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3 C∞-Algebraic Geometry
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3.2 Sheaves
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3. C∞-Algebraic Geometry

Our goal is to define the 2-category of d-manifolds dMan.
First consider an algebro-geometric version of what we want to do.
A good algebraic analogue of smooth manifolds are complex
algebraic manifolds, that is, separated smooth C-schemes S of
pure dimension. These form a full subcategory AlgManC in the
category SchC of C-schemes, and can roughly be characterized as
the (sufficiently nice) objects S in SchC whose cotangent complex
LS is a vector bundle (i.e. perfect in the interval [0, 0]).

To make a derived version of this, we first define an ∞-category
DerSchC of derived C-schemes, and then define the ∞-category
DerAlgManC of derived complex algebraic manifolds to be the full
∞-subcategory of objects S in DerSchC which are quasi-smooth
(have cotangent complex LS perfect in the interval [−1, 0]), and
satisfy some other niceness conditions (separated, etc.).
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Thus, we have ‘classical’ categories AlgManC ⊂ SchC, and related
‘derived’ ∞-categories DerAlgManC ⊂ DerSchC.
David Spivak, a student of Jacob Lurie, defined an ∞-category
DerManSpi of ‘derived smooth manifolds’ using a similar structure:
he considered ‘classical’ categories Man ⊂ C∞Sch and related
‘derived’ ∞-categories DerManSpi ⊂ DerC∞Sch. Here C∞Sch is
C∞-schemes, and DerC∞Sch derived C∞-schemes. That is,
before we can ‘derive’, we must first embed Man into a larger
category of C∞-schemes, singular generalizations of manifolds.
Our set-up is a simplification of Spivak’s. I consider ‘classical’
categories Man ⊂ C∞Sch and related ‘derived’ 2-categories
dMan ⊂ dSpa, where dMan is d-manifolds, and dSpa d-spaces.
Here dMan,dSpa are roughly 2-category truncations of Spivak’s
DerMan,DerC∞Sch — see Borisov arXiv:1212.1153.
This lecture will introduce classical C∞-schemes.
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3.1. C∞-rings

Algebraic geometry (based on algebra and polynomials) has
excellent tools for studying singular spaces – the theory of schemes.
In contrast, conventional differential geometry (based on smooth
real functions and calculus) deals well with nonsingular spaces –
manifolds – but poorly with singular spaces.
There is a little-known theory of schemes in differential geometry,
C∞-schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes,
. . . in synthetic differential geometry in the 1960s-1980s.
C∞-schemes are essentially algebraic objects, on which smooth
real functions and calculus make sense.
The theory works by replacing commutative rings or K-algebras in
algebraic geometry by algebraic objects called C∞-rings.
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Definition 3.1 (First definition of C∞-ring)

A C∞-ring is a set C together with n-fold operations Φf : Cn → C
for all smooth maps f : Rn → R, n > 0, satisfying:
Let m, n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
be smooth functions. Define h : Rn → R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)),

for (x1, . . . , xn) ∈ Rn. Then for all c1, . . . , cn in C we have

Φh(c1, . . . , cn) = Φg (Φf1(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)).

Also defining πj : (x1, . . . , xn) 7→ xj for j = 1, . . . , n we have
Φπj : (c1, . . . , cn) 7→ cj .
A morphism of C∞-rings is a map of sets φ : C→ D with
Φf ◦ φn = φ ◦ Φf : Cn → D for all smooth f : Rn → R. Write
C∞Rings for the category of C∞-rings.
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Definition 3.2 (Second definition of C∞-ring)

Write Euc for the full subcategory of manifolds Man with objects
Rn for n = 0, 1, . . . . That is, Euc is the category with objects
Euclidean spaces Rn, and morphisms smooth maps f : Rm → Rn.
A C∞-ring is a product-preserving functor F : Euc→ Sets. That
is, F is a functor with functorial identifications
F (Rm+n) = F (Rm × Rn) ∼= F (Rm)× F (Rn) for all m, n > 0.
A morphism φ : F → G of C∞-rings F ,G is a natural
transformation of functors φ : F ⇒ G .

Definitions 3.1 and 3.2 are equivalent as follows. Given
F : Euc→ Sets as above, define a set C = F (R). As F is
product-preserving, F (Rn) ∼= F (R)n = Cn for all n > 0. If
f : Rn → R is smooth then F (f ) : F (Rn)→ F (R) is identified with
a map Φf : Cn → C. Then

(
C,Φf , f :Rn→RC∞) is a C∞-ring as in

Definition 3.1. Conversely, given C we define F with F (Rn) = Cn.
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Manifolds as C∞-rings

Let X be a manifold, and write C = C∞(X ) for the set of smooth
functions c : X → R. Let f : Rn → R be smooth. Define
Φf : C∞(X )n→C∞(X ) by Φf (c1, . . . , cn)(x)= f

(
c1(x), . . . , cn(x)

)
for x ∈ X . These make C∞(X ) into a C∞-ring as in Definition 3.1.
Define F : Euc→ Sets by F (Rn) = HomMan(X ,Rn) and
F (f ) = f ◦ : HomMan(X ,Rm)→ HomMan(X ,Rn) for f : Rm → Rn

smooth. Then F is a C∞-ring as in Definition 3.2.
If f : X → Y is smooth map of manifolds then
f ∗ : C∞(Y )→ C∞(X ) is a morphism of C∞-rings; conversely, if
φ : C∞(Y )→ C∞(X ) is a morphism of C∞-rings then φ = f ∗ for
some unique smooth f : X → Y . This gives a full and faithful
functor F : Man→ C∞Ringsop by F : X 7→ C∞(X ), F : f 7→ f ∗.
Thus, we can think of manifolds as examples of C∞-rings. But
there are many more C∞-rings than manifolds. For example,
C 0(X ) is a C∞-ring for any topological space X .
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C∞-rings as R-algebras, ideals, and quotient C∞-rings

Every C∞-ring C is a commutative R-algebra, where addition is
c + d = Φf (c , d) for f : R2 → R, f (x , y) = x + y , and
multiplication is c · d = Φg (c , d) for g : R2 → R, g(x , y) = xy ,
multiplication by α ∈ R is α c = Φh(c) for h : R→ R, h(x) = αx .
An ideal I ⊆ C in a C∞-ring C is an ideal in C as an R-algebra.
Then the quotient vector space C/I is a commutative R-algebra.

Proposition 3.3

If C is a C∞-ring and I ⊆ C an ideal, then there is a unique
C∞-ring structure on C/I such that the projection π : C→ C/I is
a morphism of C∞-rings.

Definition

A C∞-ring C is called finitely generated if C ∼= C∞(Rn)/I for some
ideal I ⊆ C∞(Rn).
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Proof of Proposition 3.3

Let f : Rn → R be smooth, and c1 + I , . . . , cn + I ∈ C/I . For
π : C→ C/I to be a morphism of C∞-rings, we are forced to set

Φf (c1 + I , . . . , cn + I ) = Φf (c1, . . . , cn) + I ,

which determines the C∞-ring structure on C/I completely. The
only thing to prove is that this is well-defined. That is, if
c ′1, . . . , c

′
n ∈ C with ci − c ′i ∈ I , so that

c1 + I = c ′1 + I , . . . , cn + I = c ′n + I , we must show that

Φf (c1, . . . , cn)− Φf (c ′1, . . . , c
′
n) ∈ I .
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Proof of Proposition 3.3

Lemma 3.4 (Hadamard’s Lemma)

Suppose f : Rn → R is smooth. Then there exist smooth
gi : R2n → R for i = 1, . . . , n such that for all xj , yj we have

f (x1, . . . , xn)−f (y1, . . . , yn) =
n∑

i=1

gi (x1, . . . , xn, y1, . . . , yn)·(xi−yi ).

Note that gi (x1, . . . , xn, x1, . . . , xn) = ∂f
∂xi

(x1, . . . , xn), so
Hadamard’s Lemma gives an algebraic interpretation of partial
derivatives. The definition of C∞-ring implies that

Φf (c1, . . . , cn)−Φf (c ′1, . . . , c
′
n) =

n∑
i=1

Φgi (c1, . . . , cn, c
′
1, . . . , c

′
n)·(ci−c ′i ),

which lies in I as ci − c ′i ∈ I , as we have to prove.
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Example 3.5 (Finitely presented C∞-rings. Compare Example 1.1.)

Suppose p1, . . . , pk : Rn → R are smooth functions. Then C∞(Rn)
is a C∞-ring, and so an R-algebra. Write I = (p1, . . . , pk) for the
ideal in C∞(Rn) generated by p1, . . . , pk . Then
C∞(Rn)/(p1, . . . , pk) is a C∞-ring, by Proposition 3.3. We think
of it as the C∞-ring of functions on the smooth space
X =

{
(x1, . . . , xn) ∈ Rn : pi (x1, . . . , xn) = 0, i = 1, . . . , k

}
. Note

that X may be singular.

Example 3.6

Let I ⊂ C∞(R) be the ideal of all smooth f : R→ R with
f (x) = 0 for all x > 0. Then I is not finitely generated, so C∞(R)
is not noetherian as an R-algebra. This is one way in which
C∞-algebraic geometry behaves worse than ordinary algebraic
geometry. We think of C∞(R)/I as the C∞-ring of smooth
functions f : [0,∞)→ R.
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Definition

A C∞-ring C is a C∞-local ring if as an R-algebra, C has a unique
maximal ideal m, with C/m ∼= R.

Example 3.7

Let X be a manifold, and x ∈ X . Write C∞x (X ) for the C∞-ring of
germs of smooth functions f : X → R at x . That is, elements of
C∞x (X ) are ∼-equivalence classes [U, f ] of pairs (U, f ), where
x ∈ U ⊆ X is open and f : U → R is smooth, and
(U, f ) ∼ (U ′, f ′) if there exists open x ∈ U ′′ ⊆ U ∩ U ′ with
f |U′′ = f ′|U′′ . Then C∞x (X ) is a C∞-local ring.

Definition

An ideal I ⊆ C∞(Rn) is called fair if for f ∈ C∞(Rn),
πx(f ) ∈ πx(I ) for all x ∈ Rn implies that f ∈ I , where
πx : C∞(Rn)→ C∞x (Rn) is the projection. A C∞-ring C is called
fair if C ∼= C∞(Rn)/I for I ⊆ C∞(Rn) a fair ideal.

13 / 48 Dominic Joyce, Oxford University Lecture 3: C∞-Algebraic Geometry

C∞-Algebraic Geometry
2-categories, d-spaces, and d-manifolds

C∞-rings
Sheaves
C∞-schemes

Modules over C∞-rings

Definition

Let C be a C∞-ring. A module over C is a module over C as an
R-algebra.

You might expect that the definition of module should involve the
operations Φf as well as the R-algebra structure, but it does not.

Example 3.8

Let X be a manifold, and E → X a vector bundle. Then C∞(X ) is
a C∞-ring, and the vector space C∞(E ) of smooth sections of E is
a module over C∞(X ).

14 / 48 Dominic Joyce, Oxford University Lecture 3: C∞-Algebraic Geometry



C∞-Algebraic Geometry
2-categories, d-spaces, and d-manifolds

C∞-rings
Sheaves
C∞-schemes

Cotangent modules

Definition

Let C be a C∞-ring, and M a C-module. A C∞-derivation is an
R-linear map d : C→ M such that whenever f : Rn → R is a
smooth map and c1, . . . , cn ∈ C, we have

dΦf (c1, . . . , cn) =
∑n

i=1 Φ ∂f
∂xi

(c1, . . . , cn) · dci .

Note that d is not a morphism of C-modules. We call such a pair
ΩC, dC a cotangent module for C if it has the universal property
that for any C-module M and C∞-derivation d : C→ M, there is a
unique morphism of C-modules φ : ΩC → M with d = φ ◦ dC.

Every C∞-ring has a cotangent module, unique up to isomorphism.

Example 3.9

Let X be a manifold, with cotangent bundle T ∗X . Then
C∞(T ∗X ) is a cotangent module for the C∞-ring C∞(X ).
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3.2. Sheaves

Sheaves are a central idea in algebraic geometry.

Definition

Let X be a topological space. A presheaf of sets E on X consists
of a set E(U) for each open U ⊆ X , and a restriction map
ρUV : E(U)→ E(V ) for all open V ⊆ U ⊆ X , such that:

(i) E(∅) = ∗ is one point;
(ii) ρUU = idE(U) for all open U ⊆ X ; and
(iii) ρUW = ρVW ◦ ρUV for all open W ⊆ V ⊆ U ⊆ X .

We call E a sheaf if also whenever U ⊆ X is open and {Vi : i ∈ I}
is an open cover of U, then:

(iv) If s, t ∈ E(U) with ρUVi
(s) = ρUVi

(t) for all i ∈ I , then s = t;
(v) If si ∈ E(Vi ) for all i ∈ I with ρVi (Vi∩Vj )(si ) = ρVj (Vi∩Vj )(sj) in
E(Vi ∩ Vj) for all i , j ∈ I , then there exists s ∈ E(U) with
ρUVi

(s) = si for all i ∈ I . This s is unique by (iv).
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Definition

Let E ,F be (pre)sheaves on X . A morphism φ : E → F consists of
a map φ(U) : E(U)→ F(U) for all open U ⊆ X , such that
ρUV ◦ φ(U) = φ(V ) ◦ ρUV : E(U)→ F(V ) for all open
V ⊆ U ⊆ X . Then sheaves form a category.

If C is any category in which direct limits exist, such as the
categories of sets, rings, vector spaces, C∞-rings, . . . , then we can
define (pre)sheaves E of objects in C on X in the obvious way, and
morphisms φ : E → F by taking E(U) to be an object in C, and
ρUV : E(U)→ E(V ), φ(U) : E(U)→ F(U) to be morphisms in C,
and E(∅) to be a terminal object in C (e.g. the zero ring). So in
particular, we can define sheaves of C∞-rings on X .
Almost any class of functions on X , or sections of a bundle on X ,
will form a sheaf on X . To be a sheaf means to be ‘local on X ’,
determined by its behaviour on any cover of small open sets.
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Stalks of sheaves

Definition

Let X be a topological space, and E a (pre)sheaf of sets (or
C∞-rings, etc.) on X , and x ∈ X . The stalk Ex of E at x is

Ex = lim−→ x∈U⊆X E(U),

where the direct limit (as a set, or C∞-ring, etc.) is over all open
U ⊆ X with x ∈ U using ρUV : E(U)→ E(V ) for open
x ∈ V ⊆ U ⊆ X . That is, for all open x ∈ U ⊆ X we have a
morphism πx : E(U)→ Ex , such that for all x ∈ V ⊆ U ⊆ X we
have πx = πx ◦ ρUV , and Ex is universal with this property.

Example 3.10

Let X be a manifold. Define a sheaf of C∞-rings OX on X by
OX (U) = C∞(U) for all open U ⊆ X , as a C∞-ring, and
ρUV : C∞(U)→ C∞(V ), ρUV : f 7→ f |V for all open V ⊆ U ⊆ X .
The stalk OX ,x at x ∈ X is C∞x (X ) from Example 3.7.
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Sheafification and pullbacks

Definition

Let X be a topological space and E a presheaf (of sets, C∞-rings,
etc.) on X . A sheafification of E is a sheaf E ′ and a morphism of
presheaves π : E → E ′, with the universal property that any
morphism φ : E → F with F a sheaf factorizes uniquely as
φ = φ′ ◦ π for φ′ : E ′ → F .

Any presheaf E has a sheafification E ′, unique up to canonical
isomorphism, and the stalks satisfy Ex ∼= E ′x .

Definition

Let f : X → Y be a continuous map of topological spaces, and E a
sheaf on Y . Define a presheaf Pf −1(E) on X by

Pf −1(E) = lim−→V⊇f (U) E(V ),

where the direct limit is over open V ⊆ Y with f (U) ⊆ V . Define
the pullback sheaf f −1(E) to be the sheafification of Pf −1(E).
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3.3. C∞-schemes

We can now define C∞-schemes almost exactly as for schemes in
algebraic geometry, but replacing rings or K-algebras by C∞-rings.

Definition

A C∞-ringed space X = (X ,OX ) is a topological space X with a
sheaf of C∞-rings OX . It is called a local C∞-ringed space if the
stalks OX ,x are C∞-local rings for all x ∈ X .
A morphism f : X → Y of C∞-ringed spaces is f = (f , f ]), where
f : X → Y is a continuous map of topological spaces, and
f ] : f −1(OY )→ OX is a morphism of sheaves of C∞-rings on X .
Write C∞RS for the category of C∞-ringed spaces, and LC∞RS
for the full subcategory of local C∞-ringed spaces.
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Definition

The global sections functor Γ : LC∞RS→ C∞Ringsop maps
Γ : (X ,OX ) 7→ OX (X ). It has a right adjoint, the spectrum
functor Spec : C∞Ringsop → LC∞RS. That is, for each C∞-ring
C we construct a local C∞-ringed space X = SpecC. Points
x ∈ X are R-algebra morphisms x : C→ R (this implies x is a
C∞-ring morphism). Then each c ∈ C defines a map c : X → R.
We give X the weakest topology such that these c : X → R are
continuous for all c ∈ C. We don’t use prime ideals.

In algebraic geometry, Spec : Ringsop → LRS is full and faithful.
In C∞-algebraic geometry, it is full but not faithful, that is, Spec
forgets some information, as we don’t use prime ideals. But on the
subcategory C∞Ringsfa of fair C∞-rings, Spec is full and faithful.
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Definition

A local C∞-ringed space X is called an affine C∞-scheme if
X ∼= SpecC for some C∞-ring C. We call X a C∞-scheme if X
can be covered by open subsets U with (U,OX |U) an affine
C∞-scheme. Write C∞Sch for the full subcategory of C∞-schemes
in LC∞RS.

If X is a manifold, define a C∞-scheme X = (X ,OX ) by
OX (U) = C∞(U) for all open U ⊆ X . Then X ∼= SpecC∞(X ).
This defines a full and faithful embedding Man ↪→ C∞Sch. So we
can regard manifolds as examples of C∞-schemes.
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Think of a C∞-ringed space X as a topological space X with a
notion of ‘smooth function’ f : U → R for open U ⊆ X , i.e.
f ∈ OX (U). If X is a local C∞-ringed space then the notion of
‘value of f in R at a point x ∈ U’ makes sense, since we can
compose the maps f ∈ OX (U)

πx−→OX ,x → OX ,x/m ∼= R. If X is a
C∞-scheme, then for small open U ⊆ X we can locally reconstruct
the sheaf OX |U from the C∞-ring OX (U).
All fibre products exist in C∞Sch. In manifolds Man, fibre
products X ×g ,Z ,h Y need exist only if g : X → Z and h : Y → Z
are transverse. When g , h are not transverse, the fibre product
X ×g ,Z ,h Y exists in C∞Sch, but may not be a manifold.
We also define vector bundles and quasicoherent sheaves on a
C∞-scheme X , as sheaves of OX -modules, and write qcoh(X ) for
the abelian category of quasicoherent sheaves. A C∞-scheme X
has a well-behaved cotangent sheaf T ∗X .
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Differences with ordinary Algebraic Geometry

In algebraic geometry, central examples of schemes such as
CPn are not affine. In C∞-algebraic geometry, most
interesting C∞-schemes are affine (e.g. all manifolds), except
for non-Hausdorff C∞-schemes. But scheme theory is still
useful, to glue things from local data.
The topology on C∞-schemes is finer than the Zariski
topology on schemes – affine schemes are always Hausdorff.
No need to introduce the étale topology.
Can find smooth functions supported on (almost) any open set.
(Almost) any open cover has a subordinate partition of unity.
Our C∞-rings C are generally not noetherian as R-algebras.
So ideals I in C may not be finitely generated, even in
C∞(Rn). This means there is not a well-behaved notion of
coherent sheaf.
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Plan of talk:

4 2-categories, d-spaces, and d-manifolds

4.1 2-categories

4.2 Differential graded C∞-rings

4.3 D-spaces

4.4 D-manifolds
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4. 2-categories, d-spaces, and d-manifolds

Our goal is to define the 2-category of d-manifolds dMan. To do
this we will define a 2-category dSpa of ‘d-spaces’, a kind of
derived C∞-scheme, and then define d-manifolds dMan ⊂ dSpa
to be a special kind of d-space, just as manifolds Man ⊂ C∞Sch
are a special kind of C∞-scheme.
First we introduce 2-categories. There are two kinds, strict
2-categories and weak 2-categories. We will meet both, as
d-manifolds and d-orbifolds dMan,dOrb are strict 2-categories,
but Kuranishi spaces Kur are a weak 2-category. Every weak
2-category C is equivalent as a weak 2-category to a strict
2-category C′ (weak 2-categories can be ‘strictified’), so there is no
fundamental difference, but weak 2-categories have more notation.

27 / 48 Dominic Joyce, Oxford University Lecture 4: 2-categories, d-spaces, and d-manifolds

C∞-Algebraic Geometry
2-categories, d-spaces, and d-manifolds

2-categories
Differential graded C∞-rings
D-spaces
D-manifolds

4.1. 2-categories
A 2-category C has objects X ,Y , . . . , 1-morphisms f , g : X → Y
(morphisms), and 2-morphisms η : f ⇒ g (morphisms between
morphisms). Here are some examples to bear in mind:

Example 4.1

(a) The strict 2-category Cat has objects categories C,D , . . . ,
1-morphisms functors F ,G : C → D , and 2-morphisms natural
transformations η : F ⇒ G .
(b) The strict 2-category Topho of topological spaces up to
homotopy has objects topological spaces X ,Y , . . . , 1-morphisms
continuous maps f , g : X → Y , and 2-morphisms isotopy classes
[H] : f ⇒ g of homotopies H from f to g . That is,
H : X × [0, 1]→ Y is continuous with H(x , 0) = f (x),
H(x , 1) = g(x), and H,H ′ : X × [0, 1]→ Y are isotopic if there
exists continuous I : X × [0, 1]2 → Y with I (x , s, 0) = H(x , s),
I (s, x , 1) = H ′(x , s), I (x , 0, t) = f (x), I (x , 1, t) = g(x).
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Definition

A (strict) 2-category C consists of a proper class of objects
Obj(C), for all X ,Y ∈ Obj(C) a category Hom(X ,Y ), for all X in
Obj(C) an object idX in Hom(X ,X ) called the identity
1-morphism, and for all X ,Y ,Z in Obj(C) a functor
µX ,Y ,Z : Hom(X ,Y )×Hom(Y ,Z )→ Hom(X ,Z ). These must
satisfy the identity property, that

µX ,X ,Y (idX ,−) = µX ,Y ,Y (−, idY ) = idHom(X ,Y ) (4.1)

as functors Hom(X ,Y )→ Hom(X ,Y ), and the associativity
property, that

µW ,Y ,Z ◦ (µW ,X ,Y × id) = µW ,X ,Z ◦ (id×µX ,Y ,Z ) (4.2)

as functors Hom(W ,X )×Hom(X ,Y )×Hom(Y ,Z )→Hom(W ,X ).
Objects f of Hom(X ,Y ) are called 1-morphisms, written
f : X → Y . For 1-morphisms f , g : X → Y , morphisms
η ∈ HomHom(X ,Y )(f , g) are called 2-morphisms, written η : f ⇒ g .
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There are three kinds of composition in a 2-category, satisfying
various associativity relations. If f : X → Y and g : Y → Z are
1-morphisms then µX ,Y ,Z (f , g) is the horizontal composition of
1-morphisms, written g ◦ f : X → Z . If f , g , h : X → Y are
1-morphisms and η : f ⇒ g , ζ : g ⇒ h are 2-morphisms then
composition of η, ζ in Hom(X ,Y ) gives the vertical composition of
2-morphisms of η, ζ, written ζ � η : f ⇒ h, as a diagram

X

f

!!�� η
>>

h

�� ζ
g

// Y // X
f

))

h

55�� ζ�η Y . (4.3)
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And if f , f̃ : X → Y and g , g̃ : Y → Z are 1-morphisms and
η : f ⇒ f̃ , ζ : g ⇒ g̃ are 2-morphisms then µX ,Y ,Z (η, ζ) is the
horizontal composition of 2-morphisms, written
ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ , as a diagram

X
f

''

f̃

77�� η Y

g
''

g̃

77�� ζ Z // X

g◦f
((

g̃◦f̃
66�� ζ∗η Z . (4.4)

There are also two kinds of identity: identity 1-morphisms
idX : X → X and identity 2-morphisms idf : f ⇒ f .
A 2-morphism is a 2-isomorphism if it is invertible under vertical
composition. A 2-category is called a (2,1)-category if all
2-morphisms are 2-isomorphisms. For example, stacks in algebraic
geometry form a (2,1)-category.
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In a 2-category C, there are three notions of when objects X ,Y in
C are ‘the same’: equality X = Y , and isomorphism, that is we
have 1-morphisms f : X → Y , g : Y → X with g ◦ f = idX and
f ◦ g = idY , and equivalence, that is we have 1-morphisms
f : X → Y , g : Y → X and 2-isomorphisms η : g ◦ f ⇒ idX and
ζ : f ◦ g ⇒ idY . Usually equivalence is the correct notion.
Commutative diagrams in 2-categories should in general only
commute up to (specified) 2-isomorphisms, rather than strictly. A
simple example of a commutative diagram in a 2-category C is

Y g

**
η
��X

f
55

h
// Z ,

which means that X ,Y ,Z are objects of C, f : X → Y ,
g : Y → Z and h : X → Z are 1-morphisms in C, and
η : g ◦ f ⇒ h is a 2-isomorphism.
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Definition (Fibre products in 2-categories. Compare §2.3.)

Let C be a strict 2-category and g : X → Z , h : Y → Z be
1-morphisms in C. A fibre product X ×Z Y in C is an object W ,
1-morphisms πX : W → X and πY : W → Y and a 2-isomorphism
η : g ◦ πX ⇒ h ◦ πY in C with the following universal property:
suppose π′X : W ′ → X and π′Y : W ′ → Y are 1-morphisms and
η′ : g ◦ π′X ⇒ h ◦ π′Y is a 2-isomorphism in C. Then there exists a
1-morphism b : W ′ →W and 2-isomorphisms ζX : πX ◦ b ⇒ π′X ,
ζY : πY ◦ b ⇒ π′Y such that the following diagram commutes:

g ◦ πX ◦ b
η∗idb

+3

idg ∗ζX ��

h ◦ πY ◦ b
idh ∗ζY��

g ◦ π′X
η′ +3 h ◦ π′Y .

Furthermore, if b̃, ζ̃X , ζ̃Y are alternative choices of b, ζX , ζY then
there should exist a unique 2-isomorphism θ : b̃ ⇒ b with

ζ̃X = ζX � (idπX ∗θ) and ζ̃Y = ζY � (idπY ∗θ).

If a fibre product X ×Z Y exists, it is unique up to equivalence.
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Weak 2-categories

A weak 2-category, or bicategory, is like a strict 2-category, except
that the equations of functors (4.1), (4.2) are required to hold not
up to equality, but up to specified natural isomorphisms. That is, a
weak 2-category C consists of data Obj(C),Hom(X ,Y ), µX ,Y ,Z ,
idX as above, but in place of (4.1), a natural isomorphism

α : µW ,Y ,Z ◦ (µW ,X ,Y × id) =⇒ µW ,X ,Z ◦ (id×µX ,Y ,Z ),

and in place of (4.2), natural isomorphisms

β : µX ,X ,Y (idX ,−)=⇒ id, γ : µX ,Y ,Y (−, idY )=⇒ id,

satisfying some identities. That is, composition of 1-morphisms is
associative only up to specified 2-isomorphisms, so for 1-morphisms
e : W → X , f : X → Y , g : Y → Z we have a 2-isomorphism

αg ,f ,e : (g ◦ f ) ◦ e =⇒ g ◦ (f ◦ e).

Similarly identities idX , idY work up to 2-isomorphism, so for each
f : X → Y we have 2-isomorphisms

βf : f ◦ idX =⇒ f , γf : idY ◦f =⇒ f .
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4.2. Differential graded C∞-rings

As in §2, to define derived K-schemes, we replaced commutative
K-algebras by commutative differential graded K-algebras (or
simplicial K-algebras). So, to define derived C∞-schemes, we
should replace C∞-rings by differential graded C∞-rings (or
perhaps simplicial C∞-rings, as in Spivak and Borisov–Noël).

Definition

A differential graded C∞-ring (or dg C∞-ring) C• = (C∗,d) is a
commutative differential graded R-algebra (C∗,d) in degrees 6 0,
as in §2.2, together with the structure (Φf )f :Rn→RC∞ of a
C∞-ring on C0, such that the R-algebra structures on C0 from the
C∞-ring and the cdga over R agree.
A morphism φ : C• → D• of dg C∞-rings is maps φk : Ck → Dk

for all k 6 0, such that (φk)k60 is a morphism of cdgas over R,
and φ0 : C0 → D0 is a morphism of C∞-rings.
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Then dg C∞-rings form an (∞-)category DGC∞Rings.
One could use dg C∞-rings to define ‘derived C∞-schemes’ and
‘derived C∞-stacks’ as functors F : DGC∞Rings→ SSets. An
alternative is to use simplicial C∞-rings SC∞Rings, as in Spivak
2008, Borisov–Noel 2011, and Borisov 2012.

Example 4.2 (Kuranishi neighbourhoods. Compare Example 2.1.)

Let V be a smooth manifold, and E → V a smooth real vector
bundle of rank n, and s : V → E a smooth section. Define a dg
C∞-ring C• as follows: take C0 = C∞(V ), with its natural
R-algebra and C∞-ring structures. Set Ck = C∞(Λ−kE ∗) for
k = −1,−2, . . . ,−n, and Ck = 0 for k < −n. The multiplication
Ck × Cl → Ck+l are multiplication by functions in C∞(V ) if k = 0
or l = 0, and wedge product ∧ : Λ−kE ∗ × Λ−lE ∗ → Λ−k−lE ∗ if
k , l < 0. The differential d : Ck → Ck+1 is contraction with s,
s · : Λ−kE ∗ → Λ−k−1E ∗.
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Square zero dg C∞-rings

We will use only a special class of dg C∞-rings called square zero
dg C∞-rings, which form a 2-category SZC∞Rings.

Definition

A dg C∞-ring C• is square zero if Ci = 0 for i < −1 and

C−1 · d[C−1] = 0. Then C is C−1 d−→C0, and d[C−1] is a square
zero ideal in the (ordinary) C∞-ring C0, and C−1 is a module over
the ‘classical’ C∞-ring H0(C•) = C0/d[C−1].
A 1-morphism α• : C• → D• in SZC∞Rings is maps
α0 : C0 → D0, α−1 : C−1 → D−1 preserving all the structure.
Then H0(α•) : H0(C)→ H0(D) is a morphism of C∞-rings.
For 1-morphisms α•, β• : C• → D• a 2-morphism η : α• ⇒ β• is a
linear η : C0 → D−1 with β0 = α0 + d ◦ η and β−1 = α−1 + η ◦ d.
There is an embedding of (2-)categories C∞Rings ⊂ SZC∞Rings
as the (2-)subcategory of C• with C−1 = 0.
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There is a truncation functor T : DGC∞Rings→ SZC∞Rings,
where if C• is a dg C∞-ring, then D• = T (C•) is the square zero
C∞-ring with

D0 = C0/[dC−1]2, D−1 = C−1/[dC−2 + (dC−1) · C−1)].

Applied to Example 4.2 this gives:

Example 4.3 (Kuranishi neighbourhoods. Compare Example 4.2.)

Let V be a manifold, E → V a vector bundle, and s : V → E a

smooth section. Associate a square zero dg C∞-ring C−1 d−→C0 to
the ‘Kuranishi neighbourhood’ (V ,E , s) by

C0 = C∞(V )/I 2
s , C−1 = C∞(E ∗)/Is · C∞(E ∗),

d(ε+ Is · C∞(E ∗)) = ε(s) + I 2
s ,

where Is = C∞(E ∗) · s ⊂ C∞(V ) is the ideal generated by s.

These will be the local models for d-manifolds.
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Cotangent complexes in the 2-category setting
Let C• be a square zero dg C∞-ring. Define the cotangent

complex L−1
C

dC−→L0
C to be the 2-term complex of H0(C•)-modules

C−1 dDR◦d // ΩC0 ⊗C0 H0(C•),

regarded as an element of the 2-category of 2-term complexes of
H0(C•)-modules, with ΩC0 the cotangent module of the C∞-ring

C0, as in §3.1. Let α•, β• : C• → D• be 1-morphisms and
η : α• ⇒ β• a 2-morphism in SZC∞Rings. Then
H0(α•) = H0(β•), so we may regard D−1 as an H0(C•)-module.
And η : C0 → D−1 is a derivation, so it factors through an
H0(C•)-linear map η̂ : ΩC0 ⊗C0 H0(C•)→ D−1. We have a diagram

L−1
C

L−1
α �� L−1

β��
dC

// L0
C

L0
α �� L0

β��η̂

ttL−1
D

dD // L0
D.

So 1-morphisms induce morphisms, and 2-morphisms homotopies,
of cotangent complexes.
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4.3. D-spaces

D-spaces are our notion of derived C∞-scheme:

Definition

A d-space X is a topological space X with a sheaf of square zero

dg-C∞-rings O•X = O−1
X

d−→O0
X, such that X = (X ,H0(O•X)) and

(X ,O0
X) are C∞-schemes, and O−1

X is quasicoherent over X . We
call X the underlying classical C∞-scheme.
We require that the topological space X should be Hausdorff and
second countable, and the underlying classical C∞-scheme X
should be locally fair, i.e. covered by open SpecC ∼= U ⊆ X for C
a fair C∞-ring. Basically this means X is locally finite-dimensional.

Note that O•X is an ordinary (strict) sheaf of square zero dg
C∞-rings, using only the objects and 1-morphisms in SZC∞Rings,
and not (as usual in DAG) a homotopy sheaf using 2-isomorphisms
ρVW ◦ ρUV ⇒ ρUW for open W ⊆ V ⊆ U ⊆ X .
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Definition

A 1-morphism f : X→ Y of d-spaces X,Y is f = (f , f ]), where
f : X → Y is a continuous map of topological spaces, and
f ] : f −1(O•Y)→ O•X is a morphism of sheaves of square zero dg
C∞-rings on X . Then f = (f ,H0(f ])) : X → Y is a morphism of
the underlying classical C∞-schemes.

Definition

Let f, g : X→ Y be 1-morphisms of d-spaces, and suppose the
continuous maps f , g : X → Y are equal. We have morphisms
f ], g ] : f −1(O•Y)→ O•X of sheaves of square zero dg C∞-rings.
That is, f ], g ] are sheaves on X of 1-morphisms in SZC∞Rings.
A 2-morphism η : f ⇒ g is a sheaf on X of 2-morphisms
η : f ] ⇒ g ] in SZC∞Rings. That is, for each open U ⊆ X , we
have a 2-morphism η(U) : f ](U)⇒ g ](U) in SZC∞Rings, with
idρUV ∗η(U) = η(V ) ∗ idρUV for all open V ⊆ U ⊆ X .
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With the obvious notions of composition of 1- and 2-morphisms,
and identities, d-spaces form a strict 2-category dSpa, in which all
2-morphisms are 2-isomorphisms.
C∞-schemes include into d-spaces as those X with O−1

X = 0.
Thus we have inclusions of (2-)categories Man ⊂ C∞Sch ⊂ dSpa,
so manifolds are examples of d-spaces.
The cotangent complex L•X of X is the sheaf of cotangent

complexes of O•X, a 2-term complex L−1
X

dX−→L0
X of quasicoherent

sheaves on X . Such complexes form a 2-category qcoh[−1,0](X ).

Theorem 4.4

All fibre products exist in the 2-category dSpa.

The proof is by construction: given 1-morphisms g : X→ Z and
h : Y → Z, we write down an explicit d-space W, 1-morphisms
e : W→ X, f : W→ Y and 2-isomorphism η : g ◦ e⇒ h ◦ f, and
verify by hand that it satisfies the universal property in §4.1.
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Gluing d-spaces by equivalences

Theorem 4.5

Let X,Y be d-spaces, ∅ 6= U ⊆ X, ∅ 6= V ⊆ Y open d-subspaces,
and f : U→ V an equivalence in the 2-category dSpa. Suppose
the topological space Z = X ∪U=V Y made by gluing X ,Y using f
is Hausdorff. Then there exist a d-space Z, unique up to
equivalence in dSpa, open X̂, Ŷ ⊆ Z with Z = X̂ ∪ Ŷ, equivalences
g : X→ X̂ and h : Y → Ŷ, and a 2-morphism η : g|U ⇒ h ◦ f.

The proof is again by explicit construction. First we glue the
classical C∞-schemes X ,Y on U ⊆ X ,V ⊆ Y by the isomorphism
f : U → V to get a C∞-scheme Z . The definition of Z involves
choosing a smooth partition of unity on Z subordinate to the open
cover {U,V}. This is possible in the world of C∞-schemes, but
would not work in conventional (derived) algebraic geometry.
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Theorem 4.6

Suppose I is an indexing set, and < is a total order on I , and Xi

for i ∈ I are d-spaces, and for all i < j in I we are given open
d-subspaces Uij ⊆ Xi , Uji ⊆ Xj and an equivalence eij : Uij → Uji ,
such that for all i < j < k in I we have a 2-commutative diagram

Uji ∩Ujk ejk |Uji∩Ujk

++ηijk
��Uij ∩Uik

eij |Uij∩Uik 33

eik |Uij∩Uik // Uki ∩Ukj .
(4.5)

Define the quotient topological space Z = (
∐

i∈I Xi )/ ∼, where ∼
is generated by xi ∼ xj if i < j , xi ∈ Uij ⊆ Xi and xj ∈ Uji ⊆ Xj

with eij(xi ) = xj . Suppose Z is Hausdorff and second countable.
Then there exist a d-space Z and a 1-morphism f i : Xi → Z which
is an equivalence with an open d-subspace X̂i ⊆ Z for all i ∈ I ,
where Z =

⋃
i∈I X̂i , such that f i (Uij) = X̂i ∩ X̂j for i < j in I , and

there exists a 2-morphism ζij : f j ◦ eij ⇒ f i |Uij
. The d-space Z is

unique up to equivalence, and is independent of choice of ηijk .
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Theorem 4.6 generalizes Theorem 4.5 to gluing many d-spaces by
equivalences. It is important that the 2-isomorphisms ηijk in (4.5)
are only required to exist, they need not satisfy any conditions on
quadruple overlaps, etc., and Z is independent of the choice of ηijk .
Because of this, Theorem 4.6 actually makes sense as a statement
in the homotopy category Ho(dSpa). The analogue is false for
gluing by equivalences for orbifolds Orb, d-orbifolds dOrb, and
d-stacks dSta.
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4.4. D-manifolds

Definition

A d-manifold X of virtual dimension n ∈ Z is a d-space X such
that X is covered by open d-subspaces Y ⊂ X with equivalences
Y ' U ×g ,W ,h V , where U,V ,W are manifolds with
dimU + dimV − dimW = n, regarded as d-spaces by
Man ⊂ C∞Sch ⊂ dSpa, and g : U →W , h : V →W are smooth
maps, and U ×g ,W ,h V is the fibre product in the 2-category dSpa.
Write dMan for the full 2-subcategory of d-manifolds in dSpa.

Note that the fibre product U ×W V exists by Theorem 4.4, and
must be taken in dSpa as a 2-category, not as an ordinary category
Alternatively, we can write the local models as Y ' V ×0,E ,s V ,
where V is a manifold, E → V a vector bundle, s : V → E a
smooth section, and n = dimV − rankE . Then (V ,E , s) is a
Kuranishi neighbourhood on X, as in Fukaya–Oh–Ohta–Ono.
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Thus, a d-manifold X is a ‘derived’ geometric space covered by
simple, differential-geometric local models: they are fibre products
U ×g ,W ,h V for smooth maps of manifolds g : U →W ,
h : V →W , or they are the zeroes s−1(0) of a smooth section
s : V → E of a vector bundle E → V over a manifold V .
However, as usual in derived geometry, the way in which these
local models are glued together (by equivalences in the 2-category
dSpa) is more mysterious, is weaker than isomorphisms, and takes
some work to understand. We discuss this later in the course.
If g : X→ Z, h : Y → Z are 1-morphisms in dMan, then Theorem
4.4 says that a fibre product W = X×g,Z,h Y exists in dSpa. If W
is a d-manifold (which is a local question on W) then W is also a
fibre product in dMan. So we will give be able to give useful
criteria for existence of fibre products in dMan.
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Theorems 4.5 and 4.6 immediately lift to results on gluing by
equivalences in dMan, taking U,V,Xi to be d-manifolds of a fixed
virtual dimension n ∈ Z. Thus, we can define d-manifolds by
gluing together local models by equivalences. This is very useful,
as natural examples (e.g. moduli spaces) are often presented in
terms of local models somehow glued on overlaps.
I chose to use square zero dg C∞-rings to define dSpa,dMan
(rather than, say, general dg C∞-rings) as they are very ‘small’ —
they are essentially the minimal extension of classical C∞-rings
which remembers the ‘derived’ information I care about (in
particular, sufficient to form virtual cycles for derived manifolds).
This has the advantage of making the theory simpler than it could
have been, e.g. by using 2-categories rather than ∞-categories,
whilst still having good properties, e.g. ‘correct’ fibre products and
gluing by equivalences. A possible disadvantage is that they forget
‘higher obstructions’, which occur in some moduli problems.
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