear combination of the pure jump
processes and as there is no exponential function involved, positivity of the spot is achieved by
allowing positive jumps only. An advantage of this formulation is that semi-analytic formulae
for option prices on forwards with a delivery period can be derived. However, a full analysis
of this class of models still seems to be in its early stages.

The model (1) we consider in this paper is an extension of (2), in which we allow for two
different mean-reversion rates, one for the diffusive part and one for the jump part. The
introduction of a mean reverting spike process Y allows us to choose a higher mean-reversion
rate β in order for the jump to revert much more quickly and so mimic a price spike. This
is crucial for modelling the NordPool market but might not be needed in markets where the
speed of mean-reversion α is generally very high, like in the UKPX or EEX.

Returning to our model (1) and solving for Xt and Yt, we have

Xt = X0 e−αt +σ

∫ t

0
e−α(t−s) dWs, Yt = Y0 e−βt +

Nt
∑

i=1

e−β(t−τi) Jτi
, (3)

where τi indicates the random time of the occurrence of the i-th jump. Thus, given X0 = x0,

Xt ∼ N
(

x0 e−αt, σ2

2α(1 − e2αt)
)

. Properties of the spike process Y are not as obvious and will

be examined in the following section. At this point we make no assumption on the jump size
J but will later give results for exponentially and normally distributed jump sizes.

Note also that, although X and Y are both Markov processes, the price process S is not. We
will therefore assume that all three components of the price process, i.e. the time t values
f(t), Xt and Yt are individually observable, implying we expect jumps not to be small. Figure

2



-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

X
Y

 0

 50

 100

 150

 200

 250

 300

 0  0.5  1  1.5  2

S
exp(f(t))

Figure 1: Simulated sample paths of X, Y and S of the spot model (1). We use the following
parameters which are of the same order of magnitude as calibrated values of the Nord Pool
spot market, except the seasonality function f(·) which has been chosen arbitrarily: f(t) =
ln(100) + 0.5 cos(2πt), α = 7, σ = 1.4, β = 200, Jt ∼ exp(1/µJ), µJ = 0.4, λ = 4.

1 shows a simulated sample path of the processes X, Y and the composed process S.

In Section 2 we derive important stochastic properties of the process, including the moment
generating function and various approximations to its probability density function. Pricing
of a variety of derivative contracts will be discussed in Sections 3 and 4, using the results
obtained in Section 2.

2 Properties of the model for spot prices

2.1 The spike process

The following result is known and given in [Duffie et al., 2000] in a more general framework.

Lemma 2.1 (moment generating function of the spike process, Yt) Let {J1, J2, . . .}
be a series of iid random variables with the moment generating function ΦJ(θ) := E[eθJ ].
Let {τ1, τ2, . . .} be the random jump times of a Poisson process N with intensity λ. Then the
process Y with initial condition Y0 = 0 has the moment generating function

ΦY (θ, t) := E[eθYt ] = exp

(

λ

∫ t

0
ΦJ

(

θ e−βs
)

− 1 ds

)

. (4)

Furthermore, the first two moments of Yt are given by

E[Yt] = Φ′
Y (0, t) =

λ

β
E[J ](1 − e−βt), E[Y 2

t ] = Φ′′
Y (0, t) = E[Yt]

2 +
λ

2β
E[J2](1 − e−2βt),
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and in particular we have

var[Yt] =
λ

2β
E[J2](1 − e−2βt).

Remark 2.2 (asymptotics for β → ∞) As remarked above, in practice the timescale 1/β
for mean-reversion of spikes is much shorter than any of: the contract lifetime T ; the diffu-
sive mean-reversion time 1/α; the volatility timescale 1/σ2; the mean arrival time of spikes
1/λ. We therefore calculate approximations for the moment generating function of the spike
process, and for its distribution, as β → ∞.

To analyse the behaviour of the moment generating function for large β we make the substi-
tution u = θ e−βs in the integrand to obtain

ΦYt
(θ) = exp

(

λ

β

∫ θ

θ e−βt

ΦJ(u) − 1

u
du

)

.

For fixed θ, t, as β → ∞ we have

∫ θ e−βt

0

ΦJ(u) − 1

u
du = θ e−βt E[J ] + O(e−2βt),

because ΦJ(u) = 1 + E[J ]u + O(u2), u → 0, and so

ΦYt
(θ) = exp

(

λ

β

(
∫ θ

0

ΦJ(u) − 1

u
du − θ e−βt E[J ] + O(e−2βt)

))

. (5)

Example 2.3 (exponentially distributed jump size) If J ∼ Exp(1/µJ) with mean jump
size µJ , then ΦJ(θ) = 1/(1 − θµJ), θµJ < 1. We obtain

ΦY (θ, t) =

(

1 − θµJ e−βt

1 − θµJ

)λ/β

, θµJ < 1.

As t → ∞, we have ΦY (θ, t) → (1 − θµJ)−λ/β so the stationary distribution for Y is
Γ(λ/β, 1/µJ). As β → ∞, we also have ΦY (θ, t) = 1 + θµJλ/β + O(β−2) ≈ (1 − θµJ)−λ/β .
Thus Yt is approximately Γ(λ/β, 1/µJ) distributed for large β.

The mean and variance of the spike process Yt with Y0 = 0 are

E[Yt] =
λµJ

β
(1 − e−βt), var[Yt] =

λµ2
J

β
(1 − e−2βt).

2.2 The combined process

Having examined the properties of the spike process Y we conclude properties of the sum
Xt + Yt and consequently of the price St = exp(f(t) + Xt + Yt).

Theorem 2.4 Let the spot process S be defined by (1) and let Zt := ln St = f(t) + Xt + Yt

with X0 and Y0 given. The moment generating function of Zt is then

E eθZt = exp

(

θf(t) + θX0 e−αt +θ2 σ2

4α
(1 − e−2αt) + θY0 e−βt +λ

∫ t

0
ΦJ

(

θ e−βs
)

− 1 ds

)

.

(6)
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Proof. The processes X and Y are independent so the expectation of the product is the
product of the expectations. The moment generating function of Yt is given in Lemma 2.1
which yields the result. �

The expectation value of the spot process at time t, St immediately follows by setting θ = 1.

2.3 Approximations

We now derive approximations to the density functions of the spike process at maturity T
for large mean-reversion values β of the spike process. Although we can always compute the
density by Laplace inversion of the moment generating function, an explicit expression for the
density allows for more efficient algorithms and more explicit option pricing formulae. Here
we only provide an expression for the density of a ‘truncated’ spike process ỸT as defined
below. However, knowledge of the density of ỸT alone will help us to efficiently construct a
grid to price swing options. We start by defining the truncated spike process Ỹ , showing that
Ỹt provides a good approximation to the value Yt for large values of β, deriving a general
formula for the density function of ỸT and finally making it more explicit by considering an
exponential jump size distribution.

For very high mean reversion rates β and small jump intensities λ, the dominant contribution
to the density of the spike process comes from the last jump. We therefore introduce the
truncated spike process

Ỹt :=

{

JNt
e−β(t−τNt

) Nt > 0,

0 Nt = 0.
(7)

Note that we only consider Y starting from 0; any other starting point can be incorporated
by adding the initial value.

Lemma 2.5 Ỹt is identically distributed as

Zt :=

{

J1 e−βτ1 τ1 ≤ t,

0 τ1 > t.

Proof. We use the reversibility property that if N = {Nt; t ∈ R+} is a Poisson process then
N̂ = {−N−t; t ∈ R+} is also a Poisson process. As τNt

is the jump time of the last jump
before t, this translates to the first jump of the reversed process and hence t− τNt

and τ1 are
identically distributed, given Nt > 0. If Nt = 0 then there has been no jump in [0, t] and the
same applies for the reversed process and so this is equivalent to τ1 > t. �

Lemma 2.6 (moment generating function of the truncated spike process) The ran-
dom variable Ỹt of the truncated spike process at time t with initial condition Ỹ0 = 0 has the
moment generating function

ΦỸt
(θ) = 1 + λ

∫ t

0

(

ΦJ(θ e−βs) − 1
)

e−λs ds,

and the first two moments are given by

E[Ỹt] =
λ

β + λ
E[J ]

(

1 − e−(β+λ)t
)

, E[Ỹ 2
t ] =

λ

2β + λ
E[J2]

(

1 − e−(2β+λ)t
)

.
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Proof. By Lemma 2.5 we only need to determine the moment generating function of

Zt := J e−βτ Iτ≤t, τ ∼ Exp(λ),

where IA denotes the indicator function for the event A. Given the jump time τ we have

E[eθZt |τ = s] = ΦJ(θ e−βs Is≤t),

and so

E[eθZt ] = E[E[eθZt |τ ]]

=

∫ ∞

0
ΦJ(θ e−βs Is≤t) e−λs ds

=

∫ t

0
ΦJ(θ e−βs) e−λs ds + e−λt .

The first two moments are given by E[Ỹt] = Φ′
Ỹt

(0) and E[Ỹ 2
t ] = Φ′′

Ỹt
(0). �

Remark 2.7 (pointwise convergence of the moment generating functions) The mo-
ment generating function of the truncated spike process converges pointwise to the moment
generating function of the spike process for either λ → 0 or β → ∞ with t and θ fixed. First
consider λ → 0. Fix all other parameters and set g(s; β, θ) := ΦJ(θ e−βs) − 1, then

ΦYt
(θ) = exp

(

λ

∫ t

0
g(s; β, θ) ds

)

= 1 + λ

∫ t

0
g(s; β, θ) ds + O(λ2),

ΦỸt
(θ) = 1 + λ

∫ t

0
g(s; β, θ) e−λs ds = 1 + λ

∫ t

0
g(s; β, θ) ds + O(λ2).

To see the convergence for β → ∞ with λ, t and θ fixed, first note that from (5) we have

ΦYt
(θ) = 1 +

λ

β

∫ θ

0

ΦJ(u) − 1

u
du + O(1/β2).

Also from Lemma 2.6,

ΦỸt
(θ) = 1 + λ

∫ t

0

(

ΦJ(θ e−βs) − 1
)

e−λs ds

= 1 +
λ

β

∫ θ

θ e−βt

ΦJ(u) − 1

u

(u

θ

)λ/β
du

by setting θ e−βs = u. Now as β → ∞, (u/θ)λ/β → 1 except in a small region u = O(θ e−β/λ),
which makes a negligible (exponentially small) contribution to the integral. Likewise we may
replace the lower limit of integration by 0 and incur a similarly small error. Hence

ΦỸt
(θ) = 1 +

λ

β

∫ θ

0

ΦJ(u) − 1

u
du + o(

1

β
)

= ΦYt
(θ) + o

(

1

β

)

.

Two examples of the approximated and exact moment generating function using our standard
parameters can be seen in Figure 2.
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Figure 2: Moment generating function of Yt and Ỹt, denoted by mgf and approximation,
respectively. In the left we use J ∼ Exp(1/µJ) and in the right J ∼ N (µJ , µ2

J). The same
parameters as in Figure 1 are used and we set t = 1.

Lemma 2.8 (distribution of the truncated spike process) Let the jump size distribu-
tion have density function fJ . Then the truncated spike process Ỹt as defined above has the
cdf

FỸt
(x) = e−λt Ix≥0 +

∫ x

−∞
fỸt

(y) dy, t ≥ 0,

with

fỸt
(x) =

λ

β

1

|x|1−λ/β

∣

∣

∣

∣

∣

∫ x eβt

x
fJ(y) |y|−λ/β dy

∣

∣

∣

∣

∣

, x 6= 0. (8)

Proof. Based on Lemma 2.5 it suffices to determine the distribution of

Ỹt = JZIτ≤t, Z := e−βτ , τ ∼ Exp(λ).

It follows that Z is the β
λ th power of an uniformly distributed random variable on [0, 1] and

its density is given by

fZ(x) =
λ

β
x
−(1−λ

β
)
Ix∈[0,1].

As P(τ > t) = e−λt we obtain the cdf of ZIτ≤t as

FZIτ≤t
(x) = e−λt Ix≥0 +

∫ ∞

−∞
fZIτ≤t

(y) dy,

fZIτ≤t
(x) =

λ

β
x
−(1−λ

β
)
Ix∈[e−βt,1],

and the distribution of the product of two independent random variables J and ZIτ≤t is then
given by

FJZIτ≤t
(c) = e−λt Ic≥0 +

∫ c

−∞
fJZIτ≤t

(x) dx,

fJZIτ≤t
(c) =

∫ ∞

−∞
fZIτ≤t

(c/x)
fJ(x)

|x|
dx.
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Figure 3: Distribution of the spike process (Yt) at T with a jump size of J ∼ Exp(1/µJ). We
use approximation (9) and compare it with the exact density as produced by a Monte-Carlo
simulation. We use the same parameters as in Figure 1.

With

fZIτ≤t
(c/x) =

λ

β

1

c
1−λ

β

Ix∈[c,c eβt]x
1−λ

β , c > 0,

fZIτ≤t
(c/x) =

λ

β

1

|c|1−
λ
β

Ix∈[c eβt,c] |x|
1−λ

β , c < 0,

the desired result follows. �

Example 2.9 (exponential jump size distribution) Let J ∼ Exp(1/µJ) be exponen-
tially distributed. The distribution of the truncated spike process Ỹt is

fỸt
(x) =

λ

βµ
λ/β
J

Γ(1 − λ/β, x/µJ) − Γ(1 − λ/β, x eβt /µJ)

x1−λ/β
, x > 0, (9)

where Γ(a, x) is the incomplete Gamma function. The approximation is a good fit to the
exact density for typical market parameters as can be seen in Figure 3. The only discrepancy
occurs at Yt = 0 where the density has a singularity. We use this approximation in Section
4.1 to efficiently generate a grid to price swing options.

3 Option pricing

The electricity market with the model presented is obviously incomplete. Not only are we
faced with a non-hedgeable jump risk but also we cannot use the underlying process (St) to
hedge derivatives due to inefficiencies in storing electricity. Hence, the discounted spot price
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process in the risk-neutral measure is not necessarily a martingale. From now on we assume
the model is specified in the risk-neutral measure Q as

St = exp(f(t) + Xt + Yt),

dXt = −αXt dt + σ dWt,

dYt = −βYt− dt + Jt dNt,

(10)

where W is a Brownian motion under Q and N a Poisson process with intensity λ under Q.
For simplicity of notation we use the same parameters as in (1) but note that they might
differ from the parameters under the real world measure. As is reasonable, the risk-neutral
model has a jump structure that is similar to that observed under P.

Lemma 3.1 (seasonal function consistent with the forward curve) Let t = 0 and F
[T ]
0

be the forward at time 0 maturing at time T ; then the risk-neutral seasonality function is
given by

f(T ) = ln F
[T ]
0 − X0 e−αT −Y0 e−βT −

σ2

4α
(1 − e−2αT ) − λ

∫ T

0
ΦJ

(

e−βs
)

− 1 ds. (11)

Proof. The forward price is F
[T ]
0 = EQ[ST ] and so the result follows from (6). �

This result forms an important part of the calibration of the model. As the model is incomplete
the calibration procedure depends on the set of liquid derivatives used. Here we assume a

continuous forward curve is observable in the market, i.e. values of F
[T ]
0 are given. This is

not a realistic assumption but there are ways to generate a continuous curve consistent with
discretely observed prices, see Figure 4 and [Kluge, 2006, Section 2.2.2.5] for more details.

For the sake of simplicity we adopt a policy of choosing parameters from the real world
measure P if they are not uniquely determined by the set of observed derivative prices. This
is equivalent to saying we choose a risk-neutral measure Q which changes as few parameters
of the model as possible. The volatility parameter σ remains unchanged by any equivalent
measure change so we can always determine it from historical data. If we only see forward
prices in the market we can also calibrate all other parameters to historical data except the
seasonal function. In brief, this can be done by de-seasonalising the data using the real-
world seasonality and then making a first estimation of α from which we can start filtering
suspected spikes. From the reduced dataset, α can be re-estimated and suspected spikes
filtered recursively. Having determined all parameters from historical data we finally calculate
the risk-neutral seasonality function f from the observed forward curve based on (11).

3.1 Pricing path-independent options

If the payoff of an option on the spot at maturity T is given by g(ST ) then its arbitrage free
price at time t is given by

V (x, y, t) = e−r(T−t) EQ[g(ST )|Xt = x, Yt = y].

Although we do not have an expression for the density of ST we know its moment generating
function and so can apply Laplace transform methods to calculate the expectation value.
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For an overview see [Cont and Tankov, 2004, Section 11.1.3]1 or [Carr and Madan, 1998] and
[Lewis, 2001]. Consider, for example, put or call options. Let Zt = ln St and let ΦZt

(θ) be
its moment generating function, as given in (6). Now define its truncated moment generating
function by

Gν(x, t) := E
[

eνZt I{Zt≤x}

]

=

∫ x

−∞
eνy dFZt

(y),

which can be computed using a generalisation of Lévy’s inversion theorem:

Gν(x) =
ΦZt

(ν)

2
−

1

π

∫ ∞

0

=
(

ΦZt
(ν + iθ) e−iθx

)

θ
dθ.

The price of a put option is then

E[(K − ST )+] = K E[IST≤K ] − E[ST IST≤K ] = KG0(ln K) − G1(ln K),

and by put-call parity we obtain the price of a call option.

3.2 Pricing options on Forwards

For a forward contract at time t, understood to be today, maturing at T the strike of a
zero-cost forward is given by

F
[T ]
t = EQ[ST |Ft].

The most common options on forwards are puts or calls maturing at the same time as the

underlying forward, i.e. the payoff is given by (F
[T ]
T −K)+ which is equivalent to (ST −K)+.

We can price these contracts based on the dynamics of the spot and using methods developed
above. However, by analysing the dynamics of the forward curve implied by the spot price
model we will gain further insights and be able to relate the price of an option to the Black-76
formula [Black, 1976], which is still widely used in practice.

Recall that the expectation value of ST is equal to the moment generating function given in

(6) at θ = 1. For F
[T ]
t = EQ[ST |Xt, Yt] we obtain

F
[T ]
t = exp

(

f(T ) + Xt e−α(T−t) +Yt e−β(T−t) +
σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ(e−βs) − 1 ds

)

.

(12)
For fixed T , the dynamics of the forward maturing at T is then

dF
[T ]
t

F
[T ]
t

= −λ
(

ΦJ(e−β(T−t)) − 1
)

dt + σ e−α(T−t) dWt +
(

exp(Jt e−β(T−t)) − 1
)

dNt. (13)

The forward is a martingale under Q by definition, and so the drift term compensates the
jump process. For large time to maturities T − t, a jump in the underlying process has only
very limited effect on the forward. More precisely, if the relative change in the underlying
is exp(Jt) − 1 the forward changes relatively by exp(Jt e−β(T−t)) − 1. In addition to the
jump component the dynamics follows a deterministic volatility process starting with a low

1They describe the method in terms of a complex valued characteristic function and Fourier inversion, but

by allowing complex values the method can also be written in terms of Laplace transforms.
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volatility σ e−αT at t = 0 and increasing to σ at maturity. Without the jump component
there are clear similarities with the Black-76 model.

For pricing purposes we need to find the distribution of F
[T ]
T in terms of its initial condition

F
[T ]
t . We have

ln F
[T ]
T = f(T ) + XT + YT ,

ln F
[T ]
t = f(T ) + Xt e−α(T−t) +Yt e−β(T−t) +

σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ(e−βs) − 1 ds.

Eliminating the seasonality component f(T ), and using the relations

XT − Xt e−α(T−t) = σ

∫ T

t
e−α(T−s) dWs, YT − Yt e−β(T−t) =

NT
∑

i=Nt

Jτi
e−β(T−τi),

we finally get

ln F
[T ]
T = ln F

[T ]
t + σ

∫ T

t
e−α(T−s) dWs +

NT
∑

i=Nt

Jτi
e−β(T−τi)

+
σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ(e−βs) − 1 ds.

(14)

Without the jump component, F
[T ]
T would be log-normally distributed. In order to relate the

pricing of options to the Black-76 formula even in the presence of spike risks, we assume that

F
[T ]
T is log-normally distributed in a first approximation. We basically ignore the heavy tails

caused by the spike risk and so expect to underestimate prices of far out-of-the-money calls
but should do well with at-the-money calls.

We define the approximation by matching the first two moments but take into account that by

definition F
[T ]
t is a martingale for a fixed maturity T and in order to keep the same property

we set

ln F
[T ]
T ≈ ln F

[T ]
t + ξ, ξ ∼ N

(

−
1

2
σ̂2(T − t), σ̂2(T − t)

)

,

and set σ̂2(T − t) := var[ln F
[T ]
T |Ft], i.e.

σ̂2(T − t) = var

[

σ

∫ T

t
e−α(T−s) dWs +

NT
∑

i=Nt

Jti e−β(T−ti)

]

=
σ2

2α
(1 − e−2α(T−t)) +

λ

2β
E[J2](1 − e−2β(T−t)).

Remark 3.2 (term structure of implied volatility) Comparing this result with the set-
ting of Black-76 [Black, 1976] where dF = Fσ dW and so FT = Ft exp(ξ) with ξ ∼
N

(

−1
2σ2(T − t), σ2(T − t)

)

, we conclude that σ̂ is the implied Black-76 volatility and in
a first approximation given by

σ̂2 ≈
σ2

2α(1 − e−2α(T−t)) + λ
2β E[J2](1 − e−2β(T−t))

T − t
, (15)
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Figure 5: Implied volatilities and prices. The left graph shows implied volatilities with respect
to time to maturity where approximation (15) is used. The three lines correspond to no
jumps (µJ = 0), small jumps (µJ = 0.4) and big jumps (µJ = 0.8). In the right graph the
corresponding prices of an at the money call are plotted. Parameters are r = ln(1.05), α = 7,

β = 200, σ = 1.4, λ = 4.0, F
[T ]
0 = 100, K = 100. Note, for an exponential distributed jump

size J we have E[J2] = 2µ2
J .

which is shown in Figure 5. It can be seen that the spike process has a much more significant
impact on the implied volatility for short maturities rather than for long term maturities. As
far as the price of an at the money call is concerned, the additional jump risk adds an almost
constant premium to the price to be paid without any jump risk.

Remark 3.3 (implied volatility across strikes) The approximation does not predict a
change of implied volatility across strikes. However, the jump risk introduces a skew as can
be seen in Figure 5 where the exact solution based on Section 3.1 has been used to calculate
implied volatilities. The bigger the mean jump size and hence the bigger E[J 2], the more
profound is the skew.

3.3 Pricing options on Forwards with a delivery period

As electricity is a flow variable, forwards always specify a delivery period. The results of the
previous section can therefore only be seen as an approximation to option prices on forwards
with short delivery periods, like one day. Here we only consider options on forwards maturing

at the beginning of the delivery period, i.e. the payoff is given by some function of F
[T1,T2]
T1

at
time T1. An option on such a forward is conceptually similar to an Asian option in the Black-
Scholes world. One method of pricing Asian options is to approximate the distribution of the
integral by a log-normal distribution and can be done by matching the first two moments,
see [Turnbull and Wakeman, 1991] for example. Once the parameters of the approximate
log-normal distribution have been determined, pricing options comes down to pricing in the
Black-Scholes or Black-76 setting.

The strike price of a zero cost forward with a delivery period is generally given by a weighted
average of instantaneous forwards of the form

F
[T1,T2]
t =

∫ T2

T1

w(T ; T1, T2)F
[T ]
t dT,

13
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Figure 6: Implied volatilities across strikes and sample paths. The upper graph shows the
implied volatility for one maturity T = 0.2 based on the exact solution. The approximate
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the model with the same parameters are drawn in the lower two graphs, where the left path
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(µJ = 0.8). All the other parameters are the same as in Figure 5.
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where for a settlement at maturity T2 the weighting factor is given by w(T ; T1, T2) = 1/(T2 −
T1) and for instantaneous settlement the discounting alters the weighting to w(T ; T1, T2) =
r e−rT /(e−rT1 − e−rT2).

The second moment of F
[T1,T2]
T1

is given by

EQ

[

(
∫ T2

T1

w(T )F
[T ]
T1

)2

dT |Ft

]

=

∫ T2

T1

∫ T2

T1

w(T )w(T ∗) EQ
[

F
[T ]
T1

F
[T ∗]
T1

|Ft

]

dT dT ∗,

and the expectation of the product of two individual forwards EQ
[

F
[T ]
T1

F
[T ∗]
T1

|Ft

]

can be

derived using the solution of the forward (12) as follows:

ln F
[T ]
T1

= ln F
[T ]
t + e−α(T−T1) σ

∫ T1

t
e−α(T1−s) dWs + e−β(T−T1)

NT1
∑

i=Nt

Jτi
e−β(T1−τi)

−
σ2

4α
(e−2α(T−T1) − e−2α(T−t))

+ λ

∫ T−T1

0
ΦJ(e−βs) − 1 ds − λ

∫ T−t

0
ΦJ(e−βs) − 1 ds

= ln F
[T ]
t + e−α(T−T1) σ

∫ T1

t
e−α(T1−s) dWs + e−β(T−T1)

NT1
∑

i=Nt

Jτi
e−β(T1−τi)

−
σ2

4α
(e−2α(T−T1) − e−2α(T−t)) − λ

∫ T1−t

0
ΦJ(e−β(T−T1) e−βs) − 1 ds,

and so

ln F
[T ]
T1

+ ln F
[T ∗]
T1

= ln F
[T ]
t + ln F

[T ∗]
t

+
(

e−α(T−T1) + e−α(T ∗−T1)
)

σ

∫ T1

t
e−α(T1−s) dWs

+
(

e−β(T−T1) + e−β(T ∗−T1)
)

NT1
∑

i=Nt

Jτi
e−β(T1−τi)

−
σ2

4α
(1 + e−2α(T ∗−T ))(e−2α(T−T1) − e−2α(T−t))

− ln ΦY (e−β(T−T1)) − ln ΦY (e−β(T ∗−T1)),

which gives

EQ
[

F
[T ]
T1

F
[T ∗]
T1

|Ft

]

= EQ
[

exp
(

ln F
[T ]
T1

+ ln F
[T ∗]
T1

)

|Ft

]

= F
[T ]
t F

[T ∗]
t

ΦY (e−β(T−T1) + e−β(T ∗−T1))

ΦY (e−β(T−T1))ΦY (e−β(T ∗−T1))

× exp

(

−
σ2

4α
(1 + e−2α(T ∗−T ))(e−2α(T−T1) − e−2α(T−t))

)

× exp

(

σ2

4α
(1 + e−α(T ∗−T ))2(e−2α(T−T1) − e−2α(T−t))

)

.
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. Parameters are as before, see Figure 5, and µJ = 0.4,

T1 = 1, T2 = 1.25. The red curve is based on a Monte-Carlo simulation with 106 sample
paths; the green curve is the log-normal approximation matching the first two moments.

How well the moment matching procedure works is shown in Figure 7 where the density of

a forward F
[T1,T2]
T1

is compared to the density obtain by the approximation. The shapes of
both densities are similar but differences in values are clearly visible. As a result one might
not expect call option prices based on the approximate distribution to be very close to the
exact prices for all strikes K but still close enough to be useful. For an at-the-money strike
call option, prices for varying maturities are shown in Figures 8 and 9. As it turns out, the
approximation gives very good results for short delivery periods and is still within a 5% range
for delivery periods of one year.

4 Pricing swing options

Swing contracts are a broad class of path dependent options allowing the holder to exercise a
certain right multiple times over a specified period but only one right at a time2 or per time-
interval like a day. Such a right could be the right to receive the payoff of a call option. Other
possibilities include the mixture of different payoff functions like calls and puts or calls with
different strikes. Another very common feature is to allow the holder to exercise a multiple
of a call or put option at once, where the multiple is called volume. This generally involves
further restriction on the volume, like upper and lower bounds for each right and for the sum
of all trades.

Swing contracts can be seen as an insurance for the holder against excessive rises in electricity
prices. Assuming the prices generally revert to a long term mean, even a small number N
of exercise opportunities suffices to cover the main risks and hence make the premium of
the contract cheaper. Sometimes, swing contracts are bundled with forward contracts. The

2This will also involve a “refraction period” in which no further right can be exercised.
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forward contract then supplies the holder with a constant stream of energy to a fixed pre-
determined price. If the strike price of the call options of the swing contract is set to the
forward price, the swing contract will allow for flexibility in the volume the customer receives
for the fixed price. They can either “swing up” or “swing down” the volume of energy
and hence the name swing contract. One cannot assume that the holder always exercises the
contract in an optimal way to maximise expected profit but they might also exercise according
to their own internal energy demands.

It is only very recently that articles on numerical pricing methods for swing options have
appeared in the literature. We can identify a few main approaches all based on dynamic
programming principles. A Monte-Carlo method and ideas of duality theory are utilised in
[Meinshausen and Hambly, 2004] to derive lower and upper bounds for swing option prices.
The main advantages of the method being their flexibility as it can be easily adapted to
any stochastic model of the underlying and its ability to produce confidence intervals of the
price. Monte-Carlo techniques are also used in [Ibanez, 2004] and [Carmona and Touzi, 2004],
where the latter uses the theory of the Snell envelope to determine the optimal exercise
boundaries and also utilises the Malliavin calculus for the computation of greeks. A con-
structive solution to the perpetual swing case for exponential Brownian motion is also given
in [Carmona and Touzi, 2004]. Unfortunately, these methods only work for the most basic
versions of swing contracts where at each time only one unit of an option can be exercised.

More general swing contracts with a variable volume per exercise and an overall constraint
can be priced with a tree based method introduced in [Jaillet et al., 2004].

In the above papers a discrete-time model for the underlying is used where one time step
corresponds to the time frame in which no more than one right can be exercised, i.e. one day
in most of the traded contracts. A special case where the number of exercise opportunities
is equal to the number of exercise dates is considered in [Howison and Rasmussen, 2002]
and a continuous optimal exercise strategy derived which yields a partial integro-differential
equation for the option price.

Our method is based on the tree approach of [Jaillet et al., 2004] with some slight modifica-
tions to adapt it to the peculiarities of our model for the underlying electricity price process.

4.1 The grid approach

The tree method of [Jaillet et al., 2004] requires a discrete time model of the underlying. This
is due to the fact that their swing contracts allow the holder to exercise at most one option
within a specified time interval, say a day, and this is best modelled if the underlying process
has the same time discretisation. Assuming (St) is some continuous stochastic process for the
spot price we obtain a discrete model by observing it on discrete points in time only, i.e.

St0 , St1 , St2 , . . . , Stm ,

with t0 = 0, ti+1 = ti +∆t, tm = T and ∆t = 1
365 , indicating we can exercise on a daily basis.

Let the maturity date T be fixed and the payoff at time t for simplicity3 be given by (St−K)+

for some strike price K and we assume only one unit of the underlying can be exercised any
time period. Let V (n, s, t) denote the price of such a swing option at time t and spot price s

3We could assume any general payoff function.
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which has n out of N exercise rights left. The dynamic programming principle allows us to
write

V (n, s, t) = max

{

e−r∆t EQ [V (n, St+∆t, t + ∆t)|St = s] ,

e−r∆t EQ [V (n − 1, St+∆t, t + ∆t)|St = s] + (s − K)+

}

, n < N,

(16)
and V (n, s, T ) = (S − K)+, 0 < n ≤ N and V (0, s, t) = 0. The conditional expectations can
be written

EQ [V (n, St+∆t, t + ∆t)|St = s] =

∫ ∞

−∞
V (n, x, t + ∆t)fS(x; s) dx,

where fS(x; s) is the density of St+∆t given St = s. Discretising the spot variable we approx-
imate

EQ [V (n, St+∆t, t + ∆t)|St = si] ≈
∑

j

V (n, sj , t + ∆t)fS(sj ; si)∆sj .

This is only one possible approximation; others might be to use higher order integration rules
or using only a few grid points in the sum based on the fact that fS(x; s) → 0 for |s − x|
large. For a trinomial tree one only uses three grid points, i.e.

EQ [V (n, St+∆t, t + ∆t)|St = si] ≈
1

∑

j=−1

V (n, si+j , t + ∆t)pi,i+j ,

pi,j being the probability of going from node i to node j. However, such a tree approach is not
well suited to our case for two reasons. First, the time step size is determined by the shortest
time between two possible exercise dates, which is mainly one day for swing contracts. This
limits the accuracy of the algorithm as a refinement of the grid in spot direction will not
improve the result. Second, in the presence of jumps, a three-point approximation for the
conditional density is insufficient due to the heavy tails in the distribution. As a result, we
keep our method general and say

EQ [V (n, St+∆t, t + ∆t)|St = si] ≈
∑

j

V (n, sj , t + ∆t)pi,j ,

where pi,j is an approximation to the density fS(sj ; si)∆sj (it can accommodate higher-order
integration rules and boundary approximations). With the notation V n

i,k := V (n, si, tk) we
can then write the method as

V n
i,k = max







e−r∆t
∑

j

V n
j,k+1pi,j , e−r∆t

∑

j

V n−1
j,k+1pi,j + (si − K)+







,

V 0
i,k = 0,

V n
i,m = 0.

(17)

4.2 Numerical results

We now turn to the model of interest, (10), which exhibits spikes. Assume that the mean-
reversion process (Xt) and the spike process (Yt) are individually observable and so the value
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function V of a swing option depends on both variables and the general pricing principle (16)
becomes

V (n, x, y, t) = max

{

e−r∆t EQ [V (n, Xt+∆t, Yt+∆t, t + ∆t)|Xt = x, Yt = y] ,

e−r∆t EQ [V (n − 1, Xt+∆t, Yt+∆t, t + ∆t)|Xt = x, Yt = y] + (ef(t)+x+y −K)+.
.

In order to calculate conditional expectations we need to define transition probabilities. Given
one starts at node (Xt, Yt) = (xi, yj) the probability to arrive at node (Xt+∆t, Yt+∆t) = (xk, yl)
is approximately given by

pi,j,k,l ≈ fXt+∆t|Xt=xi
(xk)fYt+∆t|Yt=yi

(yl)∆x∆y,

because Xt and Yt are independent. The conditional density of the mean-reverting process
(Xt) is known as Xt+∆t given Xt = x is normally distributed with N (x e−α∆t, σ2

2α(1−e−2α∆t)).
As we do not have a closed form expression for the density of the spike process we use
approximations developed in Section 2.1. For an exponential jump size distribution J ∼
Exp(1/µJ) for example we use approximation (9) for the spike process at time t given zero
initial conditions.

The introduction of a second space dimension increases the complexity of the algorithm
considerably, essentially by a factor proportional to the square of the number of grid points in
the y-direction. To price the swing contract shown in Figure 10 which has 365 exercise dates
and up to 100 exercise opportunities, our C++ implementation requires about 10 minutes to
complete the calculation on an Intel P4, 3.4GHz, and for a grid of 120× 60 points in x and y
direction, respectively. The same computation but with no spikes and a grid of 120×1 points
only takes about one second.

Based on Figure 10 we make two observations. First, the price per exercise right decreases
with the number of exercise rights. This is the correct qualitative behaviour one would expect
because n swing options each with one exercise right4 only, offer more flexibility than one
swing option with n exercise rights.5 Second, the premium added due to the spike risk is much
more significant for options with small numbers of exercise rights than for a large number.
This is also intuitively clear, as an option with say 100 exercise rights will mainly be used
against high prices caused by the diffusive part and only occasionally against spiky price
explosions.

In Figure 11 we show how sensitive swing option prices are to changes in market parameters.
There we consider a swing option with a duration of 60 days and up to 20 exercise opportu-
nities. In each graph we change one parameter by 20% up and down. The most significant
change is caused by a change in the volatility parameter σ. Note, the longterm variance of
the mean-reverting process (Xt) is σ2

2α and we expect some direct relationship between the
long-term variance and the option price. Hence, a change in the mean-reversion parameter
α is inversely proportional to the price and quantitatively changes the price less than the
volatility σ. The mean-reversion parameter β of the spike process has a similar effect on the
option price as α has, but where the influence slightly decreases with the number of options.
This is consistent with previous observations of the impact of jumps on option prices as seen
in Figure 10. This effect is much more clearly visible for the other jump parameters λ and µJ

4This is actually an American option.
5The rights of a swing option can only be exercised one at a time.
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Figure 10: Value of a one year swing option per exercise right. Market parameters of the
underlying are as before, see Figure 1, i.e. α = 7, β = 200, σ = 1.4, λ = 4, J ∼ Exp(1/µJ)
with µJ = 0.4, f(t) = 0, r = 0, and initial conditions X0 = 0 and Y0 = 0. The swing contract
delivers over a time period of one year T ∈ [0, 1] with up to 100 call rights and a strike price
of K = 1, where a right can be exercised on any day. As a comparison the price of the same
swing option is plotted but where the underlying does not exhibit spikes, i.e. λ = 0.

which have the greatest impact on options with only a few exercise rights. For one exercise
right, a 20% change in the jump size µJ has an even greater effect on the price than a 20%
change in volatility σ. A possible explanation is that we deal with the exponential of an
exponentially distributed jump size which is very heavy tailed.
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