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13. Putting derived orbifold structures on moduli spaces

Suppose we have a moduli space M of some objects in differential
geometry, or complex algebraic geometry, and we would like to
make M into a derived manifold or derived orbifold (Kuranishi
space) M, possibly with corners; either in order to form a virtual
class/virtual chain for M as in §12, or for some other reason.
How do we go about this? There are two obvious methods:

(A) To somehow directly construct the derived orbifold M.

(B) Suppose we already know, e.g. by a theorem in the literature,
that M carries some other geometric structure G, such as a
C-scheme with perfect obstruction theory. Then we may be
able to apply a ‘truncation functor’, a theorem saying that
topological spaces X with geometric structure G can be made
into derived manifolds or orbifolds X.
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Which moduli problems give derived manifolds or orbifolds?

For a moduli space M of geometric objects E to form a derived
manifold or orbifold M, roughly we need:

(a) Objects E should have at most finite symmetry groups (other
than multiples of the identity in linear problems);

(b) Objects E can have deformations and obstructions, but no
‘higher obstructions’; and

(c) Some global conditions on M: Hausdorff, constant dimension.

In Differential Geometry, moduli spaces M of solutions of
nonlinear elliptic equations on compact manifolds are almost
automatically derived manifolds or orbifolds, as we explain in §13.1.
This is a large class, which includes many important problems.

4 / 51 Dominic Joyce, Oxford University Lecture 13: Putting derived orbifold structures on moduli spaces



Putting derived orbifold structures on moduli spaces
J-holomorphic curves and Gromov–Witten invariants

D-manifolds and nonlinear elliptic equations
Truncation functors from other structures
D-orbifolds as representable 2-functors
Moduli 2-functors in differential geometry

In Complex Algebraic Geometry, the deformation theory of objects
E in M is usually understood either in terms of Ext groups
Exti (E ,E ) for i = 0, 1, . . . , or sheaf cohomology groups H i (ΘE )
of some sheaf ΘE . Here Ext0(E ,E ) or H0(ΘE ) is the Lie algebra
of the symmetry group of E ; Ext1(E ,E ) or H1(ΘE ) the tangent
space TEM; Ext2(E ,E ) or H2(ΘE ) the obstruction space OEM;
and Exti (E ,E ) or H i (ΘE ) for i > 2 the ‘higher obstruction
spaces’. So to get a derived manifold or orbifold M, we need
Exti (E ,E ) = 0 or H i (ΘE ) = 0 for i = 0 and i > 2.
In linear problems we may restrict to the ‘trace-free’ part Exti (E ,E )0.
We get Ext0(E ,E ) = 0 or H0(ΘE ) = 0 by restricting to moduli
spaces of ‘stable’ objects E .
Exti (E ,E ) = 0 or H i (ΘE ) = 0 for i > 2 may occur for dimensional
reasons. It is automatic for E living on a curve or algebraic
surface. For E on some classes of 3-folds (Calabi–Yau, Fano), we
may have Ext3(E ,E ) = 0 by Serre duality or vanishing theorems.
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Briefly, the following classes of complex algebraic moduli spaces
can usually be made into derived manifolds or orbifolds:

Moduli spaces of Deligne–Mumford stable curves Σ in a
smooth complex algebraic variety Y of any dimension.

Moduli spaces of stable coherent sheaves / vector bundles /
principal bundles on a Riemann surface, complex algebraic
surface, Calabi–Yau 3-fold, Fano 3-fold, or Calabi–Yau 4-fold.

In Derived Algebraic Geometry, the main condition for a derived
C-stack X to be a derived manifold or orbifold is that it should be
a locally finitely presented derived C-scheme or Deligne–Mumford
C-stack which is quasi-smooth, i.e. has cotangent complex LX

perfect in the interval [−1, 0].
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13.1. D-manifolds and nonlinear elliptic equations

Elliptic equations are a class of p.d.e.s. They are determined (have
the same number of equations as unknowns) and satisfy a
nondegeneracy condition. Moduli problems with gauge symmetries
are often elliptic after ‘gauge-fixing’.
Elliptic equations are studied using functional analysis. For
example, let Y be a compact manifold, E ,F → Y be vector
bundles, and P : C∞(E )→ C∞(F ) a linear partial differential
operator of order k. For P to be elliptic we need rankE = rankF ,
and an invertibility condition on the kth order derivatives in P.
Extend P to Hölder spaces P : C k+l ,α(E )→ C l ,α(F ) or Sobolev
spaces P : Lp

k+l(E )→ Lp
l (F ). Then Y compact and P elliptic

implies these maps are Fredholm maps between Banach spaces,
with KerP, CokerP finite-dimensional, and the index
indP = dimKerP − dimCokerP is given in terms of algebraic
topology by the Atiyah–Singer Index Theorem.
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Theorem 13.1

Let V be a Banach manifold, E → V a Banach vector bundle, and
s : V → E a smooth Fredholm section, with constant Fredholm
index n ∈ Z. Then there is a d-manifold X, unique up to
equivalence in dMan, with topological space X = s−1(0) and
vdimX = n. If instead V is a Banach orbifold, or has boundary or
corners, then the same thing holds with X a d-orbifold or Kuranishi
space, or with boundary or corners.

Note that this basically says we can do ‘standard model’
d-manifolds SV,E,s for (infinite-dimensional) Banach manifolds V
and Banach vector bundles E , with Fredholm sections s.
To prove Theorem 13.1, near each x ∈ s−1(0) we use the Implicit
Function Theorem for Banach spaces and Fredholmness to show
s−1(0) is locally modelled on s̃−1(0) for Ṽ a manifold, Ẽ → Ṽ a
vector bundle, and s̃ ∈ C∞(Ẽ ). Then we combine these Kuranishi
neighbourhoods (Ṽ , Ẽ , s̃) into a d-manifold/Kuranishi structure on X .
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Nonlinear elliptic equations, when written as maps between suitable
Hölder or Sobolev spaces, become the zeroes s = 0 of Fredholm
sections s of a (possibly trivial) Banach vector bundle E → V over
a Banach manifold (or Banach space) V. Thus we have:

Corollary 13.2

Let M be a moduli space of solutions of a nonlinear elliptic
equation on a compact manifold, with fixed topological invariants.
Then M extends to a d-manifold M.

The virtual dimension M at x ∈M is the index of the
(Fredholm) linearization of the nonlinear elliptic equation at x ,
which is given by the A–S Index Theorem. We require fixed
topological invariants so this dimension is constant over M.
Note that Corollary 13.2 does not include problems involving
dividing by a gauge group, since such gauge groups typically act
only continuously on the Banach manifold. Nonetheless, a similar
result should hold for nonlinear elliptic equations modulo gauge.
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Example 13.3

Let (X , g), (Y , h) be Riemannian manifolds, with X compact. The
moduli space M of harmonic maps f : X → Y is defined by a
nonlinear elliptic equation, and so becomes a d-manifold M, with
vdimM = 0. For instance, when X = S1, M is the moduli space
of parametrized closed geodesics in (Y , h).

Example 13.4

Let (Σ, j) be a Riemann surface, and (Y , J) a manifold with
almost complex structure. Then the moduli space M(β) of
(j , J)-holomorphic maps u : Σ→ Y with u∗([Σ]) = β ∈ H2(Y ;Z)
is defined by an elliptic equation, and is a d-manifold M(β).
Note that (Σ, j) is a fixed, nonsingular Riemann surface. Moduli
spaces in which (Σ, j) is allowed to vary (and especially, allowed to
become singular) are more complicated.
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13.2. Truncation functors from other structures
Fukaya–Oh–Ohta–Ono Kuranishi spaces

Fukaya–Ono 1999 and Fukaya–Oh–Ohta–Ono 2009 defined their
version of Kuranishi spaces, which we call FOOO Kuranishi spaces.

Theorem 13.5

Let X be a FOOO Kuranishi space. Then we can define a
Kuranishi space X′ in the sense of §8, canonical up to equivalence
in the 2-category Kur, with the same topological space as X.
The same holds for other Kuranishi-space-like structures in the
literature, such as McDuff–Wehrheim’s ‘Kuranishi atlases’, 2012.

Therefore any moduli space which has been proved to carry a
FOOO Kuranishi space structure (many J-holomorphic curve
moduli spaces) is also a Kuranishi space/d-orbifold in our sense.
FOOO Kuranishi spaces do not form a category, so Theorem 13.5
does not give a ‘truncation functor’.
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Hofer–Wysocki–Zehnder’s polyfolds

Polyfolds, due to Hofer, Wysocki and Zehnder (2005–2015+), are
a rival theory to FOOO Kuranishi spaces. They do form a category.
Polyfolds remember much more information than Kuranishi spaces.

Theorem 13.6

There is a functor ΠdOrbc

PolFS : PolFS→ Ho(Kur), where PolFS is a
category whose objects are triples (V, E , s) of a polyfold V, a
fillable strong polyfold bundle E over V, and an sc-smooth
Fredholm section s of E with constant Fredholm index.

Here Ho(Kur) is the homotopy category of the 2-category Kur.
Combining the theorem with constructions of polyfold structures on
moduli spaces (e.g. HWZ arXiv:1107.2097, J-holomorphic curves
for G–W invariants), gives d-orbifold structures on moduli spaces.
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C-schemes and C-stacks with obstruction theories

In algebraic geometry, the standard method of forming virtual
cycles is to use a proper scheme or Deligne–Mumford stack
equipped with a perfect obstruction theory (Behrend–Fantechi).
They are used to define algebraic Gromov–Witten invariants,
Donaldson–Thomas invariants of Calabi–Yau 3-folds, . . . .

Theorem 13.7

There is a functor ΠdMan
SchObs : SchCObs→ Ho(dMan), where

SchCObs is a category whose objects are triples (X ,E •, φ), for X a
separated, second countable C-scheme and φ : E • → LX a perfect
obstruction theory on X with constant virtual dimension.
The analogue holds for ΠdOrb

StaObs : StaCObs→ Ho(dOrb), replacing
C-schemes by Deligne–Mumford C-stacks, and d-manifolds by
d-orbifolds (or equivalently Kuranishi spaces, using Ho(Kur)).

So, many C-algebraic moduli spaces are d-manifolds or d-orbifolds.
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Derived C-schemes and Deligne–Mumford C-stacks

Theorem 13.8

There is a functor ΠdMan
dSch : Ho(dSchqs

C )→ Ho(dMan), where
Ho(dSchqs

C ) is the homotopy category of the ∞-category of derived
C-schemes X, where X is assumed locally finitely presented,
separated, second countable, of constant virtual dimension, and
quasi-smooth, that is, LX is perfect in the interval [−1, 0].
The analogue holds for ΠdOrb

dSta : Ho(dStaqs
C )→ Ho(dOrb),

replacing derived C-schemes by derived Deligne–Mumford
C-stacks, and d-manifolds by d-orbifolds (or Kuranishi spaces).

Actually this follows from Theorem 13.7, since if X is a
quasi-smooth derived C-scheme then the classical truncation
X = t0(X) is a C-scheme with perfect obstruction theory
Li : LX|X → LX , for i : X ↪→ X the inclusion.
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−2-shifted symplectic derived C-schemes

Theorem 13.9 (Borisov–Joyce arXiv:1504.00690)

Suppose X is a derived C-scheme with a −2-shifted symplectic
structure ωX in the sense of Pantev–Toën–Vaquié–Vezzosi
arXiv:1111.3209. Then we can define a d-manifold Xdm with the
same underlying topological space, and virtual dimension
vdimR Xdm = 1

2 vdimR X, i.e. half the expected dimension.

Note that X is not quasi-smooth, LX lies in the interval [−2, 0], so
this does not follow from Theorem 13.8. Also Xdm is only
canonical up to bordisms fixing the underlying topological space.
Derived moduli schemes or stacks of coherent sheaves on a
Calabi–Yau m-fold are (2−m)-shifted symplectic, so this gives:

Corollary 13.10

Stable moduli schemes of coherent sheaves M with fixed Chern
character on a Calabi–Yau 4-fold can be made into d-manifolds M.
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13.3. D-orbifolds as representable 2-functors

Disclaimer: the rest of this lecture is work in progress (or more
honestly, not yet begun). I’m fairly confident it will work eventually.

Recall the Grothendieck approach to moduli spaces in algebraic
geometry from §1.3, using moduli functors. Write SchC for the
category of C-schemes, and Schaff

C for the subcategory of affine
C-schemes. Any C-scheme X defines a functor
Hom(−,X ) : Schop

C → Sets mapping each C-scheme S to the set
Hom(S ,X ), where Schop

C is the opposite category to SchC
(reverse directions of morphisms). By the Yoneda Lemma, the
C-scheme X is determined up to isomorphism by the functor
Hom(−,X ) up to natural isomorphism. This is still true if we
restrict to Schaff

C . Thus, given a functor F : (Schaff
C )op → Sets, we

can ask if there exists a C-scheme X (necessarily unique up to
canonical isomorphism) with F ∼= Hom(−,X ). If so, we call F a
representable functor.
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Classical stacks

As in §1.4, to extend this from C-schemes to Deligne–Mumford or
Artin C-stacks, we consider functors F : (Schaff

C )op → Groupoids,
where a groupoid is a category all of whose morphisms are
isomorphisms. (We can regard a set as a category all of whose
morphisms are identities, so replacing Sets by Groupoids is a
generalization.)

A stack is a functor F : (Schaff
C )op → Groupoids satisfying a

sheaf-type condition: if S is an affine C-scheme and {Si : i ∈ I} an
open cover of S (in some algebraic topology) then we should be
able to reconstruct F (S) from F (Si ), F (Si ∩ Sj), F (Si ∩ Sj ∩ Sk),
i , j , k ∈ I , and the functors between them.
A Deligne–Mumford or Artin C-stack is a stack
F : (Schaff

C )op → Groupoids satisfying extra geometric conditions.
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Grothendieck’s moduli schemes

Suppose we have an algebro-geometric moduli problem (e.g.
vector bundles on a smooth projective C-scheme Y ) for which we
want to form a moduli scheme. Grothendieck tells us that we
should define a moduli functor F : (Schaff

C )op → Sets, such that
for each affine C-scheme S , F (S) is the set of isomorphism classes
of families of the relevant objects over S (e.g. vector bundles over
Y × S). Then we should try to prove F is a representable functor,
using some criteria for representability. If it is, F ∼= Hom(−,M),
where M is the (fine) moduli scheme.

To form a moduli stack, we define F : (Schaff
C )op → Groupoids, so

that for each affine C-scheme S , F (S) is the groupoid of families
of objects over S , with morphisms isomorphisms of families, and
try to show F satisfies the criteria to be an Artin stack.
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D-orbifolds as representable 2-functors

D-orbifolds dOrb (or Kuranishi spaces Kur) are a 2-category with
all 2-morphisms invertible. Thus, if S,X ∈ dOrb then Hom(S,X)
is a groupoid, and Hom(−,X) : dOrbop → Groupoids is a
2-functor, which determines X up to equivalence in dOrb. This is
still true if we restrict to the 2-category SMod ⊂ dOrb of
standard model d-manifolds, a good analogue of affine schemes.
Thus, we can consider 2-functors F : SModop → Groupoids, and
ask whether there exists a d-orbifold X (unique up to equivalence)
with F ' Hom(−,X). If so, we call F a representable 2-functor.

Why use SModop as the domain of the functor? A d-orbifold X
also induces a functors Hom(−,X) : Cop → Groupoids for
C = Man,Orb,C∞Sch,C∞Sta,dMan,dOrb,dSpa,dSta, . . . .
We want C large enough that dOrb ↪→ Funct(Cop,Groupoids) is
an embedding, but otherwise as small as possible, as we must
prove things for all objects in C, so a smaller C saves work.
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Criteria for representable 2-functors

Let F : SModop → Groupoids be a functor. When is F
representable (that is, F ' Hom(−,X) for some d-orbifold X)?
It is good to have usable criteria for representability, such that if
one can show the criteria hold in an example, then we know F is
representable (even without constructing the d-orbifold X).
I expect there are nice criteria of the form:

(A) F satisfies a sheaf-type condition, i.e. F is a stack ;
(B) the ‘coarse topological space’ M = F (point)/isos of F is

Hausdorff and second countable, and each point x of M has
finite stabilizer group Aut(x); and

(C) F admits a ‘Kuranishi neighbourhood’ of dimension n ∈ Z
near each x ∈M, a local model with a universal property.

Functors satisfying (A) (stacks) are a kind of geometric space,
even if they are not d-orbifolds. They have points, and a topology,
and one can work locally on them.
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13.4. Moduli 2-functors in differential geometry

Suppose we are given a moduli problem in differential geometry
(e.g. J-holomorphic curves in a symplectic manifold) and we want
to form a moduli space M as a d-orbifold. I propose that we
should define a moduli 2-functor F : SModop → Groupoids, such
that for each standard model d-manifold S, F (S) is the category of
families of the relevant objects over S. Then we should try to
prove F satisfies (A)–(C), and so is represented by a d-orbifold M;
here (A),(B) will usually be easy, and (C) the difficult part.

If F is represented by M, then there will automatically exist a
universal family of objects over M.

21 / 51 Dominic Joyce, Oxford University Lecture 13: Putting derived orbifold structures on moduli spaces

Putting derived orbifold structures on moduli spaces
J-holomorphic curves and Gromov–Witten invariants

D-manifolds and nonlinear elliptic equations
Truncation functors from other structures
D-orbifolds as representable 2-functors
Moduli 2-functors in differential geometry

Example: moduli functors of J-holomorphic curves

Let (M, ω) be a symplectic manifold, and J an almost complex
structure on M. Suppose we want to construct
F : SModop → Groupoids representing the moduli space of
J-holomorphic maps u : Σ→ M, where (Σ, j) is a nonsingular
genus g Riemann surface, and [u(Σ)] = β ∈ H2(M;Z).
Then, for each standard model d-manifold S, we must construct a
groupoid F (S) of families of J-holomorphic maps u : Σ→ M over
the base S. There is a natural way to do this:

Objects of F (S) are quadruples (X,π,u, j), where X is a
d-manifold with vdimX = vdimS + 2, π : X→ S a proper
submersion of d-manifolds with π−1(s) a genus g surface for
all s ∈ S, u : X→ M is a 1-morphism with [u(π−1(s))] = β
for all s ∈ S, and j : Tπ → Tπ is bundle linear with j2 = − id
and u∗(J)◦du=du◦j , for Tπ the relative tangent bundle of π.
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Morphisms [i, η, ζ] : (X,π,u, j)→ (X′,π′,u′, j ′) in F (S) are
∼-equivalence classes [i, η, ζ] of triples (i, η, ζ), where
i : X→ X′ is an equivalence in dMan, and η : π ⇒ π′ ◦ i,
ζ : u⇒ u′ ◦ i are 2-morphisms, and H0(di) identifies j , j ′, and
(i, η, ζ) ∼ (ı̃, η̃, ζ̃) if there exists a 2-morphism α : i⇒ ı̃ with
η̃ = (idπ′ ∗α)� η and ζ̃ = (idu′ ∗α)� ζ.
If f : T→ S is a 1-morphism in SMod, the functor
F (f) : F (S)→ F (T) acts by F (f) : (X,π,u, j) 7→
(X×π,S,f T,πT,u◦πX,π

∗
X(j)) on objects and in a natural way

on morphisms, with X×π,S,f T the fibre product in dMan.
If f, g : T→ S are 1-morphisms and θ : f ⇒ g a 2-morphism
in SMod, then F (θ) : F (f)⇒ F (g) is a natural isomorphism
of functors, F (θ) : (X,π,u, j) 7→ [i, η, ζ] for (X,π,u, j) in
F (S), where [i, η, ζ] : (X×π,S,f T,πT,u ◦ πX,π

∗
X(j))→

(X×π,S,g T,πT,u ◦ πX,π
∗
X(j)) in F (T), with

i : X×π,S,f T→ X×π,S,g T induced by θ : f ⇒ g.
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Conjecture 13.11

The moduli functor F : SModop → Groupoids above is
represented by a d-orbifold.

Some remarks:

I may have got the treatment of almost complex structures in
the definition of F wrong — this is a first guess.
I expect to be able to prove Conjecture 13.11 (perhaps after
correcting the definition). The proof won’t be specific to
J-holomorphic curves — there should be a standard method
for proving representability of moduli functors of solutions of
nonlinear elliptic equations with gauge symmetries, which
would also work for many other classes of moduli problems.
Proving Conjecture 13.11 will involve verifying the
representability criteria (A)–(C) above for F .
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The definition of F involves fibre products X×π,S,f T in
dMan, which exist as π : X→ S is a submersion. Existence
of suitable fibre products is crucial for the representable
2-functor approach. This becomes complicated when
boundaries and corners are involved – see §11.
Current definitions of differential-geometric moduli spaces
(e.g. Kuranishi spaces, polyfolds) are generally very long,
complicated ad hoc constructions, with no obvious naturality.
In contrast, if we allow differential geometry over d-manifolds,
my approach gives you a short, natural definition of the
moduli functor F (only 2 slides above give a nearly complete
definition!), followed by a long proof that F is representable.
The effort moves from a construction to a theorem.
Can write X,S as ‘standard model’ d-manifolds, as in §5, and
π, f, η, ζ, . . . as ‘standard model’ 1- and 2-morphisms. Thus,
can express F in terms of Kuranishi neighbourhoods and
classical differential geometry.
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The definition of F involves only finite-dimensional families of
smooth objects, with no analysis, Banach spaces, etc. (But
the proof of (C) will involve analysis and Banach spaces.)
This enables us to sidestep some analytic problems.
In some problems, there will be several moduli spaces, with
morphisms between them. E.g. if we include marked points in
our J-holomorphic curves (do this by modifying objects
(X,π,u, j) in F (S) to include morphisms z1, . . . , zk : S→ X
with π ◦ zi ' idS), then we can have ‘forgetful functors’
between moduli spaces forgetting some of the marked points.
Such forgetful functors appear as 2-natural transformations
Θ : F ⇒ G between moduli functors
F ,G : SModop → Groupoids. If F ,G are representable,
forgetful functors induce 1-morphisms between the d-orbifolds.
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Plan of talk:

14 J-holomorphic curves and Gromov–Witten invariants

14.1 J-holomorphic curves

14.2 Compactification and Deligne–Mumford stable curves

14.3 Moduli spaces of stable maps

14.4 Virtual classes and Gromov–Witten invariants
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14. J-holomorphic curves and Gromov–Witten invariants
14.1. J-holomorphic curves

An almost complex structure J on a 2n-manifold S is a tensor Jb
a

on S with Jb
a Jc

b = −δca . For v ∈ C∞(TS) define (Jv)b = Jb
a va.

Then J2 = −1, so J makes the tangent spaces TpS into complex
vector spaces. If J is integrable then (S , J) is a complex manifold.
Now let (S , ω) be a symplectic manifold. An almost complex
structure J on S is compatible with ω if g = gab = ωacJc

b is
symmetric and positive definite (i.e. a Riemannian metric) on S . If
J is integrable then (S , J, g , ω) is Kähler.
Every symplectic manifold (S , ω) admits compatible almost
complex structures J, and the (infinite-dimensional) family of such
almost complex structures is contractible. So, in particular,
given J0, J1, there exists a smooth family Jt : t ∈ [0, 1] of compatible
almost complex structures on (S , ω) interpolating between J0 and J1.
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Let (S , ω) be symplectic, with almost complex structure J. A
pseudoholomorphic curve or J-holomorphic curve in S is a Riemann
surface (Σ, j) (almost always compact, sometimes singular) with a
smooth map u : Σ→ S such that J ◦ du = du ◦ j : T Σ→ u∗(TS).
Moduli spaces of J-holomorphic curves M in S behave a lot like
moduli spaces of curves in complex manifolds, or smooth complex
varieties; they do not really care that J is not integrable.
The importance of the symplectic structure is that

Areag (u(Σ)) =

∫
u(Σ)

ω = [ω] · u∗([Σ]),

where u∗([Σ]) ∈ H2(S ;Z) and [ω] ∈ H2
dR(S ;R), and the area is

computed using gab = ωacJc
b . Thus, J-holomorphic curves

u : Σ→ S in a fixed homology class in H2(S ;Z) have a fixed, and
hence bounded, area in S . This helps to ensure moduli spaces M
of J-holomorphic curves are compact (as areas of curves cannot go
to infinity at noncompact ends of M), which is crucial.
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Several important areas of symplectic geometry — Gromov–Witten
invariants, Lagrangian Floer cohomology, Fukaya categories,
contact homology, Symplectic Field Theory, . . . — work as follows:

(a) Given a symplectic manifold (S , ω) (etc.), choose compatible
J and define moduli spaces M of J-holomorphic curves in S .

(b) Show M is a compact, oriented Kuranishi space (or similar),
possibly with corners.

(c) Form a virtual class / virtual chain [M]virt for M.
(d) Do homological algebra with these [M]virt to define

Gromov–Witten invariants, Lagrangian Floer cohomology, etc.
(e) Prove the results are independent of the choice of J (up to

isomorphism), so depend only on (S , ω) (etc.).
(f) Use the machine you have created to prove interesting stuff

about symplectic manifolds, Lagrangian submanifolds, . . . .

We will explain Gromov–Witten invariants.
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J-holomorphic curves with marked points

Let (S , ω) be a symplectic manifold, and J an almost complex
structure on S compatible with ω. The obvious way to define
moduli spaces of J-holomorphic curves is as sets of isomorphism
classes [Σ, u] of pairs (Σ, u), where Σ is a Riemann surface, and
u : Σ→ S is J-holomorphic.
But we will do something more complicated. We consider moduli
spaces of J-holomorphic curves with marked points.
Our moduli spaces Mg ,m(S , J, β) will be sets of isomorphism
classes [Σ,~z , u] of triples (Σ,~z , u), where Σ is a Riemann surface,
~z = (z1, . . . , zm) with z1, . . . , zm points of Σ called marked points,
and u : Σ→ S is J-holomorphic. The point of this is that we then
have evaluation maps evi :Mg ,m(S , J, β)→ S for i = 1, . . . ,m
mapping evi : [Σ,~z , u] 7→ u(zi ).
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Moduli spaces of nonsingular curves

We first discuss moduli spaces of Riemann surfaces without maps
to a symplectic manifold. Fix g ,m > 0. Consider pairs (Σ,~z),
where Σ is a compact, nonsingular Riemann surface with genus g ,
and ~z = (z1, . . . , zm) are distinct points of Σ. An isomorphism
between (Σ,~z) and (Σ′,~z ′) is a biholomorphism f : Σ→ Σ′ with
f (zi ) = z ′i for i = 1, . . . ,m. Write [Σ,~z ] for the isomorphism class
of (Σ,~z), that is, the equivalence class of (Σ,~z) under the
equivalence relation of isomorphism.
The automorphism group Aut(Σ,~z) is the group of automorphisms
f from (Σ,~z) to (Σ,~z). We call (Σ,~z) stable if Aut(Σ,~z) is finite.
Otherwise (Σ,~z) is unstable. In fact (Σ,~z) is stable iff g = 0 and
m > 3, or g = 1 and m > 1, or g > 2, that is, if 2g + m > 3. But
if we allow singular Σ then there can be unstable (Σ,~z) for any
g ,m. We will exclude unstable (Σ,~z) as they would make our
moduli spaces non-Hausdorff.
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Define Mg ,m to be the set of isomorphism classes [Σ,~z ] of stable
pairs (Σ,~z) with Σ nonsingular of genus g and m marked points
~z = (z1, . . . , zm). By studying the deformation theory of pairs
(Σ,~z) one can prove:

Theorem

Mg ,m has the structure of a complex orbifold of complex
dimension 3g + m − 3. It is Hausdorff, but noncompact in general.

Here a complex orbifold M is a complex manifold with only
quotient singularities. That is, M is locally modelled on Cn/Γ for Γ
a finite group acting linearly on Cn. The orbifold singularities of
Mg ,m come from [Σ,~z ] with Aut(Σ,~z) nontrivial; Mg ,m is locally
modelled near [Σ,~z ] on C3g+m−3/Aut(Σ,~z).
In Gromov–Witten theory, we must work with orbifolds rather than
manifolds. This means that G–W invariants are rational numbers
rather than integers, since the ‘number of points’ in the 0-orbifold
{0}/Γ should be 1/|Γ|.
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To compute dimMg ,m, suppose for simplicity that g > 2. Then
we find that

T[Σ,~z]Mg ,m
∼= H1(T Σ)⊕

m⊕
i=1

Tzi Σ,

where the sheaf cohomology group H1(T Σ) parametrizes
deformations of the complex structure of Σ, and Tzi Σ parametrizes
variations of the marked point zi . Thus dimCMg ,m

= h1(T Σ) + m. But H0(T Σ) = 0 as g > 2 and Hk(T Σ) = 0 for
k > 2 as dimΣ = 1, so dimH1(T Σ) = −χ(T Σ), and
χ(T Σ) = 3− 3g by the Riemann–Roch Theorem.
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10.3. Examples

M0,m = ∅ for m = 0, 1, 2 since Aut(CP1,~z) is infinite, e.g. it
is PSL(2,C) for m = 0.

M0,3 is a single point, since any genus 0 curve with 3 marked
points is isomorphic to

(
CP1, ([1, 0], [1, 1], [0, 1])

)
.

Suppose [Σ,~z ] ∈M0,4. Then there is a unique isomorphism
f : Σ→ CP1 taking z1, z2, z3 to [1, 0], [1, 1], [0, 1] respectively.
Set f (z4) = [1, λ], for λ ∈ C \ {0, 1}. This gives an
isomorphism M0,4

∼= C \ {0, 1}. So M0,4 is noncompact, the
complement of 3 points in CP1.
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Suppose [Σ,~z ] ∈M1,1. Choose a basis α, β for H1(Σ;Z).
Then there is a unique λ ∈ C \ R and an isomorphism
f : Σ→ C/〈1, λ〉Z with f (z1) = 0, such that f identifies α
with the loop [0, 1] and β with the loop λ[0, 1] in C/〈1, λ〉Z.
Choices of bases α, β for H1(Σ;Z) are parametrized by
GL(2;Z). So M1,1

∼= (C \R)/GL(2;Z). This is a noncompact
complex 1-orbifold with two special orbifold points, one with
group Z4 from λ = i , and one with group Z6 from λ = e2πi/6.
Every other point actually has stabilizer group Z2.
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14.2. Compactification and Deligne–Mumford stable curves

To do Gromov–Witten theory, we need compact moduli spaces. So
we need a compactification Mg ,m of Mg ,m. This must satisfy:

Mg ,m is a compact, Hausdorff topological space containing
Mg ,m as an open subset.

points of Mg ,m \Mg ,m should be interpreted as singular
Riemann surfaces with marked points.

Mg ,m is a complex orbifold.

In general, when compactifying moduli spaces, the compactification
should be as close to being a smooth, oriented manifold as we can
manage. In this case, we can make it a complex orbifold.
In algebraic geometry there are often several different ways of
compactifying moduli spaces. In this case there is a clear best way
to do it, using Deligne–Mumford stable curves.
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A prestable Riemann surface Σ is a compact connected complex
variety of dimension 1 whose only singular points are finitely many
nodes, modelled on (0,0) in

{
(x , y) ∈ C2 : xy = 0

}
. Each such

singular Σ is the limit as t → 0 of a family of nonsingular Riemann
surfaces Σt for 0 < |t| < ε modelled on

{
(x , y) ∈ C2 : xy = t

}
near each node of Σ.
We call Σt a smoothing of Σ. The genus of Σ is the genus of its
smoothings Σt .
A prestable Riemann surface (Σ,~z) with marked points is a
prestable Σ with ~z = (z1, . . . , zm), where z1, . . . , zm are distinct
smooth points (not nodes) of Σ. Define isomorphisms and
Aut(Σ,~z) as in the nonsingular case. We call (Σ,~z) stable if
Aut(Σ,~z) is finite.
The D–M moduli space Mg ,m is the set of isomorphism classes
[Σ,~z ] of stable pairs (Σ,~z), where Σ is a prestable Riemann surface
of genus g , and ~z = (z1, . . . , zm) are distinct smooth points of Σ.
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Theorem

Mg ,m is a compact, Hausdorff complex orbifold of complex
dimension 3g + m − 3.

The moduli spaces Mg ,m are very well-behaved, because of exactly
the right choice of definition of singular curve. With (nearly) any
other notion of singular curve, we would have lost compactness, or
Hausdorffness, or smoothness.
The Mg ,m have been intensively studied, lots is known about their
cohomology, etc.
Note that as Mg ,m is complex, it is oriented as a real orbifold.
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Example

M0,4 is CP1, with M0,4 \M0,4 three points. These correspond to
two CP1’s joined by a node, with two marked points in each CP1.
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14.3. Moduli spaces of stable maps

Now let (S , ω) be a compact symplectic manifold, and J an almost
complex structure compatible with ω. Fix g ,m > 0 and
β ∈ H2(S ;Z). Consider triples (Σ,~z , u) where (Σ,~z) is a prestable
Riemann surface of genus g (possibly singular) with marked points,
and u :Σ→S a J-holomorphic map, with u∗([Σ])=β in H2(S ;Z).
An isomorphism between (Σ,~z , u) and (Σ′,~z ′, u′) is a
biholomorphism f : Σ→ Σ′ with f (zi ) = z ′i for i = 1, . . . ,m and
u′ ◦ f ≡ u.
The automorphism group Aut(Σ,~z , u) is the set of isomorphisms
from (Σ,~z , u) to itself. We call (Σ,~z , u) stable if Aut(Σ,~z , u) is
finite. The moduli space Mg ,m(S , J, β) is the set of isomorphism
classes [Σ,~z , u] of stable triples (Σ,~z , u), for Σ of genus g with m
marked points ~z , and u∗([Σ]) = β in H2(S ;Z).
We also write Mg ,m(S , J, β) for the subset of [Σ,~z , u] with Σ
nonsingular.
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For i = 1, . . . ,m define evaluation maps evi :Mg ,m(S , J, β)→ S
by evi : [Σ,~z , u] 7→ u(zi ).
Define π :Mg ,m(S , J, β)→Mg ,m for 2g + m > 3 by
π : [Σ,~z , u] 7→ [Σ,~z ], provided (Σ,~z) is stable. (If (Σ,~z) is
unstable, map to the stabilization of (Σ,~z).)
There is a natural topology on Mg ,m(S , J, β) due to Gromov,
called the C∞ topology. It is derived from the notion of smooth
family of prestable (Σ,~z) used to define the topology on Mg ,m,
and the C∞ topology on smooth maps u : Σ→ S .

Theorem 14.1

Mg ,m(S , J, β) is a compact, Hausdorff topological space. Also
ev1, . . . , evm, π are continuous.
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Both compactness and Hausdorffness in Theorem 14.1 are nontrivial.
Hausdorffness really follows from the Hausdorffness of Mg ,m.
Compactness follows from the compactness of S , the com-
pactness ofMg ,m, the fixed homology class β, and the fact that J is
compatible with a symplectic form ω, which bounds areas of curves.

Theorem 14.2 (Fukaya–Ono 1999; Hofer–Wysocki–Zehnder 2011)

We can make Mg ,m(S , J, β) into a compact, oriented Kuranishi
space Mg ,m(S , J, β), without boundary, of virtual dimension

2d = 2
(
c1(S) · β + (n − 3)(1− g) + m

)
, (14.1)

where dimS = 2n. Also ev1, . . . , evm, π become 1-morphisms
evi : Mg ,m(S , J, β)→ S and π : Mg ,m(S , J, β)→Mg ,m.

For J-holomorphic maps u : Σ→ S from a fixed Riemann surface
Σ, or even from a varying, nonsingular Riemann surface Σ, this is
fairly straightforward, given the technology we already discussed.
Including singular curves is more difficult.
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14.4. Virtual classes and Gromov–Witten invariants

We have now defined a compact, oriented Kuranishi space
Mg ,m(S , J, β) of dimension 2d in (14.1), and a 1-morphism

ev1 × · · · × evm × π : Mg ,m(S , J, β) −→ Sm ×Mg ,m

if 2g + m > 3, where Sm ×Mg ,m is an orbifold, or

ev1 × · · · × evm : Mg ,m(S , J, β)→ Sm

if 2g + m < 3, where Sm is a manifold.
As in §12.2, we can define a virtual class [Mg ,m(S , J, β)]virt in
H2d

(
Sm ×Mg ,m;Q

)
or H2d

(
Sm;Q

)
.

Theorem 14.3 (Fukaya–Ono 1999)

These virtual classes [Mg ,m(S , J, β)]virt are independent of the
choice of almost complex structure J compatible with ω. They are
also unchanged by continuous deformations of ω.
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Sketch proof.

Let J0, J1 be possible almost complex structures. Choose a smooth
family Jt : t ∈ [0, 1] of compatible almost complex structures
joining them. Write Mg ,m(S , Jt : t ∈ [0, 1], β) for the union of
Mg ,m(S , Jt , β) over t ∈ [0, 1]. This becomes a compact oriented
Kuranishi space with boundary of virtual dimension 2d + 1, whose
boundary is Mg ,m(S , J1, β)q−Mg ,m(S , J0, β).
Construct a virtual chain for Mg ,m(S , Jt : t ∈ [0, 1], β). This is a
(2d + 1)-chain on Sm ×Mg ,m whose boundary is the difference of
virtual cycles for Mg ,m(S , J1, β) and Mg ,m(S , J0, β). Thus these
cycles are homologous, and their homology classes, the virtual
classes [Mg ,m(S , Ji , β)]virt, are the same. The same argument
works for continuous deformations of ω.
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Gromov–Witten invariants

Gromov–Witten invariants are basically the virtual classes
[Mg ,m(S , J, β)]virt. But it is conventional to define them as maps
on cohomology, rather than as homology classes. We follow Cox
and Katz §7. Since Mg ,m is a compact oriented orbifold of real
dimension 6g + 2m − 6, Poincaré duality gives an isomorphism

Hl(Mg ,m;Q) ∼= H6g+2m−6−l(Mg ,m;Q). (14.2)

For g ,m > 0 and β ∈ H2(S ;Z), the Gromov–Witten invariant

〈Ig ,m,β〉 : H∗(S ;Q)⊗
m → Q

is the linear map corresponding to the virtual cycle
[Mg ,m(S , J, β)]virt in H2d

(
Sm;Q

)
under the Künneth isomorphism

H∗
(
Sm;Q

) ∼= (
H∗(S ;Q)⊗

m)∗
This is zero on Hk1(S ;Q)⊗ · · · ⊗ Hkm(S ;Q) unless k1+· · ·+km =2d .
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Gromov–Witten classes

For 2g + m > 3 and β ∈ H2(S ;Z), the Gromov–Witten class

Ig ,m,β : H∗(S ;Q)⊗
m → H∗(Mg ,m;Q)

is the linear map corresponding to [Mg ,m(S , J, β)]virt under

H∗
(
Sm ×Mg ,m;Q

) ∼= (
H∗(S ;Q)⊗

m)∗ ⊗ H6g+2m−6−∗(Mg ,m;Q),

using Künneth again and (14.2). The relation between G–W
invariants 〈Ig ,m,β〉 and G–W classes Ig ,m,β is

〈Ig ,m,β〉 =

∫
Mg,m

Ig ,m,β,

that is, 〈Ig ,m,β〉 is the contraction of Ig ,m,β with the fundamental
class [Mg ,m]. Gromov–Witten classes satisfy a system of axioms
(Kontsevich and Manin 1994). Using them we can define quantum
cohomology of symplectic manifolds.

48 / 51 Dominic Joyce, Oxford University Lecture 14: J-holomorphic curves and Gromov–Witten invariants



Putting derived orbifold structures on moduli spaces
J-holomorphic curves and Gromov–Witten invariants

J-holomorphic curves
Compactification and Deligne–Mumford stable curves
Moduli spaces of stable maps
Virtual classes and Gromov–Witten invariants

The Splitting Axiom

Suppose [Σ1,~z1] ∈Mg1,m1+1 and [Σ2,~z2] ∈Mg2,m2+1. Then we
can glue Σ1,Σ2 together at marked points z1

m1+1, z
2
m2+1 to get Σ

with a node at z1
m1+1 = z2

m2+1.
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The Splitting Axiom

This Σ has genus g = g 1 + g 2 and m = m1 + m2 remaining
marked points z1

1 , . . . , z
1
m1 from (Σ1,~z1) and z2

1 , . . . , z
2
m2 from

(Σ2,~z2). Define ~z = (z1
1 , . . . , z

1
m1 , z

2
1 , . . . , z

2
m2). Then

[Σ,~z ] ∈Mg ,m. This defines a map

ϕ :Mg1,m1+1 ×Mg2,m2+1 →Mg ,m.

Choose a basis (Ti )
N
i=1 for H∗(S ;Q), and let (T j)Nj=1 be the dual

basis under the cup product, that is, Ti ∪ T j = δji .
Then the Splitting Axiom says that

ϕ∗
(
Ig ,m,β(α1

1, . . . , α
1
m1 , α

2
1, . . . , α

2
m2)
)

=∑
β=β1+β2

∑N
i=1 Ig1,m1,β1(α1

1, . . . , α
1
m1 ,Ti )⊗

Ig2,m2,β2(α2
1, . . . , α

2
m2 ,T

i ).

50 / 51 Dominic Joyce, Oxford University Lecture 14: J-holomorphic curves and Gromov–Witten invariants



Putting derived orbifold structures on moduli spaces
J-holomorphic curves and Gromov–Witten invariants

J-holomorphic curves
Compactification and Deligne–Mumford stable curves
Moduli spaces of stable maps
Virtual classes and Gromov–Witten invariants

The Splitting Axiom

Here is how to understand this. Let ∆S be the diagonal
{(p, p) : p ∈ S

}
in S × S . Then

∑N
i=1 Ti ⊗ T i in

H∗(S ;Q)⊗ H∗(S ;Q) is Poincaré dual to [∆S ] in
H∗(S × S ;Q) ∼= H∗(S ;Q)⊗ H∗(S ;Q).
Thus the term
N∑
i=1

Ig1,m1,β1(α1
1, . . . , α

1
m1 ,Ti )⊗ Ig2,m2,β2(α2

1, . . . , α
2
m2 ,T

i )

‘counts’ pairs of curves u1 : Σ1 → S and u2 : Σ2 → S , with genera
g 1, g 2 and homology classes β1, β2, such that ua(Σa) intersects
cycles C a

1 , . . . ,C
a
ma Poincaré dual to αa

1, . . . , α
a
ma , and also

u1(Σ1)× u2(Σ2) intersects the diagonal ∆S in S × S . This last
condition means that u1(Σ1) and u2(Σ2) intersect in S . But then
we can glue Σ1,Σ2 at their intersection point to get a nodal curve
Σ, genus g = g 1 + g 2, class β = β1 + β2.
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