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Keywords: Lévy-Stable processes, stable Paretian hypothesis, stochastic volatil-

ity, α-stable processes, option pricing, time-changed Brownian motion.

∗We are very grateful for comments from Hu McCulloch, Mathias Winkel, Fred E. Benth, two

anonymous referees and seminar participants at the University of Toronto, University of Oxford,

Birkbeck College, University of Chicago. Corresponding author: a.cartea@bbk.ac.uk

1



1 Introduction

Up until the early 1990’s most of the underlying stochastic processes used in the

financial literature were based on Brownian motion, modelling in continuous time a

large number of independent ‘microscopic’ price changes, with finite total variance;

and Poisson processes, modelling occasional large changes. These two processes are

the canonical models for continuous sample paths and those with a finite number of

jumps, respectively. More generally, dropping the assumption of finite variance, the

sum of many iid events always has, after appropriate scaling and shifting, a limiting

distribution termed a Lévy-Stable law; this is the generalised version of the Central

Limit Theorem (GCLT) [ST94], and the Gaussian distribution is one example. Based

on this fundamental result, it is plausible to generalise the assumption of Gaussian

price increments by modelling the formation of prices in the market by the sum of

many stochastic events with a Lévy-Stable limiting distribution.

An important property of Lévy-Stable distributions is that of stability under ad-

dition: when two independent copies of a Lévy-Stable random variable are added

then, up to scaling and shift, the resulting random variable is again Lévy-Stable with

the same shape. This property is very desirable in models used in finance and par-

ticularly in portfolio analysis and risk management, see for example Fama [Fam71],

Ziemba [Zie74] and the more recent work by Tokat and Schwartz [TS02], Ortobelli et

al [OHS02] and Mittnik et al [MRS02]. Only for Lévy-Stable distributed returns do

we have the property that linear combinations of different return series, for example

portfolios, again have a Lévy-Stable distribution [Fel66].

Based on the GCLT we have, in general terms, two ways of modelling stock prices

or stock returns. If it is believed that stock returns are at least approximately governed

by a Lévy-Stable distribution the accumulation of the random events is additive. On

the other hand, if it is believed that the logarithm of stock prices are approximately

governed by a Lévy-Stable distribution then the accumulation is multiplicative. In

the literature most models have assumed that log-prices, instead of returns, follow

a Lévy-Stable process. McCulloch [McC96] assumes that assets are log Lévy-Stable

and prices options using a utility maximisation argument; more recently Carr and
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Wu [CW03] priced European options when the log-stock price follows a maximally

skewed Lévy-Stable process.

Finally, based on Mandelbrot and Taylor [Man97], Platen, Hurst and Rachev

[HPR99] provide a model to price European options when returns follow a (sym-

metric) Lévy-Stable process. In their models the Brownian motion that drives the

stochastic shocks to the stock process is subordinated to an intrinsic time process

that represents ‘operational time’ on which the market operates. Option pricing can

be done within the Black-Scholes framework and one can show that the subordinated

Brownian motion is a symmetric Lévy-Stable motion.

The motivation of this paper is as follows. It is standard to take as a starting

point a model for the risk-neutral evolution of the asset price in the form

dSt

St

= r dt + σt dWQ
t ,

where WQ
t is the underlying Brownian motion, r is the (constant) interest rate and σt

is the volatility process; the case when σt is constant is the usual Black–Scholes (BS)

model. It is then standard to specify a stochastic process for σt, resulting in one of a

number of standard stochastic-volatility models.

When σt and WQ
t are independent for all 0 ≤ t ≤ T (as is often approximately

the case for FX markets), we have

ST = Ste
r(T−t)− 1

2

R T
t σ2

sds+
R T

t σsdW Q
s , (1)

and then the value of a European vanilla option written on the underlying stock price

St is given by

V (S, t) = EQ

[
VBS

(
St, t, K,

(
1

T − t

∫ T

t

σ2
sds

)1/2

, T

)]
, (2)

where the expected value is with respect to the random variable
∫ T

t
σ2

sds, the inte-

grated variance, under the risk-neutral measure Q and VBS is the usual Black-Scholes

value for a European option. In general, the distribution or characteristic function

of the integrated variance is not known, so evaluating (2) is not straightforward, al-

though given the characteristic function of the integrated variance we can use standard

transform methods to evaluate V (S, t) given by equation (2).
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Notwithstanding these difficulties, the integrated variance is an important quan-

tity, representing a measure of the total uncertainty in the evolution of the asset price,

and we use it as the starting point for our model. We investigate the properties of

a two-factor model in which the integrated variance follows a Lévy-Stable process,

while the shocks to the stock process are conditionally Gaussian, i.e. Brownian mo-

tion, with a volatility consistent with the integrated variance process. We then show

that the resulting distribution of the log-stock prices is Lévy-Stable. We also provide

a characterisation of the most general possible model within our class of integrated

variance processes, which is an interesting result in its own right. In addition to

pricing options when the integrated variance process and the stock process are inde-

pendent (as above), we also show how to incorporate a ‘leverage’ effect, restoring a

degree of ‘correlation’ between the two.

The paper is structured as follows. Section 2 presents definitions and properties

of Lévy-Stable processes. In particular we show how symmetric Lévy-Stable random

variables may be ‘built’ as a combination of two independent Lévy-Stable random

variables and define Lévy-Stable processes as in [ST94]. Section 3 discusses the path

properties required to model integrated variance as a totally skewed to the right Lévy-

Stable process. Section 4 describes the dynamics of the stock process under both the

physical and risk-neutral measure and shows how option prices are calculated when

the stock returns or log-stock process follows a Lévy-Stable process. Finally, Section

5 shows numerical results and Section 6 concludes.

2 Lévy-Stable random variables and processes

In this section we show how to obtain any symmetric Lévy-Stable process as a stochas-

tic process whose innovations are the product of two independent Lévy-Stable random

variables. The only conditions we require (stated precisely in Proposition 2) are that

one of the independent random variables is symmetric and the other is totally skewed

to the right. This is a simple, yet very important, result since we can choose a

Gaussian random variable as one of the building blocks together with any other to-

tally skewed random variable to ‘produce’ symmetric Lévy-Stable random variables.
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Furthermore, choosing a Gaussian random variable as one of the building blocks of a

symmetric random variable will be very convenient since we will be able to reformulate

any symmetric Lévy-Stable process as a conditional Brownian motion, conditioned

on the other building block, the totally skewed Lévy-Stable random variable, which

in our case will be the model for integrated variance.

2.1 Lévy-Stable random variables

The characteristic function of a Lévy-Stable random variable X is given by

logE
[
eiθX

] ≡ Ψ(θ) =

{
−κα|θ|α {1− iβsign(θ) tan(απ/2)}+ imθ for α 6= 1,

−κ|θ|{1 + 2iβ
π

sign(θ) log |θ|} + imθ for α = 1,
(3)

where the parameter α ∈ (0, 2] is known as the stability index; κ > 0 is a scaling

parameter; β ∈ [−1, 1] is a skewness parameter and m is a location parameter [ST94].

If the random variable X has a Lévy-Stable distribution with parameters α, κ, β, m

we write X ∼ Sα(κ, β,m).

It is straightforward to see that for the case 0 < α ≤ 1 the random variable X does

not have any moments, and for the case 1 < α < 2 only the first moment exists (the

case α = 2 is Gaussian); however, fractional moments E [|X|p] do exist for p < α, see

[ST94]. Moreover, given the asymptotic behaviour of the tails of the distribution of

a Lévy-Stable random variable it can be shown that the Laplace transform E
[
e−τX

]

of X exists only when its distribution is totally skewed to the right, that is β = 1,

which we state in the following proposition which we use later.

Proposition 1. The Laplace Transform [ST94]. The Laplace transform E
[
e−τX

]

with τ ≥ 0 of the Lévy-Stable variable X ∼ Sα(κ, 1, 0) with 0 < α ≤ 2 and scale

parameter κ > 0 satisfies

logE
[
e−τX

]
=

{
−κατα sec απ

2
for α 6= 1,

2κ
π

τ log τ for α = 1.
(4)

The existence of the Laplace transform of a totally skewed to the right Lévy-Stable

random variable will enable us to show how to price options as a weighted average
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of the classical Black-Scholes price when the shocks to the stock process follow a

Lévy-Stable process. First we see that any symmetric Lévy-Stable random variable

can be represented as the product of a totally skewed with a symmetric Lévy-Stable

variable as shown by the following proposition.

Proposition 2. Constructing Symmetric Variables, (page 20 in [ST94]). Let

X ∼ Sα′(κ, 0, 0), Y ∼ Sα/α′((cos πα
2α′ )

α′
α , 1, 0), with 0 < α < α′ ≤ 2, be independent.

Then the random variable

Z = Y 1/α′X ∼ Sα(κ, 0, 0).

2.2 Lévy-Stable processes

A stochastic process {Lt, t ∈ T} is Lévy-Stable if all its finite-dimensional distribu-

tions are Lévy-Stable. A particular case of Lévy-Stable process, which will be denoted

by {Lα,β
t , t ≥ 0}, is the Lévy-Stable motion [ST94].

Definition 1. Lévy-Stable motion. A Lévy-Stable process Lα,β
t is called a Lévy-

Stable motion if Lα,β
0 = 0; Lα,β

t has independent increments; and Lα,β
t − Lα,β

s ∼
Sα

(
(t− s)1/α, β, 0

)
for any 0 ≤ s < t < ∞ and for some 0 < α ≤ 2 and −1 ≤ β ≤ 1

(time-homogeneity of the increments). Observe that when α = 2 and β = 0 it is

Brownian motion, while when α < 1 and β = −1 (resp. β = 1) the process Lα,β
t has

support on the negative (resp. positive) line.

The log-characteristic function of a Lévy-Stable motion Lα,β
t is given by [ST94]

logE[eiθLt ] ≡ Ψt(θ) =

{
−tκα|θ|α {1− iβsign(θ) tan(απ/2)}+ timθ for α 6= 1,

−tκ|θ|{1 + 2iβ
π

sign(θ) log |θ|} + timθ for α = 1.
(5)

Proposition 2 can be extended to processes; hence we may use Brownian motion as

one of the building blocks to obtain symmetric Lévy-Stable processes (see proposition

3.8.1, page 143 in [ST94]).
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3 Stochastic Volatility with Lévy-Stable Shocks

In modelling integrated variance as a building block there are two properties that

integrated variance Yt,T =
∫ T

t
σ2

s ds should have:

• It should be continuous and increasing in T ;

• It should be time-consistent in that

Yt,T =

∫ T

t

σ2
s ds =

∫ τ

t

σ2
s ds +

∫ T

τ

σ2
s ds = Yt,τ + Yτ,T (6)

for all t ≤ τ ≤ T .

As motivated in the introduction, we seek a model in which the shocks to the

stock process are Lévy-Stable. If we assume that the returns process is given by

dSt

St

= µdt + σtdWt so that ST = eµ(T−t)− 1
2

R T
t σ2

sds+
R T

t σsdWs ,

where µ is a constant and dWt the increment of Brownian motion, we might be

tempted, based on Proposition 2, to model volatility by assuming that the integrated

variance is given by

Yt,T =

∫ T

t

σ2
sds =

∫ T

t

dLα/2,1
s . (7)

Note that dL
α/2,1
t is the increment of a positive Lévy-Stable motion (because α/2 < 1

so that (7) is an increasing process. This seems a reasonable choice since

E
[
eiθ

R T
t σsdWs

]
= e

− 1

2α/2
sec(απ/4)(T−t)|θ|α

hence the shocks to the process would be symmetric Lévy-Stable by Proposition 2.

Unfortunately this model for integrated variance is inconsistent since on the left-

hand side of (7) we have the integrated variance
∫ T

t
σ2

sds which is, by construction, a

continuous process. However, on the right-hand side, we have the nonnegative Lévy-

Stable motion
∫ T

t
dL

α/2,1
s which is by construction a purely discontinuous process.
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Despite these difficulties, we do not abandon the idea of integrating against a Lévy-

Stable motion. Instead, we discuss a way of constructing a process for the integrated

variance that is Lévy-Stable but with continuous paths in T .

If the purely discontinuous process
∫ T

t
dL

α/2,1
s can be modified to

∫ T

t

f(s, T )dLα/2,1
s ,

for a suitable deterministic function f(s, T ), the jumps can be ‘damped’ and the

resulting process made continuous and increasing in T . Specifically, we require that

f(s, T ) > 0 for s < T and that f(s, T ) → 0 as s ↑ T , so the ‘last’ jumps of the process

get smoothed out. (For a general discussion of the path behaviour of processes of the

type
∫ T

t
f(s, T )dL

α/2,1
s , and more general Lévy-Stable stochastic integrals, see [ST94].)

We now give conditions under which the stochastic integral in the right-hand side of

equation (8) below, given by
∫ T

t
f(s, T )dL

α/2,1
s , is continuous in T , denoting the class

of functions f(s, T ) for which this is true by F.

Proposition 3. Let f(s, T ) be continuous in T with f(T, T ) = 0, and assume in

addition that, for each T , ∂f(s, T )/∂s := f1(s, T ) is continuous on an interval 0 ≤
s < T ∗ < ∞. Then the process Xt,T =

∫ T

t
f(s, T ) dL

α/2,1
s is continuous in T for any

T belonging to (s, T ∗].

Proof. Integrating by parts [Pro92], and using f(T, T ) = 0,

∫ T

t

f(s, T )dLα/2,1
s = f(t, T )L

α/2,1
t −

∫ T

t

f1(s, T )Lα/2,1
s ds.

The first term is continuous in T by assumption on f(t, T ), as t is fixed. Evaluating

the second term at T + ε and T and subtracting gives

∫ T+ε

t

f1(s, T + ε)Lα/2,1
s ds−

∫ T

t

f1(s, T )Lα/2,1
s ds

=

∫ T

t

(f1(s, T + ε)− f1(s, T )) Lα/2,1
s ds +

∫ T+ε

T

f1(s, T + ε)Lα/2,1
s ds.

Both terms on the right clearly tend to zero with ε.

¥
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Since we are interested in pricing options where the underlying stochastic compo-

nent is driven by a symmetric Lévy-Stable process we would like to specify a kernel

f(s, T ) so the finite-dimensional distribution of integrated variance is totally skewed

to the right Lévy-Stable. We propose as a model for integrated variance

Yt,T =

∫ T

t

σ2
sds = h(t, T )σ2

t +

∫ T

t

f(s, T )dLα/2,1
s (8)

for suitable positive functions h(t, T ) and f(s, T ). We assume that f(T, T ) = 0 for

all t to damp the Lévy-Stable jumps, and that h(t, t) = 0 for consistency when T = t,

and for the same reason we also need to take ∂h(t, T )/∂T |T=t = 1; this is shown

below. For t < T (resp. s < T ) we require that h(t, T ) > 0 (resp. f(s, T ) > 0 to

ensure that Yt,T is strictly positive and properly random. Further conditions on f and

h which specify their general form are given in Proposition 4 below. For example, in

our model we may choose

h(t, T ) =
1

γ

(
1− e−γ(T−t)

)
and f(s, T ) =

1

γ

(
1− e−γ(T−s)

)
, (9)

for γ > 0 in (8) to obtain, as a particular case, the OU-type model for integrated

variance first introduced by Barndorff-Nielsen and Shephard [BNS01] where the in-

crements in (8) are driven by a general non-negative Lévy process Lt. (Note, however,

that in general, the functions h(t, T ) and f(s, T ) do not depend only on the lag T − t

(resp. T − s) as one might expect. Their most general form is given below.)

Before proceeding, we note an important point concerning units. The integrated

variance is dimensionless (that is, as a pure number it has no units). Hence the

function h(t, T ) must have the dimensions of time, and since the Lévy process L
α/2,1
t

scales as time to the power 2/α, the function f(s, T ) must have dimensions of time

to the power −2/α. This distinction only matters, of course, if we change the unit

of time: in (9), f(s, T ) contains an implicit dimensional constant, equal to 1 in the

time units of the model, to make the dimensions correct.

Proposition 4. Suppose that the functions f(s, T ) and h(t, T ) are twice differentiable

in their second argument and once differentiable in their first argument, with f(s, T ) >

0 for all s < T , while f(T, T ) = 0, and h(t, T ) > 0 for all t < T , while h(t, t) = 0.

Then the process

Yt,T =

∫ T

t

σ2
sds = h(t, T )σ2

t +

∫ T

t

f(s, T )dLα/2,1
s (10)
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is non-negative, continuous and increasing in T , and satisfies the consistency condi-

tion Yt,T = Yt,τ + Yτ,T if and only if f(s, T ) and h(t, T ) are non-negative and take the

form

h(t, T ) =
H(T )−H(t)

H ′(t)
, f(s, T ) = F (s) (H(T )−H(s)) (11)

where H(·) is a strictly monotonic, differentiable function with derivative H ′, and F (·)
is continuous and positive (resp. negative) if H(·) is increasing (resp. decreasing).

Proof. We use subscripts 1 (resp. 2) on h(·, ·) and f(·, ·) to denote differentiation

with respect to (wrt) the first (resp. second) argument, with an obvious extension to

higher derivatives.

Suppose that, for τ > t,

∫ τ

t

σ2
sds = h(t, τ)σ2

t +

∫ τ

t

f(s, τ)dLs, (12)

where Lt denotes a non-negative Lévy process (including L
α/2,1
t as a special case).

This is clearly s positive process with our assumptions.

Differentiating wrt τ and using f(τ, τ) = 0,

σ2
τ = h2(t, τ)σ2

t +

∫ τ

t

f2(s, τ)dLs. (13)

Note that this immediately implies that

h2(t, t) = 1,

as stated above.

Since ∫ T

τ

σ2
s ds = h(τ, T )σ2

τ +

∫ T

τ

f(s, T )dLs, (14)

10



we have
∫ τ

t

σ2
sds +

∫ T

τ

σ2
sds = h(t, τ)σ2

t + h(τ, T )σ2
τ +

∫ τ

t

f(s, τ)dLs +

∫ T

τ

f(s, T )dLs

= h(t, τ)σ2
t + h(τ, T )

(
h2(t, τ)σ2

t +

∫ τ

t

f2(s, τ)dLs

)

+

∫ τ

t

f(s, τ)dLs +

∫ T

τ

f(s, T )dLs

= (h(t, τ) + h(τ, T )h2(t, τ)) σ2
t

+

∫ τ

t

(f(s, τ) + h(τ, T )f2(s, τ)) dLs +

∫ T

τ

f(s, T )dLs.

Writing the left-hand side as
∫ T

t
σ2

s ds, using (10) and noting that the path is arbitrary,

the consistency condition (6) is met if and only if

h(t, T ) = h(t, τ) + h(τ, T )h2(t, τ), (15)

f(s, T ) = f(s, τ) + h(τ, T )f2(s, τ) (16)

for all s, τ ∈ (t, T ).

We characterise f and h from the functional equations (15) and (16) by a ‘sep-

aration of variables’ technique, beginning with h. First differentiate (15) wrt τ to

give

0 = h2(t, τ) + h1(τ, T )h2(t, τ) + h(τ, T )h22(t, τ),

which is rearranged to
h22(t, τ)

h2(t, τ)
= −1 + h1(τ, T )

h(τ, T )
.

The left-hand side of this equation is a function of t and τ , the right-hand side is a

function of τ and T , so both must be equal to an arbitrary function of τ alone. Setting

the left-hand side equal to this function, we have an ordinary differential equation

in τ for h(t, τ), whose most general solution satisfying h(t, t) = 0 and h2(t, t) = 1 is

indeed

h(t, τ) =
H(τ)−H(t)

H ′(t)
, (17)

for an arbitrary non-constant function H(·). (The same result can be obtained by

differentiating (15) with respect to T twice.)
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As h(t, τ) > 0 and is bounded, a simple argument by contradiction shows that,

for each τ , H(t)−H(τ) either increases or decreases as τ − t increases; it cannot have

a turning point and H(·) is therefore monotonic.

Conversely, direct substitution shows that (17) satisfies (15).

The proof for f is similar: differentiation of (16) wrt τ and rearrangement leads

to
f22(s, τ)

f2(s, τ)
= −1 + h1(τ, T )

h(τ, T )

from which both sides are equal to an arbitrary function of τ ; solving the resulting

ordinary differential equation in τ for f(s, τ), with the condition f(s, s) = 0, shows

that f(s, τ) = F (s) (G(τ)−G(s)) for arbitrary F (·) and G(·), the latter being differ-

entiable. Substitution back into (16) shows that G(·) = H(·) as required. The sign

of F (·) clearly follows from (11) given that h is monotonic. The converse is shown by

direct substitution.

¥

Two possible choices for f(s, T ) and h(t, T ) are1

f(s, T ) = T − s and h(t, T ) = T − t, s, t ≤ T, (18)

f(s, T ) =
1− e−γ((T+c)n−(s+c)n)

γn(s + c)n−1
and h(t, T ) =

1− e−γ((T+c)n−(t+c)n)

γn(t + c)n−1
, (19)

for s, t ≤ T and 1 ≤ n < 2 where γ is a positive constant that can be seen as a damping

factor which we can choose freely, and c ≥ 0 is constant. Both choices satisfy the

additivity condition (6); for example (19) is obtained by assuming H(T ) = e−γ(T+c)n

and F (s) = 1/H ′(s) in Proposition 4.

Henceforth we take H(·) > 0 without loss of generality, and we further assume

that ∫ T

0

1

H ′(s)
ds < ∞, for 0 ≤ T < ∞, (20)

1Although these functions are apparently the same, as remarked above, there is a dimensional

constant multiplying them which would change if the time units were changed.
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which is a condition we will require below to price instruments under the risk-neutral

measure. It simply amounts to saying that H ′(0) > 0, namely that the time t− 0 is

not special (recall that H(·) cannot have turning points for t > 0).

3.1 Illustration

We now illustrate the different building blocks needed to obtain the integrated vari-

ance process described above. First we simulate a totally skewed to the right Lévy-

Stable motion; then we get the spot variance process, by choosing an appropriate

kernel; then we produce the integrated variance process. We focus on kernels of the

integrated variance of the form (19). The solid line in the two bottom graphs of

Figure 1 represents the case with n = 1, c = 0.1, t = 0, 0 ≤ T ≤ 1, σ2
0 = 0, γ = 25,

which is a standard OU-type process as in [BNS01] with a two-week mean-reversion

period. In the same figure the dotted lines represent the case n = 1.2, T = 1 and

γ = 25.

4 Model dynamics and option prices

We now turn to models of the asset price evolution and the pricing of vanilla options.

Section 4.1 looks at a basic model where the shocks to the returns or log-stock process

are symmetric; Section 4.2 extends it to a model where shocks can also be asymmet-

ric. Finally, Section 4.3 shows how to price vanilla options when the shocks to the

underlying stock process follow a Lévy-Stable process for α > 1 and −1 ≤ β ≤ 1.

Given the nature of the model, there is no unique equivalent martingale measure

(EMM). In line with most of the Lévy process literature we choose an EMM that is

structure-preserving since, among other features (see [CT04]), transform methods for

pricing are straightforward to implement; this is discussed at the end of Section 4.2.
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∫T 0σ2 sds

Figure 1: Simulated integrated variance with kernel f(s, T ) =

25−1
(
1− e−25((T+c)n−(s+c)n)

)
with c = 0.1, n = 1, T = 1, solid line, and c = 0.1,

n = 1.2, T = 1, dotted line. In both cases t = 0 and σ2
0 = 0.

4.1 Modelling returns

As pointed out in the introduction we can model either returns or log-stock-prices;

when shocks are symmetric we can take either route. For example, if we believe that

the shocks to the returns process follow a Lévy-Stable distribution, we assume that

in the physical measure P

dSt

St

= µdt + σtdWt (21)

∫ t

0

σ2
sds = h(0, t)σ2

0 +

∫ t

0

f(s, t)dLα/2,1
s , (22)

where dWt denotes the increment of the standard Brownian motion, h(·, ·) and f(·, ·)
satisfy the conditions in Proposition 4, f(·, ·) ∈ F and µ is a constant. In the following

proposition we show the distribution of the stock process.
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Proposition 5. Let the stock process follow (21) and the integrated variance process

follow (22). Assume further that Wt and Lα/2,1 are independent, then the log-stock

process (21) is the sum of two independent processes: a symmetric Lévy-Stable process

and a Gaussian process.

Proof. First note that the stochastic component of the log-stock process is given by

U0,t =

∫ t

0

σsdWs. (23)

Now we calculate the characteristic function of the random process U0,t. We have

E[eiθU0,t ] = E
[
eiθ

R t
0 σsdWs

]
;

and by independence of σt and Wt,
∫ t

0
σs dWs is a zero-mean Normal variable whose

variance is the random variable
∫ t

0
σ2

s ds. Thus the characteristic function of
∫ t

0
σs dWs

is given by

E[eiθU0,t ] = E
[
exp

[
−1

2
θ2

∫ t

0

σ2
sds

]]

= exp

[
−1

2
h(0, t)σ2

0θ
2

]
E

[
exp

[
−1

2
θ2

∫ t

0

f(s, t)dLα/2,1
s

]]
.

Further, using (5) we have that
∫ t

0
f(s, t)dL

α/2,1
s ∼ Sα/2

((∫ t

0
f(s, t)α/2ds

)2/α

, 1, 0

)
,

and using Proposition 1 we write

E[eiθU0,t ] = exp

[
−1

2
h(0, t)σ2

0θ
2

]
E

[
exp

[
−1

2
θ2

∫ t

0

f(s, t)dLα/2,1
s

]]

= exp

[
−1

2
h(0, t)σ2

0θ
2 − 1

2α/2
sec

απ

4

∫ t

0

f(s, t)α/2ds|θ|α
]

.

This is clearly the characteristic function of the sum of a Gaussian process and an

independent symmetric Lévy-Stable process with index α.

¥

Note that we might also stipulate that our departure point is the risk-neutral

dynamics for the stock process and that our model is as above with µ replaced with

r:
dSt

St

= rdt + σtdWQ
t (24)
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with
∫ T

t
σ2

sds as in (22), dWQ
t being the increments of the standard Brownian motion.

However, we need not specify the risk-neutral dynamics as a starting point since it

is possible to postulate the physical dynamics and then choose an EMM. We discuss

the relation between the measures P and Q below for a model that also allows for

asymmetric Lévy-Stable shocks and the symmetric case then becomes a particular

case.

We also note that the stochastic integral
∫ T

t
σsdWs can be seen as a time-changed

Brownian motion [KS02]. In this case the integrated variance
∫ T

t
σ2

sds represents the

time-change and it is straightforward to show that

∫ T

t

σsdWs
d
= WT̂t,T

where T̂t,T =
∫ T

t
σ2

sds.

4.2 Modelling Log-Stock Prices

Financial data suggests that returns are skewed rather than symmetric, see for ex-

ample [KL76], [CLM97], [CW03]. For instance, since the stock market crash of 1987,

the US stock index options market has shown a pronounced skewed implied volatility

(volatility smirk) which indicates that, under the risk-neutral measure, log-returns

have a negatively skewed distribution.

The symmetric model above can be extended to allow the dynamics of the log-

stock process to follow an asymmetric Lévy-Stable process. In stochastic volatility

models one way to introduce skewness in the log-stock process is to correlate the

random shocks of the volatility process to the shocks of the stock process. It is

typical in the literature to assume that the Brownian motion of the stock process, say

dWt, is correlated with the Brownian motion of the volatility process, say dZt. Thus

dWtdZt = ρdt and we can write Zt = ρWt +
√

1− ρ2Z̃t, where Z̃t is independent

of Wt. The correlation parameter ρ is also known in the literature as the leverage

effect and empirical studies suggest that ρ < 0 [FPS00]. In our case the notion of

‘correlation’ does not apply because for Lévy-Stable random variables, as given that

16



moments of second and higher order do not exist, nor do correlations. However, we

may also include a leverage effect via a parameter ` to produce skewness in the stock

returns.

Hence to allow for asymmetric Lévy-Stable shocks, under the physical measure

we assume that

log(ST /St) = µ(T − t) +

∫ T

t

σsdWs + `σ̃

∫ T

t

dL̃α,−1
s (25)

∫ T

t

σ2
sds = h(t, T )σ2

t +

∫ T

t

f(s, T )dLα/2,1
s . (26)

Here dWt denotes the increment of the standard Brownian motion independent of

both dL̃α,−1
t and dL

α/2,1
t and we note that dL̃α,−1

t , independent of dL
α/2,1
t , is totally

skewed to the left and that 1 ≤ α < 2. Moreover, µ and σ̃ ≥ 0 are constants, f(t, T )

and h(t, T ) satisfy the conditions in Proposition 4 with f(t, T ) ∈ F and the leverage

parameter ` ≥ 0. In appendix A we show that the shocks to the price process are

asymmetric Lévy-Stable.2

Before proceeding we discuss the connection in this model between the dynamics of

the stock price under the physical measure P and the risk-neutral measure Q. Recall

that a probability measure Q is called an EMM if it is equivalent to the physical

probability P and the discounted price process is a martingale. It is straightforward

to see that in the model proposed here the set of EMMs is not unique, hence we must

motivate the choice of a particular EMM.

Let us focus on the model with no leverage (i.e. ` = 0). Based on Girsanov’s

theorem (see [KS88]), we assume that the risk-neutral dynamics of the model are

obtained via the Radon-Nikodym derivative

Zt = e
R t
0(r−µ− 1

2
σ2

s) 1
σs

dWs− 1
2

R t
0(r−µ− 1

2
σ2

s)
2 1

σ2
s

ds
. (27)

To be able to apply Girsanov’s theorem we need to check two conditions.3 First,

2Note that here we model log-stock prices since we cannot include a similar leverage effect in

equation (21) because this allows negative prices due to the jumps of the increments of the Lévy-

Stable motion dL̃α,−1
t .

3See section 3.5 in [KS88].
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we must verify that

P

[∫ T

0

(
r − µ− 1

2
σ2

s

)2
1

σ2
s

ds < ∞
]

= 1 for 0 ≤ T < ∞, (28)

and second, that Zt is a martingale and

E[Zt] = 1. (29)

Since r − µ is a constant the first condition is satisfied if P
[∫ T

0
σ2

sds < ∞
]

= 1

and P
[∫ T

0
1
σ2

s
ds < ∞

]
= 1 for 0 ≤ T < ∞. To show the first, note that X0,T :=

∫ T

0
f(s, T )dL

α/2,1
s ∼ Sα/2

((∫ T

0
f(s, T )α/2ds

)2/α

, 1, 0

)
; therefore P [X0,T < ∞] = 1

for all T because the cdf of X(T ) integrates to 1. To show the second, we use (13)

and (20) to show that
∫ T

0
1
σ2

s
ds is bounded above:

∫ T

0

1

σ2
s

ds ≤ 1

σ2
0

∫ T

0

1

h2(0, s)
ds

=
H ′(0)

σ2
0

∫ T

0

1

H ′(s)
ds < ∞ for 0 ≤ T < ∞;

thus P
[∫ T

0
1
σ2

s
ds < ∞

]
= 1 for 0 ≤ T < ∞.

To verify the martingale condition it is straightforward to check, using the inde-

pendence between L
α/2,1
t and Wt, that

E[Zt] = E
[
E

[
e
R t
0(r−µ− 1

2
σ2

s) 1
σs

dWs− 1
2

R t
0(r−µ− 1

2
σ2

s)
2 1

σ2
s

ds|σ2
s , 0 ≤ s ≤ t

]]

= 1.

Moreover it is simple to calculate E[Zt|Fu] = Zu (for 0 < u ≤ t) and using the

Radon-Nikodym derivative, E [StZt] = S0e
rt.

Therefore, by Girsanov’s theorem,

WQ
t = Wt −

∫ t

0

(
r − µ− 1

2
σ2

s

)
1

σs

ds,

and the risk-neutral dynamics of the stock, with ` = 0, satisfy

dS

S
= rdt + σtdWQ

t

∫ T

t

σ2
sds =

1

λ

(
1− e−λ(T−t)

)
σ2

t +

∫ T

t

1

λ

(
1− e−λ(T−t)

)
dLs.
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The inclusion of the leverage is straightforward in this setting, hence the risk-

neutral dynamics of the model (25) and (26) follows

log(ST /St) = r(T − t)− 1

2

∫ T

t

σ2
sds + `ασ̃α sec

απ

2
(T − t) +

∫ T

t

σsdWQ
s + `σ̃

∫ T

t

dL̂α,−1
s

(30)∫ T

t

σ2
sds = h(t, T )σ2

t +

∫ T

t

f(s, T )dLα/2,1
s (31)

where WQ
t is the standard Brownian motion independent of the Lévy-Stable motions

L̂α,−1
t and L

α/2,1
t (also independent from each other) and r is the (constant) risk-free

rate. This is the most general model that we consider; note that if ` = 0 we obtain

the risk-neutral dynamics for the case when the returns or log-stock process follows

a symmetric Lévy-Stable process under P .

4.3 Option Pricing with Lévy-Stable Volatility

As motivated in the introduction by equations (1) and (2), the price of a vanilla

option, using the EMM Q, is given by the iterated expectations

V (S, t) = EQ

L̂α,−1
t

[
EQ

σt

[
EQ

[
VBS

(
Ste

`σ̃
R T

t dL̂α,−1
s , t, K,

√
Y t,T , T

)]
L̂α,−1

t , σt|L̂α,−1
t

]]
,(32)

where Y t,T = 1
T−t

∫ T

t
σ2

sds and VBS is the Black-Scholes value for a European option.

Note that if we let h(t, T ) = f(t, T ) = 0 for all t, ` = 1 and 1 < α < 2 then the model

reduces to

log(ST /St) = µ(T − t) + σ̃

∫ T

t

dL̂α,−1
s ,

which is the Finite Moment Log-Stable (FMLS) model of [CW03].

Proposition 6. It is possible to extend the results above to price European call and

put options when the skewness coefficient β ∈ [0, 1].

Proof. Using put-call inversion [McC96], we have by no-arbitrage that European call
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and put options are related by4

C(S, t; K, T, α, β) = SKP (S−1, t; K−1, T, α,−β).

¥

As an example, we can use the approach above to derive closed-form solutions for

option prices when the random shocks to the price process are distributed according

to a Cauchy Lévy-Stable process, α = 1 and β = 0 in (30), (31), so that option prices

are given by

V (S, t) =

∫ T

t
f(s, T )1/2ds

(T − t)
√

2π

∫ ∞

0

VBS

(
St, t, K,

√
Y t,T , T

)
1

y3/2
e
−
„ RT

t f(s,T )1/2ds

T−t

«2

/2y
dy,

where Y t,T = 1
T−t

∫ T

t
σ2

sds. To see this, first we note that the combination of a Gaus-

sian random variable, the Brownian motion in (30), and a Lévy-Smirnov S1/2(κ, 1, 0)

random variable, the process followed by the integrated variance in (31), results in

a Cauchy random variable S1(κ, 0, 0). This can be seen by calculating the convolu-

tion of their respective pdf’s. Now, recall that the pdf for a Lévy-Smirnov random

variable S1/2(κ, 1, 0) is given by (κ/2π)1/2 x−3/2e−κ/2x with support (0,∞); hence the

distribution of the average integrated variance is given by

Y t,T ≡ 1

T − t

∫ T

t

f(s, T )dLα/2,1
s ∼ S1/2

(
1

(T − t)2

(∫ T

t

f(s, T )1/2ds

)2

, 1, 0

)
,

and the value of the option is as required.

5 Numerical illustration: Lévy-Stable Option Prices

In this section we show how vanilla option prices can be calculated according to

the above derivations. One route is to calculate the expected value of the Black-

Scholes formula weighted by the stochastic volatility component and the leverage

4Note that using put-call inversion allows us to obtain put prices when the log-stock price follows

a positively skewed Lévy-Stable process, based on call prices where the underlying log-stock price

follows a negatively skewed Lévy-Stable process. Furthermore, put-call-parity allows us to obtain

call prices when the skewness parameter −1 ≤ β ≤ 0.
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effect. Another route to price vanilla options for stock prices that follow a geometric

Lévy-Stable processes is to compute the option value as an integral in Fourier space,

using Complex Fourier Transform techniques [Lew01], [CM99].

We use the Black-Scholes model as a benchmark to compare the option prices

obtained when the returns follow a Lévy-Stable process. Our results are consistent

with the findings in [HW87] where the Black-Scholes model underprices in- and out-

of-the-money call option prices and overprices at-the-money options.

5.1 Option Prices for Symmetric Lévy-Stable log-Stock Prices

We first obtain option prices and implied volatilities when the log-stock prices follow

a symmetric Lévy-Stable process. Recall that, under the risk-neutral measure Q, and

assuming, for simplicity, that σ2
t = 0, the stock price and variance process are given

by

ST = Ste
r(T−t)− 1

2

R T
t σ2

sds+
R T

t σsdW Q
s ,

∫ T

t

σ2
sds =

∫ T

t

f(s, T )dLα/2,1
s .

The first step we take is to calculate the characteristic function of the process

Zt,T = −1

2

∫ T

t

σ2
sds +

∫ T

t

σsdWQ
s .

Proposition 7. The characteristic function of Zt,T is given by

EQ[eiξZt,T ] = exp

[
− 1

2α/2
sec

(απ

4

) (
iξ + ξ2

)α/2
∫ T

t

f(s, T )2/αds

]
, (33)

where ξ = ξr + iξi and −1 ≤ ξi ≤ 0. Moreover, the characteristic function is analytic

in the strip −1 < ξi < 0.
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Proof. The characteristic function is given by

EQ
[
eiξZt,T

]
= EQ

[
EQ

[
exp

[
−1

2
iξ

∫ T

t

σ2
sds + iξ

∫ T

t

σsdWQ
s

]
|σ2

s , 0 ≤ s ≤ t

]]

= EQ

[
exp

[
−1

2
iξ

∫ T

t

σ2
sds− 1

2
ξ2

∫ T

t

σ2
sds

]]

= EQ

[
exp

[
−1

2

(
iξ + ξ2

) ∫ T

t

f(s, T )dLα/2,1
s

]]

= exp

[
− 1

2α/2
sec

(απ

4

) (
iξ + ξ2

)α/2
∫ T

t

f(s, T )α/2ds

]
.

The last step is possible since the expected value exists if ξ is restricted so that

ξ2
r − ξ2

i + ξi ≥ 0, by consideration of the penultimate line. The region where this is

true contains the strip −1 ≤ ξi ≤ 0. Finally, it is straightforward to observe that the

characteristic function is analytic in this strip.

¥

To price call options we use the Fourier inversion formula:

C(x, t) = ext − 1

2π
e−r(T−t)K

iξi+∞∫

iξi−∞

e−iξxt
Kiξ

ξ2 − iξ
e(T−t)Ψ(−ξ)dξ (34)

where xt = log St, 0 < ξi < 1, and Ψ(ξ) is the characteristic function of the process

log ST . In comparing these prices with Black-Scholes prices, we have to decide how

to choose the relevant parameters of the two models. In fact, the only parameter that

we must examine carefully is the scaling parameter of the Lévy-Stable process; we opt

for one that can be related to the standard deviation used when the classical Black-

Scholes model is used. One approach, as in [HPR99], is to match a given percentile

of the Normal and a symmetric Lévy-Stable distribution. For example, if we want

to match the first and third quartile of a Brownian motion with standard deviation

σBS = 0.20 to a symmetric Lévy-Stable motion κdLα,0
t with characteristic exponent

α = 1.7, we would require the scaling parameter κ = 0.1401. We have chosen

these parameters so that for options with 3 months to expiry these quartiles match.

Moreover, in the examples below, we use the kernel f(s, T ) = 1
25

(
1− e−25(T−s)

)
,
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Figure 2: Difference between Lévy-Stable and Black-Scholes call option prices for dif-

ferent expiry dates: one, three and six months. In the Black-Scholes annual volatility

is σBS = 0.20 and α = 1.7.

which is as in (19) with n = 1, where for illustrative purposes we have assumed

mean-reversion over a two week period, i.e. γ = 25.

Figure 2 shows the difference between European call options when the stock re-

turns are distributed according to a symmetric Lévy-Stable motion with α = 1.7 and

when returns follow a Brownian motion with annual volatility σBS = 0.20. For out-of-

the-money call options the Lévy-Stable call prices are higher than the Black-Scholes

and for at-the-money options Black-Scholes delivers higher prices. These results are

a direct consequence of the heavier tails under the Lévy-Stable case.

5.2 Option Prices for Asymmetric Lévy-Stable log-Stock Prices

We now obtain option prices and implied volatilities when there is a negative leverage

effect, i.e. log-stock prices follow an asymmetric Lévy-Stable process. Recall that,
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Figure 3: Black-Scholes implied volatility for the Lévy-Stable call option prices when

returns follow a symmetric Lévy-Stable motion with α = 1.7, β = 0 and three expiry

dates: one, three and six months.

under the risk-neutral measure Q, the stock price and variance process are given by

ST = Ste
r(T−t)− 1

2

R T
t σ2

sds+(T−t)`ασ̃α sec απ
2

+
R T

t σsdW Q
s +`σ̃

R T
t dL̂α,−1

s ,∫ T

t

σ2
sds =

∫ T

t

f(s, T )dLα/2,1
s .

where for simplicity we have assumed σ2
t = 0 in (26).

We proceed as above and calculate the characteristic function of the process

Z`
t,T = −1

2

∫ T

t

σ2
sds +

∫ T

t

σsdWQ
s + `σ̃

∫ T

t

dL̂α,−1
s .

Proposition 8. The characteristic function of Z`
t,T is given by

EQ[eZ`
t,T ] = exp

[
− 1

2α/2
sec

(απ

4

) (
iξ + ξ2

)α/2
∫ T

t

f(s, T )α/2ds + (T − t)(iξ`σ̃)α sec
πα

2

]
,(35)

where −1 ≤ ξi ≤ 0, ξ = ξr + iξr, and is analytic in the strip −1 < ξi < 0.
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Proof. The proof is very similar to the one above. It suffices to note that for ξi ≤ 0

∣∣∣EQ
[
eiξ

R T
t dL̂α,−1

s

]∣∣∣ ≤ EQ
[∣∣∣eiξ

R T
t dL̂α,−1

s

∣∣∣
]

= EQ
[
e−ξi

R T
t dL̂α,−1

s

]

< ∞.

Moreover, for ξi < 0 we have that EQ
[
eiξ

R T
t dL̂α,−1

s

]
is analytic, i.e.

∣∣∣∣
d

dξ
EQ

[
eiξ

R T
t dL̂α,−1

s

]∣∣∣∣ =

∣∣∣∣EQ

[
i

∫ T

t

dL̂α,−1
s eiξ

R T
t dL̂α,−1

s

]∣∣∣∣
< ∞.

Putting these results together with the results from Proposition 7 we get the desired

result. The requirement −1 < ξi < 0 arises because dL̂α,−1
t is totally skewed to the

left, so we need −ξi > 0.

¥

We use the same f(s, T ) as above and include a leverage parameter ` = 1 and

σ̃ = 0.15 so that returns follow a negatively skewed process with β(t, T ) = −0.5 when

there is 3 months to expiry. Figure 4 shows the difference between Lévy-Stable and

Black-Scholes call option prices for different expiry dates. In the Black-Scholes case

annual volatility is σBS = 0.20. Finally, Figure 5 shows the corresponding implied

volatility. The negative skewness introduced produces a ‘hump’ for call prices with

strike below 100. This is financially intuitive since relative to the Black-Scholes the

risk-neutral probability of the call option ending out-of-the-money is substantially

higher in the Lévy-Stable case.

6 Conclusion

The GCLT provides a very strong theoretical foundation to argue that the limit-

ing distribution of stock returns or log-stock prices follows a Lévy-Stable process. We
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Figure 4: Difference between Lévy-Stable and Black-Scholes call option prices for dif-

ferent expiry dates: one, three and six months. In the Black-Scholes annual volatility

is σBS = 0.20, α = 1.7 and σ̃ = 0.15.

have shown how to model stock returns and log-stock prices where the stochastic com-

ponent is Lévy-Stable distributed covering the whole range of skewness β ∈ [−1, 1].

We showed that European-style option prices are straightforward to calculate using

transform methods and we compare them to Black-Scholes prices where we obtain

the expected volatility smile.
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Figure 5: Black-Scholes implied volatility for the Lévy-Stable call option prices when

returns follow a symmetric Lévy-Stable motion with α = 1.7 and σ̃ = 0.15 and three

expiry dates: one, three and six months.

A Appendix

Suppose that the stock process, as assumed above in section 4.2, follows

log(ST /St) = µ(T − t) +

∫ T

t

σsdWs + `σ̃

∫ T

t

dL̃α,−1
s

∫ T

t

σ2
sds = h(t, T )σ2

t +

∫ T

t

f(s, T )dLα/2,1
s ,

under P where dWt denotes the increment of the standard Brownian motion indepen-

dent of both dL̃α,−1
t and dL

α/2,1
t . Then it is straightforward to verify that the shocks

to the above log-stock process under the measure P are the sum of two independent

processes: those of a Gaussian component and those of a Lévy-Stable process with

negative skewness β ∈ (−1, 0]. Let G(t, T ) =
∫ T

t
f(s, T )α/2ds and, for simplicity

in the calculations, assume that σ2
t = 0 (so we focus only on the asymmetric Lévy

process).

Now consider the process

U `
t,T =

∫ T

t

σsdWs + `σ̃

∫ T

t

dL̃α,−1
s .
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The log-characteristic function of U `
t,T is given by

logE
[
eiθU`

t,T

]
= logE

[
exp

[
iθ

(∫ T

t

σsdWs + `σ̃

∫ T

t

dL̃α,−1
s

)]]

= − 1

2α/2
sec

(απ

4

)
G(T, t) |θ|α + (σ̃`)α(T − t)|θ|α

{
1 + isign(θ) tan

(απ

2

)}

=

(
1

2α/2
sec

(απ

4

)
G(t, T ) + (T − t)`ασ̃α

)
|θ|α

×
{

1− −(T − t)`ασ̃α

1
2α/2 sec

(
απ
4

)
G(t, T ) + (T − t)`ασ̃α

isign(θ) tan
(απ

2

)}

This is obviously the characteristic function of a skewed Lévy-Stable process with

(time-dependent) skewness parameter

β(t, T ) =
−(T − t)`ασ̃α

1
2α/2 sec

(
απ
4

)
G(t, T ) + (T − t)`ασ̃α

∈ (−1, 0].

Moreover, when ` = 0 we obtain β = 0 and β → −1 as ` →∞ .

Note that the integrated variance does not have a finite first moment since α/2 < 1.

However, in the case of the leverage effect
∫ T

t
dL̃α,−1

s its first moment exists, i.e.

E[
∫ T

t
dL̃α,−1

s ] < ∞ since 1 < α < 2.
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