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Abstract

We discuss the use of the WKB ansatz in a variety of parabolic prob-
lems involving a small parameter. We analyse the Stefan problem for
small latent heat, the Black–Scholes problem for an American put op-
tion, and some nonlinear diffusion equations, in each case constructing an
asymptotic solution by the use of ray methods.

1 Introduction

The WKB(J) ansatz, as developed by Green [9] and Liouville [21] among oth-
ers, is most commonly seen in its application to linear elliptic equations (or to
time-harmonic solutions of linear hyperbolic equations) in given domains. Rep-
resentative examples include Schrödinger’s equation when ~ is considered small
(the semiclassical limit) and the Helmholtz equation for large wave numbers, the
latter leading to the geometrical theory of diffraction and indeed to the idea of a
ray as a characteristic of the leading order approximation, the eikonal equation.
In this paper, we describe some cases in which the exponential ansatz typical
of the method, and the consequent reduction to a nonlinear first-order equation
solved by Charpit’s method, can be exploited to construct approximate solu-
tions to some (intrinsically nonlinear) free boundary problems of parabolic and
degenerate parabolic type.

In the theory of diffraction, the solution along a given ray typically has the
approximate form

amplitude× exp(i× phase), (1)

where the phase, but not the amplitude, varies rapidly along the ray. In our
problems, however, the factor i is absent. Instead, the second term in (1) varies
rapidly as the exponential of a real quantity; this makes an asymptotic approach
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especially fruitful. For example, the canonical caustic singularity of diffraction
theory does not play a role; instead, the appropriate canonical situation occurs
when rays meet on ‘ridge lines’, where the magnitudes of their contributions to
the solution are equal. At other points where two rays cross, one associated
solution is typically exponentially smaller in magnitude than the other. A well-
known situation in which ridge lines occur is when the height of a sandpile on
a table is modelled by the eikonal equation of geometrical optics.

In Section 2 we discuss in some detail the small latent heat limit of the
Stefan problem, and a related problem from mathematical finance. In Section 3
we consider more briefly the application of ray methods to degenerate parabolic
equations.

2 The Stefan problem with small latent heat

2.1 Formulation

In this section we analyse the small latent heat limit of the Stefan problem for
solidification of a pure material. In a general two-phase problem, in which the
initial data for the temperature u(x, t) vary by O(1), the phase interface varies
only slightly from the u = 0 isotherm of the corresponding heat conduction
problem and can be found by a regular perturbation scheme. However, if only
one phase is active, the other remaining at the phase-change temperature u = 0,
the behaviour is more subtle.

We therefore consider the following situation: a domain Ω ⊂ Rn is filled
with material, initially solid and at the melting temperature, which we shall
take to be zero. At time t = 0, the temperature on the boundary ∂Ω is raised
to a specified value g(x, t) > 0. The solid therefore melts from the boundary
inwards, and we wish to describe the evolution of the solid-liquid interface.

Thus, for t > 0, u = 0 in the solid phase while

ut = ∆u (2)

in the liquid phase, with

u = 0, −∂u
∂n

= εVn

on the solid-liquid interface Γ(t) whose normal velocity (into the solid) is Vn.
The initial conditions are

u(x, 0) = 0, Γ(0) = ∂Ω.

We have chosen units so that the inverse Stefan number

ε = (St)−1 =
L

T0c
(3)

appears in the moving boundary condition rather than the heat equation; here
L is the latent heat, k is the thermal conductivity, T0 is a typical temperature
scale and c is the specific heat.
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We are interested in the limit ε → 0, the case of ‘weak’ or ‘slight’ nonlin-
earity. (In the opposite limit when ε is large, it is necessary to scale so that
the coefficient in the moving boundary conditions is 1, and the heat equation
∆u = εut is thus approximated by ∆u = 0. This ‘extremely’ nonlinear limit is
known as the Hele-Shaw problem; we include some instances of this case too, for
comparison.) When ε = 0, the phase-change is instantaneous. We thus antici-
pate that for ε¿ 1 and g(x, t) not everywhere small, melting occurs on a much
shorter timescale than that implicit in the scalings above, a result which is also
clear from a consideration of the energy required to melt the solid, ε|Ω(0)| in
dimensionless units, compared with the flux in from the boundary. The correct
scalings are, however, not immediately obvious, and it is easiest to derive them
first from a particular one-dimensional solution.

2.2 The Neumann solution to the one-dimensional prob-
lem

2.2.1 The explicit solution

In one spatial dimension, say for Ω = (0,∞) with the applied temperature at
x = 0, the phase change interface can be written as x = s(t; ε) and the Stefan
problem above simplifies to

ut = uxx, 0 < x < s(t; ε), (4)
u(x, 0) = 0, s(0; ε) = 0, (5)
u(0, t) = g(t), (6)

and at x = s(t; ε)

u = 0, ux = −εṡ. (7)

When g(t) = g0 = constant, there is a similarity solution, the ‘Neumann’ solu-
tion (due to Lamé and Clapeyron [20]):

u(x, t) = g0

(
1−

∫ x/t1/2

0

e−η2/4dη

/∫ α

0

e−η2/4dη

)
, (8)

s(t; ε) = α(ε)t1/2, (9)

where α(ε) is determined from the transcendental equation

εαeα2/4

2

∫ α

0

e−η2/4dη = g0. (10)

It is then easy to show from (10) that as ε→ 0,

s(t; ε) ∼ 2(t/δ)1/2,

where
δ = 1/| log ε|.
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This suggests that in order to analyse O(1) changes in s(t; ε), we must rescale
time with δ:

t = δT. (11)

It is now straightforward to show that the solution has an asymptotic structure
consisting of three regions. The first is a boundary layer near the fixed boundary
x = 0, in which x = O(δ1/2); in this layer the solution is to leading order the
zero-latent heat solution. In the second region x is of O(1), and this region
matches into the third region, an interior layer of width O(δ) near the interface
x = s(t; ε) in which the solution is to leading order a travelling wave. We
now give further details of the three regions and their matching; of course they
can easily be shown to be consistent with the exact solution (8). It is known
rigorously that the result for the limiting behaviour of s(t; ε) is correct for this
and more general one-dimensional problems. This follows from [22]; the analysis
there is however confined to one spatial dimension.

2.2.2 The boundary layer near x = 0

We recall that in (11) we rescaled time by δ. In order to achieve a balance in
the heat equation we set

x = δ1/2X,

and, with u = u0(X,T ) + o(1) as ε, δ → 0, the solution satisfying u(0, T ) = g0
is

u0 = g0erfc(X/2T 1/2);

we shall comment on more general boundary conditions later. As X →∞, this
solution has the asymptotic behaviour

u0 ∼ 2g0T 1/2

π1/2X
e−X2/4T , (12)

and this must match into the second region.

2.2.3 The ‘outer’ region x = O(1)

In this region, x is unscaled and so we must solve

δ−1uT = uxx, (13)

with u(x, 0) = 0. As x → 0, the solution must match with (12). Written in
outer variables, (12) is

u0 ∼ 2g0T 1/2δ1/2

π1/2x
e−x2/4δT ,
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and this suggests the ansatz

u ∼ δ1/2(a0(x, T ) + . . .)e−f(x,T )/δ. (14)

Note also that the exponential term in (14) may be thought of as a WKB ansatz
for (13). Substitution into (13) yields

fT = −f2
x , (15)

a0T = −2fxa0x − fxxa0. (16)

The characteristic projections of (15) (obtained by Charpit’s method) are x/T =
constant, so f and a0 are determined by matching back into the boundary layer
(which can be viewed as a canonical ‘diffraction’ problem) for small x, T with
x/T = O(1), giving

f ∼ x2/4T and a0 ∼ 2g0T 1/2/π1/2x as x, T → 0.

In this case, the solution is identical to its limiting form, namely

f = x2/4T, a0 = 2g0T 1/2/π1/2x. (17)

We must now match this solution into the neighbourhood of the phase change
interface.

2.2.4 The interior layer near the free boundary

Near the free boundary, we expect the solution to be, to leading order, a trav-
elling wave. Recalling that ds/dt = O(δ−1), when we change to coordinates
moving with the free boundary the dominant contribution to the left-hand side
of (13) is of O(δ−2). It is therefore appropriate to write

x = s(t; ε) + δξ = S(T ; δ) + δξ,

and, in order to achieve a balance in the latent heat condition,

u = εU.

The leading order problem is

−(dS0/dT )U0ξ = U0ξξ,

and, imposing the moving boundary conditions U0 = 0, U0ξ = −dS0/dT , we
have

U0 = e−ξdS0/dT − 1. (18)

This must match with (14); using (17) we write (14) in inner variables as

u ∼
(

2g0δ1/2T 1/2

π1/2S
+ · · ·

)
e−S2/4δT−ξS0/2T+···. (19)

Recalling also that u = εU = e−1/δU , matching (18) with (14) requires

S ∼ 2T 1/2(1− δ(log δ − log(π/g0))/4), (20)

completing our reconstruction of the Neumann solution for small ε and. indeed,
providing a more accurate approximation to s(t; ε) than that given earlier.
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2.3 One-dimensional problems: discussion

2.3.1 More general one-dimensional problems

It is easy to generalise the results above to the case where the prescribed tem-
perature at x = 0 is not constant, and hence there is no similarity solution. It
can be seen that the constant g0 does not affect the leading order behaviour of
s(t; ε), since this entirely controlled by the exponential factor in (4), which does
not depend on g0. It therefore follows from (20) that to leading order

s(t; ε) ∼ 2| log ε|−1/2t1/2, (21)

for any boundary data u(x, 0) = g(t) for which g0 is neither exponentially small
nor large in δ, and for which g(t) does not vary by O(1) on any timescale faster
than O(δ). Because the interior layer is small, it also follows that the location of
the free-boundary is to leading order the isotherm U = ε of the corresponding
heat conduction problem without solidification. A further consequence is that if
we consider, for example, solidification of the interval 0 < x < 1, with u(0, t) =
g(t), u(1, t) = h(t), we have the rather surprising result that the two interfaces
meet, to leading order, at the mid-point x = 1/2 at dimensionless time δ/4. This
result, in fact, holds even if g and h vary by O(1) on the timescale T = O(1).

A further generalisation is provided by an example which illustrates the
difference between the ‘extremely’ and ‘slightly’ nonlinear limits in which the
inverse Stefan number is respectively large and small (see Section 2.1 above,
and Section 3). We consider (4)–(6) with g(t) = tα, α > −1. If α 6= 0, so that
the Neumann solution does not apply, we can rescale to set ε = 1 in (6). The
two limiting cases are then as follows.

(i) ‘Large’ inverse Stefan number.

If the left-hand side of (4) is negligible, u(x, t) is linear in x. We have

u ∼ tαf(x/t(α+1)/2), f(η) = 1− ((α+ 1)/2)1/2η, (22)

with
s ∼ (2/(α+ 1))1/2t(α+1)/2.

If α > 0, (22) represents a consistent balance in (4) as t→ 0+ and thus gives
the small-time behaviour. Conversely, if −1 < α < 0 it provides the large-time
behaviour.

(ii) ‘Small’ inverse Stefan number.

Following the approach outlined in Section 2, the boundary layer solution is the
zero Stefan number similarity solution

u ∼ tαf(x/t1/2),

6



with

αf − ηfη/2 = fηη,

f = 1 at η = 0, (23)

f ∼ Aη−(2α+1)e−η2/4 as η →∞,

where the value of the positive constant A can be determined by solving (23),
which can be done in terms of parabolic cylinder functions. Matching into the
interior layer, the free boundary location can then be shown to satisfy

s2 ∼ 4t(α log t− (α+ 1/2) log(4α log t) + logA). (24)

As is clear from the sign of the leading term in (24), the limit required for these
results to apply is t→∞ for α > 0 and t→ 0+ for −1 < α < 0.

In order to describe the asymptotic behaviour completely, both limit cases
must thus be analysed. For −1 < α < 0, (22) provides the large-time behaviour
and (24) the small-time; the reverse is true for α > 0. As is well-known, in the
borderline case α = 0 the solution is, as described in §2.2, exactly self-similar
and depends rather sensitively on the value of the Stefan number. In the other
cases the effective Stefan number varies with time in a manner made apparent
by the above analysis.

2.3.2 The Grinberg and Chekmareva approach

An alternative approach to the one-dimensional case is to use the Laplace trans-
form to reformulate the Stefan problem as a nonlinear integral equation for
s(t; ε). This approach follows the idea of [10], also used by [6] and [22] (with
a prescribed heat flux at x = 0). We take the Laplace transforms of (4)–(7),
defining the Laplace transform of u(x, t) by

ū(x, p) =
∫ ∞

ω(x)

u(x, t)e−ptdt,

where ω(x) ≡ s−1(x) is well-defined if we assume that g(t) ≥ 0, since then s(t)
is increasing. A short calculation shows that

ūxx − pū = εe−pω(x), x ≥ 0, <(p) > 0, (25)

with
ū(0, p) = ḡ(p) and ū→ 0 as x→∞.

Solving (25), inverting with the aid of the convolution theorem, and returning
to s(t) as the dependent variable, we find the integral equation

s(t)
∫ t

0

g(t− τ)e−s(t)2/4τ dτ

τ3/2
=

ε

∫ t

0

ṡ(t− τ)
(
e−(s(t)−s(t−τ))2/4τ − e−(s(t)+s(t−τ))2/4τ

) dτ

τ1/2
.
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We can then obtain the leading order behaviour of s(t; ε) by substituting in
the ansatz s(t; ε) ∼ α(ε)t1/2 as above, and confirm the results of Section 2.2.
Note, however, that although this approach readily gives details of s(t; ε), it is
less helpful concerning the structure of u(x, t); nor is it useful in more than one
space dimension.

2.4 The American put option

The method described above leads to a quick derivation of the asymptotic be-
haviour of the Black–Scholes value of an American put option near its expiration
date; moreover, unlike certain other approaches (see [3, 8, 17, 18] for related
studies) it can readily be generalised, for example to higher dimensions (see [4]
for a different approach in more than one dimension). We recall (see [25]) that in
this model the value of such an option satisfies a backwards parabolic equation
with terminal (payoff) values given at the expiration time t = T . It is convenient
to measure time backwards from this expiration date, so we write t′ = T − t.
Let us consider an American put option, namely an option to sell an asset with
price S for a strike price K at any (physical) time up to expiration, that is for
t′ ≥ 0, and write its value as V (S, t′). The payoff value is max(K − S, 0) and
the terminal (t′ = 0) value of the option is

V (S, 0) = max(K − S, 0), 0 < S <∞.

The option value satisfies the parabolic (time-reversed Black–Scholes) equation

Vt′ =
1
2
σ2S2VSS + (r − q)SVS − rV (26)

for S∗(t′) < S < ∞; here σ is the volatility of the asset price returns, r the
risk-free rate and q the continuous dividend yield. Also S∗(t′) is the optimal
exercise boundary, at which

V = K − S, VS = −1;

these conditions state that the option value is equal to the payoff at S = S∗(t′),
and the Delta, VS , is continuous there. For S < S∗(t′) we have V = K−S. The
case r > q is of most financial interest as this is usually the case in practice, and
then the free boundary emanates from S = K and moves to the left. (If r < q,
the free boundary emanates from S = rK/q with square-root-in-time behaviour
as in the corresponding problem for an American call option [25], into which it
can be transformed. This case can arise for FX options but is unusual for stock
or equity index options. If r = q = 0 there is no free boundary.)

We now adopt the rescalings

S = KŜ, S∗ = KŜ∗, V = KV̂ , t′ = 2t̂/σ2

to give, dropping the hats,

∂V

∂t
= S2 ∂

2V

∂S2
+ ρ(1− θ)S

∂V

∂S
− ρV,
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with
V (S, 0) = max(1− S, 0), S∗(0+) = min(1, 1/θ),

the free boundary conditions

V (S∗(t), t) = 1− S∗(t),
∂V

∂S
= −1,

and, lastly, V → 0 as S → ∞; here ρ = 2r/σ2, θ = q/r. The case of financial
interest is that in which 0 ≤ q < r, so that 0 ≤ θ < 1, and this is the only
case we consider. Our final reformulation expresses the problem in the manner
most reminiscent of the Baiocchi-transformed version of the Stefan problem
(i.e. the oxygen-consumption problem) by subtracting the payoff from V and
discounting, and changing to moving log-price coordinates, setting

V = 1− S + e−ρtΨ(ζ, t), ζ = logS − (1− ρ(1− θ)) t,

which yields
∂Ψ
∂t

=
∂2Ψ
∂ζ2

+ ρθeζe(1+ρθ)t − ρeρt, (27)

with
Ψ(ζ, 0) = max(eζ − 1, 0), ζ∗(0+) = min(0,− log θ),

the free boundary conditions

Ψ =
∂Ψ
∂ζ

= 0 (28)

on ζ = ζ∗(t), and Ψ ∼ eζe(1+ρθ)t − ρeρt as ζ → ∞; here ζ∗(t) = logS∗(t) −
(1− ρ(1− θ)) t. It is worth noting that the ‘latent heat’ term in (28), namely
eζe(1+ρθ)t−ρeρt, is negative for sufficiently large ζ but positive for ζ < − (1− ρ(1− θ)t)−
log θ (i.e. for S < 1/θ), the former corresponding to an ill-posed Stefan problem
and the latter to a well-posed one; the interplay between the two has important
consequences for the dynamics, and the moving boundary is always located in
the latter regime. In particular, the instantaneous jump in the free boundary to
S∗(0+) = 1/θ when θ > 1 can be interpreted similarly to a comparable situation
for the Stefan problem described in [11]. Although we do not consider further
the case θ > 1, as indicated above such a jump occurs for an American call
option when 0 < θ < 1 [25].

The problem is amenable to ray methods not only in the limit of small time,
but also for small ‘latent heat’, ρ → 0. We focus on the latter; it corresponds
to a small interest-rate regime and would be especially appropriate in markets
such as Japan in the early years of the 21st century, where annualised interest
rates were less than 1% (0.01), whereas in the same units for an individual stock
σ might be as much as 0.4, so that ρ ≈ 0.125. While related results have been
obtained elsewhere (see [17], in particular), it seems appropriate to revisit the
problem in the context of the rather general framework developed here. For
brevity, our presentation of the asymptotics will be slightly informal, but we
stress that they can be made fully systematic.
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Our starting point is the corresponding European Put solution

ΨE(ζ, t) =
1
2

(
erfc(ζ/2t1/2)− eζ+terfc

(
(ζ + 2t)/2t1/2

))
+ eζ+(1+ρθ)t − eρt.

(29)
This is the solution to (27) with the same initial condition but with the condi-
tions on ζ = ζ∗(t) replaced by

ΨE ∼ 1− eρt + eζ
(
e(1+ρθ)t − et

)

as ζ → −∞. That is, it is the solution with no constraint and it plays a role
similar to that which the heat-conduction solution plays in the Stefan problem
above. Indeed, while (29) contains our small parameter ρ, it serves as an outer
solution which is uniformly valid across the relevant timescales. A key result we
require from (29) is the more detailed far-field expression

ΨE ∼ 1− eρt + eζ
(
e(1+ρθ)t − et

)
+

2t3/2

π1/2ζ(ζ + 2t)
e−ζ2/4t (30)

as ζ → −∞ with t = O(|ζ|) and ζ/t < −2; the final term in this expression is
of the expected form

t−1/2A(ζ/t)e−ζ2/4t,

with the ‘directivity’ A(σ) given in this case by

A(σ) =
2

π1/2σ(σ + 2)
.

Setting ζ = ζ∗(t) + ξ, when ρ is small a putative leading-order inner balance
(whose range of validity can be checked a posteriori in the usual way) reads

−ζ̇∗ ∂Ψ
∂ξ

∼ ∂2Ψ
∂ξ2

− ρ
(
1− θeζ∗+t

)
(31)

so that
Ψ ∼ ρ

ζ̇∗2

(
1− θeζ∗+t

)(
e−ζ̇∗ξ − 1 + ζ̇∗ξ

)
. (32)

Matching the exponential in ξ from (32) with the corresponding exponential
from the final term of (30) as ξ → +∞ (recall that ζ∗ < 0, ζ̇∗ < 0), shows that,
for 0 ≤ θ < 1,

ζ̇∗ ∼ ζ∗

2t
and hence, matching the amplitudes of the exponential terms, that (since ζ∗(t) À
t here)

1
2(πt)1/2

e−ζ∗2/4t ∼ ρ
(
1− θeζ∗+t

)
. (33)

For t = O(1) we have −ζ∗ À 1, so the θ terms in (31)–(33) are in fact negligible.
and hence

ζ∗2 ∼ −2t log(4πρ2t); (34)
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the appropriate scalings in (32) for t = O(1) are thus ξ = O(1/| log ρ |1/2),
Ψ = O(ρ/| log ρ |). For θ = 0, no earlier timescales are needed; when θ > 0,
however, a distinct early-time balance occurs in (33) for

t = t̄/| log ρ |, ζ∗ = −2t̄1/2

(
1 +

log | log ρ |
4| log ρ | +

z̄∗(t̄)
| log ρ |

)
,

whereby the θ terms cannot be neglected and the dominant balance in (33)
becomes

z̄∗ ∼ −1
4

log
(

4πt̄
(
1− θe−2t̄1/2

)2
)
. (35)

Returning to the regime t = O(1), from (34) we have

ζ∗ ∼ −2t1/2| log ρ |1/2 +
1
2
t1/2 log(4πt)

| log ρ |1/2
(36)

for t = O(1). The families of rays associated with the final term in (30) and with
the term eζ+t are given respectively by ζ/t = constant and ζ + 2t = constant,
and we might anticipate that (36) will cease to be valid for t ∼ | log ρ |, when
ζ = ζ∗(t) lies on the coincident ray ζ/t = −2. However, the balances above
in fact first change subtly on the intermediate timescale t = | log ρ |T , where
0 < T < 1, and ζ∗ = | log ρ |Z∗. This follows because (33) is then replaced by

2T 3/2

π1/2Z∗ (Z∗ + 2T ) | log ρ |1/2
e−Z∗2| log ρ |/4T ∼ ρ

Ż∗2
, (37)

so that

Z∗ ∼ −2T 1/2 +
log | log ρ |
2| log ρ | T

1/2 +
1

| log ρ |T
1/2 log

(
2(πT )1/2(1− T 1/2)

)
, (38)

providing further evidence that a change in behaviour is to be expected at T = 1.
The next timescale, then, has scalings

t = | log ρ |+ | log ρ |1/2τ, ζ∗ = −2| log ρ | − | log ρ |1/2τ + z∗(τ) (39)

and, for the inner region,

ζ = −2| log ρ | − | log ρ |1/2τ + z,

whereby, in view of (29), which is equivalent to

ΨE(ζ, t) = 1
2

(
eζ+terfc

(
−(ζ + 2t)/2t1/2

)
− erfc

(
−ζ/2t1/2)

))
+eζ+t

(
eρθt − 1

)−(
eρt − 1

)
,

we find that (30) is replaced when τ = O(1) by

Ψ ∼ 1
2
ρezerfc(−τ/2) (40)
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as the matching condition on the inner region as z → +∞ for ρ¿ 1.
The dominant balance for z = O(1) is

∂Ψ
∂z

∼ ∂2Ψ
∂z2

− ρ (41)

with
Ψ =

∂Ψ
∂z

= 0

at z = z∗, so that
Ψ ∼ ρ

(
ez−z∗ − 1− (z − z∗)

)
.

Thus, on matching with (40) we obtain

z∗ ∼ − log (erfc(−τ/2)/2) . (42)

Before outlining the final timescales, we note that the large-time behaviour
is given asymptotically by the steady state solution

V∞(S) =
1

ν + 1

(
(ν + 1)S

ν

)−ν

, S∗(∞) =
ν

ν + 1
,

where ν, the negative of the relevant root of the indicial equation for the time-
independent scaled Black–Scholes equation, is given by

ν = −1
2

(
(1− ρ(1− θ))−

(
(1− ρ(1− θ))2 + 4ρ

)1/2
)

= ρ+O(ρ2) as ρ→ 0.

This corresponds to a travelling wave solution for Ψ(ζ, t) having

ζ∗(t) ∼ −| log ρ | − t as ρ→ 0

with which (39), (42) are already consistent as τ → ∞. In order to complete
the asymptotic description of the solution, we must now nevertheless describe
the further regime T > 1, for which the relevant matching condition between
inner and outer regions becomes

ΨE ∼ 1− eρt + eζ+(1+ρθ)t +
2t3/2

π1/2ζ(ζ + 2t)
e−ζ2/4t (43)

as ζ → −∞ with t = O(|ζ|), ζ/t > −2. This condition replaces (30) (one of
the terms in (30) no longer appears, because the location ζ = −2t at which the
relevant Stokes lines are born has passed beyond the moving boundary). It is
then the third, rather than the last, term of (32) that appears on matching for
T > 1, i.e. (37) is replaced by

e| log ρ |(Z∗+T ) ∼ ρ

Ż∗2
,
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from which we recover
Z∗ ∼ −1− T. (44)

In view of (27) in particular, the final timescale is naturally seen be t = t†/ρ,
and the change of variables

ζ = −t†/ρ− | log ρ |+ ζ†

is needed to resolve the inner region, in which the analysis is now more delicate.
We have

ρ
∂Ψ
∂t

+
∂Ψ
∂ζ†

=
∂2Ψ

∂ζ†2
− ρet† + ρ2θeζ†+θt† , (45)

so the matching condition derived from (43), namely

Ψ ∼ ρeζ†+θt†

as ζ† → +∞, on the leading-order inner solution (whereby Ψ = O(ρ)) requires
that

∂Ψ
∂ζ†

∼ ρ
(
eζ†+θt† − et†

)
.

The interface accordingly satisfies

ζ† ∼ (1− θ)t† (46)

as required. Finally, by setting

ζ† = (1− θ)t† + ρ−1/2ξ†, Ψ = e
1
2 ρ−1/2(1−ρ(1−θ))ξ†− 1

4 ρ−1(1−ρ(1−θ))2t†Φ(ξ†, t†)

in the homogeneous version of (45), we recover the heat equation, whose dipole
solution governs how S∗(t) approaches the steady state, involving an algebraic
modulation to the exponential rate e−

1
4 ρ−1(1−ρ(1−θ))2t† ; this also applies for

ρ = O(1).
In summary, we have obtained explicit expressions for ζ∗ in each of the

asymptotic regimes, namely (35) on the shortest timescale t̄ = O(1) (in fact,
an additional subtlety arises for even shorter times, but this is captured by the
small-time solution (47) noted below), (36) for t = O(1), (38) for T = O(1) with
T < 1, (39) and (42) on the transition timescale τ = O(1), (44) for T = O(1)
with T > 1, and finally (46) for t† = O(1). The ray interpretation of the results
(with the two distinct families of rays carrying the crucial matching information
from (29)) is indispensable in motivating the various asymptotic scenarios and
confirming their self-consistency.

Finally we consider the local analysis of the free boundary near expiration.
This has been treated in [18, 8, 17, 3] via an integral equation approach. This
behaviour can also readily be analysed within our framework, and indeed a
minor modification of (34) applies, namely

ζ2 ∼ −2t log
(
4πρ2(1− θ)2t

)
(47)

as t → 0 for ρ = O(1), by essentially the same arguments as those above
(cf. (33)). We stress that our approach generalises immediately to higher-
dimensional problems, again as shown in the following section.
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2.5 Higher-dimensional problems

2.5.1 Matched asymptotic expansions approach

The methods of Section 2.2 generalise easily to the case where Ω is a bounded
domain in Rn, initially filled with solid at the melting temperature. Now there
is a melted region L(t), bounded by ∂Ω and by the phase change interface Γ(t).
The model we adopt for t > 0 is equations (2)–(3) with

u = g(x, T ) x ∈ ∂Ω,

where g satisfies the conditions detailed in Section 2.3.1. Again, time is scaled
with δ = 1/| log ε| and there is a three-layer structure.

2.5.2 Boundary layer near ∂Ω

The solution here is as in Section 2.2.2; X is now given by X = xn/δ, where xn

represents distance into L(t) normal to ∂Ω. Note that if ∂Ω is not smooth this
approximation may not be uniformly valid (consider, for example, melting the
interior or exterior of a corner in two dimensions). We shall return to this point
below.

2.5.3 Outer Region

In the ‘outer’ region, in which distances from ∂Ω are O(1), we generalise (14)
to

u ∼ δ1/2(a0(x, T ) + . . .)e−f(x,T )/δ. (48)

We only calculate f(x, T ) here; this is sufficient to determine the leading order
position of the free boundary. As we saw in Section 2.2.2, a0(x, T ) only con-
tributes to a small correction to this leading order behaviour, and for the same
reason the leading order behaviour of Γ(T ) is independent of the boundary data
g(x, T ), provided that the latter is neither too large nor too small nor varies too
rapidly. We find that

fT = −|∇f |2, (49)

with f ∼ x2
n/4T as xn, the distance to ∂Ω, tends to zero with xn/T remaining

O(1). The solution of (49) takes the separable form

f(x, T ) =
(
F (x)

)2
/4T,

from which we recover the eikonal equation of geometrical optics,

|∇F |2 = 1,

with F = 0 on ∂Ω. The solution is just

F = xn,
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so

f(x, T ) = x2
n/4T.

This solution is valid sufficiently close to ∂Ω that the characteristic projections,
which are the normals to ∂Ω, do not cross, and may again require qualification
if ∂Ω is not smooth.

2.5.4 Interior layer near Γ(T )

The solution in the interior layer is as before, ξ now representing distance along
the normal to Γ(T ). Matching with the outer region requires simply that the
leading order location of the moving boundary is determined by where f = 1,
i.e.

xn = 2T 1/2.

This is evidently consistent with (20).

2.6 Discussion

We can summarise the results above by saying that, to leading order, the phase
change interface advances along the normals to ∂Ω with speed (δt)−1/2, inde-
pendently of the boundary data (provided the latter is uniformly neither large
nor small). We return to the case of variable boundary data below. Thus, the
last point to melt is that furthest from ∂Ω. As in the one-dimensional case,
the location of Γ(t) is to leading order the isotherm U = ε of the corresponding
pure heat conduction problem; as before, the solution in the boundary and outer
regions is not to leading order influenced by the inner layer near Γ(t), and the
superlinearity in the exponential term in the outer layer determines the location
of Γ quite precisely. This scenario may require some modifications, for example
when the characteristic projections (normal to ∂Ω) cross, or when ∂Ω is not
smooth.

Even if ∂Ω is smooth, the characteristic projections must eventually meet.
(For an analysis of the late stages of the special case of melting a sphere (but
with large Stefan number), see [23, 24].) When they do cross, the dominant
contribution is from those on which the distance to ∂Ω is shortest. The leading
order moving boundary determined by our procedure may then not be smooth,
and the inner region is no longer one-dimensional. For example, if ∂Ω is an
ellipse, the leading order approximation to Γ(t) first becomes irregular at the
foci, withX ∼ const.|Y |4/3 in local variables (X,Y ). For later times, the leading
order approximation to Γ(t) has two finite-angle corners which move in from the
foci towards the centre of the ellipse (see Figure 1). If on the other hand ∂Ω is
a square and Ω its interior, ‘ridge-line’ discontinuities are present for all t > 0
along the diagonals: Γ(t) is to leading order a square, distance 2(t/δ)1/2 inwards
normally from ∂Ω, but our approximation is clearly invalid at its corners. In
such cases, an inner travelling-wave free boundary problem is easily formulated
to describe the smoothing of the outer solution [16].
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Figure 1: Melting of the interior of an ellipse. The outer ellipse is ∂Ω; moving
inwards, Γ(t) is shown before it becomes irregular at the foci, at the moment it
becomes irregular and at a later time. Only the solid portion of the innermost
curve contributes to Γ(t); on the dashed portion, the relevant ray carries an
exponentially subdominant amplitude.

Lastly if ∂Ω has reentrant corners, for example, the leading order approxi-
mation to Γ(t) consists of smooth segments constructed from the normals to the
smooth parts of ∂Ω, joined up by ‘expansion fans’ emanating from the corners.
Thus, for example, if Ω is the exterior of a square of side a, the approxima-
tion to Γ(t) consists of straight line segments (normal translations of the sides
through a distance 2(t/δ)1/2) joined by arcs of circles centred on the corners.
Both reentrant and non-reentrant corners occur in models for options on several
assets.

3 Nonlinear diffusion

3.1 Preamble

We now illustrate the more widespread applicability of ray methods to mov-
ing boundary problems by noting two generalisations of the Hamilton-Jacobi
formulation of the limit problem m→ 0+ of

ut = ∇ · (um∇u), (50)

which has been exploited by [12].
We firstly consider more general nonlinearities, i.e. we treat

ut = ∇ · (D(u)∇u), (51)

where D(u) depends on some small positive parameter ε; we shall give a general
form of this dependence for which ray methods are applicable in the limit ε→ 0.
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As with (50), the key step is a change of dependent variable. It is instructive
to consider two such transformations, the second of which gives the formulation
appropriate to the application of ray methods; the first is not relevant to such
approaches, being included for comparison.

The change of variable w = D(u).

The change of variable w = D(u) transforms (51) into

wt = w∆w +
(
D(u)/D′(u)

)′|∇w|2. (52)

If D(u) is such that the third term is negligible in (50), we have

wt = w∆w. (53)

The circumstances under which this occurs (the simplest of which is m → ∞,
as for example in [7]) are discussed in [13]. This represents the ‘extremely
nonlinear’ limit of (51), a limiting case analogous to the Hele-Shaw limit of the
Stefan problem (see Sections 2.1 and 2.3.1). A particular feature worth noting
is that separable solutions w = W (x)/t satisfy the linear problem

∆W = −1,

the ‘squeeze-film’ variant of the Hele-Shaw problem (see [19]).

The change of variable v =
∫ u

0
D(u′)du′/u′.

In this case we have

vt = |∇v|2 +D∆v; (54)

when the third term is negligible, which is the case of interest here (we give
examples below), we have

vt = |∇v|2. (55)

This represents the ‘slightly nonlinear’ limit of (51). As we saw earlier, it also
arises on applying the WKB method to the heat equation (see (49)), and thus
complements (53).

3.2 Solutions with moving boundaries

Many nonlinear diffusion problems have solutions with moving boundaries. We
consider two generalisations of the WKB method to analyse such problems,
beginning with the equations considered in the previous section.

The requirement that the interface u = 0 of (51) exhibit finite speed of
propagation is that the integral

∫ u

0
D(u′)du′/u′ be bounded; that is the case we
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treat here. For any suitable D(u), both (54) and its approximation (55) have
the exact travelling wave solution

v = q(qt− x)+, (56)

and this more generally describes the local behaviour at an interface moving
with speed q.

We therefore now illustrate the circumstances under which (54) can be ap-
proximated by (55) by taking

D(u; ε) = εψ(ε log u), ψ(0) = 1, ψ(−∞) = 0, (57)

for example D(u; ε) = εuε. For definiteness we consider the Cauchy problem
with compactly supported initial conditions of the form

v = V (x) at t = 0,

where V (x) is independent of ε and has its global maximum at x = 0. We
normalise the problem such that V (0) = Ψ(0), where Ψ(σ) =

∫ σ

−∞ ψ(σ′)dσ′;
this is bounded for finite propagation speed. From (57) we thus have

v = Ψ(ε log u), D(u) = ε/Φ′(v),

where Ψ(Φ(v)) = 1, implying

u = exp(Φ(v)/ε), (58)

which is the appropriate WKB ansatz here. In the outer region |x| = O(1),
with v ∼ v0(x, t) as ε→ 0, we have the ray problem

v0t = |∇v0|2,
(59)

v0 = V (x) at t = 0,

from which the leading order moving boundary location for t = O(1) can be
determined from where v0 = 0. We note that the solution v0 to (59) is decreasing
along characteristics, so that (59) in fact holds only where v0 > 0; elsewhere
v0 = 0 applies.

There is also an inner region x = ε1/2X. Choosing axes such that

V (x) ∼ Φ(0)−
N∑

i=1

αix
2
i as |x| → 0,

for positive constants αi, then the leading order inner solution u ∼ u0(X, t)
satisfies

u0t = ∆u0,

u0 = exp
(
−

N∑

i=1

aiX
2
i

)
at t = 0,
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where ai = αi/Φ′(0), so that [14]

u0 = exp
(
−

N∑

i=1

aiX
2
i

/
(1 + 4ait)

)/ N∏

i=1

(1 + 4ait)1/2.

Simple examples in which the approach applies include

D(u) = εuε = εv,

and

D(u) = ε(1− ε log u)−n = ε
(
(n− 1)v

)n/(n−1) for n > 1.

We now turn to our second generalisation, which concerns the doubly non-
linear equation (see [1] for related considerations)

ut = ∇ · (um|∇u|n−1∇u), (60)

with n > 0. It is instructive first to note the instantaneous source solution
(cf. [2])

u = t−N/((m+n−1)N+n+1)f(r/t1/((m+n−1)N+n+1)),

with

f (m+n−1)/n =
(m+ n− 1)(a(n+1)/n − η(n+1)/n)+
(n+ 1)((m+ n− 1)N + n+ 1)1/n

, m+ n > 1,

f = a exp
(− n

(
η/(n+ 1)

)(n+1)/n)
, m+ n = 1,

f−(1−m−n)/n =
(1−m− n)(a(n+1)/n + η(n+1)/n)+
(n+ 1)(n+ 1− (1−m− n)N)1/n

,

m+ n < 1 with N < (n+ 1)/(1−m− n),

for some constant a. The solution is thus compactly supported for m + n > 1
only; the case we discuss here corresponds to the limit m+ n→ 1+. We define

v =
n

m+ n− 1
u(m+n−1)/n,

to give

vt = |∇v|n+1 +
m+ n− 1

n
v∇ · (|∇v|n−1∇v). (61)

The limit problem for m+ n→ 1+ is thus

vt = |∇v|n+1. (62)

Where v > 0, (62) provides the leading order solution to (60) where u is exponen-
tially small and, in particular, determines the location of the moving boundary,
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on which u = 0. For given initial data v = V (x) at t = 0, equation (62) is
straightforward to solve via Charpit’s equations, with the usual considerations
applying when characteristic projections intersect, and we shall not elaborate
further here.

Our remaining comments largely concern the limit case n = 0, which is a
singular limit of (60); we do not give a detailed discussion, merely noting that
in the one-dimensional case (60) then reduces to

∂u

∂x

(
∂u

∂t
− ∂

∂x

(
umsgn

(
∂u

∂x

)))
= 0,

and is readily solved. For example, takingm = 1 and initial conditions u = U(x)
at t = 0 with U ′(x) negative for x positive (and vice versa) then we have

u = U(x− t) for x < s−(t),
u = M(t) for s−(t) < x < s+(t),

u = U(x+ t) for x > s+(t),

where M(t) = U(s− + t) = U(s+ − t) is determined by conservation of mass.
The solution thus contains additional moving boundaries s±(t).

For n = 0, (62) becomes

vt = |∇v|, (63)

which implies that the outward normal velocity of any level set of v is unity.
Thus different level sets, and in particular the moving boundary v = 0, can be
tracked separately. This is not true for other values of n; only for n = 0 is v
constant along characteristics of (62), its exceptional status in this regard being
consonant with its role as a singular limit. However, the required solution to
(62) for n > 0 is commonly of the form

v = 1− n

t1/n

(
F (x)
n+ 1

)(n+1)/n

,

so that

|∇F | = 1. (64)

Writing the moving boundary (or indeed any level set) of (63) as t = F (x) we
again obtain (64). Under such circumstances the same formulation is appropri-
ate for any n ≥ 0, the moving boundary being given by

F (x) = (n+ 1)t1/(n+1)/nn/(n+1).

4 Conclusion

We have shown that the WKB ansatz provides an effective approximation for a
wide variety of parabolic free-boundary problems in which the evolution of the
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free boundary is rapid, facilitating their asymptotic solution explicitly by ray
methods. We considered the one-phase Stefan problem in some detail, show-
ing that the location of the phase-change interface is to leading order that of
the U = ε isotherm of the corresponding pure conduction problem. To lead-
ing order, the interface (isotherm) propagates with constant speed in directions
normal to ∂Ω; the last point to melt is the furthest point from the boundary.
This point is also the instantaneous minimum, at t = 0+, of the corresponding
conduction problem. Subject to certain constraints, these results do not de-
pend on the precise behaviour of the applied boundary temperature. We also
discussed more briefly several nonlinear diffusion problems in which a similar
asymptotic approach can successfully be employed, illustrating the broad appli-
cability of the technique to extensive classes of moving boundary problems. The
outcome is that we can both extract the behaviour of limiting cases and derive
analytically tractable reduced problems that can be used to provide insight that
is instructive beyond such limiting regimes. It is particularly striking that the
approach readily provides results in any number of dimensions, a feature that
may be particularly valuable in the context of mathematical finance where the
large number of assets involved can cause very severe computational difficulties.
Our final remark (cf. [15]) is that the approach is also well suited to certain
problems in mathematical biology in which degradative enzymes occur which
are so well suited to their specific roles that models of their action lead to what
is in effect the small Stefan number regime described above.
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tions en séries. J. Math. Pures Appl. 2 (1837) 16–35.

[22] Sherman, B. (1971) Limiting behavior in some Stefan problems as the latent
heat goes to zero. SIAM J. Appl. Math. 20 319–327.

[23] Soward, A.M. (1980) A unified approach to Stefan’s problem for spheres
and cylinders. Proc. R. Soc. Lond. A373 131–147.

22



[24] Stewartson, K. & Waechter, T.T. (1976) On Stefan’s problem for spheres.
Proc. R. Soc. Lond. A348 415–426.

[25] Wilmott, P., Howison, S.D. & Dewynne, J.N. (1995). The Mathematics of
Financial Derivatives. Cambridge University Press.

23


