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3. C>*-Algebraic Geometry

Our goal is to define the 2-category of d-manifolds dMan.

First consider an algebro-geometric version of what we want to do.
A good algebraic analogue of smooth manifolds are complex
algebraic manifolds, that is, separated smooth C-schemes S of
pure dimension. These form a full subcategory AlgMang in the
category Sch¢ of C-schemes, and can roughly be characterized as
the (sufficiently nice) objects S in Sch¢ whose cotangent complex
Ls is a vector bundle (i.e. perfect in the interval [0, 0]).

To make a derived version of this, we first define an oo-category
DerSch¢ of derived C-schemes, and then define the oco-category
DerAlgMang of derived complex algebraic manifolds to be the full
oo-subcategory of objects S in DerSch¢ which are quasi-smooth
(have cotangent complex LLg perfect in the interval [—1,0]), and
satisfy some other niceness conditions (separated, etc.).
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Thus, we have ‘classical’ categories AlgMang C Schc, and related
‘derived’ oo-categories DerAlgMan: C DerSchc.

David Spivak, a student of Jacob Lurie, defined an oco-category
DerMang,; of ‘derived smooth manifolds’ using a similar structure:
he considered ‘classical’ categories Man C C>Sch and related
‘derived’ oo-categories DerMangg,; C DerC>Sch. Here C><Sch is
C>°-schemes, and DerC>Sch derived C°°-schemes. That is,
before we can ‘derive’, we must first embed Man into a larger
category of C°°-schemes, singular generalizations of manifolds.
Our set-up is a simplification of Spivak’s. | consider ‘classical’
categories Man C C>Sch and related ‘derived’ 2-categories
dMan C dSpa, where dMan is d-manifolds, and dSpa d-spaces.
Here dMan, dSpa are roughly 2-category truncations of Spivak'’s
DerMan, DerC>Sch — see Borisov arXiv:1212.1153.

This lecture will introduce classical C°°-schemes.
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3.1. C™>-rings

Algebraic geometry (based on algebra and polynomials) has
excellent tools for studying singular spaces — the theory of schemes.
In contrast, conventional differential geometry (based on smooth
real functions and calculus) deals well with nonsingular spaces —
manifolds — but poorly with singular spaces.
There is a little-known theory of schemes in differential geometry,
C°°-schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes,
. in synthetic differential geometry in the 1960s-1980s.
C°°-schemes are essentially algebraic objects, on which smooth
real functions and calculus make sense.
The theory works by replacing commutative rings or K-algebras in
algebraic geometry by algebraic objects called C°°-rings.
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Definition 3.1 (First definition of C*°-ring)

A C*-ring is a set € together with n-fold operations ®7 : €" — &€
for all smooth maps f : R” — R, n > 0, satisfying:

let m,n>0,and ;,:R" - Rfori=1,....mand g :R" - R
be smooth functions. Define h: R" — R by

h(x1,....xn) = g(A(X1s- -5 %n), oy (X1 ..., Xn)),

for (x1,...,xn) € R". Then for all ¢1,...,c, in € we have

(Dh(Cl,...,Cn) = Cbg((bfl(cl,...,Cn),...,bem(Cl,...,Cn)).
Also defining 7 : (x1,...,Xxn) — xj for j =1,..., n we have
b (e, 6n) = g

A morphism of C°°-rings is a map of sets ¢ : € — ® with
bro" =pods: " — D for all smooth : R" — R. Write
C>Rings for the category of C°-rings.
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Definition 3.2 (Second definition of C*°-ring)

Write Euc for the full subcategory of manifolds Man with objects
R" for n=0,1,.... That is, Euc is the category with objects
Euclidean spaces R”, and morphisms smooth maps f : R" — R",
A C®-ring is a product-preserving functor F : Euc — Sets. That
is, F is a functor with functorial identifications

FR™T™) = F(R™ x R") = F(R™) x F(R") for all m,n > 0.

A morphism ¢ : F — G of C*-rings F, G is a natural
transformation of functors ¢ : F = G.

Definitions 3.1 and 3.2 are equivalent as follows. Given

F : Euc — Sets as above, define a set € = F(R). As F is
product-preserving, F(R") = F(R)" = ¢" for all n > 0. If

f : R" — R is smooth then F(f): F(R") — F(R) is identified with
amap O :¢€" — €. Then (Q,be, FR'R Coo) IS @ C*-ring as in
Definition 3.1. Conversely, given € we define F with F(R") = ".
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Manifolds as C°°-rings

Let X be a manifold, and write € = C°°(X) for the set of smooth
functions c: X = R. Let f : R” — R be smooth. Define

®r 0 CO(X)"—= C®(X) by ®f(cy, ..., cn)(x)=F(c1(x),..., cn(x))
for x € X. These make C*°(X) into a C*-ring as in Definition 3.1.
Define F : Euc — Sets by F(R") = Homman(X,R") and

F(f) = fo: Hompan(X,R™) — Hompan (X, R") for f : R™ — R"
smooth. Then F is a C°°-ring as in Definition 3.2.

If f: X — Y is smooth map of manifolds then

f*: C®(Y) — C*®(X) is a morphism of C*°-rings; conversely, if
¢ : C®(Y) — C*®(X) is a morphism of C®-rings then ¢ = f* for
some unique smooth f : X — Y. This gives a full and faithful
functor F : Man — C*®°Rings® by F : X — C>®(X), F: f — f*,
Thus, we can think of manifolds as examples of C*°-rings. But
there are many more C°°-rings than manifolds. For example,
CO(X) is a C*°-ring for any topological space X.
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C*°-rings as R-algebras, ideals, and quotient C*>°-rings

Every C®-ring € is a commutative R-algebra, where addition is
c+d=®¢(c,d) for f : R* = R, f(x,y) = x+y, and
multiplication is ¢ - d = P4 (c, d) for g : R? - R, g(x,y) = xy,
multiplication by a € Ris a ¢ = ®p(c) for h: R — R, h(x) = ax.
An ideal I C € in a C*®-ring € is an ideal in € as an R-algebra.
Then the quotient vector space €// is a commutative R-algebra.

Proposition 3.3

If €isa C*-ring and | C € an ideal, then there is a unique
C°-ring structure on €/| such that the projection w: € — &/ is
a morphism of C*°-rings.

Definition
A C*-ring € is called finitely generated if € = C*°(R")/I for some
ideal I C C*°(R").
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Proof of Proposition 3.3

Let f : R” — R be smooth, and c; +/,...,¢c, + 1 € €/I. For
7w : € — €/I to be a morphism of C*-rings, we are forced to set

(Df(Cl—l—/,...,Cn—I—/):¢f(C1,...,Cn)+/,

which determines the C°°-ring structure on €/ completely. The
only thing to prove is that this is well-defined. That is, if
c1,---,Ch € € with ¢; — ¢/ €/, so that
a+l=c+I,....,cn+1=c,+ 1, we must show that

dr(cr,...,cn) — Dr(ct,...,ch) el
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Proof of Proposition 3.3

Lemma 3.4 (Hadamard's Lemma)

Suppose f : R" — R is smooth. Then there exist smooth
gi :R?" R fori=1,...,n such that for all x;,y; we have

n
f(X17 <. 7Xn)_f(y17 <. 7.yn) — Zgi(xla ey Xny Y1, ).yn)'(Xl'_yl')'
i=1

v

Note that gj(x1, ..., Xn, X1, .., Xn) = g—)’;(xl, ..y Xn), SO

Hadamard's Lemma gives an algebraic interpretation of partial
derivatives. The definition of C*°-ring implies that

n
Or(ct, vy )= Pr(chy o ch) = 3 Dglcr. vy vy )i
i=1

which lies in / as ¢; — ¢/ € I, as we have to prove.
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Example 3.5 (Finitely presented C°°-rings. Compare Example 1.1.)

Suppose p1, ..., pk : R" — R are smooth functions. Then C*°(R")
is a C*°-ring, and so an R-algebra. Write | = (p1, ..., px) for the
ideal in C°°(R") generated by pi,...,pk. Then
C*®(R")/(p1,...,pk) is a C>®-ring, by Proposition 3.3. We think
of it as the C*°-ring of functions on the smooth space

X = {(Xl,...,x,,) eR": pi(x1,...,xn) =0, i = 1,...,k}. Note
that X may be singular.

v

Example 3.6

Let /| C C*°(R) be the ideal of all smooth f : R — R with

f(x) =0 for all x > 0. Then [ is not finitely generated, so C*°(R)
Is not noetherian as an R-algebra. This is one way in which
C°°-algebraic geometry behaves worse than ordinary algebraic
geometry. We think of C°°(R)// as the C*°-ring of smooth
functions f : [0, 00) — R.
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|

Example 3.7

Let X be a manifold, and x € X. Write C2°(X) for the C*-ring of
germs of smooth functions f : X — R at x. That is, elements of
C2°(X) are ~-equivalence classes [U, f] of pairs (U, f), where

x € UC Xisopenand f: U— R is smooth, and

(U, f) ~ (U, f") if there exists open x € U” C U N U’ with

flur = f'|yr. Then C2°(X) is a C*-local ring.

Definition

An ideal | C C*(R") is called fair if for f € C*>°(R"),

7x(f) € mx(I) for all x € R" implies that f € I, where

7x » CP(R") — C°(R") is the projection. A C*°-ring € is called
fair if € = C>°(R")/I for I C C>*(R") a fair ideal.
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Modules over C*°-rings

Definition

Let € be a C*°-ring. A module over € is a module over € as an
R-algebra.

You might expect that the definition of module should involve the
operations ®¢ as well as the R-algebra structure, but it does not.

Example 3.8

Let X be a manifold, and E — X a vector bundle. Then C*°(X) is
a C*°-ring, and the vector space C°*°(E) of smooth sections of E is
a module over C*(X).
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Cotangent modules

Definition
Let € be a C*-ring, and M a €-module. A C°°-derivation is an
R-linear map d : € — M such that whenever f : R” — R is a
smooth map and cy,...,c, € €, we have

d®s(ct, ... cn) =D 1 CD%(cl, .oy Cp) - dg.
Note that d is not a morphism of ¢-modules. We call such a pair
Q¢,dg a cotangent module for € if it has the universal property
that for any €-module M and C*°-derivation d : € —+ M, there is a
unique morphism of ¢€-modules ¢ : Q¢ — M with d = ¢ o dg.

Every C*°-ring has a cotangent module, unique up to isomorphism.

Example 3.9

Let X be a manifold, with cotangent bundle T*X. Then
C>°(T*X) is a cotangent module for the C*-ring C>(X).
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3.2. Sheaves

Sheaves are a central idea in algebraic geometry.

Definition

Let X be a topological space. A presheaf of sets £ on X consists
of a set £(U) for each open U C X, and a restriction map
puv : E(U) — E(V) for all open V C U C X, such that:
(i) £(0) = * is one point;
(i) pyu = idg(yy for all open U C X; and
(III) PUW = PVW © puv for all open W - 74 - U C X.
We call £ a sheaf if also whenever U C X is open and {V;:i € I}
is an open cover of U, then:

(iv) If s, t € E(U) with pyv.(s) = puv.(t) for all i € I, then s = t;
(V) If s; € 8(\/,) for all / € | with p\/,-(V,-ﬂVJ-)(Si) = p\/j(\/iﬂ\/j)(Sj) in
E(VinV;) forall i,j € I, then there exists s € £(U) with

puv.(s) = s; for all i € I. This s is unique by (iv).
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Definition

Let £, F be (pre)sheaves on X. A morphism ¢ : £ — F consists of
a map ¢(U) : E(U) — F(U) for all open U C X, such that

puv o d(U) = ¢(V) o pyy : E(U) — F(V) for all open

V C U C X. Then sheaves form a category.

If C is any category in which direct limits exist, such as the
categories of sets, rings, vector spaces, C°°-rings, ..., then we can
define (pre)sheaves £ of objects in C on X in the obvious way, and
morphisms ¢ : £ — F by taking £(U) to be an object in C, and
puv - E(U) = E(V), ¢(U) : E(U) — F(U) to be morphisms in C,
and £()) to be a terminal object in C (e.g. the zero ring). So in
particular, we can define sheaves of C°°-rings on X.

Almost any class of functions on X, or sections of a bundle on X,
will form a sheaf on X. To be a sheaf means to be ‘local on X',
determined by its behaviour on any cover of small open sets.

Dominic Joyce, Oxford University Lecture 3: C°°-Algebraic Geometry

C°°-rings
Sheaves
C°°-schemes

C°°-Algebraic Geometry

Stalks of sheaves

Definition
Let X be a topological space, and £ a (pre)sheaf of sets (or
C°-rings, etc.) on X, and x € X. The stalk £, of £ at x is

Ex = limxeucx E(V),
where the direct limit (as a set, or C*°-ring, etc.) is over all open
U C X with x € U using pyy : E(U) — E(V) for open
x €V CUCX. Thatis, for all open x € U C X we have a
morphism 7, : E(U) — Ex, such that forall x e V C U C X we
have 7y = 7y © pyv, and £ is universal with this property.

Example 3.10

Let X be a manifold. Define a sheaf of C*°-rings Ox on X by
Ox(U) = C*(U) for all open U C X, as a C*°-ring, and

puv : C®(U) — C=®(V), pyv : f — f|y for all open V C U C X.
The stalk Ox , at x € X is C°(X) from Example 3.7.

|
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Sheafification and pullbacks

Definition

Let X be a topological space and £ a presheaf (of sets, C*°-rings,
etc.) on X. A sheafification of £ is a sheaf £ and a morphism of
presheaves 7 : £ — &', with the universal property that any
morphism ¢ : £ — F with F a sheaf factorizes uniquely as

¢p=¢ omford : & — F.

Any presheaf £ has a sheafification £’, unique up to canonical
isomorphism, and the stalks satisfy £, = &’,.

A\

Definition
Let f : X — Y be a continuous map of topological spaces, and £ a
sheaf on Y. Define a presheaf Pf~1(£) on X by

PFE) = lim v>rw) E(V),
where the direct limit is over open V C Y with f(U) C V. Define
the pullback sheaf f~1(€) to be the sheafification of Pf—1(&).
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3.3. C*-schemes

We can now define C°°-schemes almost exactly as for schemes in
algebraic geometry, but replacing rings or K-algebras by C*°-rings.

Definition

A C*-ringed space X = (X,Ox) is a topological space X with a
sheaf of C°°-rings Ox. It is called a local C*°-ringed space if the
stalks Ox x are C*-local rings for all x € X.

A morphism f : X — Y of C*®-ringed spaces is f = (f, f#), where
f : X = Y is a continuous map of topological spaces, and

fi: f~1(Oy) — Ox is a morphism of sheaves of C*®-rings on X.
Write C°°RS for the category of C°°-ringed spaces, and LC*°RS
for the full subcategory of local C*°-ringed spaces.
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The global sections functor I : LC°*°RS — C°°Rings®® maps

[ (X,0x) — Ox(X). It has a right adjoint, the spectrum
functor Spec : C*°Rings®® — LC®°RS. That is, for each C*°-ring
¢ we construct a local C*°-ringed space X = Spec €. Points

x € X are R-algebra morphisms x : € — R (this implies x is a
C°-ring morphism). Then each ¢ € € defines a map ¢ : X — R.
We give X the weakest topology such that these ¢ : X — R are
continuous for all ¢ € €. We don't use prime ideals.

In algebraic geometry, Spec : Rings®® — LRS is full and faithful.
In C°°-algebraic geometry, it is full but not faithful, that is, Spec
forgets some information, as we don't use prime ideals. But on the
subcategory C*°Rings™ of fair C*-rings, Spec is full and faithful.
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A local C°°-ringed space X is called an affine C*°-scheme if

X = Spec € for some C*°-ring €. We call X a C*°-scheme if X
can be covered by open subsets U with (U, Ox|y) an affine
C*°-scheme. Write C>Sch for the full subcategory of C°°-schemes
in LC°°RS.

If X is a manifold, define a C*°-scheme X = (X, Ox) by

Ox(U) = C>®(U) for all open U C X. Then X = Spec C*°(X).
This defines a full and faithful embedding Man < C>Sch. So we
can regard manifolds as examples of C°°-schemes.

v
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Think of a C*°-ringed space X as a topological space X with a
notion of ‘smooth function’ f : U — R for open U C X, i.e.

f e Ox(U). If X is alocal C*-ringed space then the notion of
‘value of f in R at a point x € U’ makes sense, since we can
compose the maps f € Ox(U) = Oxx — Oxx/m=R.If Xisa
C°°-scheme, then for small open U C X we can locally reconstruct
the sheaf Ox|y from the C*-ring Ox (V).

All fibre products exist in C>*Sch. In manifolds Man, fibre
products X Xz 7 Y need existonlyif g: X = Zand h: Y = 7
are transverse. When g, h are not transverse, the fibre product

X Xg,z.n Y exists in C*Sch, but may not be a manifold.

We also define vector bundles and quasicoherent sheaves on a
C°-scheme X, as sheaves of Ox-modules, and write qcoh(X) for
the abelian category of quasicoherent sheaves. A C°°-scheme X
has a well-behaved cotangent sheaf T*X
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Differences with ordinary Algebraic Geometry

@ In algebraic geometry, central examples of schemes such as
CPP" are not affine. In C*°-algebraic geometry, most
interesting C°°-schemes are affine (e.g. all manifolds), except
for non-Hausdorff C°°-schemes. But scheme theory is still
useful, to glue things from local data.

@ The topology on C®°-schemes is finer than the Zariski
topology on schemes — affine schemes are always Hausdorff.
No need to introduce the étale topology.

@ Can find smooth functions supported on (almost) any open set.

@ (Almost) any open cover has a subordinate partition of unity.

@ Our C®-rings € are generally not noetherian as R-algebras.
So ideals / in € may not be finitely generated, even in
C>°(R™). This means there is not a well-behaved notion of
coherent sheaf.
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4. 2-categories, d-spaces, and d-manifolds

Our goal is to define the 2-category of d-manifolds dMan. To do
this we will define a 2-category dSpa of ‘d-spaces’, a kind of
derived C°°-scheme, and then define d-manifolds dMan C dSpa
to be a special kind of d-space, just as manifolds Man C C>~Sch
are a special kind of C°°-scheme.

First we introduce 2-categories. There are two kinds, strict
2-categories and weak 2-categories. We will meet both, as
d-manifolds and d-orbifolds dMan, dOrb are strict 2-categories,
but Kuranishi spaces Kur are a weak 2-category. Every weak
2-category C is equivalent as a weak 2-category to a strict
2-category C’ (weak 2-categories can be ‘strictified’), so there is no
fundamental difference, but weak 2-categories have more notation.
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4.1. 2-categories

A 2-category C has objects X, Y, ..., 1-morphisms f,g: X — Y
(morphisms), and 2-morphisms 1 : f = g (morphisms between
morphisms). Here are some examples to bear in mind:

Example 4.1

(a) The strict 2-category €at has objects categories C, 7, . . .,
1-morphisms functors F, G : C — &, and 2-morphisms natural
transformations n : F = G.

(b) The strict 2-category Top"™ of topological spaces up to
homotopy has objects topological spaces X, Y, ..., 1I-morphisms
continuous maps f,g : X — Y, and 2-morphisms isotopy classes
[H] : f = g of homotopies H from f to g. That is,

H: X x [0,1] — Y is continuous with H(x,0) = f(x),

H(x,1) = g(x), and H,H" : X x [0,1] — Y are isotopic if there
exists continuous / : X x [0,1]> — Y with /(x,s,0) = H(x,s),
I(57X7 1) - H/(X7 5)1 I(Xa Oa t) - f(X)1 I(X7 19 t) - g(X)
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Definition

A (strict) 2-category C consists of a proper class of objects
Obj(C), for all X, Y € Obj(C) a category Hom(X, Y), for all X in
Obj(C) an object idx in Hom(X, X) called the identity
1-morphism, and for all X, Y, Z in Obj(C) a functor
px,y,z : Hom(X, Y) x Hom(Y,Z) — Hom(X, Z). These must
satisfy the identity property, that

pxx,y(idx, =) = px,y,y(—,idy) = iduom(x,y) (4.1)
as functors Hom(X, Y) — Hom(X, Y), and the associativity
property, that

pw.y.zo (pwxy xid) = pw x,z o (id xpux,y z) (4.2)
as functors Hom (W, X)xHom(X, Y)xHom(Y, Z) —Hom(W, X).
Objects f of Hom(X, Y) are called 1-morphisms, written

f: X =Y. For 1-morphisms f,g : X — Y, morphisms
n € Hompom(x,v)(f, g) are called 2-morphisms, written n : f = g.

v
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There are three kinds of composition in a 2-category, satisfying
various associativity relations. If f : X = Y and g: Y — Z are
1-morphisms then ux v z(f, g) is the horizontal composition of
1-morphisms, written gof : X = Z. If f,g,h: X — Y are
1-morphisms and n : f = g, ( : g = h are 2-morphisms then
composition of 1, in Hom(X, Y) gives the vertical composition of
2-morphisms of 7, (, written ( ®n : f = h, as a diagram

f

/\ f
X — >y . X @ Y. (4.3)
W h
h
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And if f,f: X — Y and g,§ : Y — Z are 1-morphisms and
n:f=Ff (:g= g are 2-morphisms then px.y z(n,¢) is the
horizontal composition of 2-morphisms, written
Cxn:gof = gof,asadiagram

f g gof
XUy Wz o~ X lamz. (44)
f g go

There are also two kinds of identity: identity 1-morphisms

idx : X — X and identity 2-morphisms id¢ : f = f.

A 2-morphism is a 2-isomorphism if it is invertible under vertical
composition. A 2-category is called a (2,1)-category if all
2-morphisms are 2-isomorphisms. For example, stacks in algebraic
geometry form a (2,1)-category.
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In a 2-category &, there are three notions of when objects X, Y in
¢ are ‘the same’: equality X =Y, and isomorphism, that is we
have 1-morphisms f : X — Y, g: Y — X with gof =idx and
f o g =idy, and equivalence, that is we have 1-morphisms
f:X—=Y,g:Y — X and 2-isomorphisms n : g o f = idx and
( : f og = idy. Usually equivalence is the correct notion.
Commutative diagrams in 2-categories should in general only
commute up to (specified) 2-isomorphisms, rather than strictly. A
simple example of a commutative diagram in a 2-category € is

Y
f g
n
which means that X, Y, Z are objectsof €, f : X — Y,

g:Y —Zand h: X — Z are I-morphisms in &, and
n:gof = hisa 2-isomorphism.

9
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Definition (Fibre products in 2-categories. Compare §2.3.)

Let C be a strict 2-category and g : X — Z, h: Y — Z be
1-morphisms in C. A fibre product X Xz Y in C is an object W,
1-morphisms mx : W — X and my : W — Y and a 2-isomorphism
n:gomx = homwy in C with the following universal property:
suppose 7y : W' — X and 7}, : W' — Y are 1-morphisms and
n' :gomy = horl is a 2-isomorphism in C. Then there exists a
1-morphism b : W' — W and 2-isomorphisms (x : mx o b = 7,
Cy : my o b= |, such that the following diagram commutes:
gomxob=————=homyob
nxidp
idg *Cxd) | idp*¢y

/ /
goTy homy.

Furthermore, if b, Cx, Cy are alternative choices of b, (x, Cy then
there should exist a unique 2-isomorphism 6 : b = b with

Cx = (x O (idy, #8) and Cy = Cy @ (idy, #6).
If a fibre product X x 7 Y exists, it is unique up to equivalence.

/

n
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Weak 2-categories

A weak 2-category, or bicategory, is like a strict 2-category, except
that the equations of functors (4.1), (4.2) are required to hold not
up to equality, but up to specified natural isomorphisms. That is, a
weak 2-category C consists of data Obj(C), Hom(X, Y), ux.v,z,
idx as above, but in place of (4.1), a natural isomorphism

a:pw,yzo(pwxy xid) = pw x,z o (id xpux vy, z),
and in place of (4.2), natural isomorphisms

B uxx,y(idx, —)=id, v:px,y,y(— idy)=id,
satisfying some identities. That is, composition of 1-morphisms is
associative only up to specified 2-isomorphisms, so for 1-morphisms
e:W—=X,f:X—=>Y,g:Y — Z we have a 2-isomorphism
Qgfe:(gof)oe=go(foe).
Similarly identities id x,idy work up to 2-isomorphism, so for each
f: X — Y we have 2-isomorphisms
Bf:fOidX:>f, ’yf:idyOf:>f.
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4.2. Differential graded C*°-rings

As in §2, to define derived K-schemes, we replaced commutative
K-algebras by commutative differential graded K-algebras (or
simplicial K-algebras). So, to define derived C*°-schemes, we
should replace C*°-rings by differential graded C°°-rings (or
perhaps simplicial C*°-rings, as in Spivak and Borisov—Noél).

Definition

A differential graded C*°-ring (or dg C*°-ring) €* = (€*,d) is a
commutative differential graded R-algebra (€*,d) in degrees < 0,
as in §2.2, together with the structure (®f)r.rr_ g c of a
C>-ring on €%, such that the R-algebra structures on ¢° from the
C°°-ring and the cdga over R agree.

A morphism ¢ : €* — ©° of dg C®-rings is maps ¢¥ : €k — DK
for all kK < 0, such that ((ﬁk)k@ is a morphism of cdgas over R,
and #° : €% — D° is a morphism of C*-rings.
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Then dg C°°-rings form an (oo-)category DGC*°Rings.

One could use dg C*°-rings to define ‘derived C°°-schemes’ and
‘derived C°°-stacks’ as functors F : DGC®°Rings — SSets. An
alternative is to use simplicial C*°-rings SC°°Rings, as in Spivak
2008, Borisov—Noel 2011, and Borisov 2012.

Example 4.2 (Kuranishi neighbourhoods. Compare Example 2.1.)

Let V' be a smooth manifold, and E — V a smooth real vector
bundle of rank n, and s : V — E a smooth section. Define a dg
C>®-ring €* as follows: take ¢° = C>(V/), with its natural
R-algebra and C™-ring structures. Set ¢X = C>®(A~KE*) for
k=—1,-2.....,—n, and €K =0 for k < —n. The multiplication
¢k x ¢! — &%t are multiplication by functions in C>°(V) if k =0
or | =0, and wedge product A : A"KE* x A=/E* — NKTE* if
k,| < 0. The differential d : ¢k — ¢kt is contraction with s,

s i NKE* — NKLE*
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Square zero dg C*°-rings

We will use only a special class of dg C*°-rings called square zero
dg C°°-rings, which form a 2-category SZC°°Rings.

Definition

A dg C-ring €* is square zero if € =0 for i < —1 and

¢ l.d[e7]=0. ThenCis ¢! 4, ¢0, and d[¢!] is a square
zero ideal in the (ordinary) C>-ring €°, and ¢! is a module over
the ‘classical’ C*®-ring H(¢*) = ¢%/d[¢ 1.

A 1-morphism o : €* — ©°® in SZC°°Rings is maps

a®:¢% 5 D% a1 ¢t 5 D! preserving all the structure.
Then H(a®) : HO(¢) — HO(®) is a morphism of C*-rings.

For 1-morphisms «*®, 8® : €* — ©°® a 2-morphism n : a®* = [B°® is a
linear n: € - Dt with B0 =a+donand Sl =at +pyod.
There is an embedding of (2-)categories C*°Rings C SZC*°Rings
as the (2-)subcategory of €* with ¢~ = 0.

o
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There is a truncation functor T : DGC*°Rings — SZC°°Rings,
where if €* is a dg C°°-ring, then ©°® = T(€&°®) is the square zero
C®°-ring with

D0 = ¢%/[de™1)?, D l=c¢1/[de™2 + (de7) - e
Applied to Example 4.2 this gives:

Example 4.3 (Kuranishi neighbourhoods. Compare Example 4.2.)

Let V be a manifold, E — V a vector bundle, and s: V — E a

smooth section. Associate a square zero dg C*®-ring ¢} 4, @0t
the ‘Kuranishi neighbourhood’ (V/, E,s) by

O =CX(V)/IZ, €= CP(EY)/ls - C2(EY),
d(e + Is - C°(E*)) = e(s) + /2,
where [ = C®(E*)-s C C*°(V) is the ideal generated by s.

These will be the local models for d-manifolds.
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Cotangent complexes in the 2-category setting

Let €°* be a square zero dg C°°-ring. Define the cotangent

complex ]Lgl ng to be the 2-term complex of H°(¢*)-modules
o1 dprod QQ:O R0 HO(Q:.),

regarded as an element of the 2-category of 2-term complexes of

H®(€*)-modules, with Qg0 the cotangent module of the C*-ring

¢ asin §3.1. Let a®,8* : €* — ©°* be 1-morphisms and

n:a® = [B* a 2-morphism in SZC°°Rings. Then

HO(a®) = H°(3*), so we may regard D' as an H(€*)-module.

And 1 : €% — ©~ 1 is a derivation, so it factors through an

HO(&*®)-linear map 7 : Qpo ®g0 HO(€*) — D1, We have a diagram

Le' — Le
LatWLst LY, | 4L
. do LY.

So 1-morphisms induce morphisms, and 2-morphisms homotopies,
of cotangent complexes.

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

2-categories

Differential graded C°°-rings
2-categories, d-spaces, and d-manifolds D-spaces

D-manifolds

4.3. D-spaces

D-spaces are our notion of derived C°°-scheme:

Definition

A d-space X is a topological space X with a sheaf of square zero
dg-C>-rings Oy = O3> -5 0%, such that X = (X, H°(0g)) and
(X,0%) are C*-schemes, and (’);1 is quasicoherent over X. We
call X the underlying classical C°°-scheme.

We require that the topological space X should be Hausdorff and
second countable, and the underlying classical C°°-scheme X
should be locally fair, i.e. covered by open Spec€ = U C X for €
a fair C°°-ring. Basically this means X is locally finite-dimensional.

v

Note that O% is an ordinary (strict) sheaf of square zero dg
C°°-rings, using only the objects and 1-morphisms in SZC°°Rings,
and not (as usual in DAG) a homotopy sheaf using 2-isomorphisms
pvw © puy = pyw foropen W C V C U C X.
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Definition

A 1-morphism f : X — Y of d-spaces X, Y is f = (f, f#), where

f : X = Y is a continuous map of topological spaces, and

f: F71(O%) — O% is a morphism of sheaves of square zero dg
C>-rings on X. Then f = (f, H°(f*)) : X — Y'is a morphism of
the underlying classical C*°-schemes.

|

Definition

Let f,g : X — Y be 1-morphisms of d-spaces, and suppose the
continuous maps f,g : X — Y are equal. We have morphisms
fi gt F1(O%) — O% of sheaves of square zero dg C™-rings.
That is, f*, g* are sheaves on X of 1-morphisms in SZC°°Rings.
A 2-morphism 7 : f = g is a sheaf on X of 2-morphisms

n: ff = g! in SZC>®Rings. That is, for each open U C X, we
have a 2-morphism 7(U) : f#(U) = g*(U) in SZC>Rings, with
id,,, *n(U) = n(V) xid,,, for all open V C U C X.

\

Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

2-categories

Differential graded C°°-rings
2-categories, d-spaces, and d-manifolds D-spaces

D-manifolds

With the obvious notions of composition of 1- and 2-morphisms,
and identities, d-spaces form a strict 2-category dSpa, in which all
2-morphisms are 2-isomorphisms.

C°-schemes include into d-spaces as those X with O3} = 0.
Thus we have inclusions of (2-)categories Man C C>*Sch C dSpa,
so manifolds are examples of d-spaces.

The cotangent complex Ly of X is the sheaf of cotangent

_1 d :
complexes of Oy, a 2-term complex ]Lxl —X>L§)( of quasicoherent

sheaves on X. Such complexes form a 2-category qcohl=+%(X).

Theorem 4.4
All fibre products exist in the 2-category dSpa.

The proof is by construction: given 1-morphisms g : X — Z and
h:Y — Z, we write down an explicit d-space W, 1-morphisms
e:W - X, f: W —Y and 2-isomorphismn:goe = hof, and
verify by hand that it satisfies the universal property in §4.1.
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Gluing d-spaces by equivalences

Theorem 4.5

Let X,Y be d-spaces, ) # U C X, ) #V C Y open d-subspaces,
and f : U — V an equivalence in the 2-category dSpa. Suppose
the topological space Z = X Uy—y Y made by gluing X, Y using f
is Hausdorff. Then there exist a d-space Z, unique up to
equivalence in dSpa, open )A(, Y CZwithZ=XU ?, equivalences
g:X—))A( andh:Y—)?, and a 2-morphism 1 : gly = hof.

o

The proof is again by explicit construction. First we glue the
classical C*°-schemes X, Y on U C X,V C Y by the isomorphism
f:U— V togeta C*®-scheme Z. The definition of Z involves
choosing a smooth partition of unity on Z subordinate to the open
cover {U, V}. This is possible in the world of C°°-schemes, but
would not work in conventional (derived) algebraic geometry.
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Theorem 4.6

Suppose | is an indexing set, and < is a total order on |, and X;
for i € | are d-spaces, and for all i < j in | we are given open
d-subspaces Uj; C X;, Uj; € X; and an equivalence ej; : Uj; — Uj;,
such that for all i < j < k in | we have a 2-commutative diagram

eij|U,-J-ﬂU,-k Uji M Ujk ejk|Uj,-mUjk

/ekh: o {7 = (4.5)

U,'jﬂU,'k Uk,'ﬂUkj.

Define the quotient topological space Z = ([];c; Xi)/ ~, where ~
is generated by x; ~ x; if i <j, x; € Uj C X; and x; € U;j C X;
with ejj(x;) = xj. Suppose Z is Hausdorff and second countable.
Then there exist a d-space Z and a 1-morphism f; : X; — Z which
Is an equivalence with an open d-subspace X; CZ forallie /
where Z = | J;¢, X;, such that f;(U;) = X; N X, for i < j in I, and
there exists a 2-morphism (j; : f; o ej; = f,-|U,.j. The d-space Z is
unique up to equivalence, and is independent of choice of n)jj.
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Theorem 4.6 generalizes Theorem 4.5 to gluing many d-spaces by
equivalences. It is important that the 2-isomorphisms 7;j in (4.5)
are only required to exist, they need not satisfy any conditions on
quadruple overlaps, etc., and Z is independent of the choice of 7;.
Because of this, Theorem 4.6 actually makes sense as a statement
in the homotopy category Ho(dSpa). The analogue is false for
gluing by equivalences for orbifolds Orb, d-orbifolds dOrb, and
d-stacks dSta.
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4.4. D-manifolds

Definition

A d-manifold X of virtual dimension n € Z is a d-space X such
that X is covered by open d-subspaces Y C X with equivalences

Y ~ U Xgw,nV, where U, V, W are manifolds with

dim U + dim V — dim W = n, regarded as d-spaces by

Man C C>*Sch C dSpa, and g: U — W, h: V — W are smooth
maps, and U Xz w  V is the fibre product in the 2-category dSpa.
Write dMan for the full 2-subcategory of d-manifolds in dSpa.

Note that the fibre product U Xy V exists by Theorem 4.4, and
must be taken in dSpa as a 2-category, not as an ordinary category
Alternatively, we can write the local models as Y ~ V' xg g s V,
where V is a manifold, E — V a vector bundle, s : V — E a
smooth section, and n = dim V —rank E. Then (V,E,s) is a
Kuranishi neighbourhood on X, as in Fukaya—Oh—Ohta—Ono.
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Thus, a d-manifold X is a ‘derived’ geometric space covered by
simple, differential-geometric local models: they are fibre products
U Xg,w,n V for smooth maps of manifolds g : U — W,

h:V — W, or they are the zeroes s1(0) of a smooth section

s: V — E of a vector bundle E — V over a manifold V.
However, as usual in derived geometry, the way in which these
local models are glued together (by equivalences in the 2-category
dSpa) is more mysterious, is weaker than isomorphisms, and takes
some work to understand. We discuss this later in the course.
fg: X —Z, h:Y — Z are 1-morphisms in dMan, then Theorem
4.4 says that a fibre product W = X X4 7, Y exists in dSpa. If W
is a d-manifold (which is a local question on W) then W is also a
fibre product in dMan. So we will give be able to give useful
criteria for existence of fibre products in dMan.
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Theorems 4.5 and 4.6 immediately lift to results on gluing by
equivalences in dMan, taking U, V, X; to be d-manifolds of a fixed
virtual dimension n € Z. Thus, we can define d-manifolds by
gluing together local models by equivalences. This is very useful,
as natural examples (e.g. moduli spaces) are often presented in
terms of local models somehow glued on overlaps.

| chose to use square zero dg C*°-rings to define dSpa, dMan
(rather than, say, general dg C°-rings) as they are very ‘small’ —
they are essentially the minimal extension of classical C*°-rings
which remembers the ‘derived’ information | care about (in
particular, sufficient to form virtual cycles for derived manifolds).
This has the advantage of making the theory simpler than it could
have been, e.g. by using 2-categories rather than oo-categories,
whilst still having good properties, e.g. ‘correct’ fibre products and
gluing by equivalences. A possible disadvantage is that they forget
‘higher obstructions’, which occur in some moduli problems.
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