Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

Complex manifolds and Kähler Geometry

Lecture 1 of 16: Complex manifolds

Dominic Joyce, Oxford University Spring 2022

These slides available at http://people.maths.ox.ac.uk/~joyce/

Plan of talk:

1.1 Complex manifolds

1.2 Holomorphic functions and holomorphic maps

1.3 Complex submanifolds

Complex manifolds Complex manifolds as real manifolds; almost complex structures Complex manifolds Holomorphic functions and holomorphic map Complex submanifolds Projective complex manifolds

1.1. Complex manifolds

We will give two definitions of complex manifolds. This lecture, we use complex charts and holomorphic transition functions. Next lecture, in a more Differential Geometric style, we use (almost) complex structures on a real manifold. The two points of view are equivalent, by the Newlander-Nirenberg Theorem. Recall the definition of a (smooth, real) manifold: a topological space X with an atlas of charts (U_i, ϕ_i) with transition functions ϕ_{ii} diffeomorphisms between open sets in \mathbb{R}^n . We can instead require other conditions on ϕ_{ii} , e.g. ϕ_{ii} continuous gives you topological manifolds, or we could require ϕ_{ii} to be C^k , or real analytic. Requiring the ϕ_{ii} to be holomorphic gives you *complex* manifolds

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

Definition

Let X be a topological space, and fix $n \ge 0$. A (*complex*) *chart* on X is (U, ϕ) , where $U \subseteq \mathbb{C}^n$ is open and $\phi : U \to X$ is a homeomorphism from U to an open subset $\phi(U)$ in X. Let $(U, \phi), (V, \psi)$ be charts. The *transition function* between them is

$$\psi^{-1} \circ \phi : \phi^{-1} (\phi(U) \cap \psi(V)) \longrightarrow \psi^{-1} (\phi(U) \cap \psi(V)).$$

It is automatically a homeomorphism between open subsets of \mathbb{C}^n . We call $(U, \phi), (V, \psi)$ compatible if $\psi^{-1} \circ \phi$ is a biholomorphism between open subsets of \mathbb{C}^n , i.e. holomorphic with holomorphic inverse.

A (complex) atlas on X is a system $\{(U_i, \phi_i) : i \in I\}$ of pairwise compatible charts on X with $X = \bigcup_{i \in I} \phi_i(U_i)$. We may write ϕ_{ij} for the transition function $\phi_i^{-1} \circ \phi_i$.

Definition (Continued)

An atlas is called *maximal* if it is not a proper subset of any other atlas. Every atlas $\{(U_i, \phi_i) : i \in I\}$ is contained in a unique maximal atlas, the set of all charts (U, ϕ) compatible with (U_i, ϕ_i) for all $i \in I$.

An (*n*-dimensional) complex manifold is a second countable, Hausdorff topological space X together with a maximal atlas $\{(U_i, \phi_i) : i \in I\}$ of *n*-dimensional complex charts (U_i, ϕ_i) . Here second countable is to avoid pathological examples from topology; sometimes one asks for paracompact instead.

Usually we refer to X as the complex manifold, and suppress the atlas. Taking the atlas *maximal* makes it independent of choices.

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

What a complex atlas on X gives you is a notion of *local* holomorphic coordinates. Let $x \in X$. Then we can choose a chart (U_i, ϕ_i) with $x \in \phi_i(U_i)$, since $X = \bigcup_{i \in I} \phi_i(U_i)$. Then we think of $\phi_i^{-1} : \phi_i(U_i) \to \mathbb{C}^n$ as holomorphic coordinates (z_1, \ldots, z_n) defined on an open neighbourhood $\phi_i(U_i)$ of x. We can do a lot of definitions and proofs using local holomorphic coordinates.

Example

The simplest complex manifold is \mathbb{C}^n . $(U, \phi) = (\mathbb{C}^n, \mathrm{id}_{\mathbb{C}^n})$ is a chart on \mathbb{C}^n , and $\{(\mathbb{C}^n, \mathrm{id}_{\mathbb{C}^n})\}$ is an atlas on \mathbb{C}^n . This is contained in a unique maximal atlas, which makes \mathbb{C}^n into a complex manifold.

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

Example

Complex projective space \mathbb{CP}^n is a compact *n*-dimensional complex manifold. We use homogeneous coordinates $[z_0, \ldots, z_n]$ on \mathbb{CP}^n . For $i = 0, \ldots, n$, define a chart (U_i, ϕ_i) on \mathbb{CP}^n by $U_i = \mathbb{C}^n$ and $\phi_i : \mathbb{C}^n \to \mathbb{CP}^n$ given by

$$\phi_i: (w_1,\ldots,w_n) \longmapsto [w_1,\ldots,w_i,1,w_{i+1},\ldots,w_n].$$

This is a homeomorphism with the open subset $\phi_i(U_i) = \{ [z_0, \dots, z_n] \in \mathbb{CP}^n : z_i \neq 0 \} \text{ in } \mathbb{CP}^n.$ For $0 \leq i < j \leq n$, the transition function $\phi_{ij} = \phi_j^{-1} \circ \phi_i$ maps $\{ (x_1, \dots, x_n) \in \mathbb{C}^n : x_j \neq 0 \}$ to $\{ (y_1, \dots, y_n) \in \mathbb{C}^n : y_{i+1} \neq 0 \}$ by $(x_1, \dots, x_n) \longmapsto (\frac{x_1}{x_j}, \dots, \frac{x_i}{x_j}, \frac{1}{x_j}, \frac{x_{i+1}}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_n}{x_j}).$ This is a biholomorphism. So $(U_i, \phi_i), (U_j, \phi_j)$ are compatible, and $\{ (U_i, \phi_i) : i = 0, \dots, n \}$ is an atlas. It is contained in a unique maximal atlas, which makes \mathbb{CP}^n into a complex manifold.

1.2. Holomorphic functions and holomorphic maps

Let X be a complex manifold, and $f: X \to \mathbb{C}$ a function. We call f holomorphic if for all charts (U, ϕ) in the (maximal) atlas on X, $f \circ \phi$ is a holomorphic function $U \to \mathbb{C}$, where $U \subseteq \mathbb{C}^n$ is open. It is enough to check this on the charts of any atlas on X. Let X, Y be complex manifolds of dimensions m, n, and $f: X \to Y$ a continuous function. We call f holomorphic if whenever (U, ϕ) and (V, ψ) are charts from the atlases on X, Y, the map

$$\psi^{-1} \circ f \circ \phi : (f \circ \phi)^{-1} \big(f(\phi(U)) \cap \psi(V) \big) \longrightarrow V$$

is a holomorphic map from an open subset of \mathbb{C}^m to an open subset of \mathbb{C}^n . Complex manifolds and holomorphic maps form a *category*. A *biholomorphism* $f : X \to Y$ is a holomorphic map with a holomorphic inverse. Complex manifolds

Complex manifolds as real manifolds; almost complex structures

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

1.3. Complex submanifolds

Let X be a complex manifold of dimension n, and $Y \subseteq X$. We call Y an (embedded) complex submanifold of X of dimension k, for $0 \leq k \leq n$, if for each $y \in Y$ there exist local holomorphic coordinates (z_1, \ldots, z_n) on X such that Y is locally of the form $z_{k+1} = \cdots = z_n = 0$. That is, we have a chart (U, ϕ) on X with $y \in \phi(U)$ such that $Y \cap \phi(U) = \phi(\mathbb{C}^k \cap U)$, where $\mathbb{C}^k = \{(z_1, \ldots, z_k, 0, \ldots, 0) \in \mathbb{C}^n\}$. Usually we want Y closed in X. We can give a complex submanifold Y of X the structure of a complex k-manifold: for (U, ϕ) as above, $(\mathbb{C}^k \cap U, \phi|_{\mathbb{C}^k \cap U})$ is a k-dimensional chart on Y, and the set of such charts is an atlas on Y. The inclusion $i_Y : Y \hookrightarrow X$ is holomorphic. Conversely, a holomorphic map $f: Y \to X$ is called an *embedding* if it is injective, locally closed, and on tangent spaces $df|_{v}: T_{v}Y \to T_{f(v)}X$ is injective for all $y \in Y$. If f is an embedding then f(Y) is a complex submanifold of X

biholomorphic to Y.

Complex manifolds as real manifolds; almost complex structures

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

1.4. Projective complex manifolds

Let \mathbb{CP}^n have homogeneous coordinates $[z_0, \ldots, z_n]$. Let $p(z_0, \ldots, z_n)$ be a complex polynomial in n+1 variables, which is homogeneous of order k. Then $p(\lambda z_0, \ldots, \lambda z_n) = \lambda^k p(z_0, \ldots, z_n)$ for $\lambda \in \mathbb{C} \setminus \{0\}$. Hence $p(\lambda z_0, \dots, \lambda z_n) = 0$ if and only if $p(z_0,\ldots,z_n)=0$. Thus, for $[z_0,\ldots,z_n]\in\mathbb{CP}^n$, the condition $p(z_0, \ldots, z_n) = 0$ is independent of the choice of representative (z_0, \ldots, z_n) for $[z_0, \ldots, z_n]$. A projective variety is a subset X of \mathbb{CP}^n which is defined by the vanishing of finitely many homogeneous polynomials $p_1(z_0, \ldots, z_n), \ldots, p_d(z_0, \ldots, z_n)$, that is,

$$X = \big\{ [z_0,\ldots,z_n] \in \mathbb{CP}^n : p_i(z_0,\ldots,z_n) = 0, \ i = 1,\ldots,d \big\}.$$

Then X is closed in \mathbb{CP}^n , and so compact. We call X a *projective* complex manifold if X is also a complex submanifold of \mathbb{CP}^n .

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

Example

Let $p(z_0, \ldots, z_n)$ be a nonzero homogeneous complex polynomial, and define

$$X = \big\{ [z_0, \ldots, z_n] \in \mathbb{CP}^n : p(z_0, \ldots, z_n) = 0 \big\}.$$

Then X is a complex submanifold of \mathbb{CP}^n , of dimension n-1, provided the following condition holds: let $(z_0, \ldots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}$ with $p(z_0, \ldots, z_n) = 0$. Then $\frac{\partial p}{\partial z_i}(z_0, \ldots, z_n) \neq 0$ for some $i = 0, \ldots, n$. This holds for generic homogeneous polynomials p.

Example

For
$$d = 1, 2, ..., X = \{[z_0, z_1, z_2] \in \mathbb{CP}^2 : z_0^d + z_1^d + z_2^d = 0\}$$
 is a projective complex 1-manifold, a Riemann surface of genus $g = \frac{1}{2}(d-1)(d-2).$

Complex manifolds

Complex manifolds as real manifolds; almost complex structures

Complex manifolds Holomorphic functions and holomorphic maps Complex submanifolds Projective complex manifolds

Example

$$X = \left\{ [z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 : z_0^2 + \dots + z_3^2 = 0 \right\} \text{ is a projective complex 2-manifold biholomorphic to } \mathbb{CP}^1 \times \mathbb{CP}^1.$$

Example

Let $p_1, \ldots, p_k(z_0, \ldots, z_n)$ be homogeneous polynomials for $k \leq n$. Suppose that whenever $(z_0, \ldots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}$ with $p_i(z_0, \ldots, z_n) = 0$ for all *i*, then $dp_1(z_0, \ldots, z_n), \ldots, dp_k(z_0, \ldots, z_n)$ are linearly independent in $(\mathbb{C}^{n+1})^*$. Then

$$X = \left\{ [z_0, \ldots, z_n] \in \mathbb{CP}^n : p_i(z_0, \ldots, z_n) = 0, \ i = 1, \ldots, k \right\}$$

is a projective complex manifold of dimension n - k, called a *complete intersection*.

Most projective complex manifolds are not complete intersections.

Projective complex manifolds give a huge number of interesting examples of complex manifolds. As they are defined using polynomials, one can study and classify them using algebraic techniques – Complex Algebraic Geometry.

Also, under some conditions one can guarantee that a compact complex manifold X has an embedding $X \hookrightarrow \mathbb{CP}^n$ making it into a projective complex manifold. This is due to two important results, Chow's Theorem and the Kodaira Embedding Theorem.

Theorem 1.1 (Chow's Theorem)

Suppose X is a compact complex submanifold in \mathbb{CP}^n . Then X is a projective complex manifold, that is, X may be defined as a subset of \mathbb{CP}^n by the vanishing of homogeneous polynomials $p_1(z_0, \ldots, z_n), \ldots, p_k(z_0, \ldots, z_n)$. Thus, compact submanifolds of \mathbb{CP}^n are algebraic objects. For a proof, see Griffiths and Harris, Principles of Algebraic Geometry. As \mathbb{CP}^n is compact, X compact is equivalent to X closed. We will cover the Kodaira Embedding Theorem later in the course. In brief, it says that if X is a compact complex manifold and $L \rightarrow X$ is an 'ample line bundle' then we can use L to construct an embedding $f : X \hookrightarrow \mathbb{CP}^n$ for some $n \gg 0$. Then X is biholomorphic to f(X), which is a compact complex submanifold of \mathbb{CP}^n , so by Chow's Theorem, f(X) is algebraic, and X is biholomorphic to a projective complex manifold.

Projective complex manifolds are also closely connected to compact Kähler manifolds (next week).

Every projective complex manifold is Kähler. But also, if X is a compact Kähler manifold, then under mild topological conditions on X one can show that X possesses many ample line bundles $L \hookrightarrow X$, and then the Kodaira Embedding Theorem applies, and X is biholomorphic to a projective complex manifold.

Complex manifolds and Kähler Geometry

Lecture 2 of 16: Complex manifolds as real manifolds; almost complex structures

> Dominic Joyce, Oxford University Spring 2022

These slides available at http://people.maths.ox.ac.uk/~joyce/

Plan of talk:

Complex manifolds as real manifolds; almost complex structures

The Nijenhuis tensor

2.3 Another definition of complex manifolds

2.1. Almost complex structures

We now explain a second way to define complex manifolds. To see the point simply, suppose V is a complex vector space, of complex dimension n. Underlying V is a real vector space $V_{\mathbb{R}}$, of real dimension 2n. Given $V_{\mathbb{R}}$, what extra information do we need to reconstruct V? The only thing we are missing is multiplication by $i \in \mathbb{C}$. This induces a real linear map $J : V_{\mathbb{R}} \to V_{\mathbb{R}}$ with $J^2 = -\operatorname{id}_{V_{\mathbb{R}}}$.

Conversely, given a real vector space $V_{\mathbb{R}}$ and $J \in \operatorname{End}(V_{\mathbb{R}})$ with $J^2 = -\operatorname{id}_{V_{\mathbb{R}}}$, we make $V_{\mathbb{R}}$ into a complex vector space by setting $(a + ib) \cdot v = a \cdot v + b \cdot J(v)$, for $a, b \in \mathbb{R}$ and $v \in V_{\mathbb{R}}$; note that $\dim_{\mathbb{R}} V_{\mathbb{R}}$ must be even. So, complex vector spaces are equivalent to real vector spaces with an endomorphism J with $J^2 = -\operatorname{id}$.

If X is a complex *n*-manifold in the sense of §1, then underlying X is a real 2*n*-manifold $X_{\mathbb{R}}$. It has a tangent bundle $TX_{\mathbb{R}}$, whose fibres $T_X X_{\mathbb{R}}$ for $x \in X$ are real vector spaces of real dimension 2*n*. Since X is a complex *n*-manifold, they are also complex vector spaces of dimension *n*. So they have $J_x \in \text{End}(T_x X_{\mathbb{R}})$ with $J_x^2 = -\operatorname{id}_{T_x X_{\mathbb{R}}}$. Over all $x \in X_{\mathbb{R}}$, these J_x form a tensor J_a^b with $J_a^b J_b^c = -\delta_a^c$, using index notation.

Definition

Let X be a real 2*n*-manifold. An *almost complex* structure J on X is a tensor J_a^b in $C^{\infty}(T^*X \otimes TX)$ with $J_a^b J_b^c = -\delta_a^c$. For a vector field $v \in C^{\infty}(TX)$, define $(Jv)^b = J_a^b v^a$. Then $J^2 = -1$, so J makes the tangent spaces $T_x X$ into complex vector spaces.

Any complex manifold in the sense of $\S1$ yields a real manifold X with an almost complex structure J. But not all (X, J) come from complex manifolds: we must impose extra conditions on J.

Holomorphic functions

Definition

Suppose X is a 2*n*-manifold, and J an almost complex structure on X. Let $f: X \to \mathbb{C}$ be smooth, and write f = u + iv. Then du, dv are 1-forms on X, so in index notation $du = du_a$, $dv = dv_b$. We call f holomorphic if $du_a = J_a^b dv_b$. Since $J^2 = -id$, this is equivalent to $dv_a = -J_a^b du_b$. Hence in complex 1-forms we have

$$J_a^b(\mathrm{d} u_b + i \mathrm{d} v_b) = i(\mathrm{d} u_a + i \mathrm{d} v_a),$$

that is, $J_a^b df_b = i df_a$.

Example

Let \mathbb{R}^2 have coordinates (x, y), and let $J = dx \otimes \frac{\partial}{\partial y} - dy \otimes \frac{\partial}{\partial x}$ in $C^{\infty}(\mathcal{T}^*\mathbb{R}^2 \otimes \mathcal{T}\mathbb{R}^2)$. Then the equation $du_a = J_a^b dv_b$ becomes

$$\frac{\partial u}{\partial x} \cdot \mathrm{d}x + \frac{\partial u}{\partial y} \cdot \mathrm{d}y = -\frac{\partial v}{\partial x} \cdot \mathrm{d}y + \frac{\partial v}{\partial y} \cdot \mathrm{d}x,$$

or equivalently

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

the Cauchy–Riemann equations for u(x, y) + iv(x, y) to be a holomorphic function of x + iy.

2.2. The Nijenhuis tensor

It turns out that when n > 1, for some almost complex structures on X there may be few holomorphic functions locally on X — in extreme cases, all holomorphic functions are constant. This is because the equations are *overdetermined*: there are 2n equations on 2 functions. We can express this in terms of an *obstruction* to the existence of holomorphic functions locally on X, called the *Nijenhuis tensor*.

Definition

Write [v, w] for the *Lie bracket* of vector fields v, w on X. The *Nijenhuis tensor* $N = N_{bc}^{a}$ of J satisfies

$$N_{bc}^{a}v^{b}w^{c} = ([v, w] + J([Jv, w] + [v, Jw]) - [Jv, Jw])^{a}$$
(2.1)

for all $v, w \in C^{\infty}(TX)$.

The point is that the r.h.s. of (2.1) is *pointwise* linear in v, w (exercise): if we replace v, w by $f \cdot v, g \cdot w$ for smooth $f, g: X \to \mathbb{R}$, then the r.h.s. is multiplied by fg, with no terms in derivatives of f, g. Let $s + it: X \to \mathbb{C}$ be holomorphic. Then using (2.1) one can show that for all vector fields v, w we have $N_{bc}^{a}v^{b}w^{c}ds_{a} \equiv N_{bc}^{a}v^{b}w^{c}dt_{a} \equiv 0$ (exercise). Hence $N_{bc}^{a}ds_{a} \equiv N_{bc}^{a}dt_{a} \equiv 0$ in $C^{\infty}(\Lambda^{2}T^{*}X)$. Thus, the Nijenhuis tensor

constrains the possible first derivatives of holomorphic functions.

For (X, J) to be a complex manifold, we want there to exist a system of holomorphic coordinates (z_1, \ldots, z_n) near each point xin X, that is, (z_1, \ldots, z_n) are complex coordinates defined on open $x \in U \subseteq X$, and $z_j : U \to \mathbb{C}$ is holomorphic. If $z_j = s_j + it_j$ then $ds_1, \ldots, ds_n, dt_1, \ldots, dt_n$ span T^*X on U. So $N_{bc}^a(ds_j)_a \equiv N_{bc}^a(dt_j)_a \equiv 0$ imply that $N \equiv 0$. Thus, holomorphic coordinates (z_1, \ldots, z_n) can exist locally on X only if the Nijenhuis tensor $N \equiv 0$.

The converse is the difficult Newlander-Nirenberg Theorem:

Theorem 2.1 (Newlander–Nirenberg)

Suppose J is an almost complex structure on X with Nijenhuis tensor $N \equiv 0$. Then near each $x \in X$ there exist holomorphic coordinates (z_1, \ldots, z_n) .

The point is to show that the first derivatives of holomorphic functions near x span T_x^*X ; then choosing any (z_1, \ldots, z_n) whose derivatives span T_x^*X , they will be holomorphic coordinates in a small open neighbourhood of x.

Think of the Nijenhuis tensor N as being like the 'curvature' of J, and the condition $N \equiv 0$ as a 'flatness condition'. If $g = g_{ab}$ is a Riemannian metric, the Riemann curvature R_{jkl}^i is a tensor defined using g and its derivatives, in a similar way to N_{bc}^a , and $R_{jkl}^i \equiv 0$ if g is flat. (Actually, N is a *torsion* rather than a curvature, as it depends on one derivative of J, not two.)

25 / 33

2.3. Another definition of complex manifolds

Here is our second definition of complex manifold:

Definition

Let X be a 2*n*-manifold, and J an almost complex structure on X with Nijenhuis tensor N. We call J an *integrable almost complex structure*, or just a *complex structure*, if $N \equiv 0$, and then we call (X, J) a *complex manifold*.

This is equivalent to the definition of complex manifolds using complex atlases in $\S1$. Here is why.

Suppose (X, J) is a complex manifold in the sense above. Then by the Newlander–Nirenberg theorem, there exist holomorphic coordinates (z_1, \ldots, z_n) near each $x \in X$. Using these we define an atlas of charts (U, ϕ) on X. The transition functions are automatically holomorphic. Extending to the unique maximal atlas defines a complex structure on X in the sense of §1. Conversely, given a complex manifold $X_{\mathbb{C}}$ in the sense of §1, there is a natural underlying real manifold $X_{\mathbb{R}}$, and a unique almost complex structure J on $X_{\mathbb{R}}$ for which all local coordinate functions z_j are holomorphic, and $N \equiv 0$, so J is a complex structure.

Holomorphic maps

Definition

Let (X, I) and (Y, J) be complex manifolds, and $f : X \to Y$ a smooth map. We call f holomorphic if for all $x \in X$ with $y = f(x) \in Y$, so that $df|_x : T_x X \to T_y Y$ is a linear map, we have $df|_x \circ I|_x = J|_y \circ df|_x$. That is, $df|_x : T_x X \to T_y Y$ is a complex linear map, regarding $T_x X, T_y Y$ as complex vector spaces using $I|_x, J|_y$.

This agrees with the definition of holomorphic maps in §1, under the correspondence between the two definitions of complex manifold. If $g: Y \to \mathbb{C}$ is a holomorphic function then $g \circ f: X \to \mathbb{C}$ is a holomorphic function. In fact, a smooth map $f: X \to Y$ is holomorphic if and only if for all local holomorphic functions $g: V \to \mathbb{C}$ for $V \subseteq Y$ open, $g \circ f: U = f^{-1}(V) \to \mathbb{C}$ is a local holomorphic function on X. Complex manifolds Complex manifolds as real manifolds; almost complex structures Almost complex structures The Nijenhuis tensor Another definition of complex manifolds More on almost complex geometry

Complex submanifolds

Definition

Let (X, J) be a complex manifold, and Y a submanifold of X. We call Y a *complex submanifold* if for each $y \in Y$ we have $J(T_yY) = T_yY$, as subspaces of T_yX . Then $J_Y = J|_{TY}$ is an almost complex structure on Y. The Nijenhuis tensor N_Y of J_Y is the restriction to Y of the Nijenhuis tensor N of J, so it is zero, J_Y is a complex structure, and (Y, J_Y) is a complex manifold.

Real dimension two

Let J be an almost complex structure on X, with Nijenhuis tensor $N = N_{bc}^a$. Then N has natural symmetries $N_{bc}^a = -N_{cb}^a$, and $J_b^d J_c^e N_{de}^a = -N_{bc}^a$ (exercise). Using these one can show that $N \equiv 0$ when $\dim_{\mathbb{R}} X = 2$. So almost complex 2-manifolds are complex, that is, they are Riemann surfaces. This corresponds to the fact that for $f : X \to \mathbb{C}$ to be holomorphic is 2n equations on 2 functions, which is overdetermined when n > 1, but determined when n = 1.

2.4. More on almost complex geometry

Consider the question: how much of complex geometry also works for non-integrable almost complex structures J on X with $\dim_{\mathbb{R}} X > 2$? We already know there are few holomorphic functions $f: X \to \mathbb{C}$

even locally. There are also few complex submanifolds $Y \subset X$ with $2 < \dim_{\mathbb{R}} Y < \dim_{\mathbb{R}} X$. However, 2-real-dimensional complex submanifolds Y in X (*J*-holomorphic curves) are well-behaved. This is important in Symplectic Geometry.

Definition

Let X be a 2*n*-manifold. A symplectic form ω on X is a 2-form ω with $d\omega \equiv 0$, such that $\omega|_x^n$ is nonzero in $\Lambda^{2n}T_x^*X$ for all $x \in X$. Then (X, ω) is a symplectic manifold.

Symplectic manifolds

Darboux' Theorem says that near each point x in a symplectic manifold (X, ω) we can choose coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ on X with $\omega = \sum_{j=1}^n dx_j \wedge dy_j$. So all symplectic manifolds are locally the same as the standard model $(\mathbb{R}^{2n}, \omega_0)$.

Similarly, the Newlander–Nirenberg Theorem shows that if J is an almost complex structure on X with Nijenhuis tensor $N \equiv 0$, then near each $x \in X$ we can choose coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ on X with $J = \sum_{j=1}^n dx_j \otimes \frac{\partial}{\partial y_j} - dy_j \otimes \frac{\partial}{\partial x_j}$. Thus, all complex manifolds are locally the same as the standard model (\mathbb{R}^{2n}, J_0) . Let (X, ω) be symplectic. An almost complex structure J on X is compatible with ω if $\omega(Jv, Jw) = \omega(v, w)$ for all vector fields v, won X, and $\omega(v, Jv) > 0$ if $v \neq 0$. Every symplectic manifold admits compatible almost complex structures. Many important areas of Symplectic Geometry — Gromov-Witten invariants, Lagrangian Floer cohomology, Fukaya categories, ... depend on choosing a compatible J on (X, ω) and then 'counting' J-holomorphic curves in X. Often one can make the 'number' independent of the choice of J.