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1. Introduction to Ringel–Hall algebras

Let K be a field, and A a K-linear abelian category satisfying some
conditions, e.g. A could be the category mod-KQ of
representations of a quiver Q, or the category coh(X ) of coherent
sheaves on a smooth projective K-scheme X . Write M for the
moduli stack of objects in A, which should be an Artin K-stack,
locally of finite type, and M(K) for the set of K-points.

There are several versions of the Ringel–Hall algebra H associated
to A. In one version, H is a Q-vector space of some class of
functions f : M(K)→ Q (e.g. functions with finite support, or
constructible functions H = CF(M)) equipped with an associative
multiplication ∗ making H into a Q-algebra, with unit
δ0 : M(K)→ Q the function which is 1 on 0 ∈ A and 0 otherwise.
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Write Exact for the moduli stack of exact sequences
E• = 0→ E1 → E2 → E3 → 0 in A, with projections
Πi : Exact →M mapping E• → Ei for i = 1, 2, 3. Then
∗ : H×H → H is

f ∗ g = (Π2)∗ ◦ (Π1,Π3)∗(f � g).

Here Π2 : Exact →M is a representable morphism, and
(Π1,Π3) : Exact →M×M is a finite type morphism, and
pushforwards (pullbacks) of H-type functions should be defined for
representable (finite type) morphisms of Artin K-stacks.
Ringel–Hall algebras are studied in Geometric Representation
Theory, for instance to construct Quantum Groups from
A = mod-KQ for Q an ADE quiver.
Note that H is also a Lie algebra, with Lie bracket
[f , g ] = f ∗ g − g ∗ f , the Jacobi identity follows from ∗ associative.
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Ringel–Hall algebras of constructible functions were used in my
work on ‘Configurations in abelian categories’ to study
wall-crossing under change of stability condition. Let K (A) be a
quotient group of the Grothendieck group K0(A) of A (e.g.
K (A) = Knum(A) could be the numerical Grothendieck group)
such that M =

∐
α∈K(A) Mα with Mα the moduli stack of objects

E ∈ A in class α in K (A) an open and closed substack in M, and
M0 = {0}. Write C (A) =

{
0 6= α ∈ K (A) : Mα 6= ∅

}
, the

‘positive cone’ in K (A). A stability condition (τ,T ,6) on A is a
total order (T ,6) and a map τ : C (A)→ T such that if
α, β, γ ∈ C (A) with β = α + γ then τ(α) 6 τ(β) 6 τ(γ) or
τ(α) > τ(β) > τ(γ). Then we can define when an object E ∈ A is
τ -semistable. Write Mss

α (τ) ⊆Mα ⊂M for the moduli stack of
τ -semistable objects in class α in A.
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We call τ permissible if Mss
α (τ) is a finite type Artin K-stack for

all α ∈ C (A). Then the characteristic function δMss
α (τ) is an

element of the constructible Ringel–Hall algebra H = CF(M).
If τ, τ̃ are two permissible stability conditions, I gave a universal
wall-crossing formula which wrote δMss

α (τ̃) as a sum of products of
δMss

β (τ) in H, with combinatorial coefficients depending on τ, τ̃ .

I also defined elements εα(τ) in H for α ∈ C (A) by

εα(τ) =
∑

n>1, α1,...,αn∈C(A):
τ(αi )=τ(α), α1+···+αn=α

(−1)n

n
· δMss

α1
(τ) ∗ · · · ∗ δMss

αn (τ).

I showed the εα(τ) also satisfy a universal wall-crossing formula in
H under change of stability condition, which can be written using
only the Lie bracket on H. That is, we can write εα(τ̃) as a Q-linear
combination of multiple Lie brackets [εβ1(τ), [εβ2(τ), [· · · ]]].
This has applications to wall-crossing of DT invariants for C–Y 3-folds.
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2. Ringel–Hall Lie algebras on homology

Here is the main idea of the talk.
Let A be a K-linear abelian category as before, and M the moduli
stack of objects in A, an Artin K-stack, locally of finite type.
Suppose we have a homology theory H∗(−) of Artin K-stacks over
a commutative ring R (e.g. R = Q), satisfying some axioms.
Given some extra data on M, we will define a graded Lie bracket
[ , ] on the homology H∗(M) (or better, a modification of this),
making H∗(M) into a graded Lie (super)algebra (with a
nonstandard grading). This is analogous to the Ringel–Hall Lie
algebra

(
CF(M), [ , ]

)
, but with CF(M) replaced by H∗(M).

There are lots of interesting applications:
• Lie algebras in Geometric Representation Theory from quivers, etc.
• Explain Grojnowski–Nakajima on (co)homology of Hilbert schemes.
• Wall-crossing for virtual cycles in enumerative invariant problems.
• A differential-geometric version for use in gauge theory.
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The extra data we need

We have f ∗ g = (Π2)∗ ◦ (Π1,Π3)∗(f � g) for Ringel–Hall algebras
of constructible functions CF(M). If we replace CF(M) by H∗(M)
then the pushforward (Π2)∗ is natural, but the pullback (Π1,Π3)∗

is not. To define our substitute for (Π1,Π3)∗ we need some extra
data, a perfect complex Θ• on M×M satisfying some
assumptions; the formula for [ , ] involves rankΘ• and ci (Θ•).
We also need signs εα,β related to ‘orientation data’ for A.
For graded antisymmetry of [ , ] we need σ∗(Θ•) ∼= (Θ•)∨[2n] for
some n ∈ Z, where σ : M×M→M×M exchanges the factors,
as then ci (σ

∗(Θ•)) = (−1)ici (Θ•).
In our examples there is a natural perfect complex Ext• on M×M
with H i (Ext•)|([E ],[F ])

∼= ExtiA(E ,F ) for E ,F ∈ A and i ∈ Z. If A
is a 2n-Calabi–Yau category then σ∗((Ext•)∨) ∼= Ext•[2n], and we
put Θ• = (Ext•)∨. Otherwise we put Θ• = (Ext•)∨+σ∗(Ext•)[2n].
Thus examples split into ‘even Calabi–Yau’ and ‘general’ Lie algebras.
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More detail on the basic set-up

Let K (A) be a quotient group of the Grothendieck group K0(A) of
A such that M =

∐
α∈K(A) Mα, with Mα the moduli stack of

objects E ∈ A in class α in K (A) an open and closed substack in M.
We suppose we are given a biadditive map χ : K (A)× K (A)→ Z
called the Euler form, with χ(α, β) = χ(β, α). The restriction
Θ•α,β = Θ•|Mα×Mβ

should have rankΘ•α,β = χ(α, β).
There should be an Artin stack morphism Φ : M×M→M
mapping Φ(K) : ([E ], [F ]) 7→ [E ⊕ F ] on K-points, from direct sum
in A. It is associative and commutative. In perfect complexes on
Mα ×Mβ ×Mγ for α, β, γ ∈ K (A) we should have

(Φα,β × idMγ )∗(Θ•α+β,γ) ∼= Π∗Mα×Mγ
(Θ•α,γ)⊕ Π∗Mβ×Mγ

(Θ•β,γ),

needed for the graded Jacobi identity for [ , ], and corresponding to

ExtiA(E ⊕ F ,G )∗ ∼= ExtiA(E ,G )∗ ⊕ ExtiA(F ,G )∗.
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The stack [∗/Gm] and morphism Ψ

Write Gm = K \ {0} as an algebraic K-group under multiplication,
and [∗/Gm] for the quotient stack, where ∗ = SpecK is the point.
If S is an Artin K-stack and s ∈ S(K) a K-point there is an
isotropy group IsoS(s), an algebraic K-group. We have
IsoM([E ]) ∼= Aut(E ) for E ∈ A. There is a natural morphism
Gm → Aut(E ) mapping λ 7→ λ · idE ∈ Aut(E ) ⊂ HomA(E ,E ).
There should be an Artin stack morphism Ψ : [∗/Gm]×M→M
mapping (∗, [E ]) 7→ [E ] on K-points, and acting on isotropy groups by

Ψ∗ : Iso[∗/Gm]×M(∗, [E ]) ∼= Gm ×Aut(E ) −→ IsoM([E ]) ∼= Aut(E ),

Ψ∗ : (λ, µ) 7−→ (λ · idE ) ◦ µ.
Here [∗/Gm] is a group stack, and Ψ is an action of [∗/Gm] on
M, which is free except over [0] ∈M. This Ψ encodes the natural
morphisms Gm → IsoM([E ]) for all [E ] ∈M(K).
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We require a compatibility between Ψ and Θ•, roughly that

(Ψ× idM)∗(Θ•) ∼= Π∗[∗/Gm](L)⊗ Π∗M×M(Θ•)

where L is the line bundle on [∗/Gm] associated to the obvious
representation of Gm on K. This corresponds to λ idE ∈ Aut(E )
acting by multiplication by λ ∈ Gm on Exti (E ,F )∗.

We should be given εα,β = ±1 for α, β ∈ K (A) satisfying

εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β),

εα,β · εα+β,γ = εα,β+γ · εβ,γ .
They are needed to correct signs in defining [ , ]. Such εα,β always
exist. They are related to ‘orientation data’ as follows: if we have
chosen ‘orientations’ for Mα,Mβ,Mα+β, then εα,β should be the
natural sign comparing the orientations at [E ] ∈Mα(K),
[F ] ∈Mβ(K) and [E ⊕ F ] = Φ([E ], [F ]) ∈Mα+β(K).
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The homology of [∗/Gm], and its action on H∗(M)

Let H∗(−) be a homology theory of Artin K-stacks over a
commutative ring R, satisfying some natural axioms. Then

Hi ([∗/Gm]) ∼=

{
R, i = 0, 2, 4, 6, . . . ,

0 otherwise.

(This holds as the ‘classifying space’ of [∗/Gm] is KP∞.) So we
may write H∗([∗/Gm]) ∼= R[t], for t a formal variable of degree 2,
such that tn is a basis element for H2n([∗/Gm]).
Let Ω : [∗/Gm]× [∗/Gm]→ [∗/Gm] be the stack morphism
induced by the group morphism ω : Gm ×Gm → Gm mapping
ω : (λ, µ) 7→ λµ. Define ? : H∗([∗/Gm])× H∗([∗/Gm])→ H∗([∗/Gm])
by ζ ? η = H∗(Ω)(ζ � η). Then ? makes H∗([∗/Gm]) ∼= R[t] into a
commutative R-algebra, with tm ? tn =

(m+n
m

)
tm+n.

Define � : H∗([∗/Gm])× H∗(M)→ H∗(M) by ζ � θ = H∗(Ψ)(ζ � θ).
Then � makes H∗(M) into a module over H∗([∗/Gm]) ∼= R[t].
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Bilinear operations [ , ]n on H∗(M)

Let α, β ∈ K (A) and a, b, n > 0. Define an R-bilinear operation

[ , ]n : Ha(Mα)× Hb(Mβ) −→ Ha+b−2n−2χ(α,β)−2(Mα+β)

by, for all ζ ∈ Ha(Mα) and η ∈ Hb(Mβ),

[ζ, η]n =
∑

i>0: 2i6a+b,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·
Ha+b−2n−2χ(α,β)−2(Φα,β ◦ (Ψα × idMβ

))(
t i−n−χ(α,β)−1 �

[
(ζ � η) ∩ ci ([Θ•α,β])

])
,

where tk ∈ H2k([∗/Gm]) as above. These are not Lie brackets, nor
are they R[t]-bilinear, but they do satisfy a bunch of complicated
identities which look rather like graded antisymmetry / the graded
Jacobi identity / R[t]-bilinearity.
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The ‘t = 0’ Lie algebra

There are many different versions of our Lie algebra construction.
Here is one of the simplest. Write It = 〈t, t2, t3, . . .〉R for the ideal
in H∗([∗/Gm]) = R[t] spanned over R by all positive powers of t.
For each α ∈ K (A), define

H∗(Mα)t=0 = H∗(Mα)/(It � H∗(Mα)),

using the representation � of (R[t], ?) on H∗(Mα). Now define

[ , ]t=0 : Ha(Mα)t=0 × Hb(Mβ)t=0 −→ Ha+b−2χ(α,β)−2(Mα+β)t=0

by
[
ζ+(It �H∗(Mα)), η+(It �H∗(Mβ))

]t=0
=[ζ, η]0+(It �H∗(Mα+β)).
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Define an alternative grading on H∗(Mα)t=0 by

H̃i (Mα)t=0 = Hi+2−χ(α,α)(Mα)t=0.

Then using χ(α, β) = χ(β, α) we find that [ , ]t=0 maps

[ , ]t=0 : H̃ã(Mα)t=0 × H̃b̃(Mβ)t=0 −→ H̃ã+b̃(Mα+β)t=0.

Using identities on the [ , ]n, we find that if ζ ∈ H̃ã(Mα)t=0,
η ∈ H̃b̃(Mβ)t=0 and θ ∈ H̃c̃(Mγ)t=0 then

[η, ζ]t=0 = (−1)ãb̃+1[ζ, η]t=0,

(−1)c̃ ã[[ζ, η]t=0, θ]t=0 + (−1)ãb̃[[η, θ]t=0, ζ]t=0

+(−1)b̃c̃ [[θ, ζ]t=0, η]t=0 = 0.

That is, [ , ]t=0 is a graded Lie bracket on
H̃∗(M)t=0 =

⊕
α∈K(A) H̃∗(Mα)t=0, as we want.

In general there is no associative multiplication ∗ on H̃∗(M)t=0 with
[ζ, η]t=0 = ζ ∗ η− η ∗ ζ, in contrast to constructible functions case.
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The ‘projective linear’ Lie algebra

A disadvantage of the ‘t = 0’ version is that H∗(M)t=0 is not
presented as the homology of a nice space. The ‘projective linear’
version corrects this. Recall that [∗/Gm] is a group stack, and
Ψ : [∗/Gm]×M→M is an action of [∗/Gm] on M, which is free
on M′ = M \ {[0]}. We can form a quotient Mpl = M/[∗/Gm]
called the ‘projective linear moduli stack’, with a morphism
Πpl : M′ →Mpl which is a principal [∗/Gm]-bundle.
Then K-points of Mpl are isomorphism classes [E ] of nonzero
E ∈ A, and isotropy groups are

IsoMpl([E ]) ∼= Aut(E )/(Gm · idE ).

That is, we make Mpl from M′ by quotienting out Gm from each
isotropy group, a process called ‘rigidification’. For moduli of
stable coherent sheaves, the stable moduli scheme is the
rigidification of the stable moduli stack.
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Under some assumptions (including R a Q-algebra) we can show
that H∗(Πpl) : H∗(M

′)→ H∗(M
pl) induces an isomorphism

H∗(M
′)t=0 ∼= H∗(M

pl). Thus, the Lie bracket [ , ]t=0 on
H∗(M

′)t=0 induces a Lie bracket [ , ]pl on H∗(M
pl). Actually, even

without an isomorphism H∗(M
′)t=0 ∼= H∗(M

pl) we can define a
graded Lie bracket [ , ]pl on H∗(M

pl) in a different way.
Here [ , ]pl is graded for the alternative grading

H̃i (M
pl
α ) = Hi+2−χ(α,α)(Mpl

α ).

We should interpret 2− χ(α, α) as the (homological) virtual
dimension of Mpl

α , where the 2 is the (real) dimension of Gm,
which we quotiented from the isotropy groups to make Mpl.
There is also a triangulated category version of the construction,
using higher stacks, which we can apply to moduli of objects in
categories such as Db coh(X ) for X a smooth projective K-scheme.
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3. Enumerative invariants and wall-crossing

The rest of the lecture is conjectural, but we hope to prove.
There are several theories of enumerative invariants ‘counting’
τ -(semi)stable moduli spaces for a stability condition τ on an
abelian category A = coh(X ):

Mochizuki’s invariants counting coherent sheaves on a surface
(an algebraic version of Donaldson invariants).

Donaldson–Thomas invariants of a Fano 3-fold.

Donaldson–Thomas type invariants of a Calabi–Yau 4-fold.
(Borisov–Joyce, Cao–Leung.)

(We exclude Donaldson–Thomas invariants of Calabi–Yau 3-folds
for now.) I hope to treat the definitions of the invariants in the
strictly semistable case, and wall-crossing for the invariants under
change of stability condition, in a uniform way for all these
theories, using the ‘projective linear’ Ringel–Hall Lie algebra.
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These theories have the following structure:
• For each α ∈ K (A) we form τ -(semi)stable moduli schemes
Mst

α (τ) ⊆Mss
α (τ). Here Mss

α (τ) is proper, and Mst
α (τ) has a

perfect obstruction theory E• (excluding the CY4 case).
• If Mst

α (τ) =Mss
α (τ) (the easy case) then Mst

α (τ) is proper with
a perfect obstruction theory, so by Behrend–Fantechi it has a
virtual class [Mst

α (τ)]virt in (Chow) homology H∗(Mst
α (τ)).

• We can make numerical invariants by integrating natural
cohomology classes on Mst

α (τ) over [Mst
α (τ)]virt.

• If Mst
α (τ) 6=Mss

α (τ) (the difficult case), we need to work harder
(e.g. by considering moduli schemes of pairs) to define invariants
‘counting’ Mss

α (τ). It may not be clear what we are really counting.
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Stable moduli schemes and the ‘projective linear’ stack Mpl

If E ∈ A is τ -stable then Aut(E ) ∼= Gm. Thus, the τ -stable
moduli stacks Mst

α (τ) have isotropy groups IsoMst
α (τ)([E ]) ∼= Gm.

So the ‘projective linear’ τ -stable moduli stacks Mst,pl
α (τ) have

isotropy groups Iso
Mst,pl
α (τ)

([E ]) ∼= Gm/Gm = {1}. That is, the

stack Mst,pl
α (τ) is actually the scheme Mst

α (τ), and Mst
α (τ) is

open in the projective linear Mpl
α . Hence, if Mst

α (τ) =Mss
α (τ)

then [Mst
α (τ)]virt defines a class in H∗(M

pl
α ). In fact [Mst

α (τ)]virt
has degree 2− χ(α, α), so [Mst

α (τ)]virt lies in H̃0(Mpl
α ), the degree

0 part of our ‘projective linear’ Lie algebra.

Conjecture 1 (joint work with Yuuji Tanaka)

There is a natural way to define a virtual class [Mss
α (τ)]virt in

homology H̃0(Mpl
α ) over R = Q for all α ∈ K (A). It involves

blowing up Mss,pl
α (τ) to get a proper Deligne–Mumford stack with

perfect obstruction theory (except the CY4 case).
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Conjecture 2

Under change of stability condition, the virtual classes [Mss
α (τ)]virt

in Conjecture 1 transform according to the universal Lie algebra
wall-crossing formula for the εα(τ) discussed in §1, but in the Lie
algebra

(
H̃0(Mpl

α ), [ , ]pl
)
.

Now consider:

Mochizuki’s invariants counting coherent sheaves on a surface.

Donaldson–Thomas invariants of a Fano 3-fold.

Donaldson–Thomas type invariants of a Calabi–Yau 4-fold.

In each case, Conjectures 1 and 2 give both an extension of of the
invariants to the strictly τ -semistable case, and an explicit
prediction for how the extended invariants (both virtual classes,
and the numerical invariants made by integrating cohomology
classes on them) transform under change of stability condition.
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4. Differential Geometry and Gauge Theory

There should also be a version of the theory in gauge theory. Let
(X , g) be a compact Riemannian manifold with a geometric
structure suitable for considering instanton-type equations on
complex vector bundles on X , e.g. an oriented Riemannian
4-manifold, a G2-manifold, or a Spin(7)-manifold. Then either:

(a) We take M to be the moduli space of all U(n)-connections on
rank n complex vector bundles on X , for all n > 1, or

(b) We take M to be the moduli space of all U(n)-instantons on
rank n complex vector bundles on X , for all n > 1.

In both cases we regard M as a topological stack. Thus, if we
write M = A /G for A a family of connections and G a gauge
group, then H∗(M) ∼= HG

∗ (A ) is the equivariant homology.
We can also fix determinants, and use SU(n)-connections rather
than U(n) connections.
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I claim that we can define a graded Lie bracket on the shifted
homology H̃∗(M) (or better, on modifications of this, such as
H̃∗(M)t=0 and H̃∗(M

pl)). It is essential to work with U(n) or
SU(n) connections for all n > 1, as the Lie bracket takes
H∗(rank m conns) × H∗(rank n conns) −→ H∗(rank m + n conns).
Here the analogue of the perfect complex Θ• on M×M comes
from index theory of elliptic operators: given an elliptic complex
P• on X , such as for an oriented Riemannian 4-manifold (X , g):

0 // Γ∞(Λ0T ∗X )
d // Γ∞(Λ1T ∗X )

d+ // Γ∞(Λ2
+T
∗X ) // 0,

we define a family of elliptic operators on X over M×M to be
P• twisted by Hom((E ,∇E ), (F ,∇F )) at ((E ,∇E ), (F ,∇F )) in
M×M, and then define Θ to be the family index of this family
of elliptic operators, in the complex K-theory KC(M×M) of
M×M. Then Chern classes ci (Θ) exist in H2i (M×M).
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In case (a) the Lie bracket [ , ] depends only on the symbol of P•.
In the examples I’m interested in, this is the same as the symbol of
the Dirac operator, so the Lie bracket [ , ] depends only on X as a
spin manifold, not on the G2-structure, Spin(7)-structure, etc.
I haven’t worked out the details yet, but I believe the Lie bracket
[ , ] and related ideas have applications to:

Defining U(n) and SU(n) Donaldson invariants for n > 2
when b2

+ > 1. Wall-crossing formulae for these when b2
+ = 1.

Seiberg–Witten invariants =⇒ SU(n) Donaldson invariants.

G2 and Spin(7) gauge theory; but may need b2
7 > 1.

Recall Conjecture 1 in the algebraic case, which says there is a
natural way to count τ -semistables. To make the analogue work in
the differential geometric case (i.e. to be able to ‘count’ moduli
spaces including reducibles), I think we will need ‘b2

+(X ) > 1’, i.e.
for X to have a ‘Kähler form’, so that M looks like an ∞-dim
Kähler quotient/GIT quotient. This is a problem for G2, Spin(7).
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