Derived Algebraic Geometry

Lecture 9 of 14: ∞ -categories

Dominic Joyce, Oxford University Summer Term 2022

Helpful references for these two lectures:

E. Riehl, 'Homotopical categories: from model categories to $(\infty,1)$ -categories', arXiv/1904.00886.

M. Groth, 'A short course on ∞ -categories', arXiv/1007.2925.

These slides available at

 $\verb|http://people.maths.ox.ac.uk/~joyce/|$

Plan of talk:

- - 9.1 Model categories
 - 9.2 Simplicial sets
 - 93 Simplicial categories

Introduction

In this lecture ' ∞ -category' always means ' $(\infty,1)$ -category', that is, all n-morphisms are invertible for $n\geqslant 2$. (Although 'n-morphism' may not make sense, depending on your model for ∞ -categories.)

There are a bunch of different but related structures which are more-or-less kinds of ∞ -category:

- Model categories.
- Categories enriched in topological spaces.
- Simplicial categories; simplicial model categories.
- Quasicategories.
-

Of these, model categories are the oldest (Quillen 1967), and look least like an ∞ -category (they have no visible higher morphisms). But most of the other kinds of ∞ -category use model categories under the hood. Toën–Vezzosi's DAG is written in terms of model categories and simplicial categories. Lurie works with quasicategories, which may be the best/coolest version.

To see why model categories belong in the list, consider:

General Principle

If you start with an ordinary category $\mathscr C$ and invert some class of morphisms $\mathscr W$ in $\mathscr C$ ('weak equivalences'), the result $\mathscr C[\mathscr W^{-1}]$ should really be an ∞ -category $((\infty,1)$ -category), with homotopy category $\operatorname{Ho}(\mathscr C[\mathscr W^{-1}])$ an ordinary category.

I'll return to this in 'Dwyer–Kan localization'. Model categories give you \mathscr{C},\mathscr{W} and some other data, and give you techniques for computing things in $\operatorname{Ho}(\mathscr{C}[\mathscr{W}^{-1}])$, plus some things which secretly come from the (not explicitly defined) ∞ -category $\mathscr{C}[\mathscr{W}^{-1}]$, e.g. you can define 'homotopy fibre products', which are really fibre products in the ∞ -category $\mathscr{C}[\mathscr{W}^{-1}]$, pushed down to $\operatorname{Ho}(\mathscr{C}[\mathscr{W}^{-1}])$. As an example, consider derived categories $D(\mathcal{A})$ constructed from $\operatorname{Ho}(\operatorname{Com}(\mathcal{A}))$ by inverting the class \mathscr{W} of quasi-isomorphisms. Really $D(\mathcal{A}) = \operatorname{Ho}(\mathbb{D}(\mathcal{A}))$ for a stable ∞ -category $\mathbb{D}(\mathcal{A})$.

Recall that a (2,1)-category $\mathfrak C$ is basically a 'category enriched in groupoids', that is, $\operatorname{Hom}(X,Y)$ is a groupoid rather than a set for objects $X,Y\in \mathfrak C$, where objects and morphisms in $\operatorname{Hom}(X,Y)$ are 1- and 2-morphisms in $\mathfrak C$.

Similarly, an $(\infty,1)$ -category is really a 'category enriched in ∞ -groupoids'. But what is an ∞ -groupoid? Two models for the $(\text{model}/\infty\text{--})$ category of ∞ -groupoids are topological spaces **Top** (up to homotopy), and simplicial sets **SSets**. This is why categories enriched in topological spaces, and simplicial categories, are possible definitions of ∞ -category.

As **Top** and **SSets** are Quillen equivalent as model categories, theories of ∞ -categories based on **Top** and **SSets** are essentially equivalent. But noone uses categories enriched in **Top** except as motivation, as far as I know.

9.1. Model categories

Model categories were invented by Quillen to abstract methods of homotopy theory into category theory; a model category is one in which one can 'do homotopy theory'.

Definition

A *model category* is a complete and cocomplete category \mathscr{M} (i.e. all small limits and colimits exist) equipped with three distinguished classes of morphisms, the *weak equivalences* \mathscr{W} , the *fibrations* \mathscr{F} , and the *cofibrations* \mathscr{C} . These must satisfy:

- (i) $\mathcal{W}, \mathcal{F}, \mathcal{C}$ are closed under composition and include identities.
- (ii) $\mathcal{W}, \mathcal{F}, \mathcal{C}$ are closed under retracts. Here f is a *retract* of g if there exist i, j, r, s such that the following diagram commutes:

Definition (Continued.)

- (iii) For $f: X \to Y$, $g: Y \to Z$ in \mathcal{M} , if two of $f, g, g \circ f$ are in \mathcal{W} then so is the third.
- (iv) A (co)fibration which is also a weak equivalence is called acyclic. Acyclic cofibrations have the *left lifting property* with respect to fibrations, and cofibrations have the left lifting property with respect to acyclic fibrations. Explicitly, if the square below commutes, where *i* is a cofibration, *p* is a fibration, and *i* or *p* is acyclic, then there exists *h* as shown:

- (v) Every morphism f in \mathcal{M} can be written as $f = p \circ i$ for a fibration p and an acyclic cofibration i.
- (vi) Every morphism f in \mathcal{M} can be written as $f = p \circ i$ for an acyclic fibration p and a cofibration i.

Model categories

Two of $\mathcal{W},\mathcal{C},\mathcal{F}$ determine the third, so it is enough to define two.

Example 9.1

- (a) The category **Top** of topological spaces has a model structure with \mathscr{W} the weak homotopy equivalences, and \mathscr{F} the Serre fibrations (maps with the homotopy lifting property for CW complexes).
- (b) If R is a commutative ring then $\operatorname{Com}(R\operatorname{-mod})$ has a model structure with weak equivalences quasi-isomorphisms and fibrations morphisms $\phi: E^{\bullet} \to F^{\bullet}$ with $\phi^k: E^k \to F^k$ surjective for all $k \in \mathbb{Z}$.
- (c) Let $\mathcal A$ be a *Grothendieck abelian category* (an abelian category with extra conditions on coproducts and limits; includes $\operatorname{qcoh}(X)$ for any scheme X). Then $\operatorname{Com}(\mathcal A)$ has a model structure with weak equivalences quasi-isomorphisms and cofibrations morphisms $\phi: E^{\bullet} \to F^{\bullet}$ with $\phi^k: E^k \to F^k$ injective for all $k \in \mathbb Z$.

Definition

Any model category \mathcal{M} has an *initial object* \emptyset and a *terminal object* *. An object X in \mathcal{M} is called *fibrant* if $X \to *$ lies in \mathscr{F} , and *cofibrant* if $\emptyset \to X$ lies in \mathscr{C} .

If $X \in \mathcal{M}$ and there is a weak equivalence $w: C \to X$ with C cofibrant then C is a *cofibrant replacement* for X. If there is a weak equivalence $w: X \to F$ with F fibrant then F is a *fibrant replacement* for X. Such replacements always exist.

If $X \in \mathcal{M}$, a *cylinder object* is an object $X \times [0,1]$ in \mathcal{M} with a factorization $X \coprod X \stackrel{c}{\longrightarrow} X \times [0,1] \stackrel{w}{\longrightarrow} X$ of the codiagonal $X \coprod X \to X$, with c a cofibration and w a weak equivalence. Cylinder objects exist by (vi).

A path object is an object $\operatorname{Map}([0,1],X)$ in \mathscr{M} with a factorization $X \xrightarrow{w} \operatorname{Map}([0,1],X) \xrightarrow{f} X \times X$ of the diagonal $X \to X \times X$, with w a weak equivalence and f a fibration. Path objects exist by (v). Morphisms $f,g:X \to Y$ are called (left) homotopy equivalent if there exists $h:X \times [0,1] \to Y$ with $h \circ c = f \coprod g$.

Definition

The homotopy category is $\operatorname{Ho}(\mathcal{M}) = \mathcal{M}[\mathcal{W}^{-1}]$, the category obtained from \mathcal{M} by formally inverting all weak equivalences. Note that this is independent of \mathcal{C}, \mathcal{F} .

The problem with $\mathcal{M}[\mathcal{W}^{-1}]$ is that it is difficult to say what the morphisms are. However, we have:

Theorem (Fundamental Theorem of Model Categories.)

 $\operatorname{Ho}(\mathcal{M})$ is equivalent to the category whose objects are fibrant-cofibrant objects in \mathcal{M} , and whose morphisms are homotopy classes of morphisms in \mathcal{M} .

That is, if we restrict to fibrant-cofibrant objects X,Y then morphisms $\operatorname{Hom}(X,Y)$ in $\mathscr{M}[\mathscr{W}^{-1}]$ are easy to compute, and every object in $\mathscr{M}[\mathscr{W}^{-1}]$ is isomorphic to a fibrant-cofibrant object. In Example 9.1, the homotopy category $\operatorname{Ho}(\mathscr{M})$ is (a) the homotopy category hTop of homotopy types and (b),(c) the derived categories $D(R\operatorname{-mod})$ and D(A).

Homotopy fibre products and homotopy pushouts

In **Top**, fibre products $X \times_{f,Z,g} Y$ and pushouts $X \coprod_{f,Z,g} Y$ exist, but if we change f,g by homotopies, then $X \times_{f,Z,g} Y$, $X \coprod_{f,Z,g} Y$ need not stay homotopy equivalent. So fibre products and pushouts in **Top** are the wrong idea for homotopy theory. Instead one defines the *homotopy fibre product*

$$X \times_{f,Z,g}^h Y = X \times_{f,Z,\rho_0} \operatorname{Map}([0,1],Z) \times_{\rho_1,Z,g} Y,$$

where $\rho_i: \operatorname{Map}([0,1],Z) \to Z$ are evaluation at i=0,1 in [0,1], and fibre products on the right are in **Top**. Then $X \times_{f,Z,g}^h Y$ is homotopy invariant, so the construction descends to $\operatorname{Ho}(\mathbf{Top})$. Similarly one defines the *homotopy pushout*

$$X \coprod_{f,Z,g}^h Y = X \coprod_{f,Z,\iota_0} \left([0,1] \times Z \right) \coprod_{\iota_1,Z,g} Y,$$

where $\iota_i: Z \to [0,1] \times Z$ maps $\iota_i: z \mapsto (i,z)$.

Model categories Simplicial sets Simplicial categories Since path objects Map([0,1], Z) and cylinder objects $[0,1] \times Z$ make sense in any model category \mathcal{M} , we can make the same definitions of homotopy fibre product and homotopy pushout in \mathcal{M} . What do these mean? In both $Ho(\mathbf{Top})$ and $Ho(\mathcal{M})$, in general homotopy fibre products and pushouts are not fibre products and pushouts (do not satisfy universal properties) in either the ordinary categories **Top**, \mathcal{M} , or the ordinary categories $Ho(\mathbf{Top}), Ho(\mathcal{M})$. Instead, the correct interpretation is that there are secretly $(\infty,1)$ -categories **Top** $^{\infty}$, \mathscr{M}^{∞} with homotopy categories $Ho(\mathbf{Top}), Ho(\mathcal{M})$, and homotopy fibre products and pushouts are actually ∞ -category fibre products and pushouts in \mathbf{Top}^{∞} , \mathscr{M}^{∞} . While the input data X, Y, Z, f, g for an ∞ -category fibre product makes sense in the homotopy category $Ho(\mathbf{Top}^{\infty}), Ho(\mathscr{M}^{\infty})$, the fibre product is characterized by a universal property involving *n*-morphisms in **Top** $^{\infty}$, \mathcal{M}^{∞} for all *n*.

Thus model category techniques effectively give ways to do constructions in an ∞ -category, without defining ∞ -categories.

General Principle

Model categories are strict forms of $(\infty, 1)$ -categories.

That is, composition of morphisms in a model category is strictly associative (other notions of $(\infty, 1)$ -category have composition non-associative, or even not uniquely defined).

There are 'strictification theorems' which allow you to pass from looser forms of $(\infty,1)$ -categories (e.g. Segal categories) to model categories. Typically, general constructions are done in the looser kinds of $(\infty,1)$ -category, and explicit computations are done in model categories.

9.2. Simplicial sets

Definition

The simplex category Δ has objects set $[n] = \{0, 1, ..., n\}$ for $n \ge 0$ and morphisms $f : [n] \to [m]$ the order preserving functions, that is, if $0 \le i \le j \le n$ then $f(i) \le f(j)$.

A simplicial set is a functor $F:\Delta^{\mathrm{op}}\to \mathbf{Sets}$. A morphism of simplicial sets $\eta:F\to G$ is a natural transformation of functors $\eta:F\Rightarrow G$. This makes simplicial sets into a category \mathbf{SSets} .

Definition

The topological n-simplex Δ_{top}^n is

$$\Delta_{\text{top}}^n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_i \geqslant 0, \ x_0 + \dots + x_n = 1\}.$$

If f:[n] o [m] is order-preserving we define $f_{\mathrm{top}}:\Delta^m_{\mathrm{top}} o \Delta^n_{\mathrm{top}}$ by

$$f_{\text{top}}(x_0,\ldots,x_m)=(y_0,\ldots,y_n), \quad y_i=\sum_{j\in\{0,\ldots,m\}:f(j)=i}x_j.$$

This defines a functor $G: \Delta^{\mathrm{op}} \to \mathbf{Top}$ mapping $[n] \mapsto \Delta^n_{\mathrm{top}}$, $f \mapsto f_{\mathrm{top}}$.

Let X be a (compactly-generated, Hausdorff) topological space. A triangulation of X is data $(f_i^n:\Delta_{\mathrm{top}}^n\to X)_{i\in I^n}$ for $n\geqslant 0$, where I^n is an indexing set, such that f_i^n is a homeomorphism with a closed subset $\mathrm{Im}\, f_i^n\subseteq X$, and for each $j=0,\ldots,n$ the restriction of f_i^n to the face $x_j=0$ of Δ_{top}^n is $f_{i'}^{n-1}$ for some $i'\in I^{n-1}$, that is, $f_i^n(x_0,\ldots,x_{j-1},0,x_{j+1},\ldots,x_n)=f_{i'}^{n-1}(x_0,\ldots,x_{j-1},x_{j+1},\ldots,x_n),$ and $X=\coprod_{n\geqslant 0}\coprod_{i\in I^n}f_i^n((\Delta_{\mathrm{top}}^n)^\circ)$ is a stratification of X into locally closed sets, satisfying some topological conditions.

Think of a surface divided into triangles.

Definition

Let $F: \Delta^{\mathrm{op}} \to \mathbf{Sets}$ be a simplicial set. We define a topological space X_F with a triangulation, the *topological realization* of F, by

$$X_F = \left(\coprod_{n\geqslant 0} F([n]) \times \Delta^n_{\mathrm{top}}\right) / \sim,$$

where the equivalence relation \sim is generated by

$$(s, f_{\text{top}}(x_0, \ldots, x_m)) \simeq (F(f)s, (x_0, \ldots, x_m)),$$

for all $f:[n] \to [m]$ in Δ , $s \in F([n])$ and $(x_0, \ldots, x_m) \in \Delta^m_{\text{top}}$. The maps $f_i^n: \Delta^n_{\text{top}} \to X$ in the triangulation of X come from the

inclusions $\Delta_{\mathrm{top}}^{n} \to \{s\} \times \Delta_{\mathrm{top}}^{n}$ for $s \in F([n])$ which are

nondegenerate, that is, s is not in the image of

 $F(g): F([m]) \to F([n])$ for some m < n and $g: [n] \to [m]$. In this way we can define a topological realization functor

 $\mathsf{TR}: \mathsf{SSets} \to \mathsf{CGHaus} \subset \mathsf{Top}$, for CGHaus the subcategory of compactly generated Hausdorff spaces. It is a right Kan extension

We can think of a simplicial set $F: \Delta^{op} \to \mathbf{Sets}$ as basically a topological space X_F with a triangulation. However, F([n]) is not the set I^n of n-simplices of the triangulation of X_F , because of degenerate simplices: F([n]) must also contain points coming from *m*-simplices of X_F for $m = 0, 1, \dots, n-1$, corresponding to all surjective simplicial maps $\Delta_{\text{top}}^n \to \Delta_{\text{top}}^m$. For example, when m < nthe maps $f:[m] \to [n], g:[n] \to [m]$ given by f(i) = i and $g(j) = \max(i, m)$ have $g \circ f = \mathrm{id}_{[m]}$. Hence $F(g): F([m]) \to F([n])$ has a left inverse F(f), and is injective, so F([n]) is at least as big as F([m]) for all $n \ge m$. So even a simplicial set $F: \Delta^{\mathrm{op}} \to \mathbf{Sets}$ corresponding to a

So even a simplicial set $F: \Delta^{op} \to \mathbf{Sets}$ corresponding to a topological space with finitely simplices is quite a lot of data: we have $|F([n])| \to \infty$ as $n \to \infty$.

There is a good notion of *products* of simplicial sets (as fibre products over the terminal object in **SSets**). In topological realizations, this involves dividing $\Delta_{\text{top}}^m \times \Delta_{\text{top}}^n$ into m + n-simplices.

The singular functor

equivalent categories.

There is also a functor $\operatorname{Sing}:\operatorname{Top}\to\operatorname{SSets}$ which maps a space X to the functor $F:\Delta^{\operatorname{op}}\to\operatorname{Sets}$ with $F([n])=\operatorname{Map}_{C^0}(\Delta^n_{\operatorname{top}},X)$ for objects [n] and $F(f)=-\circ f_{\operatorname{top}}:\operatorname{Map}_{C^0}(\Delta^n_{\operatorname{top}},X)\to\operatorname{Map}_{C^0}(\Delta^m_{\operatorname{top}},X)$ for morphisms $f:[m]\to[n]$, so that $f_{\operatorname{top}}:\Delta^m_{\operatorname{top}}\to\Delta^n_{\operatorname{top}}$. There are model category structures on Top and SSets such that $\operatorname{TR}:\operatorname{SSets}\to\operatorname{Top}$ and $\operatorname{Sing}:\operatorname{Top}\to\operatorname{SSets}$ are homotopy inverses (Top and SSets are Quillen equivalent model categories), and the homotopy categories $\operatorname{Ho}(\operatorname{Top})$ and $\operatorname{Ho}(\operatorname{SSets})$ are

The weak equivalences in the model category **SSets** are morphisms η for which $TR(\eta)$ is a weak homotopy equivalence of topological spaces. The fibrations are 'Kan fibrations', and the cofibrations morphisms $\eta: F \Rightarrow G$ such that $\eta([n]): F([n]) \rightarrow G([n])$ is injective for all n. All simplicial sets are cofibrant. The fibrant objects are called 'Kan complexes'.

9.3. Simplicial categories

Definition

A simplicial category $\mathscr S$ is a category enriched in simplicial sets. That is, $\mathscr S$ is a 'category' in which for all objects X,Y in $\mathscr S$, the morphisms $\operatorname{Hom}(X,Y)$ is a simplicial set, and composition $\mu_{X,Y,Z}:\operatorname{Hom}(Y,Z)\times\operatorname{Hom}(X,Y)\to\operatorname{Hom}(X,Z)$ is a morphism of simplicial sets. Composition is strictly associative, that is, $\mu_{W,Y,Z}\circ(\operatorname{id}_{\operatorname{Hom}(Y,Z)}\times\mu_{W,X,Y})=\mu_{W,X,Z}\circ(\mu_{X,Y,Z}\times\operatorname{id}_{\operatorname{Hom}(W,X)})$, rather than 'associative up to homotopy'.

Before we have met things like additive categories, in which $\operatorname{Hom}(X,Y)$ is an abelian group. This is still an ordinary category, with $\operatorname{Hom}(X,Y)$ a set, but $\operatorname{Hom}(X,Y)$ also has the additional structure of an abelian group.

For simplicial categories, it is probably best *not* to think of $\operatorname{Hom}(X,Y)$ as a set with extra structure (though you could think of the underlying set as $\operatorname{TR}(\operatorname{Hom}(X,Y))$), so a simplicial category is not an ordinary category with extra structure.

Here is a related notion:

Definition

A simplicial object in \mathfrak{Cat} is a functor $F:\Delta^{\mathrm{op}}\to\mathfrak{Cat}$.

Given a simplicial category \mathscr{S} , we can define $F_{\mathscr{S}}: \Delta^{\mathrm{op}} \to \mathfrak{Cat}$, a simplicial object in \mathfrak{Cat} , by taking $F_{\mathscr{S}}([n])$ to be the category with the same objects as \mathscr{S} and with morphisms $X \to Y$ to be the set $\mathrm{Hom}_{\mathscr{S}}(X,Y)([n])$, and for a morphism $f:[m] \to [n]$ in Δ the functor $F_{\mathscr{S}}: F_{\mathscr{S}}([n]) \to F_{\mathscr{S}}([m])$ acts as the identity on objects and as $\mathrm{Hom}_{\mathscr{S}}(X,Y)(f): \mathrm{Hom}_{\mathscr{S}}(X,Y)([n]) \to \mathrm{Hom}_{\mathscr{S}}(X,Y)([m])$ on morphisms.

Then simplicial categories correspond to special simplicial objects $F: \Delta^{\mathrm{op}} \to \mathfrak{Cat}$, those in which the set of objects of the category F([n]) is independent of [n], and F(f) acts as identity on sets of objects for all $f: [m] \to [n]$ in Δ .

Any ordinary category $\mathscr C$ can be made into a simplicial category $\mathscr S$ by defining $\operatorname{Hom}_{\mathscr{L}}(X,Y)$ to map $[n] \mapsto \operatorname{Hom}_{\mathscr{L}}(X,Y)$ and $f \mapsto \mathrm{id}_{\mathscr{C}(X,Y)}$ and for all [n] and $f : [m] \to [n]$. Simplicial categories can be used as models for $(\infty, 1)$ -categories. To work in ∞ -categories one does homotopy theory in the simplicial sets Hom(X, Y), using the model structure on **SSets**. Because of the Fundamental Theorem of Model Categories it is helpful to restrict to simplicial categories $\mathscr S$ such that $\operatorname{Hom}(X,Y)$ is a fibrant-cofibrant object in SSets (a 'Kan complex') for all $X, Y \in \mathbf{SSets}$. So we could *define* an $(\infty, 1)$ -category to be a simplicial category in which all Hom sets are Kan complexes. But we won't do this; instead, our preferred definition of ∞ -category is quasicategories (next lecture).

Derived Algebraic Geometry

Lecture 10 of 14: More about ∞ -categories

Dominic Joyce, Oxford University Summer Term 2022

These slides available at $\label{limits} \verb|http://people.maths.ox.ac.uk/~joyce/|$

Plan of talk:

- 10 More about ∞-categories
 - Simplicial sets and simplicial objects
 - 102 Kan complexes and weak Kan complexes
 - Quasicategories

10.1. Simplicial sets and simplicial objects Face and degeneracy maps of simplicial sets

Return to the simplicial category Δ . Define morphisms in Δ , the face maps $\delta^{n,i}:[n-1]\to[n]$ and degeneracy maps $\sigma^{n,i}:[n+1]\to[n]$ for $i=0,\ldots,n$ by

$$\delta^{n,i}(j) = \begin{cases} j, & j < i, \\ j+1, & j \geqslant i, \end{cases} \quad \sigma^{n,i}(j) = \begin{cases} j, & j \leqslant i, \\ j-1, & j > i. \end{cases}$$

That is, $\delta^{n,i}$ misses i, and $\sigma^{n,i}$ repeats i. These satisfy the identities $\delta^{n,j} \circ \delta^{n-1,i} = \delta^{n,i} \circ \delta^{n-1,j-1}, \qquad 0 \leqslant i < j \leqslant n,$ $\sigma^{n,j} \circ \sigma^{n+1,i} = \sigma^{n,i} \circ \sigma^{n+1,j+1}, \qquad 0 \leqslant i \leqslant j \leqslant n,$ $\sigma^{n,j} \circ \delta^{n+1,i} = \delta^{n,i} \circ \sigma^{n-1,j-1}, \qquad 0 \leqslant i < j \leqslant n,$ $\sigma^{n-1,j} \circ \delta^{n,i} = \delta^{n-1,i-1} \circ \sigma^{n-2,j}, \qquad 0 \leqslant j < j+1 < i \leqslant n,$ $\sigma^{n,j} \circ \delta^{n+1,i} = \mathrm{id}, \qquad \qquad i = j \text{ or } j+1.$

The category Δ is generated by the $\delta^{n,i}$, $\sigma^{n,i}$ subject only to the relations (10.1).

Now let $S: \Delta^{\mathrm{op}} \to \mathbf{Sets}$ be a simplicial set. Write $S_n = S([n])$ and define face maps $d_{n,i} = S(\delta^{n,i}): S_n \to S_{n-1}$ and degeneracy maps $s_{n,i} = S(\sigma^{n,i}): S_n \to S_{n+1}$. Reversing directions of morphisms, these satisfy

$$d_{n-1,i} \circ d_{n,j} = d_{n-1,j-1} \circ d_{n,i}, \qquad 0 \leqslant i < j \leqslant n,$$

$$s_{n+1,i} \circ s_{n,j} = s_{n+1,j+1} \circ s_{n,i}, \qquad 0 \leqslant i \leqslant j \leqslant n,$$

$$d_{n+1,i} \circ s_{n,j} = s_{n-1,j-1} \circ d_{n,i}, \qquad 0 \leqslant i < j \leqslant n,$$

$$d_{n,i} \circ s_{n-1,j} = s_{n-2,j} \circ d_{n-1,i-1}, \quad 0 \leqslant j < j+1 < i \leqslant n,$$

$$d_{n+1,i} \circ s_{n,j} = id, \qquad i = j \text{ or } j+1.$$
(10.2)

As Δ is generated by the $\delta^{n,i}, \sigma^{n,i}$ subject to (10.1), to define a simplicial set S it is enough to give sets S_n for $n \geqslant 0$ and maps $d_{n,i}: S_n \to S_{n-1}$ and $s_{n,i}: S_n \to S_{n+1}$ for $0 \leqslant i \leqslant n$ satisfying (10.2), and all the other morphisms S(f) in S for $f: [k] \to [I]$ can be written as compositions of the $d_{n,i}, s_{n,i}$.

This gives us a way to draw a picture of a simplicial set:

$$S_{0} \xrightarrow{\begin{array}{c}d_{1,0}\\ \underline{s_{0,0}}\\ \underline{s_{0,0}}\\ \underline{d_{1,1}}\end{array}} S_{1} \xrightarrow{\begin{array}{c}d_{2,0}\\ \underline{s_{1,1}}\\ \underline{d_{2,1}}\\ \underline{d_{2,1}}\\ \underline{d_{3,1}}\\ \underline{s_{2,1}}\\ \underline{d_{3,2}}\\ \underline{d_{3,2}}\\ \underline{s_{2,0}}\\ \underline{d_{3,3}}\\ \underline{s_{2,0}}\\ \underline{d_{3,3}}\\ \underline{d_{3,3}}\\ \underline{s_{2,0}}\\ \underline{d_{3,3}}\\ \underline{s_{2,0}}\\ \underline{d_{3,3}}\\ \underline{s_{2,0}}\\ \underline{d_{3,3}}\\ \underline{s_{2,0}}\\ \underline{d_{3,3}}\\ \underline{s_{2,0}}\\ \underline{s_{2,0}$$

Simplicial objects in categories

Given a category $\mathscr C$, a simplicial object in $\mathscr C$ is a functor $F:\Delta^{\mathrm{op}}\to\mathscr C$. Thus a simplicial set is a simplicial object in **Sets**. One often abbreviates 'simplicial object in things' to 'simplicial thing'. For example, a simplicial commutative $\mathbb K$ -algebra (simplicial object in $\mathbf{Alg}_{\mathbb K}$) is a functor $A:\Delta^{\mathrm{op}}\to\mathbf{Alg}_{\mathbb K}$. We can draw a picture of a simplicial commutative $\mathbb K$ -algebra as a diagram (10.3), where the S_i are commutative $\mathbb K$ -algebras and the $d_{n,i},s_{n,i}$ are algebra morphisms.

This will be important for Derived Algebraic Geometry as one model for 'derived commutative \mathbb{K} -algebras' are simplicial commutative \mathbb{K} -algebras. (If $\operatorname{char}\mathbb{K}=0$, another model is cdgas in degrees $\leqslant 0$.) So roughly speaking, a derived scheme should be a topological space with a homotopy sheaf (∞ -sheaf) of simplicial commutative \mathbb{K} -algebras.

A cosimplicial object in $\mathscr C$ is a functor $F:\Delta\to\mathscr C$. Thus a simplicial commutative $\mathbb K$ -algebra is a cosimplicial affine $\mathbb K$ -scheme.

(Higher) stacks as simplicial schemes

In Lecture 5 I explained that, given a (Deligne–Mumford or Artin) \mathbb{K} -stack X and an atlas $u:U\to X$, one can construct a groupoid object (U,V,s,t,u,i,m) in $\mathbf{Sch}_{\mathbb{K}}$, where $V=U\times_X U$, and $s,t:V\to U,\ u:U\to V,\ m:V\times_U V\to V.$ In fact this is just part of a $simplicial\ \mathbb{K}$ -scheme (simplicial object in $\mathbf{Sch}_{\mathbb{K}}$):

$$U \xrightarrow{\stackrel{S}{\longrightarrow}} V = U \xrightarrow{\stackrel{\Pi_1}{\longrightarrow}} V \times_U V = \xrightarrow{\stackrel{\longleftarrow}{\longrightarrow}} U \times_X U \times_X U \times_X U \cdots$$

Pridham arXiv:0905.4044 explains that one can model *higher* \mathbb{K} -stacks — a generalization of stack, where for example moduli stacks of objects in $D^b \operatorname{coh}(X)$ should be higher stacks rather than Artin stacks — as a special kind of simplicial \mathbb{K} -scheme.

Ordinary stacks are functors $\mathbf{Alg}_{\mathbb{K}} \to \mathbf{Groupoids}$. To generalize them in the 'higher' direction, we need to replace $\mathbf{Groupoids}$ by \mathbf{SSets} (∞ -groupoids), which corresponds to replacing \mathbb{K} -schemes by $\mathit{simplicial}$ \mathbb{K} - $\mathit{schemes}$. To generalize them in the 'derived' direction, we need to replace $\mathbf{Alg}_{\mathbb{K}}$ by simplicial algebras, or equivalently, replace affine \mathbb{K} - $\mathit{schemes}$. So the most general kind of derived higher \mathbb{K} - stack is like a 'simplicial cosimplicial \mathbb{K} - $\mathit{schemes}$ '.

Dwyer-Kan localization

Let \mathscr{M} be a model category. Then we can define an explicit simplicial category $\mathscr{M}_{\mathrm{DK}}$ called the $\mathit{Dwyer-Kan}$ localization or $\mathit{hammock}$ localization of \mathscr{M} , where objects of $\mathscr{M}_{\mathrm{DK}}$ are objects of \mathscr{M} , and in the simplicial set $\mathrm{Hom}_{\mathrm{DK}}(X,Y)$, $\mathit{n}\text{-simplices}$ are equivalence classes of commutative diagrams for $\mathit{m}\geqslant 0$

with n+1 rows, where morphisms ' \sim ' are weak equivalences, and the equivalence relation omits identities and composes composable morphisms, changing m, and for m=0 we take morphisms $X\to Y$.

Then regarding the ordinary category \mathscr{M} as a simplicial category, there is a simplicial functor $\mathscr{M} \to \mathscr{M}_{\mathrm{DK}}$ mapping morphisms $X \to Y$ to the same morphisms with m=0. The homotopy category $\mathrm{Ho}(\mathscr{M}_{\mathrm{DK}})$ is $\mathrm{Ho}(\mathscr{M}) = \mathscr{M}[\mathscr{W}^{-1}]$, where by definition the morphisms $X \to Y$ in $\mathrm{Ho}(\mathscr{M}_{\mathrm{DK}})$ are the connected components of the simplicial set $\mathrm{Hom}_{\mathrm{DK}}(X,Y)$. We regard $\mathscr{M}_{\mathrm{DK}}$ as the ∞ -category associated to the model category \mathscr{M} . In the last lecture I claimed:

General Principle

If you start with an ordinary category $\mathscr C$ and invert some class of morphisms $\mathscr W$ in $\mathscr C$ ('weak equivalences'), the result $\mathscr C[\mathscr W^{-1}]$ should really be an ∞ -category $((\infty,1)$ -category), with homotopy category $\operatorname{Ho}(\mathscr C[\mathscr W^{-1}])$ an ordinary category.

Some justification is that it is natural to define $\operatorname{Hom}_{\mathscr{C}[\mathscr{W}^{-1}]}(X,Y)$ as the connected components of a simplicial set, so $\mathscr{C}[\mathscr{W}^{-1}]$ is naturally the homotopy category of a simplicial category.

10.2. Kan complexes and weak Kan complexes

Definition

For $n\geqslant 0$, the standard n-simplex \triangle^n is the simplicial set $\operatorname{Hom}(-,[n]): \triangle^{\operatorname{op}} \to \mathbf{Sets}$. Define morphisms of simplicial sets $\mathbb{S}^{n,i}: \triangle^{n-1} \to \triangle^n$ for $i=0,1\dots,n$ by $\mathbb{S}^{n,i}=-\circ \delta^{n,i}$, where $\delta^{n,i}:[n-1]\to [n]$ is the face map. Then $\mathbb{S}^{n,i}$ is an injective morphism in \mathbf{SSets} , and $\mathbb{S}_{n,i}(\triangle^{n-1})$ is a simplicial subset of \triangle^n , that is, $\mathbb{S}^{n,i}(\triangle^{n-1})([k])\subseteq \triangle^n([k])$ in \mathbf{Sets} for each $k\geqslant 0$. Define the n-1-sphere $\partial \triangle^n$, as a simplicial subset of \triangle^n , by

$$\partial \mathbb{\Delta}^n = \bigcup_{i=0,\ldots,n} \mathbb{S}^{n,i}(\mathbb{\Delta}^{n-1}),$$

where for each $k\geqslant 0$ we take the union in subsets of $\mathbb{\Delta}^n([k])$. It is a simplicial set with an inclusion $\partial\mathbb{\Delta}^n\hookrightarrow\mathbb{\Delta}^n$. For $k=0,\ldots,n$, define the k-horn $\mathbb{\Delta}^n_k$, as a simplicial subset of $\mathbb{\Delta}^n$, by

$$\mathbb{\Delta}_{k}^{n} = \bigcup_{i=0,\dots,n:\ i\neq k} \mathbb{S}^{n,i}(\mathbb{\Delta}^{n-1}).$$

It is a simplicial set with an inclusion $\mathbb{\Delta}^n_k \hookrightarrow \mathbb{\Delta}^n$. It is an *inner horn* if 0 < k < n.

Definition

A simplicial set S is a $Kan\ complex$ if for all $0 \leqslant k \leqslant n$ and all $f: \mathbb{A}^n_k \to S$ in **SSets**, there exists a (not necessarily unique) morphism $g: \mathbb{A}^n \to S$ making the following diagram commute:

$$\triangle_k^n \xrightarrow{f} S.$$

Then we say that all horns in S have fillers.

We call S a weak Kan complex if the above holds for all 0 < k < n. Then we say that all inner horns in S have fillers.

Lemma

If X is a topological space then Sing(X) is a Kan complex.

Proof.

We must fill in the diagram in **Top**:

$$\mathsf{TR}(\mathbb{A}^n_k) \xrightarrow{f} X.$$

This is possible as $TR(\mathbb{A}^n)$ retracts onto $TR(\mathbb{A}^n_k)$.

The nerve of a category

Kan complexes are the fibrant-cofibrant objects in the model category **SSets**. Here is a construction which yields weak Kan complexes:

Definition

Let $\mathscr C$ be a small category. (*Small* means the objects form a set.) Define a simplicial set $\mathscr N(\mathscr C)$ called the *nerve* of $\mathscr C$ as follows:

- 0-simplices (elements of $\mathcal{N}(\mathscr{C})([0])$) are objects $X \in \mathscr{C}$.
- 1-simplices (in $\mathcal{N}(\mathscr{C})([1])$) are morphisms $X_0 \stackrel{f_1}{\longrightarrow} X_1$ in \mathscr{C} .
- *n-simplices* are sequences $X_0 \xrightarrow{f_1} X_1 \cdots X_{n-1} \xrightarrow{f_n} X_n$ in \mathscr{C} .
- Face maps $d_{n,i}: \mathcal{N}(\mathscr{C})([n]) \to \mathcal{N}(\mathscr{C})([n-1])$ omit X_0, f_1 for i=0, omit X_n, f_n for i=n, and compose f_i, f_{i+1} for 0 < i < n.
- Degeneracy maps $s_{n,i}: \mathcal{N}(\mathscr{C})([n]) \to \mathcal{N}(\mathscr{C})([n+1])$ insert $\mathrm{id}_{X_i}: X_i \to X_i$ into the sequence.

Functors $F: \mathscr{C} \to \mathscr{D}$ induce morphisms $\mathscr{N}(\mathscr{C}) \to \mathscr{N}(\mathscr{D})$.

We can characterize when a simplicial set is a nerve via horn-filling.

Proposition 10.1

- (a) A simplicial set S is isomorphic to the nerve $\mathcal{N}(\mathscr{C})$ of a small category \mathscr{C} iff all inner horns $f: \mathbb{A}^n_k \to S$ have unique fillers. This implies that $\mathcal{N}(\mathscr{C})$ is a **weak Kan complex** for all \mathscr{C} .
- (b) A simplicial set S is isomorphic to the nerve $\mathcal{N}(\mathscr{C})$ of a small groupoid \mathscr{C} iff all horns $f: \mathbb{A}^n_k \to S$ for n > 1 have unique fillers.
- (c) The nerve $\mathcal{N}(\mathcal{C})$ of a small category \mathcal{C} is a Kan complex iff \mathcal{C} is a groupoid.

Proposition 10.1 suggests that we can see *weak Kan complexes as generalizations of categories*, and *Kan complexes as generalizations of groupoids*. We already know that Kan complexes are the fibrant-cofibrant objects in **SSets**, so by the fundamental theorem of model theory, the category with objects Kan complexes and homotopy classes of morphisms between them is equivalent to $\operatorname{Ho}(\mathbf{SSets})$, so a model for ∞ -groupoids.

10.3. Quasicategories

Quasicategories are a model (arguably the best) for $(\infty, 1)$ -categories, developed by Joyal and Lurie. Lurie went on to use them as the foundation for his theory of Derived Algebraic Geometry.

Definition

A quasicategory is a weak Kan complex.

Based on our definition of the nerve $\mathscr{N}(\mathscr{C})$ of a category \mathscr{C} , we will explain how to treat a quasicategory like an $(\infty$ -)category.

Definition

Let \mathcal{Q} be a quasicategory.

- An object X of \mathcal{Q} is a 0-simplex (element $X \in \mathcal{Q}([0])$).
- A 1-morphism $f: X \to Y$ of \mathscr{Q} is a 1-simplex (element $f \in \mathscr{Q}([1])$) with face maps $d_{1,1}(f) = X$ and $d_{1,0}(f) = Y$.
- The *identity* 1-morphism is $id_X = s_{0,0}(X)$, from the degeneracy map $s_{0,0}: \mathcal{Q}([0]) \to \mathcal{Q}([1])$.

Definition (Continued.)

• Let $f: X \to Y$ and $g: Y \to Z$ be 1-morphisms in \mathscr{Q} . We say that $h: X \to Z$ is a choice of *composition* in \mathscr{Q} if there exists a 2-simplex $\eta \in \mathscr{Q}([2])$ with $d_{2,2}(\eta) = f$, $d_{2,0}(\eta) = g$ and $d_{2,1}(\eta) = h$. We think of $\eta: g \circ f \Rightarrow h$ as a 2-morphism in \mathscr{Q} , and draw it as a picture of a 2-simplex, with X, Y, Z as the vertices, f, g, h as the edges, and η as the 2-simplex:

Note that *compositions are nonunique*. But as $\mathscr Q$ is a weak Kan complex, *compositions always exist*, as X,Y,Z,f,g define a morphism $\mathbb A^2_1\to\mathscr Q$, and h,η fill the horn to a morphism $\mathbb A^2\to\mathscr Q$.

Definition (Continued.)

• Let $f, f': X \to Y$ be 1-morphisms. We say that f, f' are 2-isomorphic, or homotopic, written $f \sim f'$, if there exists

This is an equivalence relation on f, f'. Using the horn-filling condition for 3-horns we can show that if h_1, h_2 are possible compositions $g \circ f$ then $h_1 \sim h_2$.

- The homotopy category $\operatorname{Ho}(\mathscr{Q})$ is the category with objects X the objects X of \mathscr{Q} , and morphisms $[f]: X \to Y$ the \sim -equivalence classes of 1-morphisms $f: X \to Y$. Identity morphisms are $[\operatorname{id}_X]: X \to X$. The composition of $[f]: X \to Y$ and $[g]: Y \to Z$ is $[g] \circ [f] = [h]: X \to Z$, where $h: X \to Z$ is a choice of composition of 1-morphisms in \mathscr{Q} , and [h] is independent of choices.
- If $\mathcal{Q} = \mathcal{N}(\mathscr{C})$ then $\operatorname{Ho}(\mathcal{Q}) \simeq \mathscr{C}$.

Many definitions in category theory have well-behaved analogues for quasicategories. Here are some examples:

Definition

- Let \mathscr{Q},\mathscr{R} be quasicategories. A functor $F:\mathscr{Q}\to\mathscr{R}$ is a morphism of simplicial sets.
- If $F,G:\mathcal{Q}\to\mathscr{R}$ are functors, a natural transformation $\eta:F\Rightarrow G$ is a morphism of simplicial sets $\eta:\mathbb{\Delta}^1\times\mathcal{Q}\to\mathscr{R}$ which restricts to F on $0\times\mathcal{Q}$ and to G on $1\times\mathcal{Q}$.
- Let $\mathscr Q$ be a quasi-category and X,Y be objects in $\mathscr Q$. Define the right Hom object $\operatorname{Hom}_{\mathscr Q}^R(X,Y)$ to be the simplicial set whose n-simplices are morphisms $\mathbb A^{n+1}\to \mathscr Q$ which restrict to the constant map to X on $\delta^{n+1,n+1}(\mathbb A^n)\subset \mathbb A^{n+1}$, and restrict to Y on vertex n+1 of $\mathbb A^{n+1}$.
- An object Y in $\mathscr Q$ is a *terminal object* in $\mathscr Q$ if $\operatorname{Hom}_{\mathscr Q}^R(X,Y)$ is contractible for all objects X.
- Left Hom objects $\operatorname{Hom}_{\mathscr{Q}}^L(X,Y)$ and initial objects have the dual definition.

Definition

• Let K be a simplicial set and $k: K \to \mathcal{Q}$ a morphism. We can define a quasicategory $\mathcal{Q}_{/k}$ with objects (X, η) an object X in \mathcal{Q} and a natural transformation $\eta: \mathbb{1}_X \Rightarrow k$, where $\mathbb{1}_X: K \to \mathcal{Q}$ is the constant functor with value X. A *limit* of $k: K \to \mathcal{Q}$ is a terminal object in $\mathcal{Q}_{/k}$. So, for example, a *fibre product* $X \times_{g,Z,h} Y$ in \mathcal{Q} is a limit of the morphism

The theory of quasicategories is very well developed, and works really well.