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5. Differential-geometric description of d-manifolds

We have defined a strict 2-category dSpa of d-spaces
X = (X ,O•X ), which are topological spaces X equipped with a
sheaf of square zero dg C∞-rings O•X . We have full
(2-)subcategories Man ⊂ C∞Sch ⊂ dSpa, so that we may regard
manifolds as examples of d-spaces. All fibre products exist in dSpa.
A d-space X is called a d-manifold of virtual dimension n ∈ Z if it
is locally modelled on fibre products V ×0,E ,s V in dSpa, where V
is a manifold, E → V a vector bundle with dimV − rankE = n,
and s : V → E a smooth section. D-manifolds form a full
2-subcategory dMan ⊂ dSpa.
To actually do stuff with d-manifolds, it is very useful to be able to
describe objects, 1-morphisms and 2-morphisms in dMan not using
square zero dg C∞-rings, but using honest differential-geometric
objects: manifolds, vector bundles, sections, and smooth maps.
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I will define a family of explicit ‘standard model’ d-manifolds
SV ,E ,s , related to Example 4.3, depending on a manifold V , vector
bundle E → V and section s : V → E . We can describe
1-morphisms f, g : SV ,E ,s → SW ,F ,t and 2-morphisms η : f ⇒ g
completely in terms of the differential geometry of V ,E , s,W ,F , t.
For this we will need ‘O(s)’ and ‘O(s2)’ notation, defined in §5.1.
As every d-manifold X is locally equivalent to standard models
SV ,E ,s , this enables us to describe d-manifolds and their 1- and
2-morphisms locally, solely in differential-geometric language.
In fact we can use these ideas to give an alternative definition of a
(weak) 2-category of derived manifolds KurtrG involving only
manifolds and differential geometry, not using (dg) C∞-rings and
C∞-schemes at all. This is the theory of (M-)Kuranishi spaces,
and will be the subject of lectures 6-8.
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5.1. The O(s) and O(s2) notation

Definition

Let V be a manifold, E → V a vector bundle, and s : V → E be a
smooth section of E , that is, s ∈ C∞(E ).

If f : V → R is smooth, we write ‘f = O(s)’ if f = α · s for
some α ∈ C∞(E ∗), and ‘f = O(s2)’ if f = β · (s ⊗ s) for
some β ∈ C∞(E ∗ ⊗ E ∗).

If F → V is a another vector bundle and t ∈ C∞(F ), we write
‘t = O(s)’ if t = α · s for some α ∈ C∞(F ⊗ E ∗), and
‘t = O(s2)’ if t = β · (s ⊗ s) for some β ∈ C∞(F ⊗ E ∗ ⊗ E ∗).

In terms of the R-algebra (or C∞-ring) C∞(V ), f = O(s) means
f ∈ Is ⊆ C∞(V ), and f = O(s2) means f ∈ I 2

s ⊆ C∞(V ), where
Is = C∞(E ∗) · s is the ideal in C∞(V ) generated by s. Similarly
t = O(s) ⇔ t ∈ Is · C∞(F ) and t = O(s2) ⇔ t ∈ I 2

s · C∞(F ).
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Definition

Let V be a manifold, E → V a vector bundle, and s ∈ C∞(E ).
Let W be another manifold, and f , g : V →W be smooth maps.

We write ‘g = f + O(s)’ if for all smooth h : W → R we have
h ◦ g − h ◦ f = O(s) as smooth functions V → R.
Similarly, we write ‘g = f + O(s2)’ if for all smooth
h : W → R we have h ◦ g − h ◦ f = O(s2).
Let v ∈ C∞(f ∗(TW )) with v = O(s). Then we write
‘g = f + v + O(s2)’ if h ◦ g − f ∗(dh) · v − h ◦ f = O(s2) for
all smooth h : W → R, where f ∗(dh) lies in C∞(f ∗(T ∗W )).

This is more tricky: note that f , g and v do not lie in the same
vector space, so ‘g − f − v ’ does not make sense. Nonetheless
g = f + v + O(s2) makes sense.
In terms of C∞-schemes, g = f + O(s) iff g |X = f |X , where
X ⊆ V is the C∞-subscheme defined by s = 0.
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Definition

Let V be a manifold, E → V a vector bundle, and s ∈ C∞(E ).
Let W be another manifold, and f , g : V →W be smooth maps
with g = f + O(s). Let F →W be a vector bundle, and
t ∈ C∞(f ∗(F )), u ∈ C∞(g∗(F )).
We say that ‘u = t + O(s)’ if for all γ ∈ C∞(F ∗) we have
u · g∗(γ)− t · f ∗(γ) = O(s) as smooth functions V → R.

Note that t, u are sections of different vector bundles, so ‘u − t’
does not make sense. Nonetheless ‘u = t + O(s)’ makes sense.
In terms of C∞-schemes, if X ⊆ V is the C∞-subscheme defined
by s = 0, then g = f + O(s) implies that g |X = f |X , so g∗(F )|X
and f ∗(F )|X are the same vector bundle. Then u = t + O(s)
means that u|X = t|X as sections of g∗(F )|X = f ∗(F )|X .
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5.2. Standard model d-manifolds

Proposition 5.1

Let X be a d-manifold, with vdimX = n. Then the following are
equivalent:

(i) X ' U ×g ,W ,h V in dSpa, where U,V ,W are manifolds,
g : U →W , h : V →W are smooth, and
dimU + dimV − dimW = n.

(ii) X ' U ×i ,W ,j V in dSpa, where W is a manifold, U,V ⊆W
are submanifolds with inclusions i : U ↪→W , j : V ↪→W , and
dimU + dimV − dimW = n.

(iii) X ' V ×0,E ,s V in dSpa, where V is a manifold, E → V is a
vector bundle, and s ∈ C∞(E ), with dimV − rankE = n.

We call X satisfying (i)–(iii) a principal d-manifold.

Every d-manifold X can be covered by open Y ⊆ X with Y
principal. We prefer to use model number (iii).
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Definition

Let V be a manifold, E → V a vector bundle, and s : V → E a
smooth section. As in Example 4.2, define a square zero dg

C∞-ring C• = [C−1 d−→C0] by

C0 = C∞(V )/I 2
s , C−1 = C∞(E ∗)/Is · C∞(E ∗),

d(ε+ Is · C∞(E ∗)) = ε(s) + I 2
s ,

where Is = C∞(E ∗) · s ⊂ C∞(V ) is the ideal generated by s.
Define SV ,E ,s = SpecC•. We call SV ,E ,s a standard model
d-manifold. It has topological space SV ,E ,s = s−1(0) ⊆ V .

Then SV ,E ,s ' V ×0,E ,s V , as in Proposition 5.1(iii). Now writing
SV ,E ,s as a fibre product only characterizes it up to equivalence in
the 2-category dSpa. But writing SV ,E ,s = SpecC• characterizes
it uniquely (at least, up to canonical 1-isomorphism) in dSpa. This
will be important.
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Open d-submanifolds of standard model d-manifolds

Let V ,E , s be as above, and suppose V ′ ⊆ V is open. Write
E ′ = E |V ′ and s ′ = s|V ′ . Then we have standard model
d-manifolds SV ,E ,s and SV ′,E ′,s′ , with topological spaces
SV ,E ,s = s−1(0) and SV ′,E ′,s′ = s−1(0) ∩ V ′.
In fact SV ′,E ′,s′ ⊆ SV ,E ,s is an open d-submanifold.
In particular, if V ′ is an open neighbourhood of s−1(0) in V , then
SV ′,E ′,s′ = SV ,E ,s . This means that we can always restrict to an
arbitrarily small open neighbourhood of s−1(0) in V without
changing anything; in effect, we can take germs about s−1(0) in V .
We have dg C∞-rings C•,C′• from (V ,E , s) and (V ′,E ′, s ′), and
the natural restriction morphism ι : C• → C′• is an isomorphism.
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5.3. Standard model 1- and 2-morphisms

Definition

Let V ,W be manifolds, E → V , F →W be vector bundles, and
s ∈ C∞(E ), t ∈ C∞(F ). Let V ′ be an open neighbourhood of
s−1(0) in V , and E ′ = E |V ′ , s ′ = s|V ′ . Write C•,C′•,D• for the
square zero dg C∞-rings from (V ,E , s), (V ′,E ′, s ′), (W ,F , t), so
that SV ,E ,s = SpecC•, SW ,F ,t = SpecD•, and ι : C•

∼=−→C′•.

Suppose f : V ′ →W is smooth, and f̂ : E ′ → f ∗(F ) is a morphism
of vector bundles on V ′ with f̂ ◦ s ′ = f ∗(t) + O(s2) in C∞(f ∗(F )).
Define a morphism α : D• → C′• of dg C∞-rings by

D−1 = C∞(F ∗)/It · C∞(F ∗)
d=t·

//

α−1=f̂ ∗◦f ∗��

D0 = C∞(W )/I 2
t

α0=f ∗ ��
C′−1 = C∞(E ′∗)/Is′ · C∞(E ′∗)

d=s′· // C′0 = C∞(V ′)/I 2
s′ .

Define SV ′,f ,f̂ = Spec(ι−1 ◦ α) : SV ,E ,s → SW ,F ,t . We call SV ′,f ,f̂
a standard model 1-morphism.
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Theorem 5.2

Let SV ,E ,s ,SW ,F ,t be standard model d-manifolds. Then

(a) Suppose g : SV ,E ,s → SW ,F ,t is a 1-morphism in dMan. Then
g = SV ′,f ,f̂ for some standard model 1-morphism SV ′,f ,f̂

defined using s−1(0) ⊆ V ′ ⊆ V , f : V ′ →W , f̂ : E ′ → f ∗(F ).
(b) Suppose SV ′1 ,f1,f̂1

,SV ′2 ,f2,f̂2
: SV ,E ,s → SW ,F ,t are standard

model 1-morphisms defined for i =1, 2 using s−1(0)⊆V ′i ⊆V ,

fi : V ′i →W and f̂i : E ′i → f ∗i (F ). Then SV ′1 ,f1,f̂1
= SV ′2 ,f2,f̂2

iff

f2|V ′1∩V ′2 = f1|V ′1∩V ′2 + O(s2) and f̂2|V ′1∩V ′2 = f̂1|V ′1∩V ′2 + O(s).

Sketch proof.

For (a), we show g = Specα for α : D• → C• a morphism of dg
C∞-rings, and then show α is induced from some V ′, f , f̂ . For (b),
we show the morphisms of dg C∞-rings α1, α2 : D• → C• are
equal iff f2 = f1 + O(s2) and f̂2 = f̂1 + O(s).
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From the point of view of 2-categories, Theorem 5.2 is a perverse
result: we characterize the 1-morphisms g : SV ,E ,s → SW ,F ,t

completely as a set, not up to 2-isomorphism.
If we were to replace SV ,E ,s ,SW ,F ,t by equivalent objects in
dMan, then the set of 1-morphisms g : SV ,E ,s → SW ,F ,t might
change (though the set of 2-isomorphism classes of 1-morphisms g
would not), and Theorem 5.2 would be false.
The theorem depends upon using the particular model
SV ,E ,s = SpecC• for the equivalence class of objects in dSpa
representing the fibre product V ×0,E ,s V .
Next we need to understand 2-morphisms η : SV ′1 ,f1,f̂1

⇒ SV ′2 ,f2,f̂2
between standard model 1-morphisms.
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‘Standard model’ 2-morphisms

Definition

Let SV ,E ,s ,SW ,F ,t be standard model d-manifolds, and
SV ′1 ,f1,f̂1

,SV ′2 ,f2,f̂2
: SV ,E ,s → SW ,F ,t be standard model

1-morphisms. Suppose f2 = f1 + O(s) on V ′′ := V ′1 ∩ V ′2 ⊆ V .
Let Λ : E |V ′′ → f1|∗V ′′(TW ) be a vector bundle morphism, with

f2 = f1 + Λ · s + O(s2) and f̂2 = f̂1 + Λ · f ∗(dt) + O(s). (5.1)

Define the ‘standard model’ 2-morphism SΛ : SV ′1 ,f1,f̂1
⇒ SV ′2 ,f2,f̂2

to

be Spec of the composition

D0 =
C∞(W )/I 2

t

Λ∗◦d // C
′′−1 =

C∞(E ′′∗)/Is′′ · C∞(E ′′∗)
ι′′−1

// C−1,

where C′′• is from (V ′′,E ′′ = E |V ′′ , s ′′ = s|V ′′) and ι′′ : C• → C′′•

the natural isomorphism.
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Here is the analogue of Theorem 5.2, with a similar proof:

Theorem 5.3

Let SV ,E ,s ,SW ,F ,t be standard model d-manifolds, and
SV ′1 ,f1,f̂1

,SV ′2 ,f2,f̂2
: SV ,E ,s → SW ,F ,t be standard model

1-morphisms in dMan. Then

(a) Suppose η : SV ′1 ,f1,f̂1
⇒ SV ′2 ,f2,f̂2

is a 2-morphism in dMan.

Then η = SΛ for some standard model 2-morphism defined
using Λ : E |V ′1∩V ′2 → f1|∗V ′1∩V ′2 (TW ).

(b) Suppose SΛ1 ,SΛ2 : SV ′1 ,f1,f̂1
⇒ SV ′2 ,f2,f̂2

are standard model

2-morphisms. Then SΛ1 = SΛ2 iff Λ2 = Λ1 + O(s).
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Conclusions

Write SMod for the full 2-subcategory of dMan with objects
standard model d-manifolds SV ,E ,s . Then Theorems 5.2 and 5.3
allow us to describe SMod completely, up to strict isomorphism of
strict 2-categories, using only differential geometric language:

Objects of SMod correspond to triples (V ,E , s), with V a
manifold, E → V a vector bundle, and s ∈ C∞(E ).

1-morphisms (V ,E , s)→ (W ,F , t) correspond to equivalence
classes [V ′, f , f̂ ] of triples (V ′, f , f̂ ), where V ′ is an open
neighbourhood of s−1(0) in V , and f : V ′ →W is smooth,
and f̂ : E ′ → f ∗(F ) is a morphism of vector bundles on V ′

with f̂ ◦ s ′ = f ∗(t) + O(s2), where E ′ = E |V ′ , s ′ = s|V ′ , and
two triples (V ′1, f1, f̂1), (V ′2, f2, f̂2) are equivalent if
f2|V ′1∩V ′2 = f1|V ′1∩V ′2 + O(s2) and f̂2|V ′1∩V ′2 = f̂1|V ′1∩V ′2 + O(s).
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Conclusions

2-morphisms [V ′1, f1, f̂1]⇒ [V ′2, f2, f̂2] exist only if
f2 = f1 + O(s), and correspond to equivalence classes [Λ] of
vector bundle morphisms Λ : E |V ′1∩V ′2 → f1|∗V ′1∩V ′2 (TW ) with

f2 = f1 + Λ · s + O(s2) and f̂2 = f̂1 + Λ · f ∗(dt) + O(s), and
Λ1,Λ2 are equivalent if Λ2 = Λ1 + O(s).

We can also give differential-geometric definitions of the other
structures of a strict 2-category: composition of 1-morphisms,
vertical and horizontal composition of 2-morphisms, identities.
For example, the composition of 1-morphisms
[V ′, f , f̂ ] : (V ,E , s)→ (W ,F , t) and
[W ′, g , ĝ ] : (W ,F , t)→ (X ,G , u) is

[W ′, g , ĝ ] ◦ [V ′, f , f̂ ] =
[
f −1(W ′), g ◦ f |···, f −1(ĝ) ◦ f̂ |···

]
,

and id(V ,E ,s) = [V , idV , idE ], and id[V ′,f ,f̂ ] = [0].
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Conclusions

So, if we are happy to work only in SMod ⊂ dMan, that is, with
d-manifolds which are covered by a single Kuranishi neighbourhood
(V ,E , s), we can give up all the tedious mucking about with (dg)
C∞-rings, sheaves, C∞-schemes, etc., and work only with
manifolds, vector bundles, and smooth sections. We do have to get
used to the O(s),O(s2) notation, though.
Later in the course we will explain the following:

Theorem 5.4

Let X be a d-manifold. Then X is equivalent in dMan to a
standard model d-manifold SV ,E ,s if and only if the dimensions of
‘tangent spaces’ dimTxX are globally bounded on X. For
instance, this is true if X is compact.

Because of this, almost all interesting d-manifolds can be written
in the form SV ,E ,s , and we lose little by working in SMod.
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5.4. Tangent spaces and obstruction spaces

Let X be a d-manifold, and x ∈ X. Then we have the tangent
space TxX and obstruction space OxX, which are natural
finite-dimensional real vector spaces with
dimTxX− dimOxX = vdimX. The dual vector spaces are the
cotangent space T ∗xX and coobstruction space O∗xX. If

LX = [L−1
X

d−→L0
X] is the cotangent complex of X as a d-space, as

in §4.3, we may define these by the exact sequence

0 // O∗xX // L−1
X |x

d|x // L0
X|x // T ∗xX // 0. (5.2)

If f : X→ Y is a 1-morphism in dMan and x ∈ X with
f(x) = y ∈ Y, we have natural, functorial linear maps
Tx f : TxX→ TyY and Ox f : OxX→ OyY. If η : f ⇒ g is a
2-morphism in dMan then Tx f = Txg and Ox f = Oxg.
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If X is a standard model d-manifold SV ,E ,s then

LX = [E ∗|s−1(0)
ds−→T ∗V |s−1(0)]. So dualizing (5.2), for each

x ∈ s−1(0) ⊆ V , the tangent and obstruction spaces are given by
the exact sequence

0 // TxSV ,E ,s
// TxV

ds|x // E |x // OxSV ,E ,s
// 0. (5.3)

That is, TxSV ,E ,s ,OxSV ,E ,s are the kernel and cokernel of
ds|x : TxV → E |x . If SV ′,f ,f̂ : SV ,E ,s → SW ,F ,t is a standard
model 1-morphism then TxSV ′,f ,f̂ ,OxSV ′,f ,f̂ are given by the
commutative diagram with exact rows

0 // TxSV ,E ,s

TxSV ′,f ,f̂
��

// TxV
ds|x

//

Tx f

��

E |x //

f̂ |x
��

OxSV ,E ,s

OxSV ′,f ,f̂
��

// 0

0 // TySW ,F ,t
// TyW

dt|y // F |y // OySW ,F ,t
// 0.

(5.4)
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Étale 1-morphisms and equivalences

Definition

A 1-morphism f : X→ Y in dMan or dSpa is called étale if it is a
local equivalence. That is, f is étale if for all x ∈ X there exist open
d-submanifolds x ∈ U ⊆ X and f (x) ∈ V ⊆ Y with f(U) = V,
such that f|U : U→ V is an equivalence in the 2-category dMan.

Theorem 5.5

A 1-morphism f : X→ Y in dMan or dSpa is an equivalence if
and only if it is étale and f : X → Y is a bijection of sets.

The proof involves choosing local quasi-inverses gi : Vi → Ui for
f|Ui

: Ui → Vi for {Ui : i ∈ I}, {Vi : i ∈ I} open covers of X,Y,
and then gluing the gi for i ∈ I using a partition of unity to get a
global quasi-inverse for f.
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Theorem 5.6

A 1-morphism f : X→ Y in dMan is étale if and only if
Tx f : TxX→ TyY and Ox f : OxX→ OyY are isomorphisms for
all x ∈ X with f(x) = y ∈ Y.

The ‘only if’ part is obvious: if g : V→ U is a local quasi-inverse
for f, then Tyg,Oyg are inverses for Tx f,Ox f. For the ‘if’ part,
replacing X,Y, f locally by ‘standard model’ d-manifolds and
1-morphism, we can construct an explicit quasi-inverse at the level
of dg C∞-rings by choosing a splitting of an exact sequence of
vector bundles.
The analogue is false for dSpa.
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Combining (5.4) and Theorems 5.5 and 5.6 gives a criterion for
when a standard model 1-morphism is étale or an equivalence:

Theorem 5.7

Let SV ′,f ,f̂ : SV ,E ,s → SW ,F ,t be a standard model 1-morphism in

dMan. Then SV ′,f ,f̂ is étale if and only if for all x ∈ s−1(0) ⊆ V

with f (x) = y ∈ t−1(0) ⊆W , the following sequence is exact:

0 // TxV
ds|x⊕Tx f // E |x ⊕ TyW

f̂ |x⊕−dt|y // F |y // 0. (5.5)

Also SV ′,f ,f̂ is an equivalence in dMan if in addition

f |s−1(0) : s−1(0)→ t−1(0) is a bijection.
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Example 5.8

In Fukaya–Oh–Ohta–Ono Kuranishi spaces in symplectic geometry,
a ‘coordinate change’ (f , f̂ ) : (V ,E , s)→ (W ,F , t) of ‘Kuranishi
neighbourhoods’ (V ,E , s), (W ,F , t) is an embedding of
submanifolds f : V ↪→W and an embedding of vector bundles
f̂ : E ↪→ f ∗(F ) with f̂ ◦ s = f ∗(t), such that the induced morphism
(ds)∗ : f ∗(TW )/TV → f ∗(F )/E is an isomorphism near s−1(0).
Theorem 5.7 shows SV ,f ,f̂ : SV ,E ,s → SW ,F ,t is étale, or an
equivalence. But FOOO coordinate changes are very special
examples of equivalences; they only exist if dimV 6 dimW .
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Plan of talk:

6 M-Kuranishi spaces

6.1 M-Kuranishi neighbourhoods and their morphisms

6.2 M-Kuranishi spaces

6.3 Geometry of M-Kuranishi spaces

26 / 45 Dominic Joyce, Oxford University Lecture 6: M-Kuranishi spaces



Differential-geometric description of d-manifolds
M-Kuranishi spaces

M-Kuranishi neighbourhoods and their morphisms
M-Kuranishi spaces
Geometry of M-Kuranishi spaces

6. M-Kuranishi spaces

We now explain another way to define (2-)categories of derived
manifolds, using an ‘atlas of charts’ approach, motivated by the
ideas of §5. Today we will define an ordinary category MKur of
‘M-Kuranishi spaces’. (The ‘M-’ stands for ‘Manifold’, following
Hofer’s ‘M-polyfolds’ and ‘polyfolds’.)
Recall that orbifolds are generalizations of manifolds locally
modelled on Rn/Γ, for Γ a finite group acting linearly on Rn. Later
in the course we will define a weak 2-category Kur of ‘Kuranishi
spaces’, a form of derived orbifold. The full 2-subcategory
KurtrG ⊂ Kur of Kuranishi spaces with trivial orbifold groups is a
2-category of derived manifolds. There are equivalences of
categories MKur ' Ho(KurtrG) ' Ho(dMan), where
Ho(KurtrG),Ho(dMan) are the homotopy categories, and an
equivalence of weak 2-categories KurtrG ' dMan.
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In fact ‘Kuranishi spaces’ (with a different, non-equivalent
definition, which we will call ‘FOOO Kuranishi spaces’) have been
used for many years in the work of Fukaya et al. in symplectic
geometry (Fukaya and Ono 1999, Fukaya–Oh–Ohta–Ono 2009), as
the geometric structure on moduli spaces of J-holomorphic curves.
There are problems with their theory (e.g. there is no notion of
morphism of FOOO Kuranishi space), and I claim my definition is
the ‘correct’ definition of Kuranishi space, which should replace the
FOOO definition. Any FOOO Kuranishi space X can be made into
a Kuranishi space X′ in my sense, uniquely up to equivalence in
the 2-category Kur. I began working in Derived Differential
Geometry to try and find the ‘correct’ definition of Kuranishi
space, and sort out the problems in the area.
To motivate the comparison between d-manifolds and M-Kuranishi
spaces, consider the following two equivalent definitions of
manifold:
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Definition 6.1

A manifold of dimension n is a Hausdorff, second countable
topological space X with a sheaf OX of R-algebras (or C∞-rings)
locally isomorphic to (Rn,ORn), where ORn is the sheaf of smooth
functions f : Rn → R.

Definition 6.2

A manifold of dimension n is a Hausdorff, second countable
topological space X equipped with an atlas of charts
{(Vi , ψi ) : i ∈ I}, where Vi ⊆ Rn is open, and ψi : Vi → X is a
homeomorphism with an open subset Imψi of X for all i ∈ I , and
ψ−1
j ◦ ψi : ψ−1

i (Imψj)→ ψ−1
j (Imψi ) is a diffeomorphism of open

subsets of Rn for all i , j ∈ I .

If you try to define derived manifolds by generalizing Definition
6.1, you get d-manifolds (or something similar, e.g. Spivak); if you
try to generalize Definition 6.2, you get (M-)Kuranishi spaces.
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6.1. M-Kuranishi neighbourhoods and their morphisms

Definition 6.3

Let X be a topological space. An M-Kuranishi neighbourhood on
X is a quadruple (V ,E , s, ψ) such that:

(a) V is a smooth manifold.
(b) π : E → V is a vector bundle over V , the obstruction bundle.
(c) s ∈ C∞(E ) is a smooth section of E , the Kuranishi section.
(d) ψ is a homeomorphism from s−1(0) to an open subset Imψ in

X , where Imψ is called the footprint of (V ,E , s, ψ).

If S ⊆ X is open, we call (V ,E , s, ψ) an M-Kuranishi
neighbourhood over S if S ⊆ Imψ ⊆ X .

This is the same as Fukaya–Oh–Ohta–Ono Kuranishi
neighbourhoods, omitting finite groups Γ.
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Definition 6.4

Let X be a topological space, (Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj) be
M-Kuranishi neighbourhoods on X , and S ⊆ Imψi ∩ Imψj ⊆ X be

an open set. Consider triples (Vij , φij , φ̂ij) satisfying:

(a) Vij is an open neighbourhood of ψ−1
i (S) in Vi .

(b) φij : Vij → Vj is smooth, with ψi = ψj ◦ φij on s−1
i (0) ∩ Vij .

(c) φ̂ij : Ei |Vij
→ φ∗ij(Ej) is a morphism of vector bundles on Vij ,

with φ̂ij(si |Vij
) = φ∗ij(sj) + O(s2

i ).

Define an equivalence relation ∼ on such triples (Vij , φij , φ̂ij) by

(Vij , φij , φ̂ij)∼(V ′ij , φ
′
ij , φ̂
′
ij) if there are open ψ−1

i (S)⊆ V̇ij⊆Vij∩V ′ij
and a morphism Λ : Ei |V̇ij

→ φ∗ij(TVj)|V̇ij
of vector bundles on V̇ij

satisfying φ′ij =φij +Λ·si +O(s2
i ) and φ̂′ij = φ̂ij +Λ·φ∗ij(dsj)+O(si ) on

V̇ij . We write [Vij , φij , φ̂ij ] for the ∼-equivalence class of

(Vij , φij , φ̂ij), and call [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj)
a morphism of M-Kuranishi neighbourhoods over S .
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We can interpret all this in terms of standard model d-manifolds
from §5, and their 1- and 2-morphisms:

An M-Kuranishi neighbourhood (V ,E , s, ψ) on X corresponds
to a standard model d-manifold SV ,E ,s together with a
homeomorphism ψ from the topological space
SV ,E ,s = s−1(0) to an open subset Imψ ⊆ X .

A morphism [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) of
M-Kuranishi neighbourhoods consists of an open
d-submanifold SVij ,Ei |···,si |··· ⊆ SVi ,Ei ,si , together with a
2-isomorphism class [SVij ,φij ,φ̂ij

] of standard model

1-morphisms SVij ,φij ,φ̂ij
: SVij ,Ei |···,si |··· → SVj ,Ej ,sj , such that on

topological spaces we have ψj ◦ SVij ,φij ,φ̂ij
=ψi : SVij ,Ei |···,si |···→X .

The definition of (Vij , φij , φ̂ij) ∼ (V ′ij , φ
′
ij , φ̂
′
ij) is just the

existence of a 2-isomorphism SΛ : SVij ,φij ,φ̂ij
⇒ SV ′ij ,φ

′
ij ,φ̂
′
ij
.
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Given morphisms [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj),

[Vjk , φjk , φ̂jk ] : (Vj ,Ej , sj , ψj)→ (Vk ,Ek , sk , ψk) of M-Kuranishi
neighbourhoods over S ⊆ X , the composition is

[Vjk , φjk , φ̂jk ]◦[Vij , φij , φ̂ij ]=
[
φ−1
ij (Vjk), φjk ◦ φij |···, φ−1

ij (φ̂jk) ◦ φ̂ij |···
]

:

(Vi ,Ei , si , ψi ) −→ (Vk ,Ek , sk , ψk).

Then M-Kuranishi neighbourhoods over S ⊆ X form a category
MKurS(X ). We call [Vij , φij , φ̂ij ] an M-coordinate change over S
if it is an isomorphism in MKurS(X ). Theorem 5.7 implies:

Theorem 6.5

A morphism [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) is an
M-coordinate change over S if and only if for all x ∈ S with
vi = ψ−1

i (x) and vj = ψ−1
j (x), the following sequence is exact:

0 // Tvi Vi

dsi |vi⊕Tvi
φij // Ei |vi⊕Tvj Vj

φ̂ij |vi⊕−dsj |vj // Ej |vj // 0.
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The sheaf property of morphisms

Theorem 6.6

Let (Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj) be M-Kuranishi neighbourhoods
on X . For each open S ⊆ Imψi ∩ Imψj , write
Hom

(
(Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj)

)
(S) for the set of morphisms

Φij : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) over S, and for all open
T ⊆ S ⊆ Imψi ∩ Imψj define
ρST : Hom

(
(Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj)

)
(S) −→

Hom
(
(Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj)

)
(T ) by ρST : Φij 7−→ Φij |T .

Then Hom
(
(Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj)

)
is a sheaf of sets on

Imψi∩Imψj . Similarly, M-coordinate changes from (Vi ,Ei , si , ψi ) to
(Vj ,Ej , sj , ψj) are a subsheaf of Hom

(
(Vi ,Ei , si , ψi ), (Vj ,Ej , sj , ψj)

)
.

This is not obvious, but can be seen using the d-manifold
interpretation. It means we can glue (iso)morphisms of
M-Kuranishi neighbourhoods over the sets of an open cover.
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We generalize Definition 6.4:

Definition 6.7

Let f : X → Y be a continuous map of topological spaces,
(Vi ,Ei , si , ψi ), (Wj ,Fj , tj , χj) be M-Kuranishi neighbourhoods on
X ,Y , and S ⊆ Imψi ∩ f −1(Imχj) ⊆ X be an open set. Consider

triples (Vij , fij , f̂ij) satisfying:

(a) Vij is an open neighbourhood of ψ−1
i (S) in Vi .

(b) fij : Vij →Wj is smooth, with f ◦ ψi = χj ◦ fij on s−1
i (0) ∩ Vij .

(c) f̂ij : Ei |Vij
→ f ∗ij (Fj) is a morphism of vector bundles on Vij ,

with f̂ij(si |Vij
) = f ∗ij (tj) + O(s2

i ).

Define an equivalence relation ∼ by (Vij , fij , f̂ij)∼(V ′ij , f
′
ij , f̂
′
ij) if

there are open ψ−1
i (S)⊆ V̇ij⊆Vij∩V ′ij and Λ : Ei |V̇ij

→ f ∗ij (TWj)|V̇ij

with f ′ij = fij +Λ·si +O(s2
i ) and f̂ ′ij = f̂ij +Λ·f ∗ij (dtj)+O(si ). We write

[Vij , fij , f̂ij ] for the ∼-equivalence class of (Vij , fij , f̂ij), and call

[Vij , fij , f̂ij ] : (Vi ,Ei , si , ψi )→ (Wj ,Fj , tj , χj) a morphism over S , f .
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When Y = X and f = idX , this recovers the notion of morphisms
of M-Kuranishi neighbourhoods on X . We have the obvious notion
of compositions of morphisms of M-Kuranishi neighbourhoods over
f : X → Y and g : Y → Z .
Here is the generalization of Theorem 6.6:

Theorem 6.8

Let (Vi ,Ei , si , ψi ), (Wj ,Fj , tj , χj) be M-Kuranishi neighbourhoods
on X ,Y , and f : X → Y be continuous. Then morphisms from
(Vi ,Ei , si , ψi ) to (Wj ,Fj , tj , χj) over f form a sheaf
Homf

(
(Vi ,Ei , si , ψi ), (Wj ,Fj , tj , χj)

)
on Imψi ∩ f −1(Imχj).

This will be essential for defining compositions of morphisms of
M-Kuranishi spaces. The lack of such a sheaf property in the
FOOO theory is why FOOO Kuranishi spaces are not a category.
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6.2. M-Kuranishi spaces
Definition 6.9

Let X be a Hausdorff, second countable topological space, and
n ∈ Z. An M-Kuranishi structure K on X of virtual dimension n is
data K =

(
I , (Vi ,Ei , si , ψi )i∈I ,Φij , i ,j∈I

)
, where:

(a) I is an indexing set.
(b) (Vi ,Ei , si , ψi ) is an M-Kuranishi neighbourhood on X for each

i ∈ I , with dimVi − rankEi = n.
(c) Φij = [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) is an

M-coordinate change over S = Imψi ∩ Imψj for all i , j ∈ I .
(d)

⋃
i∈I Imψi = X .

(e) Φii = id(Vi ,Ei ,si ,ψi ) for all i ∈ I .
(f) Φjk ◦ Φij = Φik for all i , j , k ∈ I over

S = Imψi ∩ Imψj ∩ Imψk .

We call X = (X ,K) an M-Kuranishi space, of virtual dimension
vdimX = n. When we write x ∈ X, we mean that x ∈ X .

37 / 45 Dominic Joyce, Oxford University Lecture 6: M-Kuranishi spaces

Differential-geometric description of d-manifolds
M-Kuranishi spaces

M-Kuranishi neighbourhoods and their morphisms
M-Kuranishi spaces
Geometry of M-Kuranishi spaces

In terms of standard model d-manifolds, an M-Kuranishi structure
K on X is the data:

An open cover {Imψi : i ∈ I} of X .
Standard model d-manifolds SVi ,Ei ,si for i ∈ I , with
homeomorphisms ψi : SVi ,Ei ,si → Imψi ⊆ X .
On each double overlap Imψi ∩ Imψj for i , j ∈ I , a
2-isomorphism class [SVij ,φij ,φ̂ij

] of equivalences

SVij ,φij ,φ̂ij
: SVij ,Ei |···,si |··· → SVji ,Ej |···,sj |··· in dMan, where

SVij ,Ei |···,si |··· ⊆ SVi ,Ei ,si and SVji ,Ej |···,sj |··· ⊆ SVj ,Ej ,sj are the
open d-submanifolds corresponding to Imψi ∩ Imψj .
On each triple overlap Imψi ∩ Imψj ∩ Imψk , there must exist
a 2-isomorphism SVjk ,φjk ,φ̂jk

◦ SVij ,φij ,φ̂ij
∼= SVik ,φik ,φ̂ik

.

In the ‘atlas of charts’ definition of manifolds, we provide data
(Vi , ψi ) on each set Imψi of an open cover, and verify conditions
on double overlaps Imψi ∩ Imψj . Here we provide data on Imψi

and Imψi ∩ Imψj , and verify conditions on Imψi ∩ Imψj ∩ Imψk .
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Definition 6.10

Let X = (X ,K) with K =
(
I , (Vi ,Ei , si , ψi )i∈I ,Φii ′, i ,i ′∈I

)
and

Y = (Y ,L) with L =
(
J, (Wj ,Fj , tj , χj)j∈J ,Ψjj ′, j ,j ′∈J

)
be

M-Kuranishi spaces. A morphism f : X→ Y is f =
(
f , f ij , i∈I , j∈J

)
,

where f : X → Y is a continuous map, and
f ij = [Vij , fij , f̂ij ] : (Vi ,Ei , si , ψi )→ (Wj ,Fj , tj , χj) is a morphism of
M-Kuranishi neighbourhoods over S = Imψi ∩ f −1(Imχj) and f
for all i ∈ I , j ∈ J, satisfying the conditions:

(a) If i , i ′ ∈ I and j ∈ J then f i ′j ◦ Φii ′ |S = f ij |S over
S = Imψi ∩ Imψi ′ ∩ f −1(Imχj) and f .

(b) If i ∈ I and j , j ′ ∈ J then Ψjj ′ ◦ f ij |S = f ij ′ |S over
S = Imψi ∩ f −1(Imχj ∩ Imχj ′) and f .

If x ∈ X (i.e. x ∈ X ), we will write f(x) = f (x) ∈ Y.
When Y = X, so that J = I , define the identity morphism
idX : X→ X by idX =

(
idX ,Φij , i ,j∈I

)
.

39 / 45 Dominic Joyce, Oxford University Lecture 6: M-Kuranishi spaces

Differential-geometric description of d-manifolds
M-Kuranishi spaces

M-Kuranishi neighbourhoods and their morphisms
M-Kuranishi spaces
Geometry of M-Kuranishi spaces

Composition of morphisms

Let X = (X , I) with I =
(
I , (Ui ,Di , ri , φi )i∈I ,Φii ′, i ,i ′∈I

)
and

Y = (Y ,J ) with J =
(
J, (Vj ,Ej , sj , ψj)j∈J ,Ψjj ′, j ,j ′∈J

)
and

Z = (Z ,K) with K =
(
K , (Wk ,Fk , tk , ξk)k∈K ,Ξkk ′, k,k ′∈K

)
be

M-Kuranishi spaces, and f = (f , f ij) : X→ Y,
g = (g , gjk) : Y → Z be morphisms. Consider the problem of how
to define the composition g ◦ f : X→ Y.
For all i ∈ I and k ∈ K , g ◦ f must contain a morphism
(g ◦ f)ik : (Ui ,Di , ri , φi )→ (Wk ,Fk , tk , ξk) defined over
Sik = Imφi ∩ (g ◦ f )−1(Im ξk) and g ◦ f .
For each j ∈ J, we have a morphism
gjk ◦ f ij : (Ui ,Di , ri , φi )→ (Wk ,Fk , tk , ξk), but it is defined over
Sijk = Imφi ∩ f −1(Imψj) ∩ (g ◦ f )−1(Im ξk) and g ◦ f , not over
the whole of Sik = Imφi ∩ (g ◦ f )−1(Im ξk).
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Composition of morphisms

The solution is to use the sheaf property of morphisms, Theorem
6.8. The sets Sijk for j ∈ J form an open cover of Sik . Using
Definition 6.10(a),(b) we can show that
gjk ◦ f ij |Sijk∩Sij′k = gj ′k ◦ f ij ′ |Sijk∩Sij′k . Therefore by Theorem 6.8
there is a unique morphism of M-Kuranishi neighbourhoods
(g ◦ f)ik : (Ui ,Di , ri , φi )→ (Wk ,Fk , tk , ξk) defined over Sik and
g ◦ f with (g ◦ f)ik |Sijk = gjk ◦ f ij for all j ∈ J. We show that

g ◦ f :=
(
g ◦ f , (g ◦ f)ik, i∈I , k∈K

)
is a morphism g ◦ f : X→ Z of

M-Kuranishi spaces, which we call composition.
Composition is associative, and makes M-Kuranishi spaces into an
ordinary category MKur.
Using facts about standard model d-manifolds, we can prove that
there is an equivalence of categories MKur ' Ho(dMan). Thus,
isomorphism classes of M-Kuranishi spaces are in 1-1
correspondence with equivalence classes of d-manifolds.
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Why no higher categories?

I have been stressing throughout that to do derived geometry
properly, you should work in a higher category (a 2-category, or an
∞-category) rather than an ordinary category. So why have I just
defined an ordinary category MKur of derived manifolds?
One answer is that you can always reduce to ordinary categories by
taking homotopy categories, just as MKur ' Ho(dMan). But
doing so loses important information that we want to keep, and
this information is missing in MKur. For example, fibre products
X×g,Z,h Y in MKur, if they exist, will generally not be the
‘correct’ fibre products we want for applications, because the
‘correct’ fibre products are characterized by a universal property
involving 2-morphisms, that makes no sense in MKur.
I only intended MKur as a ‘cheap’ version of derived manifolds, in
which we sacrifice some good behaviour for the sake of simplicity.
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Why no higher categories?

However, there is more to it than this. It is surprising that our
definition of MKur ‘works’ at all, in the sense that it satisfies
MKur ' Ho(dMan) ' Ho(DerManSpi), so it is equivalent to the
homotopy categories of some genuine higher categories of derived
manifolds dMan,DerManSpi.
The reason for this is the complicated result Theorem 4.6 in §4 on
gluing families of d-spaces Xi , i ∈ I (and hence d-manifolds) by
equivalences on overlaps. Surprisingly, this theorem held in the
homotopy category Ho(dSpa),Ho(dMan). That is, though we
need the 2-category structure on dMan to form ‘correct’ fibre
products, etc., we only need the ordinary category Ho(dMan) to
glue by equivalences. The analogue is false for stacks, orbifolds,
derived schemes, . . . . An M-Kuranishi space is basically a family of
standard model d-manifolds SVi ,Ei ,si glued by equivalences on
overlaps, in the homotopy category Ho(dMan).

43 / 45 Dominic Joyce, Oxford University Lecture 6: M-Kuranishi spaces

Differential-geometric description of d-manifolds
M-Kuranishi spaces

M-Kuranishi neighbourhoods and their morphisms
M-Kuranishi spaces
Geometry of M-Kuranishi spaces

6.3. Geometry of M-Kuranishi spaces

Example 6.11

Let X be a manifold. Then (V ,E , s, ψ) = (X , 0, 0, idX ) is an
M-Kuranishi neighbourhood on X , where V = X , E = 0 is the
zero vector bundle on X , s = 0 is the zero section, and
ψ = idX : s−1(0) = X → X . Define an M-Kuranishi structure
K =

(
{0}, (X , 0, 0, idX )0, id(X ,0,0,idX ) 00

)
on X to have indexing set

I = {0}, one M-Kuranishi neighbourhood
(V0,E0, s0, ψ0) = (X , 0, 0, idX ), and one M-coordinate change
Φ00 = id(X ,0,0,idX ). Then X = (X ,K) is an M-Kuranishi space.
Similarly, any smooth map of manifolds f : X → Y induces a
morphism of M-Kuranishi spaces f = (f , f00) : X→ Y with
f00 = [X , f , 0]. This defines a full and faithful functor
FMKur
Man : Man→MKur mapping X 7→ X, f 7→ f, which embeds

Man as a full subcategory of MKur. We say that an M-Kuranishi
space X is a manifold if X ∼= FMKur

Man (X ′) for some manifold X ′.
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As for d-manifolds, for an M-Kuranishi space X we can define the
tangent space TxX and obstruction space OxX for any x ∈ X,
where if X = (X ,K) with K =

(
I , (Vi ,Ei , si , ψi )i∈I ,Φii ′, i ,i ′∈I

)
and

x ∈ Imψi with ψ−1
i (x) = vi ∈ s−1

i (0) ⊆ Vi then as for (5.3) we
have an exact sequence

0 // TxX // Tvi Vi

dsi |vi // Ei |vi // OxX // 0. (6.1)

If f : X→ Y is a morphism of M-Kuranishi spaces we get
functorial linear maps Tx f : TxX→ TyY and Ox f : OxX→ OyY.

Theorem 6.12

(a) An M-Kuranishi space X is a manifold iff OxX=0 for all x ∈X.
(b) A morphism f : X→ Y of M-Kuranishi spaces is étale (a local
isomorphism) iff Tx f : TxX→ TyY and Ox f : OxX→ OyY are
isomorphisms for all x ∈ X with f(x) = y ∈ Y. And f is an
isomorphism in MKur if also f : X → Y is a bijection.
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