Derived Differential Geometry

Lecture 3 of 14: C^{∞} -Algebraic Geometry

Dominic Joyce, Oxford University Summer 2015

These slides, and references, etc., available at http://people.maths.ox.ac.uk/~joyce/DDG2015

Lecture 3: C^{∞} -Algebraic Geometry

Dominic Joyce, Oxford University

1/48

3. C^{∞} -Algebraic Geometry

Our goal is to define the 2-category of d-manifolds **dMan**. First consider an algebro-geometric version of what we want to do. A good algebraic analogue of smooth manifolds are *complex algebraic manifolds*, that is, separated smooth \mathbb{C} -schemes S of pure dimension. These form a full subcategory **AlgMan**_{\mathbb{C}} in the category **Sch**_{\mathbb{C}} of \mathbb{C} -schemes, and can roughly be characterized as the (sufficiently nice) objects S in **Sch**_{\mathbb{C}} whose cotangent complex \mathbb{L}_S is a vector bundle (i.e. perfect in the interval [0,0]).

To make a derived version of this, we first define an ∞ -category **DerSch**_C of *derived* \mathbb{C} -schemes, and then define the ∞ -category **DerAlgMan**_C of *derived complex algebraic manifolds* to be the full ∞ -subcategory of objects **S** in **DerSch**_C which are *quasi-smooth* (have cotangent complex \mathbb{L}_S perfect in the interval [-1,0]), and satisfy some other niceness conditions (separated, etc.).

3 / 48

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

 C^{∞} -rings Sheaves C^{∞} -schemes

Thus, we have 'classical' categories $AlgMan_{\mathbb{C}} \subset Sch_{\mathbb{C}}$, and related 'derived' ∞ -categories $DerAlgMan_{\mathbb{C}} \subset DerSch_{\mathbb{C}}$.

David Spivak, a student of Jacob Lurie, defined an ∞ -category **DerMan**_{Spi} of 'derived smooth manifolds' using a similar structure: he considered 'classical' categories **Man** \subset **C**^{∞}**Sch** and related 'derived' ∞ -categories **DerMan**_{Spi} \subset **DerC** $^{\infty}$ **Sch**. Here **C** $^{\infty}$ **Sch** is C^{∞} -schemes, and **DerC** $^{\infty}$ **Sch** derived C^{∞} -schemes. That is, before we can 'derive', we must first embed **Man** into a larger category of C^{∞} -schemes, singular generalizations of manifolds. Our set-up is a simplification of Spivak's. I consider 'classical' categories **Man** \subset **C** $^{\infty}$ **Sch** and related 'derived' 2-categories **dMan** \subset **dSpa**, where **dMan** is *d*-manifolds, and **dSpa** *d*-spaces. Here **dMan**, **dSpa** are roughly 2-category truncations of Spivak's **DerMan**, **DerC** $^{\infty}$ **Sch** — see Borisov arXiv:1212.1153. This lecture will introduce classical C^{∞} -schemes.

3.1. C^{∞} -rings

Algebraic geometry (based on algebra and polynomials) has excellent tools for studying singular spaces – the theory of schemes. In contrast, conventional differential geometry (based on smooth real functions and calculus) deals well with nonsingular spaces – manifolds – but poorly with singular spaces.

There is a little-known theory of schemes in differential geometry, C^{∞} -schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes, ... in synthetic differential geometry in the 1960s-1980s.

 C^{∞} -schemes are essentially *algebraic* objects, on which smooth real functions and calculus make sense.

The theory works by replacing commutative rings or \mathbb{K} -algebras in algebraic geometry by algebraic objects called C^{∞} -rings.

5 / 48

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds C^{∞} -rings Sheaves C^{∞} -schemes

Definition 3.1 (First definition of C^{∞} -ring)

A C^{∞} -ring is a set \mathfrak{C} together with *n*-fold operations $\Phi_f : \mathfrak{C}^n \to \mathfrak{C}$ for all smooth maps $f : \mathbb{R}^n \to \mathbb{R}$, $n \ge 0$, satisfying: Let $m, n \ge 0$, and $f_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \ldots, m$ and $g : \mathbb{R}^m \to \mathbb{R}$ be smooth functions. Define $h : \mathbb{R}^n \to \mathbb{R}$ by $h(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1 \ldots, x_n)),$ for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Then for all c_1, \ldots, c_n in \mathfrak{C} we have $\Phi_h(c_1, \ldots, c_n) = \Phi_g(\Phi_{f_1}(c_1, \ldots, c_n), \ldots, \Phi_{f_m}(c_1, \ldots, c_n)).$ Also defining $\pi_j : (x_1, \ldots, x_n) \mapsto x_j$ for $j = 1, \ldots, n$ we have $\Phi_{\pi_j} : (c_1, \ldots, c_n) \mapsto c_j.$ A morphism of C^{∞} -rings is a map of sets $\phi : \mathfrak{C} \to \mathfrak{D}$ with $\Phi_f \circ \phi^n = \phi \circ \Phi_f : \mathfrak{C}^n \to \mathfrak{D}$ for all smooth $f : \mathbb{R}^n \to \mathbb{R}$. Write \mathbf{C}^{∞} **Rings** for the category of C^{∞} -rings.

Definition 3.2 (Second definition of C^{∞} -ring)

Write **Euc** for the full subcategory of manifolds **Man** with objects \mathbb{R}^n for n = 0, 1, ... That is, **Euc** is the category with objects Euclidean spaces \mathbb{R}^n , and morphisms smooth maps $f : \mathbb{R}^m \to \mathbb{R}^n$. A C^{∞} -ring is a product-preserving functor F : **Euc** \to **Sets**. That is, F is a functor with functorial identifications $F(\mathbb{R}^{m+n}) = F(\mathbb{R}^m \times \mathbb{R}^n) \cong F(\mathbb{R}^m) \times F(\mathbb{R}^n)$ for all $m, n \ge 0$. A morphism $\phi : F \to G$ of C^{∞} -rings F, G is a natural transformation of functors $\phi : F \Rightarrow G$.

Definitions 3.1 and 3.2 are equivalent as follows. Given $F : \mathbf{Euc} \to \mathbf{Sets}$ as above, define a set $\mathfrak{C} = F(\mathbb{R})$. As F is product-preserving, $F(\mathbb{R}^n) \cong F(\mathbb{R})^n = \mathfrak{C}^n$ for all $n \ge 0$. If $f : \mathbb{R}^n \to \mathbb{R}$ is smooth then $F(f) : F(\mathbb{R}^n) \to F(\mathbb{R})$ is identified with a map $\Phi_f : \mathfrak{C}^n \to \mathfrak{C}$. Then $(\mathfrak{C}, \Phi_{f, f:\mathbb{R}^n \to \mathbb{R} C^\infty})$ is a C^∞ -ring as in Definition 3.1. Conversely, given \mathfrak{C} we define F with $F(\mathbb{R}^n) = \mathfrak{C}^n$.

7 / 48

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 $\mathcal{C}^\infty extsf{-Algebraic Geometry}$ 2-categories, d-spaces, and d-manifolds

 C^{∞} -rings Sheaves C^{∞} -schemes

Manifolds as C^{∞} -rings

Let X be a manifold, and write $\mathfrak{C} = C^{\infty}(X)$ for the set of smooth functions $c : X \to \mathbb{R}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth. Define $\Phi_f : C^{\infty}(X)^n \to C^{\infty}(X)$ by $\Phi_f(c_1, \ldots, c_n)(x) = f(c_1(x), \ldots, c_n(x))$ for $x \in X$. These make $C^{\infty}(X)$ into a C^{∞} -ring as in Definition 3.1. Define $F : \operatorname{Euc} \to \operatorname{Sets}$ by $F(\mathbb{R}^n) = \operatorname{Hom}_{\operatorname{Man}}(X, \mathbb{R}^n)$ and $F(f) = f \circ : \operatorname{Hom}_{\operatorname{Man}}(X, \mathbb{R}^m) \to \operatorname{Hom}_{\operatorname{Man}}(X, \mathbb{R}^n)$ for $f : \mathbb{R}^m \to \mathbb{R}^n$ smooth. Then F is a C^{∞} -ring as in Definition 3.2. If $f : X \to Y$ is smooth map of manifolds then $f^* : C^{\infty}(Y) \to C^{\infty}(X)$ is a morphism of C^{∞} -rings; conversely, if $\phi : C^{\infty}(Y) \to C^{\infty}(X)$ is a morphism of C^{∞} -rings then $\phi = f^*$ for some unique smooth $f : X \to Y$. This gives a *full and faithful functor* $F : \operatorname{Man} \to \operatorname{C}^{\infty}\operatorname{Rings}^{\operatorname{op}}$ by $F : X \mapsto C^{\infty}(X)$, $F : f \mapsto f^*$. Thus, we can think of manifolds as examples of C^{∞} -rings. But there are many more C^{∞} -rings than manifolds. For example, $C^0(X)$ is a C^{∞} -ring for any topological space X.

C^{∞} -rings as \mathbb{R} -algebras, ideals, and quotient C^{∞} -rings

Every C^{∞} -ring \mathfrak{C} is a commutative \mathbb{R} -algebra, where addition is $c + d = \Phi_f(c, d)$ for $f : \mathbb{R}^2 \to \mathbb{R}$, f(x, y) = x + y, and multiplication is $c \cdot d = \Phi_g(c, d)$ for $g : \mathbb{R}^2 \to \mathbb{R}$, g(x, y) = xy, multiplication by $\alpha \in \mathbb{R}$ is $\alpha c = \Phi_h(c)$ for $h : \mathbb{R} \to \mathbb{R}$, $h(x) = \alpha x$. An ideal $I \subseteq \mathfrak{C}$ in a C^{∞} -ring \mathfrak{C} is an ideal in \mathfrak{C} as an \mathbb{R} -algebra. Then the quotient vector space \mathfrak{C}/I is a commutative \mathbb{R} -algebra.

Proposition 3.3

If \mathfrak{C} is a C^{∞} -ring and $I \subseteq \mathfrak{C}$ an ideal, then there is a unique C^{∞} -ring structure on \mathfrak{C}/I such that the projection $\pi : \mathfrak{C} \to \mathfrak{C}/I$ is a morphism of C^{∞} -rings.

Definition

A C^{∞} -ring \mathfrak{C} is called *finitely generated* if $\mathfrak{C} \cong C^{\infty}(\mathbb{R}^n)/I$ for some ideal $I \subseteq C^{\infty}(\mathbb{R}^n)$.

9 / 48

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 $\mathcal{C}^\infty ext{-Algebraic Geometry}$ 2-categories, d-spaces, and d-manifolds

 C^{∞} -rings Sheaves C^{∞} -schemes

Proof of Proposition 3.3

Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth, and $c_1 + I, \ldots, c_n + I \in \mathfrak{C}/I$. For $\pi : \mathfrak{C} \to \mathfrak{C}/I$ to be a morphism of C^{∞} -rings, we are forced to set

$$\Phi_f(c_1+I,\ldots,c_n+I)=\Phi_f(c_1,\ldots,c_n)+I,$$

which determines the C^{∞} -ring structure on \mathfrak{C}/I completely. The only thing to prove is that this is well-defined. That is, if $c'_1, \ldots, c'_n \in \mathfrak{C}$ with $c_i - c'_i \in I$, so that $c_1 + I = c'_1 + I, \ldots, c_n + I = c'_n + I$, we must show that

$$\Phi_f(c_1,\ldots,c_n)-\Phi_f(c'_1,\ldots,c'_n)\in I.$$

Proof of Proposition 3.3

Lemma 3.4 (Hadamard's Lemma)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is smooth. Then there exist smooth $g_i : \mathbb{R}^{2n} \to \mathbb{R}$ for i = 1, ..., n such that for all x_j, y_j we have

$$f(x_1,...,x_n)-f(y_1,...,y_n) = \sum_{i=1}^n g_i(x_1,...,x_n,y_1,...,y_n)\cdot(x_i-y_i).$$

Note that $g_i(x_1, \ldots, x_n, x_1, \ldots, x_n) = \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n)$, so Hadamard's Lemma gives an algebraic interpretation of partial derivatives. The definition of C^{∞} -ring implies that

$$\Phi_f(c_1,\ldots,c_n)-\Phi_f(c'_1,\ldots,c'_n)=\sum_{i=1}^n\Phi_{g_i}(c_1,\ldots,c_n,c'_1,\ldots,c'_n)\cdot(c_i-c'_i),$$

which lies in I as $c_i - c'_i \in I$, as we have to prove.

 $11 \, / \, 48$

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^∞ -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

 C^{∞} -rings Sheaves C^{∞} -schemes

Example 3.5 (Finitely presented C^{∞} -rings. Compare Example 1.1.)

Suppose $p_1, \ldots, p_k : \mathbb{R}^n \to \mathbb{R}$ are smooth functions. Then $C^{\infty}(\mathbb{R}^n)$ is a C^{∞} -ring, and so an \mathbb{R} -algebra. Write $I = (p_1, \ldots, p_k)$ for the ideal in $C^{\infty}(\mathbb{R}^n)$ generated by p_1, \ldots, p_k . Then $C^{\infty}(\mathbb{R}^n)/(p_1, \ldots, p_k)$ is a C^{∞} -ring, by Proposition 3.3. We think of it as the C^{∞} -ring of functions on the smooth space $X = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : p_i(x_1, \ldots, x_n) = 0, i = 1, \ldots, k\}$. Note that X may be singular.

Example 3.6

Let $I \subset C^{\infty}(\mathbb{R})$ be the ideal of all smooth $f : \mathbb{R} \to \mathbb{R}$ with f(x) = 0 for all $x \ge 0$. Then I is *not finitely generated*, so $C^{\infty}(\mathbb{R})$ is *not noetherian* as an \mathbb{R} -algebra. This is one way in which C^{∞} -algebraic geometry behaves worse than ordinary algebraic geometry. We think of $C^{\infty}(\mathbb{R})/I$ as the C^{∞} -ring of smooth functions $f : [0, \infty) \to \mathbb{R}$.

Definition

A C^{∞} -ring \mathfrak{C} is a C^{∞} -local ring if as an \mathbb{R} -algebra, \mathfrak{C} has a unique maximal ideal \mathfrak{m} , with $\mathfrak{C}/\mathfrak{m} \cong \mathbb{R}$.

Example 3.7

Let X be a manifold, and $x \in X$. Write $C_x^{\infty}(X)$ for the C^{∞} -ring of germs of smooth functions $f : X \to \mathbb{R}$ at x. That is, elements of $C_x^{\infty}(X)$ are \sim -equivalence classes [U, f] of pairs (U, f), where $x \in U \subseteq X$ is open and $f : U \to \mathbb{R}$ is smooth, and $(U, f) \sim (U', f')$ if there exists open $x \in U'' \subseteq U \cap U'$ with $f|_{U''} = f'|_{U''}$. Then $C_x^{\infty}(X)$ is a C^{∞} -local ring.

Definition

An ideal $I \subseteq C^{\infty}(\mathbb{R}^n)$ is called *fair* if for $f \in C^{\infty}(\mathbb{R}^n)$, $\pi_x(f) \in \pi_x(I)$ for all $x \in \mathbb{R}^n$ implies that $f \in I$, where $\pi_x : C^{\infty}(\mathbb{R}^n) \to C_x^{\infty}(\mathbb{R}^n)$ is the projection. A C^{∞} -ring \mathfrak{C} is called *fair* if $\mathfrak{C} \cong C^{\infty}(\mathbb{R}^n)/I$ for $I \subseteq C^{\infty}(\mathbb{R}^n)$ a fair ideal.

13	/	48
	/	

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds C^{∞} -rings Sheaves C^{∞} -schemes

Modules over C^{∞} -rings

Definition

Let \mathfrak{C} be a C^{∞} -ring. A *module* over \mathfrak{C} is a module over \mathfrak{C} as an \mathbb{R} -algebra.

You might expect that the definition of module should involve the operations Φ_f as well as the \mathbb{R} -algebra structure, but it does not.

Example 3.8

Let X be a manifold, and $E \to X$ a vector bundle. Then $C^{\infty}(X)$ is a C^{∞} -ring, and the vector space $C^{\infty}(E)$ of smooth sections of E is a module over $C^{\infty}(X)$.

Cotangent modules

Definition

Let \mathfrak{C} be a C^{∞} -ring, and M a \mathfrak{C} -module. A C^{∞} -derivation is an \mathbb{R} -linear map $d : \mathfrak{C} \to M$ such that whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth map and $c_1, \ldots, c_n \in \mathfrak{C}$, we have

$$\mathrm{d}\Phi_f(c_1,\ldots,c_n)=\sum_{i=1}^n\Phi_{\frac{\partial f}{\partial x_i}}(c_1,\ldots,c_n)\cdot\mathrm{d}c_i.$$

Note that d is *not* a morphism of \mathfrak{C} -modules. We call such a pair $\Omega_{\mathfrak{C}}, d_{\mathfrak{C}}$ a *cotangent module* for \mathfrak{C} if it has the universal property that for any \mathfrak{C} -module M and C^{∞} -derivation $d : \mathfrak{C} \to M$, there is a unique morphism of \mathfrak{C} -modules $\phi : \Omega_{\mathfrak{C}} \to M$ with $d = \phi \circ d_{\mathfrak{C}}$.

Every C^{∞} -ring has a cotangent module, unique up to isomorphism.

Example 3.9

Let X be a manifold, with cotangent bundle T^*X . Then $C^{\infty}(T^*X)$ is a cotangent module for the C^{∞} -ring $C^{\infty}(X)$.

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

Sheaves C^{∞} -schemes

3.2. Sheaves

Sheaves are a central idea in algebraic geometry.

Definition

Let X be a topological space. A presheaf of sets \mathcal{E} on X consists of a set $\mathcal{E}(U)$ for each open $U \subseteq X$, and a restriction map $\rho_{UV} : \mathcal{E}(U) \to \mathcal{E}(V)$ for all open $V \subseteq U \subseteq X$, such that: (i) $\mathcal{E}(\emptyset) = *$ is one point; (ii) $\rho_{UU} = \operatorname{id}_{\mathcal{E}(U)}$ for all open $U \subseteq X$; and (iii) $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$ for all open $W \subseteq V \subseteq U \subseteq X$. We call \mathcal{E} a sheaf if also whenever $U \subseteq X$ is open and $\{V_i : i \in I\}$ is an open cover of U, then: (iv) If $s, t \in \mathcal{E}(U)$ with $\rho_{UV_i}(s) = \rho_{UV_i}(t)$ for all $i \in I$, then s = t; (v) If $s_i \in \mathcal{E}(V_i)$ for all $i \in I$ with $\rho_{V_i(V_i \cap V_j)}(s_i) = \rho_{V_j(V_i \cap V_j)}(s_j)$ in $\mathcal{E}(V_i \cap V_j)$ for all $i, j \in I$, then there exists $s \in \mathcal{E}(U)$ with $\rho_{UV_i}(s) = s_i$ for all $i \in I$. This s is unique by (iv).

Definition

Let \mathcal{E}, \mathcal{F} be (pre)sheaves on X. A morphism $\phi : \mathcal{E} \to \mathcal{F}$ consists of a map $\phi(U) : \mathcal{E}(U) \to \mathcal{F}(U)$ for all open $U \subseteq X$, such that $\rho_{UV} \circ \phi(U) = \phi(V) \circ \rho_{UV} : \mathcal{E}(U) \to \mathcal{F}(V)$ for all open $V \subseteq U \subseteq X$. Then sheaves form a category.

If C is any category in which direct limits exist, such as the categories of sets, rings, vector spaces, C^{∞} -rings, ..., then we can define (pre)sheaves \mathcal{E} of objects in C on X in the obvious way, and morphisms $\phi : \mathcal{E} \to \mathcal{F}$ by taking $\mathcal{E}(U)$ to be an object in C, and $\rho_{UV} : \mathcal{E}(U) \to \mathcal{E}(V), \phi(U) : \mathcal{E}(U) \to \mathcal{F}(U)$ to be morphisms in C, and $\mathcal{E}(\emptyset)$ to be a terminal object in C (e.g. the zero ring). So in particular, we can define *sheaves of* C^{∞} -rings on X. Almost any class of functions on X, or sections of a bundle on X, will form a sheaf on X. To be a sheaf means to be 'local on X', determined by its behaviour on any cover of small open sets.

17 / 48

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

olds C^{∞} -sche

Stalks of sheaves

Definition

Let X be a topological space, and \mathcal{E} a (pre)sheaf of sets (or C^{∞} -rings, etc.) on X, and $x \in X$. The stalk \mathcal{E}_x of \mathcal{E} at x is $\mathcal{E}_x = \varinjlim_{x \in U \subseteq X} \mathcal{E}(U)$,

where the direct limit (as a set, or C^{∞} -ring, etc.) is over all open $U \subseteq X$ with $x \in U$ using $\rho_{UV} : \mathcal{E}(U) \to \mathcal{E}(V)$ for open $x \in V \subseteq U \subseteq X$. That is, for all open $x \in U \subseteq X$ we have a morphism $\pi_x : \mathcal{E}(U) \to \mathcal{E}_x$, such that for all $x \in V \subseteq U \subseteq X$ we have $\pi_x = \pi_x \circ \rho_{UV}$, and \mathcal{E}_x is universal with this property.

Example 3.10

Let X be a manifold. Define a sheaf of C^{∞} -rings \mathcal{O}_X on X by $\mathcal{O}_X(U) = C^{\infty}(U)$ for all open $U \subseteq X$, as a C^{∞} -ring, and $\rho_{UV} : C^{\infty}(U) \to C^{\infty}(V)$, $\rho_{UV} : f \mapsto f|_V$ for all open $V \subseteq U \subseteq X$. The stalk $\mathcal{O}_{X,x}$ at $x \in X$ is $C_x^{\infty}(X)$ from Example 3.7.

Sheafification and pullbacks

Definition

Let X be a topological space and \mathcal{E} a presheaf (of sets, C^{∞} -rings, etc.) on X. A *sheafification* of \mathcal{E} is a sheaf \mathcal{E}' and a morphism of presheaves $\pi : \mathcal{E} \to \mathcal{E}'$, with the universal property that any morphism $\phi : \mathcal{E} \to \mathcal{F}$ with \mathcal{F} a sheaf factorizes uniquely as $\phi = \phi' \circ \pi$ for $\phi' : \mathcal{E}' \to \mathcal{F}$.

Any presheaf \mathcal{E} has a sheafification \mathcal{E}' , unique up to canonical isomorphism, and the stalks satisfy $\mathcal{E}_{\times} \cong \mathcal{E}'_{\times}$.

Definition

Let $f : X \to Y$ be a continuous map of topological spaces, and \mathcal{E} a sheaf on Y. Define a presheaf $\mathcal{P}f^{-1}(\mathcal{E})$ on X by $\mathcal{P}f^{-1}(\mathcal{E}) = \lim_{V \supseteq f(U)} \mathcal{E}(V),$

where the direct limit is over open $V \subseteq Y$ with $f(U) \subseteq V$. Define the *pullback sheaf* $f^{-1}(\mathcal{E})$ to be the sheafification of $\mathcal{P}f^{-1}(\mathcal{E})$.

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

 C^{∞} -schemes

3.3. C^{∞} -schemes

We can now define C^{∞} -schemes almost exactly as for schemes in algebraic geometry, but replacing rings or \mathbb{K} -algebras by C^{∞} -rings.

Definition

A C^{∞} -ringed space $\underline{X} = (X, \mathcal{O}_X)$ is a topological space X with a sheaf of C^{∞} -rings \mathcal{O}_X . It is called a *local* C^{∞} -ringed space if the stalks $\mathcal{O}_{X,x}$ are C^{∞} -local rings for all $x \in X$. A morphism $\underline{f} : \underline{X} \to \underline{Y}$ of C^{∞} -ringed spaces is $\underline{f} = (f, f^{\sharp})$, where $f : X \to Y$ is a continuous map of topological spaces, and $f^{\sharp} : f^{-1}(\mathcal{O}_Y) \to \mathcal{O}_X$ is a morphism of sheaves of C^{∞} -rings on X. Write $\mathbf{C}^{\infty}\mathbf{RS}$ for the category of C^{∞} -ringed spaces, and $\mathbf{L}\mathbf{C}^{\infty}\mathbf{RS}$ for the full subcategory of local C^{∞} -ringed spaces.

Definition

The global sections functor $\Gamma : LC^{\infty}RS \to C^{\infty}Rings^{\operatorname{op}}$ maps $\Gamma : (X, \mathcal{O}_X) \mapsto \mathcal{O}_X(X)$. It has a right adjoint, the spectrum functor Spec : $C^{\infty}Rings^{\operatorname{op}} \to LC^{\infty}RS$. That is, for each C^{∞} -ring \mathfrak{C} we construct a local C^{∞} -ringed space $X = \operatorname{Spec} \mathfrak{C}$. Points $x \in X$ are \mathbb{R} -algebra morphisms $x : \mathfrak{C} \to \mathbb{R}$ (this implies x is a C^{∞} -ring morphism). Then each $c \in \mathfrak{C}$ defines a map $c : X \to \mathbb{R}$. We give X the weakest topology such that these $c : X \to \mathbb{R}$ are continuous for all $c \in \mathfrak{C}$. We don't use prime ideals.

In algebraic geometry, Spec : **Rings**^{op} \rightarrow **LRS** is full and faithful. In C^{∞} -algebraic geometry, it is full but not faithful, that is, Spec forgets some information, as we don't use prime ideals. But on the subcategory **C**^{∞}**Rings**^{fa} of *fair C*^{∞}-rings, Spec is full and faithful.

21/48

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds C^{∞} -rings Sheaves C^{∞} -schemes

Definition

A local C^{∞} -ringed space \underline{X} is called an *affine* C^{∞} -scheme if $\underline{X} \cong \operatorname{Spec} \mathfrak{C}$ for some C^{∞} -ring \mathfrak{C} . We call \underline{X} a C^{∞} -scheme if Xcan be covered by open subsets U with $(U, \mathcal{O}_X|_U)$ an affine C^{∞} -scheme. Write \mathbf{C}^{∞} Sch for the full subcategory of C^{∞} -schemes in \mathbf{LC}^{∞} RS.

If X is a manifold, define a C^{∞} -scheme $\underline{X} = (X, \mathcal{O}_X)$ by $\mathcal{O}_X(U) = C^{\infty}(U)$ for all open $U \subseteq X$. Then $\underline{X} \cong \operatorname{Spec} C^{\infty}(X)$. This defines a full and faithful embedding **Man** $\hookrightarrow \mathbf{C}^{\infty}$ **Sch**. So we can regard manifolds as examples of C^{∞} -schemes. Think of a C^{∞} -ringed space \underline{X} as a topological space X with a notion of 'smooth function' $f: U \to \mathbb{R}$ for open $U \subseteq X$, i.e. $f \in \mathcal{O}_X(U)$. If \underline{X} is a local C^{∞} -ringed space then the notion of 'value of f in \mathbb{R} at a point $x \in U$ ' makes sense, since we can compose the maps $f \in \mathcal{O}_X(U) \xrightarrow{\pi_X} \mathcal{O}_{X,x} \to \mathcal{O}_{X,x}/\mathfrak{m} \cong \mathbb{R}$. If \underline{X} is a C^{∞} -scheme, then for small open $U \subseteq X$ we can locally reconstruct the sheaf $\mathcal{O}_X|_U$ from the C^{∞} -ring $\mathcal{O}_X(U)$. All *fibre products* exist in \mathbb{C}^{∞} Sch. In manifolds Man, fibre products $X \times_{g,Z,h} Y$ need exist only if $g: X \to Z$ and $h: Y \to Z$ are transverse. When g, h are not transverse, the fibre product $X \times_{g,Z,h} Y$ exists in \mathbb{C}^{∞} Sch, but may not be a manifold. We also define *vector bundles* and *quasicoherent sheaves* on a C^{∞} -scheme \underline{X} , as sheaves of \mathcal{O}_X -modules, and write qcoh(\underline{X}) for the abelian category of quasicoherent sheaves. A C^{∞} -scheme \underline{X} has a well-behaved *cotangent sheaf* T^*X .

Dominic Joyce, Oxford University Lecture 3: C^{∞} -Algebraic Geometry

 $\mathcal{C}^\infty ext{-Algebraic Geometry}$ 2-categories, d-spaces, and d-manifolds

 C^{∞} -rings Sheaves C^{∞} -schemes

Differences with ordinary Algebraic Geometry

- The topology on C[∞]-schemes is finer than the Zariski topology on schemes – affine schemes are always Hausdorff. No need to introduce the étale topology.
- Can find smooth functions supported on (almost) any open set.
- (Almost) any open cover has a subordinate partition of unity.
- Our C[∞]-rings 𝔅 are generally not noetherian as ℝ-algebras. So ideals I in 𝔅 may not be finitely generated, even in C[∞](ℝⁿ). This means there is not a well-behaved notion of coherent sheaf.

Derived Differential Geometry

Lecture 4 of 14: 2-categories, d-spaces, and d-manifolds

Dominic Joyce, Oxford University Summer 2015

These slides, and references, etc., available at http://people.maths.ox.ac.uk/~joyce/DDG2015

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -ring D-spaces D-manifolds

4. 2-categories, d-spaces, and d-manifolds

Our goal is to define the 2-category of d-manifolds **dMan**. To do this we will define a 2-category **dSpa** of 'd-spaces', a kind of derived C^{∞} -scheme, and then define d-manifolds **dMan** \subset **dSpa** to be a special kind of d-space, just as manifolds **Man** \subset **C**^{∞}**Sch** are a special kind of C^{∞} -scheme.

First we introduce 2-*categories*. There are two kinds, strict 2-categories and weak 2-categories. We will meet both, as d-manifolds and d-orbifolds **dMan**, **dOrb** are strict 2-categories, but Kuranishi spaces **Kur** are a weak 2-category. Every weak 2-category C is equivalent as a weak 2-category to a strict 2-category C' (weak 2-categories can be 'strictified'), so there is no fundamental difference, but weak 2-categories have more notation.

27 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

4.1. 2-categories

A 2-category C has objects $X, Y, \ldots, 1$ -morphisms $f, g : X \to Y$ (morphisms), and 2-morphisms $\eta : f \Rightarrow g$ (morphisms between morphisms). Here are some examples to bear in mind:

Example 4.1

(a) The strict 2-category \mathfrak{Cat} has objects categories $\mathcal{C}, \mathscr{D}, \ldots$, 1-morphisms functors $F, G : \mathcal{C} \to \mathscr{D}$, and 2-morphisms natural transformations $\eta : F \Rightarrow G$.

(b) The strict 2-category **Top**^{ho} of *topological spaces up to homotopy* has objects topological spaces X, Y, ..., 1-morphisms continuous maps $f, g : X \to Y$, and 2-morphisms isotopy classes $[H] : f \Rightarrow g$ of homotopies H from f to g. That is, $H : X \times [0,1] \to Y$ is continuous with H(x,0) = f(x), H(x,1) = g(x), and $H, H' : X \times [0,1] \to Y$ are isotopic if there exists continuous $I : X \times [0,1]^2 \to Y$ with I(x,s,0) = H(x,s), I(s,x,1) = H'(x,s), I(x,0,t) = f(x), I(x,1,t) = g(x).

Definition

A (strict) 2-category C consists of a proper class of objects $\operatorname{Obj}(\mathcal{C})$, for all $X, Y \in \operatorname{Obj}(\mathcal{C})$ a category $\operatorname{Hom}(X, Y)$, for all X in $Ob_i(\mathcal{C})$ an object id_X in Hom(X, X) called the *identity* 1-morphism, and for all X, Y, Z in $Obj(\mathcal{C})$ a functor $\mu_{X,Y,Z}$: Hom(X,Y) × Hom(Y,Z) \rightarrow Hom(X,Z). These must satisfy the *identity property*, that $\mu_{X,X,Y}(\mathrm{id}_X,-) = \mu_{X,Y,Y}(-,\mathrm{id}_Y) = \mathrm{id}_{\mathrm{Hom}(X,Y)}$ (4.1)as functors $\operatorname{Hom}(X, Y) \to \operatorname{Hom}(X, Y)$, and the associativity property, that $\mu_{W,Y,Z} \circ (\mu_{W,X,Y} \times \mathrm{id}) = \mu_{W,X,Z} \circ (\mathrm{id} \times \mu_{X,Y,Z})$ (4.2)as functors $\operatorname{Hom}(W, X) \times \operatorname{Hom}(X, Y) \times \operatorname{Hom}(Y, Z) \to \operatorname{Hom}(W, X)$. Objects f of Hom(X, Y) are called 1-morphisms, written $f: X \to Y$. For 1-morphisms $f, g: X \to Y$, morphisms $\eta \in \operatorname{Hom}_{\operatorname{Hom}(X,Y)}(f,g)$ are called 2-*morphisms*, written $\eta : f \Rightarrow g$.

There are three kinds of composition in a 2-category, satisfying various associativity relations. If $f: X \to Y$ and $g: Y \to Z$ are 1-morphisms then $\mu_{X,Y,Z}(f,g)$ is the *horizontal composition of* 1-morphisms, written $g \circ f: X \to Z$. If $f, g, h: X \to Y$ are 1-morphisms and $\eta: f \Rightarrow g, \zeta: g \Rightarrow h$ are 2-morphisms then composition of η, ζ in $\operatorname{Hom}(X, Y)$ gives the *vertical composition of* 2-morphisms of η, ζ , written $\zeta \odot \eta: f \Rightarrow h$, as a diagram

$$X \xrightarrow[h]{g} \downarrow \zeta \not \eta Y \longrightarrow X \xrightarrow[h]{f} Y. \quad (4.3)$$

And if $f, \tilde{f}: X \to Y$ and $g, \tilde{g}: Y \to Z$ are 1-morphisms and $\eta: f \Rightarrow \tilde{f}, \zeta: g \Rightarrow \tilde{g}$ are 2-morphisms then $\mu_{X,Y,Z}(\eta, \zeta)$ is the horizontal composition of 2-morphisms, written $\zeta * \eta: g \circ f \Rightarrow \tilde{g} \circ \tilde{f}$, as a diagram

There are also two kinds of identity: *identity* 1-morphisms $id_X : X \to X$ and *identity* 2-morphisms $id_f : f \Rightarrow f$. A 2-morphism is a 2-*isomorphism* if it is invertible under vertical composition. A 2-category is called a (2,1)-*category* if all 2-morphisms are 2-isomorphisms. For example, stacks in algebraic geometry form a (2,1)-category.

In a 2-category \mathfrak{C} , there are three notions of when objects X, Y in \mathfrak{C} are 'the same': equality X = Y, and isomorphism, that is we have 1-morphisms $f : X \to Y$, $g : Y \to X$ with $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, and equivalence, that is we have 1-morphisms $f : X \to Y, g : Y \to X$ and 2-isomorphisms $\eta : g \circ f \Rightarrow \operatorname{id}_X$ and $\zeta : f \circ g \Rightarrow \operatorname{id}_Y$. Usually equivalence is the correct notion. Commutative diagrams in 2-categories should in general only commute up to (specified) 2-isomorphisms, rather than strictly. A simple example of a commutative diagram in a 2-category \mathfrak{C} is

which means that X, Y, Z are objects of \mathfrak{C} , $f : X \to Y$, $g : Y \to Z$ and $h : X \to Z$ are 1-morphisms in \mathfrak{C} , and $\eta : g \circ f \Rightarrow h$ is a 2-isomorphism. C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -ring D-spaces D-manifolds

Definition (Fibre products in 2-categories. Compare §2.3.)

Let \mathcal{C} be a strict 2-category and $g: X \to Z$, $h: Y \to Z$ be 1-morphisms in \mathcal{C} . A fibre product $X \times_Z Y$ in \mathcal{C} is an object W, 1-morphisms $\pi_X: W \to X$ and $\pi_Y: W \to Y$ and a 2-isomorphism $\eta: g \circ \pi_X \Rightarrow h \circ \pi_Y$ in \mathcal{C} with the following universal property: suppose $\pi'_X: W' \to X$ and $\pi'_Y: W' \to Y$ are 1-morphisms and $\eta': g \circ \pi'_X \Rightarrow h \circ \pi'_Y$ is a 2-isomorphism in \mathcal{C} . Then there exists a 1-morphism $b: W' \to W$ and 2-isomorphisms $\zeta_X: \pi_X \circ b \Rightarrow \pi'_X$, $\zeta_Y: \pi_Y \circ b \Rightarrow \pi'_Y$ such that the following diagram commutes:

Furthermore, if $\tilde{b}, \tilde{\zeta}_X, \tilde{\zeta}_Y$ are alternative choices of b, ζ_X, ζ_Y then there should exist a unique 2-isomorphism $\theta : \tilde{b} \Rightarrow b$ with $\tilde{\zeta}_X = \zeta_X \odot (\operatorname{id}_{\pi_X} * \theta)$ and $\tilde{\zeta}_Y = \zeta_Y \odot (\operatorname{id}_{\pi_Y} * \theta)$.

If a fibre product $X \times_Z Y$ exists, it is unique up to equivalence.

33 / 48

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

Dominic Joyce, Oxford University

2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

Lecture 4: 2-categories, d-spaces, and d-manifolds

Weak 2-categories

A weak 2-category, or bicategory, is like a strict 2-category, except that the equations of functors (4.1), (4.2) are required to hold not up to equality, but up to specified natural isomorphisms. That is, a weak 2-category \mathcal{C} consists of data $\operatorname{Obj}(\mathcal{C})$, $\operatorname{Hom}(X, Y)$, $\mu_{X,Y,Z}$, id_X as above, but in place of (4.1), a natural isomorphism

 $\alpha: \mu_{W,Y,Z} \circ (\mu_{W,X,Y} \times \mathrm{id}) \Longrightarrow \mu_{W,X,Z} \circ (\mathrm{id} \times \mu_{X,Y,Z}),$ and in place of (4.2), natural isomorphisms

 $\beta: \mu_{X,X,Y}(\mathrm{id}_X, -) \Longrightarrow \mathrm{id}, \quad \gamma: \mu_{X,Y,Y}(-, \mathrm{id}_Y) \Longrightarrow \mathrm{id},$ satisfying some identities. That is, composition of 1-morphisms is associative only up to specified 2-isomorphisms, so for 1-morphisms $e: W \to X, f: X \to Y, g: Y \to Z$ we have a 2-isomorphism $\alpha_{g,f,e}: (g \circ f) \circ e \Longrightarrow g \circ (f \circ e).$

Similarly identities id_X, id_Y work up to 2-isomorphism, so for each $f: X \to Y$ we have 2-isomorphisms

$$\beta_f: f \circ \operatorname{id}_X \Longrightarrow f, \qquad \gamma_f: \operatorname{id}_Y \circ f \Longrightarrow f.$$

4.2. Differential graded C^{∞} -rings

As in §2, to define derived \mathbb{K} -schemes, we replaced commutative \mathbb{K} -algebras by commutative differential graded \mathbb{K} -algebras (or simplicial \mathbb{K} -algebras). So, to define derived C^{∞} -schemes, we should replace C^{∞} -rings by *differential graded* C^{∞} -rings (or perhaps simplicial C^{∞} -rings, as in Spivak and Borisov–Noël).

Definition

A differential graded C^{∞} -ring (or dg C^{∞} -ring) $\mathfrak{C}^{\bullet} = (\mathfrak{C}^*, \mathrm{d})$ is a commutative differential graded \mathbb{R} -algebra $(\mathfrak{C}^*, \mathrm{d})$ in degrees ≤ 0 , as in §2.2, together with the structure $(\Phi_f)_{f:\mathbb{R}^n \to \mathbb{R}} C^{\infty}$ of a C^{∞} -ring on \mathfrak{C}^0 , such that the \mathbb{R} -algebra structures on \mathfrak{C}^0 from the C^{∞} -ring and the cdga over \mathbb{R} agree.

A morphism $\phi : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ of dg C^{∞} -rings is maps $\phi^{k} : \mathfrak{C}^{k} \to \mathfrak{D}^{k}$ for all $k \leq 0$, such that $(\phi^{k})_{k \leq 0}$ is a morphism of cdgas over \mathbb{R} , and $\phi^{0} : \mathfrak{C}^{0} \to \mathfrak{D}^{0}$ is a morphism of C^{∞} -rings.

35 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^∞ -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

Then dg C^{∞} -rings form an $(\infty$ -)category **DGC**^{∞}**Rings**. One could use dg C^{∞} -rings to define 'derived C^{∞} -schemes' and 'derived C^{∞} -stacks' as functors $F : \mathbf{DGC}^{\infty}\mathbf{Rings} \to \mathbf{SSets}$. An alternative is to use *simplicial* C^{∞} -*rings* $\mathbf{SC}^{\infty}\mathbf{Rings}$, as in Spivak 2008, Borisov–Noel 2011, and Borisov 2012.

Example 4.2 (Kuranishi neighbourhoods. Compare Example 2.1.)

Let V be a smooth manifold, and $E \to V$ a smooth real vector bundle of rank n, and $s: V \to E$ a smooth section. Define a dg C^{∞} -ring \mathfrak{C}^{\bullet} as follows: take $\mathfrak{C}^{0} = C^{\infty}(V)$, with its natural \mathbb{R} -algebra and C^{∞} -ring structures. Set $\mathfrak{C}^{k} = C^{\infty}(\Lambda^{-k}E^{*})$ for $k = -1, -2, \ldots, -n$, and $\mathfrak{C}^{k} = 0$ for k < -n. The multiplication $\mathfrak{C}^{k} \times \mathfrak{C}^{l} \to \mathfrak{C}^{k+l}$ are multiplication by functions in $C^{\infty}(V)$ if k = 0or l = 0, and wedge product $\wedge : \Lambda^{-k}E^{*} \times \Lambda^{-l}E^{*} \to \Lambda^{-k-l}E^{*}$ if k, l < 0. The differential $d: \mathfrak{C}^{k} \to \mathfrak{C}^{k+1}$ is contraction with $s, s \cdot : \Lambda^{-k}E^{*} \to \Lambda^{-k-1}E^{*}$.

Square zero dg C^{∞} -rings

We will use only a special class of dg C^{∞} -rings called *square zero* dg C^{∞} -rings, which form a 2-category **SZC^{\infty}Rings**.

Definition

A dg C^{∞} -ring \mathfrak{C}^{\bullet} is square zero if $\mathfrak{C}^{i} = 0$ for i < -1 and $\mathfrak{C}^{-1} \cdot d[\mathfrak{C}^{-1}] = 0$. Then \mathfrak{C} is $\mathfrak{C}^{-1} \xrightarrow{d} \mathfrak{C}^{0}$, and $d[\mathfrak{C}^{-1}]$ is a square zero ideal in the (ordinary) C^{∞} -ring \mathfrak{C}^{0} , and \mathfrak{C}^{-1} is a module over the 'classical' C^{∞} -ring $H^{0}(\mathfrak{C}^{\bullet}) = \mathfrak{C}^{0}/d[\mathfrak{C}^{-1}]$. A 1-morphism $\alpha^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ in SZC^{∞} Rings is maps $\alpha^{0} : \mathfrak{C}^{0} \to \mathfrak{D}^{0}, \alpha^{-1} : \mathfrak{C}^{-1} \to \mathfrak{D}^{-1}$ preserving all the structure. Then $H^{0}(\alpha^{\bullet}) : H^{0}(\mathfrak{C}) \to H^{0}(\mathfrak{D})$ is a morphism of C^{∞} -rings. For 1-morphisms $\alpha^{\bullet}, \beta^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ a 2-morphism $\eta : \alpha^{\bullet} \Rightarrow \beta^{\bullet}$ is a linear $\eta : \mathfrak{C}^{0} \to \mathfrak{D}^{-1}$ with $\beta^{0} = \alpha^{0} + d \circ \eta$ and $\beta^{-1} = \alpha^{-1} + \eta \circ d$. There is an embedding of (2-)categories \mathbf{C}^{∞} Rings \subset SZC^{∞} Rings as the (2-)subcategory of \mathfrak{C}^{\bullet} with $\mathfrak{C}^{-1} = 0$.

37 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^∞ -Algebraic Geometry 2-categories, d-spaces, and d-manifolds Differential graded C^{∞} -rings D-spaces D-manifolds

There is a truncation functor $T : \mathbf{DGC}^{\infty}\mathbf{Rings} \to \mathbf{SZC}^{\infty}\mathbf{Rings}$, where if \mathfrak{C}^{\bullet} is a dg C^{∞} -ring, then $\mathfrak{D}^{\bullet} = T(\mathfrak{C}^{\bullet})$ is the square zero C^{∞} -ring with

$$\mathfrak{D}^0 = \mathfrak{C}^0 / [\mathrm{d}\mathfrak{C}^{-1}]^2, \quad \mathfrak{D}^{-1} = \mathfrak{C}^{-1} / [\mathrm{d}\mathfrak{C}^{-2} + (\mathrm{d}\mathfrak{C}^{-1}) \cdot \mathfrak{C}^{-1})].$$

Applied to Example 4.2 this gives:

Example 4.3 (Kuranishi neighbourhoods. Compare Example 4.2.) Let V be a manifold, $E \rightarrow V$ a vector bundle, and $s: V \rightarrow E$ a

smooth section. Associate a square zero dg C^{∞} -ring $\mathfrak{C}^{-1} \xrightarrow{d} \mathfrak{C}^{0}$ to the 'Kuranishi neighbourhood' (V, E, s) by

$$\begin{split} \mathfrak{C}^0 &= C^\infty(V)/I_s^2, \qquad \mathfrak{C}^{-1} = C^\infty(E^*)/I_s \cdot C^\infty(E^*), \\ &\mathrm{d}(\epsilon + I_s \cdot C^\infty(E^*)) = \epsilon(s) + I_s^2, \end{split}$$

where $I_s = C^{\infty}(E^*) \cdot s \subset C^{\infty}(V)$ is the ideal generated by s.

These will be the local models for d-manifolds.

Cotangent complexes in the 2-category setting

Let \mathfrak{C}^{\bullet} be a square zero dg C^{∞} -ring. Define the *cotangent complex* $\mathbb{L}_{\mathfrak{C}}^{-1} \xrightarrow{\mathrm{d}_{\mathfrak{C}}} \mathbb{L}_{\mathfrak{C}}^{0}$ to be the 2-term complex of $H^{0}(\mathfrak{C}^{\bullet})$ -modules $\mathfrak{C}^{-1} \xrightarrow{\mathrm{d}_{\mathrm{DR}} \circ \mathrm{d}} \mathcal{D}_{\mathfrak{C}^{0}} \otimes_{\mathfrak{C}^{0}} H^{0}(\mathfrak{C}^{\bullet}),$

regarded as an element of the 2-category of 2-term complexes of $H^0(\mathfrak{C}^{\bullet})$ -modules, with $\Omega_{\mathfrak{C}^0}$ the cotangent module of the C^{∞} -ring \mathfrak{C}^0 , as in §3.1. Let $\alpha^{\bullet}, \beta^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ be 1-morphisms and $\eta : \alpha^{\bullet} \Rightarrow \beta^{\bullet}$ a 2-morphism in **SZC**^{∞}**Rings**. Then $H^0(\alpha^{\bullet}) = H^0(\beta^{\bullet})$, so we may regard \mathfrak{D}^{-1} as an $H^0(\mathfrak{C}^{\bullet})$ -module. And $\eta : \mathfrak{C}^0 \to \mathfrak{D}^{-1}$ is a derivation, so it factors through an $H^0(\mathfrak{C}^{\bullet})$ -linear map $\hat{\eta} : \Omega_{\mathfrak{C}^0} \otimes_{\mathfrak{C}^0} H^0(\mathfrak{C}^{\bullet}) \to \mathfrak{D}^{-1}$. We have a diagram $\mathbb{L}^{-1}_{\mathfrak{C}} \xrightarrow{\mathbb{L}^0_{\mathfrak{C}}} \mathbb{L}^0_{\mathfrak{C}} \downarrow \downarrow \mathbb{L}^0_{\beta}$ $\mathbb{L}^{-1}_{\mathfrak{D}} \xrightarrow{\mathbb{L}^0_{\mathfrak{C}}} \mathbb{L}^0_{\mathfrak{D}}$.

So 1-morphisms induce morphisms, and 2-morphisms homotopies, of cotangent complexes.

39 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

4.3. D-spaces

D-spaces are our notion of derived C^{∞} -scheme:

Definition

A *d-space* **X** is a topological space X with a sheaf of square zero dg- C^{∞} -rings $\mathcal{O}_{\mathbf{X}}^{\bullet} = \mathcal{O}_{X}^{-1} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{O}_{\mathbf{X}}^{0}$, such that $\underline{X} = (X, H^{0}(\mathcal{O}_{\mathbf{X}}^{\bullet}))$ and $(X, \mathcal{O}_{\mathbf{X}}^{0})$ are C^{∞} -schemes, and \mathcal{O}_{X}^{-1} is quasicoherent over \underline{X} . We call \underline{X} the underlying classical C^{∞} -scheme.

We require that the topological space X should be Hausdorff and second countable, and the underlying classical C^{∞} -scheme X should be *locally fair*, i.e. covered by open Spec $\mathfrak{C} \cong \underline{U} \subseteq \underline{X}$ for \mathfrak{C} a fair C^{∞} -ring. Basically this means X is locally finite-dimensional.

Note that $\mathcal{O}_{\mathbf{X}}^{\bullet}$ is an ordinary (strict) sheaf of square zero dg C^{∞} -rings, using only the objects and 1-morphisms in **SZC^{\infty} Rings**, and not (as usual in DAG) a homotopy sheaf using 2-isomorphisms $\rho_{VW} \circ \rho_{UV} \Rightarrow \rho_{UW}$ for open $W \subseteq V \subseteq U \subseteq X$.

Definition

A 1-morphism $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ of d-spaces \mathbf{X}, \mathbf{Y} is $\mathbf{f} = (f, f^{\sharp})$, where $f : X \to Y$ is a continuous map of topological spaces, and $f^{\sharp} : f^{-1}(\mathcal{O}_{\mathbf{Y}}^{\bullet}) \to \mathcal{O}_{\mathbf{X}}^{\bullet}$ is a morphism of sheaves of square zero dg C^{∞} -rings on X. Then $\underline{f} = (f, H^0(f^{\sharp})) : \underline{X} \to \underline{Y}$ is a morphism of the underlying classical C^{∞} -schemes.

Definition

Let $\mathbf{f}, \mathbf{g} : \mathbf{X} \to \mathbf{Y}$ be 1-morphisms of d-spaces, and suppose the continuous maps $f, g : X \to Y$ are equal. We have morphisms $f^{\sharp}, g^{\sharp} : f^{-1}(\mathcal{O}_{\mathbf{Y}}^{\bullet}) \to \mathcal{O}_{\mathbf{X}}^{\bullet}$ of sheaves of square zero dg C^{∞} -rings. That is, f^{\sharp}, g^{\sharp} are sheaves on X of 1-morphisms in SZC^{∞} Rings. A 2-morphism $\eta : \mathbf{f} \Rightarrow \mathbf{g}$ is a sheaf on X of 2-morphisms $\eta : f^{\sharp} \Rightarrow g^{\sharp}$ in SZC^{∞} Rings. That is, for each open $U \subseteq X$, we have a 2-morphism $\eta(U) : f^{\sharp}(U) \Rightarrow g^{\sharp}(U)$ in SZC^{∞} Rings, with $\mathrm{id}_{\rho_{UV}} * \eta(U) = \eta(V) * \mathrm{id}_{\rho_{UV}}$ for all open $V \subseteq U \subseteq X$.

41 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^∞ -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

With the obvious notions of composition of 1- and 2-morphisms, and identities, d-spaces form a strict 2-category **dSpa**, in which all 2-morphisms are 2-isomorphisms.

 C^{∞} -schemes include into d-spaces as those **X** with $\mathcal{O}_{X}^{-1} = 0$. Thus we have inclusions of (2-)categories **Man** $\subset \mathbf{C}^{\infty}\mathbf{Sch} \subset \mathbf{dSpa}$, so manifolds are examples of d-spaces.

The cotangent complex $\mathbb{L}^{\bullet}_{\mathbf{X}}$ of \mathbf{X} is the sheaf of cotangent complexes of $\mathcal{O}^{\bullet}_{\mathbf{X}}$, a 2-term complex $\mathbb{L}^{-1}_{\mathbf{X}} \xrightarrow{\mathrm{d}_{\mathbf{X}}} \mathbb{L}^{0}_{\mathbf{X}}$ of quasicoherent sheaves on \underline{X} . Such complexes form a 2-category qcoh^[-1,0](\underline{X}).

Theorem 4.4

All fibre products exist in the 2-category dSpa.

The proof is by construction: given 1-morphisms $\mathbf{g} : \mathbf{X} \to \mathbf{Z}$ and $\mathbf{h} : \mathbf{Y} \to \mathbf{Z}$, we write down an explicit d-space \mathbf{W} , 1-morphisms $\mathbf{e} : \mathbf{W} \to \mathbf{X}$, $\mathbf{f} : \mathbf{W} \to \mathbf{Y}$ and 2-isomorphism $\eta : \mathbf{g} \circ \mathbf{e} \Rightarrow \mathbf{h} \circ \mathbf{f}$, and verify by hand that it satisfies the universal property in §4.1.

Gluing d-spaces by equivalences

Theorem 4.5

Let \mathbf{X}, \mathbf{Y} be d-spaces, $\emptyset \neq \mathbf{U} \subseteq \mathbf{X}, \emptyset \neq \mathbf{V} \subseteq \mathbf{Y}$ open d-subspaces, and $\mathbf{f} : \mathbf{U} \to \mathbf{V}$ an equivalence in the 2-category **dSpa**. Suppose the topological space $Z = X \cup_{U=V} Y$ made by gluing X, Y using \mathbf{f} is Hausdorff. Then there exist a d-space \mathbf{Z} , unique up to equivalence in **dSpa**, open $\hat{\mathbf{X}}, \hat{\mathbf{Y}} \subseteq \mathbf{Z}$ with $\mathbf{Z} = \hat{\mathbf{X}} \cup \hat{\mathbf{Y}}$, equivalences $\mathbf{g} : \mathbf{X} \to \hat{\mathbf{X}}$ and $\mathbf{h} : \mathbf{Y} \to \hat{\mathbf{Y}}$, and a 2-morphism $\eta : \mathbf{g}|_{\mathbf{U}} \Rightarrow \mathbf{h} \circ \mathbf{f}$.

The proof is again by explicit construction. First we glue the classical C^{∞} -schemes $\underline{X}, \underline{Y}$ on $\underline{U} \subseteq \underline{X}, \underline{V} \subseteq \underline{Y}$ by the isomorphism $\underline{f} : \underline{U} \to \underline{V}$ to get a C^{∞} -scheme \underline{Z} . The definition of \mathbf{Z} involves choosing a smooth partition of unity on \underline{Z} subordinate to the open cover $\{\underline{U}, \underline{V}\}$. This is possible in the world of C^{∞} -schemes, but would not work in conventional (derived) algebraic geometry.

43 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds 2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

Theorem 4.6

Suppose I is an indexing set, and < is a total order on I, and X_i for $i \in I$ are d-spaces, and for all i < j in I we are given open d-subspaces $U_{ij} \subseteq X_i$, $U_{ji} \subseteq X_j$ and an equivalence $e_{ij} : U_{ij} \rightarrow U_{ji}$, such that for all i < j < k in I we have a 2-commutative diagram

$$\mathbf{U}_{ij} \cap \mathbf{U}_{ik} \xrightarrow{\mathbf{e}_{ij} | \mathbf{u}_{ij} \cap \mathbf{U}_{ik}} \mathbf{U}_{ji} \cap \mathbf{U}_{jk} \xrightarrow{\mathbf{e}_{jk} | \mathbf{u}_{ji} \cap \mathbf{U}_{jk}} \mathbf{U}_{ki} \cap \mathbf{U}_{kj}.$$

$$(4.5)$$

Define the quotient topological space $Z = (\coprod_{i \in I} X_i) / \sim$, where \sim is generated by $x_i \sim x_j$ if $i < j, x_i \in U_{ij} \subseteq X_i$ and $x_j \in U_{ji} \subseteq X_j$ with $e_{ij}(x_i) = x_j$. Suppose Z is Hausdorff and second countable. Then there exist a d-space Z and a 1-morphism $\mathbf{f}_i : \mathbf{X}_i \to \mathbf{Z}$ which is an equivalence with an open d-subspace $\hat{\mathbf{X}}_i \subseteq \mathbf{Z}$ for all $i \in I$, where $\mathbf{Z} = \bigcup_{i \in I} \hat{\mathbf{X}}_i$, such that $\mathbf{f}_i(\mathbf{U}_{ij}) = \hat{\mathbf{X}}_i \cap \hat{\mathbf{X}}_j$ for i < j in I, and there exists a 2-morphism $\zeta_{ij} : \mathbf{f}_j \circ \mathbf{e}_{ij} \Rightarrow \mathbf{f}_i |_{\mathbf{U}_{ij}}$. The d-space Z is unique up to equivalence, and is independent of choice of η_{ijk} .

Theorem 4.6 generalizes Theorem 4.5 to gluing many d-spaces by equivalences. It is important that the 2-isomorphisms η_{ijk} in (4.5) are only required to exist, they need not satisfy any conditions on quadruple overlaps, etc., and **Z** is independent of the choice of η_{ijk} . Because of this, Theorem 4.6 actually makes sense as a statement in the homotopy category Ho(**dSpa**). The analogue is false for gluing by equivalences for orbifolds **Orb**, d-orbifolds **dOrb**, and d-stacks **dSta**.

45 / 48

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

 C^{∞} -Algebraic Geometry 2-categories, d-spaces, and d-manifolds

2-categories Differential graded C^{∞} -rings D-spaces D-manifolds

4.4. D-manifolds

Definition

A *d*-manifold **X** of virtual dimension $n \in \mathbb{Z}$ is a d-space **X** such that **X** is covered by open d-subspaces $\mathbf{Y} \subset \mathbf{X}$ with equivalences $\mathbf{Y} \simeq U \times_{g,W,h} V$, where U, V, W are manifolds with $\dim U + \dim V - \dim W = n$, regarded as d-spaces by $\mathbf{Man} \subset \mathbf{C}^{\infty}\mathbf{Sch} \subset \mathbf{dSpa}$, and $g: U \to W$, $h: V \to W$ are smooth maps, and $U \times_{g,W,h} V$ is the fibre product in the 2-category \mathbf{dSpa} . Write **dMan** for the full 2-subcategory of d-manifolds in \mathbf{dSpa} .

Note that the fibre product $U \times_W V$ exists by Theorem 4.4, and must be taken in **dSpa** as a 2-category, not as an ordinary category Alternatively, we can write the local models as $\mathbf{Y} \simeq V \times_{0,E,s} V$, where V is a manifold, $E \rightarrow V$ a vector bundle, $s : V \rightarrow E$ a smooth section, and $n = \dim V - \operatorname{rank} E$. Then (V, E, s) is a Kuranishi neighbourhood on **X**, as in Fukaya–Oh–Ohta–Ono. Thus, a d-manifold **X** is a 'derived' geometric space covered by simple, differential-geometric local models: they are fibre products $U \times_{g,W,h} V$ for smooth maps of manifolds $g : U \to W$, $h : V \to W$, or they are the zeroes $s^{-1}(0)$ of a smooth section $s : V \to E$ of a vector bundle $E \to V$ over a manifold V. However, as usual in derived geometry, the way in which these local models are glued together (by equivalences in the 2-category **dSpa**) is more mysterious, is weaker than isomorphisms, and takes some work to understand. We discuss this later in the course. If $\mathbf{g} : \mathbf{X} \to \mathbf{Z}$, $\mathbf{h} : \mathbf{Y} \to \mathbf{Z}$ are 1-morphisms in **dMan**, then Theorem 4.4 says that a fibre product $\mathbf{W} = \mathbf{X} \times_{\mathbf{g},\mathbf{Z},\mathbf{h}} \mathbf{Y}$ exists in **dSpa**. If \mathbf{W} is a d-manifold (which is a local question on \mathbf{W}) then \mathbf{W} is also a fibre product in **dMan**. So we will give be able to give useful criteria for existence of fibre products in **dMan**.

47 / 48 Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

Theorems 4.5 and 4.6 immediately lift to results on gluing by equivalences in **dMan**, taking $\mathbf{U}, \mathbf{V}, \mathbf{X}_i$ to be d-manifolds of a fixed virtual dimension $n \in \mathbb{Z}$. Thus, we can define d-manifolds by gluing together local models by equivalences. This is very useful, as natural examples (e.g. moduli spaces) are often presented in terms of local models somehow glued on overlaps.

I chose to use square zero dg C^{∞} -rings to define **dSpa**, **dMan** (rather than, say, general dg C^{∞} -rings) as they are very 'small' they are essentially the minimal extension of classical C^{∞} -rings which remembers the 'derived' information I care about (in particular, sufficient to form virtual cycles for derived manifolds). This has the advantage of making the theory simpler than it could have been, e.g. by using 2-categories rather than ∞ -categories, whilst still having good properties, e.g. 'correct' fibre products and gluing by equivalences. A possible disadvantage is that they forget 'higher obstructions', which occur in some moduli problems.