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A free boundary problem arising in a model for inviscid, incompressible shallow water

entry at small deadrise angles is derived and analysed. The relationship between this novel

free boundary problem and the well-known viscous squeeze film problem is described. An

inverse method is used to construct explicit solutions for certain body profiles and to

find criteria under which the splash sheet can ‘split’. A variational inequality formulation,

conservation of certain generalized moments and the Schwarz function formulation are

introduced.

1 Introduction

The impact of a rigid body on liquid is an important free boundary problem with applica-
tions ranging in scale from asteroid impact to droplet motion. The severe nonlinearities
involved mean that even the basic problem in which the liquid is inviscid and incom-
pressible, the flow starts from rest and is therefore irrotational, and the effects of gravity,
surface tension and air cushioning are neglected, is only amenable to exact theoretical
treatment in special cases such as that of wedge impact [4]. In this paper, we consider
an approximate model arising from Wagner theory [17] for normal impact of a blunt
body under the assumptions stated above. Our model describes the normal impact of a
blunt body on a shallow layer of liquid of uniform initial thickness. We are concerned
with the situation in which the curvature of the body is sufficiently small (i.e. at small
deadrise angles) that, even when the body penetration below the undisturbed waterline
is small, the lateral extent of the part of the body below the undisturbed waterline is
large compared to the water depth. Such a situation arises whenever the body shape and
locations, in dimensionless cartesian coordinates (x∗, y∗, z∗) with z∗ normal to the water
layer −1 < z∗ < 0 and with a suitable scaling of time t, are given by

z∗ = ε (f(δx∗, δy∗)− s(t)) , (1.1)

where εṡ(t) is the impact velocity and ε¿ 1, δ ¿ 1 are independent small parameters.
In such cases, as shown in [7], the impact takes place over four stages. In the initial

stage the body penetration is sufficiently small that the Wagner model [5] for impact on
a fluid of infinite depth provides a good description. The salient features of this model, as
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Figure 1. Schematic of infinite depth entry at small at small deadrise angles

sketched in figure 1, are that the free surface ‘turns over’ in the very small regions which
are very close to the body, and these turnover regions are the roots of a thin high-velocity
splash sheet which is ejected from under the body. This feature allows a linearized model
to be formulated as a “codimension-two” free boundary problem [6] in which the velocity
potential satisfies Laplace’s equation with boundary conditions which switch across the
points (in two-dimensions) or curve (in three-dimensions) corresponding to the small
turnover regions; the region under the body and inside the turnover curve is termed the
‘contact set’. Lastly the condition that the turnover regions are close to the body leads to
a ‘law of motion’ for the evolution of the turnover curve and a prediction of the velocity
and thickness of the splash sheet at its root. In the second stage of the evolution, the
contact set is comparable in lateral extent to the water depth, so the effect of the base
is felt at leading order. The third stage, in which the lateral extent of the contact set is
much greater than the water depth, is the subject of this paper, while the fourth stage,
in which the penetration is no longer much smaller than the depth, can be described by
‘Korobkin theory’ [7, 9].

We now consider in more detail the third stage, in which for a body (1.1), the pene-
tration is O(ε) while the lateral extent of the contact set is O(1/δ) relative to the water
depth. We then have a large aspect ratio approximation of the codimension-two free
boundary problem for stage two of the impact, as described in detail in [6] for other
such problems. In this case, the flow beneath the body is an ‘inviscid squeeze film’, and
scaling (x∗, y∗) = δ−1(x, y) the velocity is approximately (u, v, 0) where u = φx, v = φy

for a suitably scaled velocity potential φ(x, y, t), which, by mass conservation, satisfies

∇2φ = ṡ, (1.2)

in the contact set, where ∇ is the two-dimensional gradient operator. For later conve-
nience we denote the turnover curve Γ(t), which we assume is expanding, by

t = ω(x, y),

so the contact set Ω(t) is ω(x, y) < t and the initial condition is simply ω(0, 0) = 0 on
taking the initial contact to occur at the origin. As shown in [7, 11], the flow velocity
outside the contact set and the neighourhood of the small turnover region is exponentially
small, and the analysis of the flow near to the turnover curve shows that the appropriate
conditions there are

φ = 0, (1.3)

φn = vn(f(x, y)− s(t)), (1.4)

where φn denotes the outward normal derivative of φ on the turnover curve, which
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has outward normal velocity vn. Equations (1.2) – (1.4) for prescribed f(x, y) and s(t)
constitute the free boundary value problem that is the subject of this paper. The one-
dimensional specialisation of this problem (corresponding to two-dimensional flow under
the impactor), in which the contact set has the form d−(t) < x < d+(t) and the body
profile is f(x) − s(t) where f(0) = 0 and f ′(x) ≶ 0 for x ≶ 0, can be solved explicitly;
integrating

φxx = ṡ on d−(t) < x < d+(t),

subject to

φ = 0, φx = ḋ±(f(x)− s(t)) at x = d±(t),

we find

φ =
ṡ

2
(x− d−)(x− d+) where

∫ d+

d−
(f(ξ)− s(t))ξjdξ = 0 for j = 0, 1,

the latter integrals respresenting overall mass and x-momentum conservation. We there-
fore have two equations for d±(t) and we do not discuss this case further. Instead, we
focus on the two-dimensional problem (corresponding to three-dimensional flow under
the impactor), considering both the evolution of the contact set via the solution of the
free boundary problem (1.2) – (1.4) and the dynamics of the splash sheet ejected from
the turnover curve. As shown in [11], to leading order in ε, δ, the thickness of the sheet
ejected from (x, y) on t = ω(x, y) is ε2H(x, y, t) and its velocity is V(x, y, t)/δ, where

H =
1
4

(f(x, y)− s(t))2 , V = 2vnn, (1.5)

and n is the outward unit normal to the turnover curve in the (x, y) plane. Although it is
not the main concern of this paper, we remark that the main open question concerning the
splash sheet dynamics is whether it separates from the body and if so where, some extra
physics being required. However, it is clear that the fluid particles follow ballistic paths
(confined to the body) before and after separation; given the location of the separation
point, [8, 16] describe several possible separation mechanisms.

In §2 we consider the relationship between our free boundary problem and the well-
known squeeze film problem for a viscous fluid, and we discuss the linear stability of our
problem in this context. In §3, we discuss an inverse method which allows us to construct
explicit solutions to (1.2) – (1.4) for certain body profiles and to find criteria under
which the splash sheet can ‘split’ so that it leaves ‘dry’ or ‘unsplashed’ regions outside
the turnover curve, with applications to the design of tyre tread. In §4, we consider a
variational inequality formulation of the problem, show that certain ‘moment’ integrals
over Ω(t) are constant and derive the Schwarz function formulation. Finally, we conclude
in §5 with a discussion of directions for future work.

2 Relationship with viscous squeeze film flows

The two-dimensional version of the problem is closely related to squeeze film flows in a
Hele-Shaw cell. We recall that in this model [15] a blob of viscous fluid trapped between
two parallel plates separated by a distance h(t) moves as the plates are squeezed together
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or pulled apart. For small separations, and sufficiently slow flow, the suitably scaled
pressure p(x, y, t) averaged across the gap satisfies

∇2p =
ḣ

h3
, (2.1)

in the fluid region Ω(t), which corresponds to our contact set, with

p = 0, −h2pn = vn, (2.2)

on ∂Ω(t), corresponding to our turnover curve. The relationship between (1.2) - (1.4)
and (2.1) - (2.2) is now clear: the functions of time differ but they can in fact be made
identical by a suitable time change combined with a rescaling of p (or φ), leaving the
essential new feature that for our problem the coefficient of vn in the kinematic condition
(1.4) is spatially inhomogeneous. Later in the paper we shall use some techniques from
the squeeze film problem in the context of the impact problem; for now, we just remark
that the case ṡ > 0, corresponding to fluid-entry, is analogous to ḣ < 0, corresponding
to an expanding squeeze film flow. As shown in [15], the latter is generally a well-posed
problem, with a stable free boundary, whereas the case ḣ > 0 is ill-posed, unstable and
prone to finite-time blow up. This observation provides indirect support for the distinc-
tion between fluid-entry (stable, well-posed) and fluid exit (unstable, ill-posed) drawn in
[1]. In more detail, a local in space and time linear stability analysis of perturbations
proportional to exp(ikν + σ(k;x(t), t)), where k is the wavenumber and ν the tangential
coordinate, gives the instantaneous growth rate

∂σ

∂t
(k;x(t), t) = −|k|vn − d

dt
ln

(
f(x(t))− s(t)

)
for x(t) ∈ Γ(t) (2.3)

(the corresponding growth rate for (2.1) - (2.2) is −|k|vn + d/dt(lnh) for x(t) ∈ ∂Ω(t)).
Thus, the flow is linearly stable if and only if the turnover curve is moving up the
body; note that the large wavenumber limit of (2.3) is in agreement (in the sense that
an advancing (retreating) turnover curve is stable (unstable)) with the linear stability
analysis in [1] of the local travelling wave solution in a small neighbourhood of the jet
root.

In the remainder of this paper we focus on the entry problem for which ṡ > 0, so the
trivial transformation φ = ṡφ̂(x, y, τ), τ = s(t) implies that we may set s(t) = t in (1.2)
- (1.4), without loss of generality.

3 The inverse method

We now present a method for calculating body shapes and turnover curves corresponding
to a given solution of Poisson’s equation (1.2). Suppose that F (·) is a twice continuously
differentiable function of its argument. We first observe that

φ(x, y, t) = F (ω(x, y))− F (t) (3.1)

automatically satisfies the boundary condition (1.3). Furthermore, if F is invertible, so
that

ω(x, y) = F−1(G(x, y)) where G(x, y) := F (ω(x, y)); (3.2)
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then by (1.2), G satisfies Poisson’s equation

∇2G = 1 on ω < t, (3.3)

and the initial condition, ω(0, 0) = 0, provided

F−1(G(0, 0)) = 0. (3.4)

Since vn = |∇ω|−1, the body profile is given by (1.4) and (3.2) as

f(x, y) = ω + F ′(ω)|∇ω|2 = F−1(G) +
|∇G|2

F ′(F−1(G))
. (3.5)

Hence, given a solution G(x, y) of Poisson’s equation (3.3), one may specify F subject
to (3.4), calculate ω from (3.2) and f from (3.5), and finally check that the resulting
solution is physically acceptable; we require ω < f for the turnover curve to lie above
the undisturbed free surface, i.e. for the validity of the underlying asymptotics, and, for
example, that both are smooth and monotonic increasing with radial distance from the
origin.

We can also use this method to calculate the leading-order thickness and velocity of
the splash root, for which (1.5) and (3.1) imply

H =
1
4
|∇G|4, V = 2

∣∣∣∣
F ′(F−1(G))

∇G

∣∣∣∣n. (3.6)

For our purposes the most important implication is that the splash sheet thickness van-
ishes at critical points of G where ∇G = 0, corresponding to non-smooth points of the
turnover curve (which is also given by G(x, y) = F (t)). We investigate this phenomenon
below, having presented a simple explicit example of the inverse method to demonstrate
the procedure.

3.1 Entry of an elliptic paraboloid

As an example, we take

G(x, y) =
1
2
(
kx2 + (1− k)y2

)
, (3.7)

where k ∈ [0, 1]. We let F (t) = t/α where α > 0, then by (3.1) - (3.3),

φ(x, y, t) =
1
α

(ω(x, y)− t), ω(x, y) =
(
x

a1

)2

+
(
y

a2

)2

, f(x, y) =
(
x

A1

)2

+
(
y

A2

)2

, (3.8)

where Aj and aj are given by

1
a 2
1

=
αk

2
,

1
a 2
2

=
α(1− k)

2
,

1
A 2

1

= α

(
k

2
+ k2

)
,

1
A 2

2

= α

(
(1− k)

2
+ (1− k)2

)
. (3.9)

Hence, as in the infinite depth case [14], an entering elliptic paraboloid has a similarity
solution in which distances scale with the square root of time and the turnover curve is
an ellipse. The constant α(A1, A2) allows the impactor to be any elliptic paraboloid and
is the unique positive root of the quartic in α obtained by eliminating k from the last two
equations in (3.9). If a cross-section of the entering elliptic paraboloid has eccentricity
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Figure 2. The eccentricity e of the turnover curve as a function of the eccentricity E of a
cross-section of the entering elliptic paraboloid.

E = (1−A 2
2 /A

2
1 )1/2 (A1 > A2) and the turnover curve has eccentricity e = (1−a 2

2 /a
2
1 )1/2

(a1 > a2), then eliminating α and k from (3.9) implies

e2 = 1 +
E2

6
−

√
1− E2 +

E4

36
, (3.10)

which we plot in figure 2. As in the infinite depth case [14], e < E for 0 < E < 1, so
the elliptic turnover curve is less elongated than a cross-section of the impacting elliptic
paraboloid.

The splash root thickness and velocity are given by (3.6) as

H =
4t2

α4
, V =

kx2 + (1− k)y2

k2x2 + (1− k)2y2
n,

in contrast to the infinite depth case in which, to lowest order, the jet thickness is not
uniform in x and y.

3.2 Splitting the splash sheet

We now consider the properties of the splash sheet within the framework of the inverse
method. From (3.3),

∇G is harmonic, (3.11)

and, since ∇G is not identically zero by (3.3), the spray sheet thickness (3.6a) cannot
vanish on any subset of the turnover curve ω(x, y) = t that contains a limit point, i.e. if
the thickness does vanish, it must do so at an isolated point. On physical grounds we
also anticipate that for acceptable solutions

F ′(t) > 0, (3.12)

ω and its first partial derivatives are bounded. (3.13)

Since ∇G = F ′(ω)∇ω, conditions (3.11) – (3.13) imply that the splash root thickness
(3.6a) vanishes at the isolated point (x∗, y∗) if and only if ∇ω(x∗, y∗) = 0. Moreover,
since vn = |∇ω|−1, the normal velocity of the turnover curve is unbounded at such points
and therefore the thickness vanishes if and only if the turnover curve develops an isolated
non-smooth point, possibly a corner or a cusp. By (3.5), the body hits the free surface
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Figure 3. (a) Contour plot of the turnover curve ω(x, y) = t for t =
0, t∗/5, 2t∗/5, 3t∗/5, 4t∗/5, t∗. (b) Plot of the spray sheet thickness H on the hori-
zontal edge of the equilateral triangle ω(x, y) = t∗. Solid lines indicate edges along which the
splash sheet splits.

and is horizontal at such critical points, i.e. f(x∗, y∗) = ω(x∗, y∗) and ∇f(x∗, y∗) = 0,
which is in accordance with physical intuition.

In constructing such a turnover curve, ω(x, y) = t, we note that it may also be written
G(x, y) = F (t) by (3.2). Hence, the inverse method allows us to construct the body
profile that results in a given (non-smooth) turnover curve, Γ∗ say, provided we can solve
(3.3) with the additional boundary condition

G(x, y) = F (t∗) for (x, y) ∈ Γ∗. (3.14)

In this case the splash root thickness vanishes and therefore the sheet splits at non-smooth
points on Γ∗ at time t = t∗, where t∗ is determined by (3.4).

For example, suppose we specify Γ∗ to be a simple closed polygon, then it is well known
that (3.3) and (3.14) have a polynomial solution if and only if Γ∗ is an equilateral triangle
(see, for example, [10] page 19). In this case, if ∂Ω is the equilateral triangle with unit
side bounded by y = −1/2

√
3 and y ±√3x = 1/

√
3 (so there is symmetry in the y-axis

and the centroid is at the origin), then

G(x, y) = F (t∗)− 1
2
√

3
(y + 1/2

√
3)(y +

√
3x− 1/

√
3)(y −

√
3x− 1/

√
3). (3.15)

If we take F (t) = t, then ω = G, G(0, 0) = 0 provided t∗ = 1
36 and by (3.5) the body is

the quartic

f(x, y) =
1
2
(x2 + y2) +

2√
3
y(3x 2 − y2) +

3
2
x2y2 +

3
4
(x4 + y4). (3.16)

In figure 3, we plot the contours ω(x, y) = t for six equally spaced times from t = 0 to the
critical time t = t∗ and the spray sheet thickness on the horizontal edge of ω(x, y) = t∗,
namely

H(x,−1/2
√

3, t∗) =
9

16384
(1− 4x2)4 for |x| < 1/2. (3.17)

The velocity of the fluid ejected into the spray sheet is normal to the turnover curve, so
when the sheet splits at a corner, one might expect the edges of the split sheet will span
an angle of 2π/3, as depicted in figure 3. We plot f(x, y) for ω(x, y) < t∗ in figure 4.
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Figure 4. Plot of the body profile z = f(x, y) on ω(x, y) < t∗.

Although the body profile is not convex, it is monotonic increasing with radial distance
from the origin and is therefore physically acceptable.

Finally, we remark that the inverse method may be a useful design tool because, within
the constraints discussed above, it allows us to specify the location of the turnover curve
and in particular at which points the splash sheet will split. For example the 1mm
scale structure of tyre tread is designed to eject water into grooves that run around
the tyre, thereby increasing contact with the road and therefore reducing the likelihood
of hydroplaning. The analysis above suggests the non-smooth points of G should be
aligned with the grooves thereby forcing the impacting fluid into them. Of course, the
simplifications we have made mean that we can expect our model to be more indicative
of the fluid behaviour in such a situation than a precise quantitative tool.

4 Direct approaches

We now turn to a direct approach to the free boundary problem (1.2) - (1.4). We begin by
making the observation that a variation inequality formulation is possible, although the
resulting problem is not standard. We then discuss an analogue of Richardson’s moments
for the Hele-Shaw problem, and consider a formulation involving the Schwarz function
for the free boundary.

4.1 Variational inequality formulation

The velocity potential φ(x, y, t) is defined on ω(x, y) < t, so we define the displacement
potential by

Υ(x, y, t) = −
∫ t

ω(x,y)

φ(x, y, τ) dτ. (4.1)

A simple calculation using (1.3) shows that for ω < t,

∇2 Υ = −
∫ t

ω

∇2 φ dτ + [∇ω · ∇φ]ω=t .

Since φ satisfies Poisson’s equation (1.2) and on ω = t,

∇ω · ∇φ = |∇ω|n · ∇φ = f − ω,
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by (1.4), we deduce

∇2 Υ = ω − t+ f − ω = f − t for ω < t. (4.2)

Also, by (1.3) and (1.4),

Υ =
∂Υ
∂n

= 0 on ω = t. (4.3)

On physical grounds, we assume the pressure is non-negative on the interior region,
i.e.

−∂φ
∂t

≥ 0 for ω < t,

which implies that, since φ = Υ = 0 at t = 0,

Υ ≥ 0 on ω < t. (4.4)

Morover, assuming that the waterline f(x, y) = t lies inside the turnover curve ω(x, y) =
t, i.e. f > ω, and that f is monotonic increasing with radial distance from the origin
implies

f − t ≥ 0 on ω > t. (4.5)

Finally, extending Υ to be zero on the exterior region ω > t, i.e.

Υ = 0 on ω > t, (4.6)

one may formulate the free boundary problem (4.2) - (4.3) together with the conditions
(4.4) - (4.6) as a variational inequality, namely

∫ ∫

<2
∇Υ · ∇(v −Υ)dxdy ≥

∫ ∫

<2
(v −Υ)(t− f) dxdy

for all non-negative square integrable v. However, since f(x, y)−t < 0 inside the waterline
f(x, y) = t, it is not amenable to classical theory.

4.2 Generalized Richardson moments

It is well-known [12] that for the Hele-Shaw problem (2.1) - (2.2), with ḣ = 0 and
prescibed singularities to drive the flow,

∫ ∫

Ω(t)

ψ(x, y) dxdy

evolves in a predictable way whenever ψ is harmonic and this enables the domain to be
recovered (for example, from the ‘moments’ for which ψn = (x+ iy)n, n = 0, 1, . . . ). In
a similar vein, for harmonic ψ(x, y), we have

∫ ∫

Ω(t)

(f(x, y)− t)ψ(x, y) dxdy =
∫ ∫

Ω(t)

∇ · (ψ∇Υ−Υ∇ψ) dxdy

=
∫

Γ(t)

ψΥn −Υψn dν

= 0, (4.7)

where we recall ν is the tangential coordinate along ω = t and we have used (4.2) and
the fact that ψ is harmonic in the first line, Green’s theorem in the second and (4.3) in
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the third. Letting ψ = 1 implies conservation of mass, i.e. the displaced fluid lies in the
contact set to lowest order, and letting ψ = x+ iy implies that the centre of mass of the
contact set remains at the origin. It is not, as far as we are aware, known whether the
turnover curve is uniquely determined by the modified Richardson moments

∫ ∫

ω<t

(f(x, y)− t)(x+ iy)n dxdy = 0 for n = 0, 1, 2, . . . , (4.8)

except in the simplest of self-similar cases, although with suitable qualification on the
continuity of their time evolution it appears likely. For example, if f and ω are given by
(3.8), then taking n = 0 and n = 2 in (4.8) implies aj < Aj are determined in terms of
Aj by the pair of algebraic equations

4A 2
1A

2
2 = a 2

1A
2
2 +A 2

1 a
2
2 ,

A 2
1 a

2
1 a

2
2 + 3A 2

2 a
4
1 + 6A 2

1A
2
2 a

2
2 = A 2

2 a
2
1 a

2
2 + 3A 2

1 a
4
2 + 6A 2

1A
2
2 a

2
1 ,

(4.9)

whose solution is in agreement with (3.9).

4.3 Formulation in terms of the Schwarz function of Γ(t)

In terms of the complex variable z = x+ iy the governing equation (1.2) is

4
∂2φ

∂z∂z
= 1 for z ∈ Ω, (4.10)

where Ω denotes the (open) contact set in the complex plane and bar denotes the complex
conjugate of a complex variable. The general solution to (4.10) is

φ =
zz

4
+ < (a(z, t)) , (4.11)

where a(z) is an arbitrary analytic function on Ω.
If the outward unit normal n = (cos θ, sin θ), then the boundary conditions (1.4) imply

0 = − sin θ
∂φ

∂x
+ cos θ

∂φ

∂y
, (4.12)

vn(f(x, y)− t) = cos θ
∂φ

∂x
+ sin θ

∂φ

∂y
. (4.13)

Subtracting i times (4.12) from (4.13) gives the combined complex boundary condition

2eiθ ∂φ

∂z
= vn(f(x, y)− t) on Γ. (4.14)

The Schwarz function of the free boundary Γ, which exists if and only if the boundary
is analytic, is the unique function g(z, t), analytic in some neighbourhood of Γ, such that

z = g(z, t) (4.15)

defines Γ. It is shown in [3] that

e−iθ = i
√
gz, vn = − igt

2
√
gz

on Γ,

where subscripts denote partial derivatives. Hence, substituting (4.11) and (4.15) into
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(4.14) implies

4az + g =
(
f

(
1
2
(z + g),

1
2i

(z − g)
)
− t

)
gt on ∂Ω. (4.16)

Assuming f is sufficiently regular, all terms in this equation are analytic in some neigh-
bourhood of Γ, so by analytic continuation relation (4.16) holds wherever both sides are
defined. Hence, the Schwarz function of an acceptable solution must satisfy the condition
that (

f

(
1
2
(z + g),

1
2i

(z − g)
)
− t

)
gt − g is analytic on Ω. (4.17)

Hence, to determine an exact solution one may postulate an analytic shape for the
turnover curve ∂Ω, write down its Schwarz function g characterized by the parameters
{cj(t)}, say, then see if condition (4.17) uniquely determine {cj(t)}.

Since gz cancels and does not appear in (4.17) one may integrate with respect to t to
obtain, applying the initial condition g(z, 0) = 0,

t g(z, t)−
∫ g(z,t)

0

f

(
1
2
(z + η),

1
2i

(z − η)
)

dη is analytic on Ω. (4.18)

4.3.1 Example: The axisymmetric case

Suppose the body has the axisymmetric profile f(x, y) = f0((x2 + y2)1/2), where f0 is
monotonic increasing and f0(0) = 0. Furthemore, suppose the turnover curve Ω is a
circle of radius c(t) centred on the origin, so that the Schwarz function g(z, t) = c(t)2/z.
Applying (4.17), we find that


f0




((
z + g

2

)2

+
(
z − g

2i

)2
)1/2


− t


 gt − g = (f0(c)− t)

2cċ
z
− c2

z

is analytic on Ω if and only if c = (f(c0) − t)2ċ. Integrating and applying the initial
condition c(0) = 0 implies

∫ c(t)

0

(f(r)− t)rdr = 0,

which is the required law of motion. Further, az = 0 and therefore

φ(x, y, t) =
x2 + y2 − c(t)2

4
,

in order to satisfy (1.3).

5 Conclusion

We have described a novel free boundary problem for the contact set (corresponding
to the high pressure region) of a blunt body impacting on shallow water. This problem
has a mathematical structure which closely resembles that of the Hele-Shaw problem
and the viscous squeeze film problem. We have exhibited several explicit solutions, and
we have shown that weighted harmonic moments are conserved. We have also presented
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a nonlinear version of the Schwarz function treatment of the Hele-Shaw problem; it is
possible that Cauchy transform methods, as discussed in [2, 13], may also prove fruitful
in our case.
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