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Given an abelian category A, one can define its (bounded) derived
category DbA, which is a triangulated category, a class of
categories satisfying axioms like an abelian category, but with a
different notion of exact sequence. The objects of DbA are
complexes in A with cohomology in bounded degrees, but the
morphisms in DbA are not morphisms of complexes: they are
obtained from morphisms of complexes by inverting
‘quasi-isomorphisms’. The unbounded derived category DA allows
complexes in A with cohomology in all degrees.
Derived categories of coherent sheaves Db coh(X ) are very
important. They are better behaved than coh(X ) in some ways
(functors on Db coh(X ) are often exact, when the corresponding
functor on coh(X ) is only left or right exact). They are also central
to Derived Algebraic Geometry. Many objects in DAG live in
categories obtained by inverting quasi-isomorphisms. For example,
if X is a derived stack the tangent complex TX and cotangent
complex LX (the analogues of TX and T ∗X for X a manifold) lie
in derived categories, essentially D coh(X ).
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7.1. Definition and motivation of derived categories.
The category of complexes

Definition

Let A be an abelian category, for example A = coh(X ) for X a
smooth projective K-scheme. A complex E • = (E ∗, d) in A is a
family (E k)k∈Z of objects in A, and morphisms
d = dk : E k → E k+1 in A for k ∈ Z such that
dk+1 ◦ dk = 0 : E k → E k+2 for all k .
If E •,F • are complexes, a morphism of complexes φ : E • → F • is
morphisms φk : E k → F k for all k ∈ Z such that
dk ◦ φk = φk+1 ◦ dk : E k → F k+1 for all k .
Write Com(A) for the (abelian) category of complexes in A.
There is an inclusion A ↪→ Com(A) mapping E ∈ A to the
complex E • with E 0 = E and E k = 0 for k 6= 0. This identifies A
with a full subcategory of Com(A).
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Actually, this definition of morphism of complexes is wrong for
some purposes. Let φ, φ̃ : E • → F • be morphisms as above. We
say that φ, φ̃ are equivalent, written φ ∼ φ̃, if there exist
ψk : E k → F k−1 for k ∈ Z with φ̃k = φk + dk−1 ◦ ψk + ψk+1 ◦ dk
for all k . Write [φ] for the ∼-equivalence class of φ. The
homotopy category Ho(Com(A)) has the same objects as
Com(A) and morphisms ∼-equivalence classes [φ] : E• → F •.
There is an obvious functor Com(A)→ Ho(Com(A)) mapping
E • 7→ E • and φ 7→ [φ].
In fact Ho(Com(A)) is already a triangulated category, but it is
not as interesting as the derived category D(A).
Write Comb(A) for the full subcategory of Com(A) of bounded
complexes E • such that E k = 0 for |k | � 0, that is, E k 6= 0 for
only finitely many k . Also write Com+(A) for E • with E k = 0 for
k � 0, and Com−(A) for E • with E k = 0 for k � 0.
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Definition

Let E • be a complex in A, and k ∈ Z. Form a commutative
diagram in the abelian category A, with the top row exact:

0 // Imdk−1

))

// Ker dk

��

// Hk(E •) // 0

· · ·
dk−2

// E k−1

55OO

dk−1
// E k

dk
// E k+1

dk+1
// · · · .

Here Imdk−1 = Ker(E k → Coker dk−1). Then dk−1 factors
uniquely via Imdk−1. As dk ◦ dk−1 = 0, the universal property of
Ker dk shows dk−1 and Imdk−1→E k factor uniquely via Ker dk .
The cohomology Hk(E •) is the cokernel of Imdk−1 → Ker dk . It
is an object in A, unique up to canonical isomorphism.
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First definition of derived categories

Definition

If φ : E • → F • is a morphism in Com(A), there are natural
morphisms Hk(φ) : Hk(E •)→ Hk(F •) for k ∈ Z. We call φ a
quasi-isomorphism if Hk(φ) is an isomorphism for all k ∈ Z. Write
Q for the family of all quasi-isomorphisms in Com(A).

Definition 7.1

The derived category D(A) = Com(A)[Q−1] is the localization of
Com(A) at the quasi-isomorphisms Q. That is, D(A) is a
category with a functor Π : Com(A)→ D(A) such that if φ ∈ Q
then Π(φ) is an isomorphism in D(A), and D(A) has the universal
property that if Π′ : Com(A)→ C is a functor such that if φ ∈ Q
then Π′(φ) is an isomorphism in C , then there is a functor
F : D(A)→ C and a natural isomorphism η : Π′ ⇒ F ◦ Π.
Similarly, Db(A)=Comb(A)[Q−1] and D±(A)=Com±(A)[Q−1].
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One can show that the localization D(A) = Com(A)[Q−1] exists
and is a triangulated category. We can and do take D(A) to have
the same objects as Com(A). Also D(A) ' Ho(Com(A))[Q−1].

Problem

Definition 7.1 tells us almost nothing useful about what the
morphism sets HomD(A)(E •,F •) actually are.

In principle, morphisms φ̃ : E • → F • in D(A) can be constructed
as equivalence classes of diagrams in Com(A):

B•1
q1

{{
φ1

��

B•2
q2

��
φ2

��

· · · B•kqk

~~
φk

##
E • = A•0

q−1
1

;;

A•1

q−1
2

AA

A•2 · · · A•k−1

q−1
k

>>

A•k = F •,

where the qi are quasi-isomorphisms and the inverses q−1
i need not

actually exist; but this is not very helpful. There are techniques
which do give a good understanding of the morphisms in D(A).
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7.2. Derived functors, mapping cones, and triangles

There are many natural examples of abelian categories A,B and
functors F : A → B such that F does not take (short) exact
sequences 0→ U → V →W → 0 in A to (short) exact sequences
0→ F (U)→ F (V )→ F (W )→ 0 in B. That is, F is not an exact
functor. Often exactness fails only at F (W ) (i.e. F (V )→ F (W )
may not be surjective), when F is called left exact, or only at
F (U), when F is called right exact.

Example

(a) Let X be a K-scheme. The global sections functor
Γ:coh(X )→VectK mapping E 7→E(X ) is left exact, but not exact.
(b) Let X be a K-scheme and H ∈ coh(X ). Then the functor
−⊗ H : coh(X )→ coh(X ) mapping E 7→ E ⊗ H is right exact,
but not exact in general, though it is exact if H is a vector bundle.
If 0→ E → F → G → 0 is an exact sequence of vector bundles,
then 0→ E ⊗ H → F ⊗ H → G ⊗ H → 0 is exact for general H.
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Example 7.2

Let f : X → Y be a K-scheme morphism. Then the pullback
functor f ∗ : coh(Y )→ coh(X ) is right exact, but not exact in
general. However, f ∗ does take exact sequences of vector bundles
to exact sequences of vector bundles.

Consider the exact sequence in coh(CP1):

0 // OCP1
y // OCP1(1) // O[1,0]

// 0. (7.1)

Let f : ∗ = SpecC→ CP1 map f (∗) = [1, 0]. Then f ∗ of (7.1) is

0 // O∗ 0 // O∗ id // O∗ // 0,

which is right exact, but not exact.

In the last two examples, although F is not exact, its restriction to
the subcategory Vect(Y ) ⊂ coh(Y ) maps exact sequences to exact
sequences. We say the subcategory Vect(Y ) is adapted to the
functor F .
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Left and right derived functors

We use Example 7.2 to illustrate the idea of derived functor. Take
Y to be a projective K-scheme. Then:

(i) f ∗ : coh(Y )→ coh(X ) is right exact.
(ii) We have an additive subcategory Vect(Y ) ⊂ coh(Y ) such

that f ∗|Vect(Y ) preserves exact sequences.
(iii) As Y is projective, for every object E ∈ coh(Y ) there exists a

surjective morphism φ : E ′ → E with E ′ ∈ Vect(Y ).

Using these properties, we will explain how to define the left
derived functors Lk f ∗ : coh(Y )→ coh(X ) for k = 1, 2, . . ., which
have the property that if 0→ E → F → G → 0 is an exact
sequence in coh(Y ) then the following is exact in coh(X ):

· · · // L2f ∗(G ) // L1f ∗(E ) // L1f ∗(F ) // L1f ∗(G ) // f ∗(E ) // f ∗(F ) // f ∗(G ) // 0.

Thus the Li f ∗ measure the failure of f ∗ to be exact.
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Let E ∈ coh(Y ). By (iii) we can choose E0 ∈ Vect(Y ) and
surjective d0 = φ0 : E0 → E . Next we choose E−1 ∈ Vect(Y ) and
surjective π−1 : E−1 → Ker d0. Let d−1 : E−1 → E0 be the

composition E−1 π−1

−→ Ker d0 ↪→ E0. Then d0 ◦ d−1 = 0, with
Imd−1 = Ker d0. By induction we choose Ek ∈ Vect(Y ) and
dk : Ek → Ek+1 for k = −1,−2, . . . , such that dk+1 ◦ dk = 0, with
Imdk = Ker dk+1. This gives an exact sequence in coh(Y )

· · · d−3
// E−2 d−2

// E−1 d−1
// E0 φ0

// E // 0.
We rewrite this as the diagram in Com−(coh(Y )):

E• =
(
· · ·d

−3
//

φ��

E−2 d−2
//

0��

E−1

0��

d−1
// E0 //

φ0
��

0

0��

// 0

0��

// · · ·
)

E =
(
· · · // 0 // 0 // E // 0 // 0 // · · ·

)
Then E• is a complex of objects in Vect(Y ), and φ : E• → E is a
quasi-isomorphism (regarding E as an object in Com(coh(Y ))), as
E•,E both have cohomology E in degree 0 and 0 otherwise.
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Now consider the complex in coh(X ):

f ∗(E•)=
(
· · ·
f ∗(d−3) // f ∗(E−2)

f ∗(d−2)// f ∗(E−1)
f ∗(d−1)// f ∗(E0) // 0 // · · ·

)
.

Define Lk f ∗(E ) = H−k(f ∗(E•)). It turns out that this is
independent of the choice of E•, with L0f ∗(E ) = f ∗(E ), and
extends to Lk f ∗ : coh(Y )→ coh(X ) with the claimed properties.

Principle

It is often helpful to replace E • ∈ Com(A) by a quasi-isomorphic
object E• ∈ Com(A), such that the Ek all have a special property.

It turns out there is a derived functor Lf ∗ : D− coh(Y )→ D− coh(X )
such that for E ∈ coh(Y ) ⊂ D− coh(Y ) we have Lf ∗(E ) = f ∗(E•),
so that Lk f ∗(E ) = Hk(Lf ∗(E )). On any E• ∈ D− coh(Y ) with
Ek ∈ Vect(Y ) for all k we may define Lf ∗(E•) = f ∗(E•).
Moreover, Lf ∗ is an exact functor of triangulated categories. Thus
Lf ∗ fixes the failure of exactness of f ∗ : coh(Y )→ coh(X ).
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Mapping cones and triangles in Ho(Com(A))

If E • is an object in Com(A) and l ∈ Z, we define E •[l ] to be the
same complex shifted l places to the left and with morphisms
multiplied by (−1)l , that is, (E •[l ])k = E k+l and
(d[l ])k = (−1)ldk+l . This defines an equivalence of categories
[l ] : Com(A)→ Com(A). We call [1] the translation functor.
Let φ : E • → F • be a morphism in Com(A). The mapping cone
C (φ) is the object in Com(A) with

C (φ)k = E k+1 ⊕ F k , dkC(φ) =

(
−dk+1

E• 0
φk+1 dkF•

)
.

Define morphisms i : F • → C (φ) and π : C (φ)→ E •[1] by

ik =
(
0 idF k

)
and πk =

(
idE k+1

0

)
. Then we have an exact

sequence in the abelian category Com(A):

0 // F •
i // C (φ)

π // E •[1] // 0.
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Consider the long sequence in Com(A):

· · · // E •
φ // F •

i // C (φ)
π // E •[1]

φ[1] // F •[1]
i [1]// C (φ)[1] // · · ·

This is not a complex in Com(A): in general we have φ ◦ i 6= 0
and φ[1] ◦ π 6= 0. However, we do have φ ◦ i ∼ 0 (take ψk = idE k )
and φ[1] ◦ π ∼ 0. Thus, when we pass to the homotopy category
Ho(Com(A)) we have [φ] ◦ [i ] = 0 and [φ][1] ◦ [π] = 0, so the
following is a complex in Ho(Com(A)):

· · · // E •
[φ] // F •

[i ]// C (φ)
[π] // E •[1]

[φ][1]// F •[1]
[i ][1]// C (φ)[1] // · · · . (7.2)

This is an example of a distinguished triangle in a triangulated
category, which is the analogue of a short exact sequence
0→ E → F → G → 0 in an abelian category. But triangulated
categories have a cyclic symmetry: E • → F • → C (φ), and
F •→C (φ)→E •[1], and C (φ)→E •[1]→F •[1], are on the same level.
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7.3. Triangulated categories

Triangulated categories are a class of categories with extra
structure, like abelian categories. Under good conditions, the
derived categories D(A),Db(A),D±(A) of an abelian category A
are triangulated categories. The definition is not obvious.

Definition 7.3

A triangulated category is an additive category T equipped with
the extra data:

(a) A strict isomorphism Σ : T → T called the shift functor. Then
Σn : T → T is defined for n ∈ Z, and we write Σn = [n].

(b) A class of distinguished triangles (X ,Y ,Z , u, v ,w), which are

diagrams X
u // Y

v // Z
w // X [1] in T with v ◦ u = 0,

w ◦ v = 0, and u[1] ◦ w = 0.

[Definition continues on next slide.]
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Definition (Continued.)

These must satisfy the properties:

(i) For each X ∈ T , X
idX // X

0 // 0
0 // X [1] is distinguished.

(ii) For each morphism u : X → Y in T there is a distinguished

triangle X
u // Y

v // Z
w // X [1] . We call Z the cone C (u).

(iii) Distinguished triangles are closed under isomorphisms.

(iv) If X
u // Y

v // Z
w // X [1] is distinguished, then so are the

rotated triangles Y
v // Z

w // X [1]
−u[1] // Y [1] and

Z [−1]
−w [−1] // X

u // Y
v // Z .

(v) Suppose we are given a diagram of morphisms ‘→’
X

f��
u
// Y

g��
v
// Z

h��
w
// X [1]

f [1]��
X ′

u′ // Y ′
v ′ // Z ′

w ′ // X ′[1]
with distinguished rows, such that the left square commutes.
Then there exists h making the whole diagram commute.
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Aside: in (v) we do not require h to be unique.

Definition (Continued.)

(vi) (The octahedral axiom.) Given a diagram of morphisms ‘→’

Y ′

g

%%

[1]

��

Z ′

[1]
��

f
99

X ′

i [1]

��

[1]

j[1]◦ioo

X
v◦u //

u
&&

Z

OO

]]

Y
v

88
j

]]

such that the faces XYZ ′, YZX ′ and XZY ′ are distinguished
and the faces XYZ , X ′YZ ′ commute, there exist f , g as
shown such that X ′Y ′Z ′ is distinguished and Z ′Y ′X , ZY ′X ′

commute.
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Remarks

• When T = D(A), the shift functor Σ shifts complexes left by one,
and distinguished triangles come from mapping cones (7.2) as in §7.2.
• Distinguished triangles are a kind of mix of short and long exact

sequences. For A ⊂ D(A), if 0→ X
u−→Y

v−→Z → 0 is exact in

A, then X
u−→Y

v−→Z
w−→X [1] is distinguished in D(A), where

w ∈ Ext1(Z ,X ) classifies the short exact sequence. Also, if

E •
u−→F •

v−→G •
w−→E •[1] is distinguished in D(A), taking

cohomology of complexes gives a long exact sequence in A:

· · · // Hk(E •) // Hk(F •) // Hk(G •) // Hk(E •[1]) = Hk+1(E •) // · · · .
• In (v), h is not unique, as we can replace it by h′ = h + v ′ ◦ x ◦w
for any x : X [1]→ Y ′. So in the diagram

X
f��

u
// Y

g��

// C (u)
C(u,u′,f ,g)��

// X [1]
f [1]��

X ′
u′ // Y ′ // C (u′) // X ′[1]

there is no canonical morphism C (u, u′, f , g). This is known as
nonfunctoriality of the cone. It is a sign we need ∞-categories.
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8.3 Further topics
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8.1. Basic ideas on derived categories
Projective/injective objects and resolutions

Definition

Let A be an abelian category. An object P in A is called projective
if given any surjective φ : X � Y and any ψ : P → Y in A, there
exists ψ̄ : P → X with ψ = φ ◦ ψ̄, in a diagram

X
φ����

P

ψ̄
33

ψ // Y .

We say that A has enough projectives if for all X ∈ A there exist a
projective object P and a surjective morphism π : P � X .
Similarly, I ∈ A is injective if given any injective φ : Y ↪→ X and
any ψ : Y → I in A, there exists ψ̄ : X → I with ψ = ψ̄ ◦ φ. We
say that A has enough injectives if for all X ∈ A there exist an
injective object P and an injective morphism ι : X ↪→ I .

These are dual concepts (pass to opposite category, reverse arrows).
22 / 40 Dominic Joyce, Oxford University Lecture 8: Triangulated categories and derived categories II



Triangulated categories and derived categories I
Triangulated categories and derived categories II

Basic ideas on derived categories
Exact functors and derived functors
Further topics

Definition

Let A be an abelian category with enough projectives. Then every
object X ∈ A has a projective resolution, an exact sequence

· · · // P−2 d−2
// P−1 d−1

// P0 φ0
// X // 0, (8.1)

with all P i projective. To choose such a resolution, choose
surjective φ0 : P0 � X with P0 projective, then choose surjective
d−1 : P−1 � Kerφ with P−1 projective, and so on by induction.
We rewrite (8.1) as a diagram in Com−(A):

P• =
(
· · ·d

−3
//

φ��

P−2 d−2
//

0��

P−1

0��

d−1
// P0 //

φ0��

0
0��

// 0
0��

// · · ·
)

X =
(
· · · // 0 // 0 // X // 0 // 0 // · · ·

)
.

Then P• is a projective complex (a complex all of whose objects
are projective), and φ is a quasi-isomorphism.
Similarly, if A has enough injectives then every X ∈ A has an
injective resolution I • =

(
I 0 → I 1 → · · · ) in Com+(A) with a

quasi-isomorphism ι : X → I •.
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Proposition 8.1

Let A be an abelian category with enough projectives. Write
Com−(A)proj,D

−(A)proj for the full subcategories of
Com−(A),D−(A) whose objects are projective complexes. Then:

(a) Every object of D−(A) is isomorphic to a projective complex.
Hence D−(A)proj ↪→ D−(A) is an equivalence of categories.

(b) The functor Ho(Com−(A)proj)→ D−(A)proj induces
bijections on all Hom groups Hom(P•,Q•), and so is a strict
isomorphism of categories. Thus Ho(Com−(A)proj) is an
equivalent category to D−(A).

The dual statement is true for injective resolutions.
In §7.1 we noted that the definitions of D(A),D±(A),Db(A) by
localizing quasi-isomorphisms tells us almost nothing useful about
what the morphism sets HomD∗(A)(E •,F •) actually are. But if A
has enough projectives then we can replace E •,F • by
quasi-isomorphic projective resolutions Ẽ •, F̃ •, and then
HomD−(A)(E •,F •) ∼= HomHo(Com−(A))(Ẽ •, F̃ •).
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Example 8.2

(a) The abelian category Ab of abelian groups has enough
projectives. The projective objects are free abelian groups.
Also Ab has enough injectives, and G ∈ Ab is injective iff
multiplication by 0 6= m ∈ Z is surjective m : G � G , e.g.
G = Q/Z is injective.
(b) The category R-mod of left modules over a ring or K-algebra R
has enough projectives and injectives.
(c) Let X be a noetherian scheme. In general coh(X ), qcoh(X ) do
not have enough projectives, and coh(X ) not enough injectives,
but qcoh(X ) has enough injectives.

Because of this, a good way to study Db coh(X ),D+ coh(X ) is to
embed them in D+qcoh(X ), and use injectives in qcoh(X ).
For some purposes you can use vector bundles in coh(X ) as like
projective objects.
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Ext groups and morphisms in Db coh(X )

Let X be a projective K-scheme. Then for E ,F in coh(X ) and
i > 0 one can define Ext groups Exti (E ,F ), finite-dimensional
K-vector spaces with Hom(E ,F ) = Ext0(E ,F ). They have the
property that if 0→ E → F → G → 0 is a short exact sequence in
coh(X ) and H ∈ coh(X ), there are long exact sequences

0 // Ext0(H,E ) // Ext0(H,F ) // Ext0(H,G ) // Ext1(H,E ) // · · · ,

· · · // Ext1(E ,H) // Ext0(G ,H) // Ext0(F ,H) // Ext0(E ,H) // 0.

These are examples of derived functors: Hom(H,−) :coh(X )→VectK

is left exact, and Exti (H,−) for i > 0 are its right derived
functors, and similarly Hom(−,H) is right exact, and Exti (−,H)
are its left derived functors.
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The Ext groups in coh(X ) can be interpreted as Hom groups in the
derived category Db coh(X ). If E ,F ∈ coh(X ) and i ∈ Z then

Exticoh(X )(E ,F ) = HomDb coh(X )(E ,F [i ]),

where [i ] shifts complexes i places to the left.
If T is a triangulated category, and E → F → G → E [1] a
distinguished triangle in T , and H∈T , we have long exact sequences

· · · // Hom(H,E [k]) // Hom(H,F [k]) // Hom(H,G [k]) // Hom(H,E [k+1]) // · · · ,

· · · // Hom(E [k+1],H) // Hom(G [k],H) // Hom(F [k],H) // Hom(E [k],H) // · · · .
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T-structures

Definition

Let T be a triangulated category. A t-structure (T 60, T >0) on T
is a pair of full subcategories T 60, T >0 ⊆ T , closed under
isomorphisms, satisfying

(i) If X ∈ T 60 and Y ∈ T >0 then Hom(X ,Y [−1]) = 0.
(ii) If X ∈ T 60 then X [1] ∈ T 60. If Y ∈ T >0 then Y [−1] ∈ T >0.
(iii) If A ∈ T there is a distinguished triangle

X → A→ Y [−1]→ X [1] with X ∈ T 60 and Y ∈ T >0.

The heart is H = T 60 ∩ T >0. It is an abelian category.

If T is a derived category D(A),D±(A) or Db(A), we can de-
fine T 60 to be the subcategory of complexes E • with H i (E •) = 0 for
i > 0, and T >0 to be the subcategory of E • with H i (E •) = 0 for i < 0.
Then H = A ⊂ D(A). So, a t-structure is the data we need to
recover an abelian category from its derived category.
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8.2. Exact functors and derived functors

Definition

Let T , T ′ be triangulated categories. A functor F : T → T ′ is
called exact, or triangulated, if F is additive, commutes with
translation functors [1], and takes distinguished triangles to
distinguished triangles.

This is like an exact functor of abelian categories. (Note that we
don’t define analogues of left exact or right exact.)
Suppose that F : A → B is a right exact functor of abelian
categories. Then under good conditions we can define an exact
derived functor LF : D−(A)→ D−(B) such that if
E ∈ A ⊂ D−(A) then H0(LF (E )) ∼= F (E ), and
H−k(LF (E )) ∼= LkF (E ) for k > 0 with LkF : A → B the left
derived functors of F , and Hk(LF (E )) = 0 for k > 0.
That is, right exact functors A → B of abelian categories transform
to fully exact functors D−(A)→ D−(B) of derived categories.
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Similarly, under good conditions a left exact functor F : A → B
transforms to a fully exact functor RF : D+(A)→ D+(B).
Being exact is much better than just being left or right exact.
One should think of the derived functors LF ,RF as being
“correct”, and the abelian category versions as being truncations
or approximations.
Note that LF ,RF do not preserve the t-structures on
D±(A),D±(B).
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Serre duality

Let X be a smooth projective K-scheme of dimension m. Serre
duality gives functorial isomorphisms for all E ,F ∈ coh(X )

Extk(E ,F ) ∼= Extm−k(F ,E ⊗ KX )∗.

In the derived category Db coh(X ) we may write this as

HomDb coh(X )(E ,F [k]) ∼= HomDb coh(X )(F [k],E ⊗ KX [m])∗.

Define the Serre functor S : Db coh(X )→ Db coh(X ) to act by
S : E • 7→ (E • ⊗ KX )[m]. Then there are functorial isomorphisms

HomDb coh(X )(E •,F •) ∼= HomDb coh(X )(F •,S(E •))∗

for all E •,F • in Db coh(X ).
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Verdier duality

Let X be a smooth projective K-scheme. We have subcategories
Vect(X ) ⊂ coh(X ) ⊂ Db coh(X ). There is a natural equivalence
of categories DX : Vect(X )→ Vect(X )op taking a vector bundle
E → X to its dual vector bundle E ∗ → X , where E ∗ = Hom(E ,OX ).
The square DX ◦ DX is naturally isomorphic to the identity.
Duality does not extend nicely to coh(X ). However, there is an
exact functor DX : Db coh(X )→ Db coh(X )op called Verdier
duality, which is an equivalence of categories, whose square is
naturally isomorphic to the identity. The restriction of DX to
Vect(X ) ⊂ Db coh(X ) is DX : Vect(X )→ Vect(X )op.
If E• = (· · · → Ek → Ek+1 → · · · ) lies in Db coh(X ) with each
Ek ∈ Vect(X ) then DX (E•) = (· · · → (E−k)∗ → (E−1−k)∗ → · · · )
is the obvious dual complex.
Verdier duality does not take coh(X ) ⊂ Db coh(X ) to itself: the
Verdier dual of a coherent sheaf is a complex in general.
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Functors of derived categories Db coh(X )

Let X ,Y be noetherian K-schemes and f : X → Y a morphism. Then:

If f is proper then f∗ : coh(X )→ coh(Y ) has a right derived
functor Rf∗ : Db coh(X )→ Db coh(Y ).
In general f ∗ : coh(Y )→ coh(X ) has a left derived functor
Lf ∗ :Db coh(Y )→Db coh(X ). It is left adjoint to Rf∗ for f proper.
If X ,Y are smooth we define f ! : Db coh(Y )→ Db coh(X ) by
f !(E •) = Lf ∗(E •)⊗ KX ⊗ f ∗(KY )−1[dimX − dimY ]. If f is
proper then f ! is right adjoint to Rf∗.
We have DY ◦ Rf∗ ' Rf∗ ◦ DX and f ! ' DX ◦ Lf ∗ ◦ D−1

Y .
There is a biexact derived tensor product
⊗L : Db coh(X )× Db coh(X )→ Db coh(X ).

If X ,Y are smooth projective then all of Rf∗, Lf
∗, f ! are defined.

This is an example of Grothendieck’s six functor formalism.
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Fourier–Mukai transforms

Definition

Let X ,Y be smooth projective K-schemes and
E• ∈ Db coh(X × Y ). The Fourier–Mukai transform
FE• : Db coh(X )→ Db coh(Y ) is the exact functor

FE• : G• 7−→ R(πY )∗
(
L(πX )∗(G•)⊗L E•).

Mukai showed that FE• has left and right adjoints, which are the
Fourier–Mukai transforms by DX×Y (E•)⊗L π∗Y (KY )[dimY ] and
DX×Y (E•)⊗L π∗X (KX )[dimX ].
Orlov showed that any exact functor F : Db coh(X )→ Db coh(Y )
with left and right adjoints is naturally isomorphic to FE• for some
E• in Db coh(X × Y ), which is unique up to isomorphism.
For example, if f : X → Y is a morphism then Rf∗ can be
identified with FE• for E• = OΓf

with Γf ⊂ X × Y the graph of f .
Sometimes you can prove FE• is an equivalence of categories.

34 / 40 Dominic Joyce, Oxford University Lecture 8: Triangulated categories and derived categories II



Triangulated categories and derived categories I
Triangulated categories and derived categories II

Basic ideas on derived categories
Exact functors and derived functors
Further topics

8.3. Further topics
Spectra in Algebraic Topology

Write Topho∗ for the category of pointed topological spaces (X , x0)
of a topological space X (possibly weakly equivalent to a CW
complex) with a base point x0, with morphisms
[f ] : (X , x0)→ (Y , y0) of homotopy classes of continuous
f : X → Y with f (x0) = y0. There is a suspension functor
Σ : Topho∗ → Topho∗ which maps (X , x0) 7→ ((X × [0, 1])/ ∼, x̃0),
where ∼ collapses X × {0, 1} and {x0} × [0, 1] down to one point x̃0.
There is a triangulated category Spectra of spectra, called the
stable homotopy category, with a functor Σ∞ : Topho∗ → Spectra
which takes Σ to the shift functor [1].
There are lots of cool things you can do with spectra. For
example, generalized cohomology theories H∗ : (Topho∗ )op → Ab
may be written as (X , x0) 7→ Hom(Σ∞(X , x0),S) for some ring
object S in Spectra.
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Homological Mirror Symmetry

In Physics in the ’80s, String Theorists made mysterious
conjectures about ‘Mirror Symmetry’ relating pairs X , X̌ of
Calabi–Yau m-folds (usually for m = 3). Kontsevich’s 1994
Homological Mirror Symmetry Conjecture expressed Mirror
Symmetry as equivalences of triangulated categories

Db coh(X ) ' DbF (X̌ ), DbF (X ) ' Db coh(X̌ ), (8.2)

where F (X ) is the Fukaya category of X as a symplectic
manifold, whose objects are (roughly) Lagrangians in X .
This is one reason why derived categories and triangulated
categories have become very important in Geometry. It is necessary
to pass to the derived category before anything like (8.2) can be
true, for example coh(X ) ' F (X̌ ) is clearly nonsense.
A lot of the mathematical data about X which String Theory sees
seems to be encoded in the triangulated categories Db coh(X )
(‘B-model’) and DbF (X ) (‘A-model’).
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Interesting equivalences of derived categories

As in the HMS Conjecture, there are many interesting examples of
equivalences between triangulated categories. For instance:

There are equivalences Db coh(CPn) ' Dbmod-CQ/I for
a certain ‘quiver with relations’ (Q, I ). Here mod-CQ/I is much
simpler than coh(CPn), so it helps us understand Db coh(CPn).
If X is a K3 surface, Db coh(X ) may have a large
automorphism group not coming from automorphisms of X –
‘hidden symmetries’, which can be classified.
Fourier–Mukai transforms can induce equivalences
Db coh(X ) ' Db coh(Y ).
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Nonfunctoriality of the cone

I would argue that triangulated categories are not quite the ‘right’
theory. However, they are a very good approximation – you can
work with them for years and not notice the problems.
As a signal that there should be something more, recall that if T is
a triangulated category, and u : X → Y a morphism in T , there is
a ‘cone’ C (u) ∈ T , in a distinguished triangle
X → Y → C (u)→ X [1] in T . This is begging to be turned into a
cone functor : we would like a category Mor(T ) of morphisms in
T , and a functor C : Mor(T )→ T mapping u 7→ C (u) on objects.
To try to define C on morphisms in Mor(T ), consider the diagram

X

f��
u
// Y

g��

// C (u)
C(f ,g)��

// X [1]
f [1]��

X ′
u′ // Y ′ // C (u′) // X ′[1],

(8.3)

where u, u′ are objects in Mor(T ), and (f , g) a morphism. The axioms
say some C (f , g) exists, but it is not unique, so we cannot define C .
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The explanation is that T should really be an ∞-category T .
Then n-morphisms in Mor(T ) correspond to (n + 1)-morphisms in
T . So to define C on (1-)morphisms in Mor(T ), we should be
using 2-morphisms in T . We replace (8.3) by the diagram

X

f ��

u //
@Hη

Y

g
��

// C (u)

C(f ,g ,η)
��

// X [1]

f [1]
��

X ′
u′
// Y ′ // C (u′) // X ′[1],

(8.4)

where η : u′ ◦ f ⇒ g ◦ u is a 2-morphism in T . Then C (f , g , η) in
(8.4) should exist and be unique up to 2-isomorphism. Note that
C (f , g , η) depends on the particular choice of η. When we pass
to the homotopy category T = Ho(T ), turning (8.4) into (8.3), this
choice of η is forgotten, which is why we lose uniqueness of C (f , g).
Note that as n-morphisms in Mor(T ) ↔ (n + 1)-morphisms in T ,
if we want T and Mor(T ) to be objects of the same type we
cannot truncate to N-categories for any finite N — we need N =∞.
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Stable ∞-categories

Assume for the moment that we have a good theory of
∞-categories. A stable ∞-category T is an ∞-category such that:

(i) T has a zero object.
(ii) Every morphism in T has a kernel and a cokernel.
(iii) A triangle in T is exact if and only if it is coexact.

These are very simple axioms – much simpler than those for
triangulated categories. It is a remarkable theorem that if T is a
stable ∞-category then the homotopy category T = Ho(T ) is a
triangulated category.
You should assume that all the nice triangulated categories you
meet at parties, like Db coh(X ), Spectra, and so on, are actually
the homotopy categories of stable ∞-categories. And nice exact
functors should be truncations of ∞-functors. Occasionally there
are things you need to do upstairs in the ∞-categories, rather than
downstairs in the homotopy categories.
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