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1. Introduction

If Y is a Calabi–Yau 3-fold (say over C), then the Donaldson-
Thomas invariants DTα(τ) in Z or Q ‘count’ τ -(semi)stable
coherent sheaves on Y with Chern character α ∈ Heven(Y ,Q), for
τ a (say Gieseker) stability condition. The DTα(τ) are unchanged
under continuous deformations of Y , and transform by a
wall-crossing formula under change of stability condition τ .
We have τ -(semi)stable moduli schemes Mα

st(τ) ⊆Mα
ss(τ), where

Mα
ss(τ) is proper, and Mα

st(τ) has a symmetric obstruction theory.
The easy case (Thomas 1998) is when Mα

ss(τ) =Mα
st(τ). Then

DTα(τ) ∈ Z is the virtual cycle (which has dimension zero) of the
proper scheme with obstruction theory Mα

st(τ).
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In joint work with Dennis Borisov, I am developing a similar story
for Calabi–Yau 4-folds. We want to define invariants ‘counting’
τ -(semi)stable coherent sheaves on Calabi–Yau 4-folds. If CY3
Donaldson–Thomas invariants are ‘holomorphic Casson invariants’,
as in Thomas 1998, these should be thought of as ‘holomorphic
Donaldson invariants’.
The idea for doing this goes back to Donaldson–Thomas 1998,
using gauge theory: one wants to ‘count’ moduli spaces of
Spin(7)-instantons on a Calabi–Yau 4-fold (or more generally a
Spin(7)-manifold). However, it has not gone very far, as
compactifying such higher-dimensional gauge-theoretic moduli
spaces in a nice way is too difficult. (See Cao arXiv:1309.4230 and
Cao and Leung arXiv:1407.7659.)
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Virtual cycles using algebraic geometry?

Rather than using gauge theory, we stay within algebraic geometry,
so we get compactness of moduli spaces more-or-less for free. So,
suppose Y is a Calabi–Yau 4-fold, and α ∈ Heven(Y ,Q) such that
Mα

ss(τ) =Mα
st(τ) (the easy case).

There is a natural obstruction theory φ : E• → LM on Mα
st(τ),

but E• is perfect in [−2, 0] not [−1, 0], so the usual
Behrend–Fantechi virtual cycles do not work.
Instead, we will use a completely new method to define a virtual
cycle, which is special to the Calabi–Yau 4-fold case, and for the
moment works only over C. It uses heavy machinery from Derived
Algebraic Geometry — the ‘shifted symplectic derived schemes’ of
Pantev–Toën–Vaquié–Vezzosi (PTVV) — and Derived Differential
Geometry — ‘derived smooth manifolds’.
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Let Mα
st(τ) be the derived moduli scheme corresponding to the

classical moduli scheme Mα
st(τ). Then PTVV show that Mα

st(τ)
has a ‘−2-shifted symplectic structure’ ω, a geometric structure
which roughly encodes Serre duality of sheaves on Y .
We show that given any −2-shifted symplectic derived C-scheme
(X, ω), we can construct a ‘derived smooth manifold’ Xdm with the
same underlying topological space. The virtual dimension is
vdimR Xdm = 1

2 vdimRX, which is half what one would expect.
Roughly, this is because Xdm is the base of a ‘real Lagrangian
fibration’ π : X→Xdm of the −2-shifted symplectic derived scheme
X. If X is proper, so that Xdm is compact, and we can find an
orientation on Xdm, then Xdm has a deformation-invariant virtual
cycle, in bordism or homology. Using this, we can define our new
Donaldson–Thomas style invariants of Calabi–Yau 4-folds.
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2. PTVV’s shifted symplectic geometry

Let K be an algebraically closed field of characteristic zero, e.g.
K = C. Work in the context of Toën and Vezzosi’s theory of
derived algebraic geometry. This gives ∞-categories of derived
K-schemes dSchK and derived stacks dStK, including derived
Artin stacks dArtK. Think of a derived K-scheme X as a
geometric space which can be covered by Zariski open sets Y ⊆ X
with Y ' SpecA for A = (A,d) a commutative differential graded
algebra (cdga) over K.
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Cotangent complexes of derived schemes and stacks

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a
notion of k-shifted symplectic structure on a derived K-scheme or
derived K-stack X, for k ∈ Z. This is complicated, but here is the
basic idea. The cotangent complex LX of X is an element of a
derived category Lqcoh(X) of quasicoherent sheaves on X. It has
exterior powers ΛpLX for p = 0, 1, . . .. The de Rham differential
ddR : ΛpLX → Λp+1LX is a morphism of complexes, though not of
OX-modules. Each ΛpLX is a complex, so has an internal
differential d : (ΛpLX)k → (ΛpLX)k+1. We have
d2 = d2dR = d ◦ ddR + ddR ◦ d = 0.
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p-forms and closed p-forms

A p-form of degree k on X for k ∈ Z is an element [ω0] of
Hk
(
ΛpLX,d

)
. A closed p-form of degree k on X is an element

[(ω0, ω1, . . .)] ∈ Hk
(∏∞

i=0 Λp+iLX[i ], d + ddR
)
.

There is a projection π : [(ω0, ω1, . . .)] 7→ [ω0] from closed p-forms
[(ω0, ω1, . . .)] of degree k to p-forms [ω0] of degree k.
Note that a closed p-form is not a special example of a p-form, but
a p-form with an extra structure. The map π from closed p-forms
to p-forms can be neither injective nor surjective.
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Nondegenerate 2-forms and symplectic structures

Let [ω0] be a 2-form of degree k on X. Then [ω0] induces a
morphism ω0 : TX → LX[k], where TX = L∨X is the tangent
complex of X. We call [ω0] nondegenerate if ω0 : TX → LX[k] is a
quasi-isomorphism.
If X is a derived scheme then LX lives in degrees (−∞, 0] and TX

in degrees [0,∞). So ω0 : TX → LX[k] can be a
quasi-isomorphism only if k 6 0, and then LX lives in degrees [k , 0]
and TX in degrees [0,−k]. If k = 0 then X is a smooth classical
K-scheme, and if k = −1 then X is quasi-smooth.
A closed 2-form ω = [(ω0, ω1, . . .)] of degree k on X is called a
k-shifted symplectic structure if [ω0] = π(ω) is nondegenerate.
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Calabi–Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi–Yau m-fold over K and
M is a derived moduli scheme or stack of (complexes of) coherent
sheaves on Y , then M has a natural (2−m)-shifted symplectic
structure ω. So Calabi–Yau 3-folds give −1-shifted derived
schemes or stacks.
We can understand the associated nondegenerate 2-form [ω0] in
terms of Serre duality. At a point [E ] ∈M, we have
hi (TM)|[E ]

∼= Exti−1(E ,E ) and hi (LM)|[E ]
∼= Ext1−i (E ,E )∗.

The Calabi–Yau condition gives Exti (E ,E ) ∼= Extm−i (E ,E )∗,
which corresponds to hi (TM)|[E ]

∼= hi (LM[2−m])|[E ]. This is the
cohomology at [E ] of the quasi-isomorphism
ω0 : TM → LM[2−m].
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3. A Darboux theorem for shifted symplectic schemes

Theorem 3.1 (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (X, ω) is a k-shifted symplectic derived K-scheme for
k < 0. If k 6≡ 2 mod 4, then each x ∈ X admits a Zariski open
neighbourhood Y ⊆ X with Y ' SpecA for (A,d) an explicit cdga
over K generated by graded variables x−ij , yk+i

j for 0 6 i 6 −k/2,

and ω|Y = [(ω0, 0, 0, . . .)] where x l
j , y

l
j have degree l , and

ω0 =
∑[−k/2]

i=0

∑mi
j=1 ddRyk+i

j ddRx−ij .

Also the differential d in (A,d) is given by Poisson bracket with a
Hamiltonian H in A of degree k + 1.
If k ≡ 2 mod 4, we have two statements, one étale local with ω0

standard, and one Zariski local with the components of ω0 in the
degree k/2 variables depending on some invertible functions.

See also Bouaziz and Grojnowski arXiv:1309.2197.
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Sketch of the proof of Theorem 3.1

Suppose (X, ω) is a k-shifted symplectic derived K-scheme for
k < 0, and x ∈ X. Then LX lives in degrees [k , 0]. We first show
that we can build Zariski open x ∈ Y ⊆ X with Y ' SpecA, for
A =

⊕
i60 Ai a cdga over K with A0 a smooth K-algebra, and

such that A is freely generated over A0 by graded variables
x−ij , yk+i

j in degrees −1,−2, . . . , k . We take dimA0 and the

number of x−ij , yk+i
j to be minimal at x .

Using theorems about periodic cyclic cohomology, we show that on
Y ' SpecA we can write ω|Y = [(ω0, 0, 0, . . .)], for ω0 a 2-form of
degree k with dω0 = ddRω

0 = 0. Minimality at x implies ω0 is
strictly nondegenerate near x , so we can change variables to write
ω0 =

∑
i ,j ddRyk+i

j ddRx−ij . Finally, we show d in (A,d) is a
symplectic vector field, which integrates to a Hamiltonian H.
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The case of −1-shifted symplectic derived schemes

When k = −1 (the Calabi–Yau 3-fold case) the Hamiltonian H in
the theorem has degree 0. Then the theorem reduces to:

Corollary 3.2

Suppose (X, ω) is a −1-shifted symplectic derived K-scheme.
Then (X, ω) is Zariski locally equivalent to a derived critical locus
Crit(H : U → A1), for U a smooth classical K-scheme and
H : U → A1 a regular function. Hence, the underlying classical
K-scheme X = t0(X) is Zariski locally isomorphic to a classical
critical locus Crit(H : U → A1).
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Combining this with results of Pantev et al. from §1 gives
interesting consequences in classical algebraic geometry:

Corollary 3.3

Let Y be a Calabi–Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y . Then M is Zariski locally isomorphic to the critical locus
Crit(H : U → A1) of a regular function on a smooth K-scheme.

Here we note that M = t0(M) for M the corresponding derived
moduli scheme, which is −1-shifted symplectic by PTVV.
A complex analytic analogue of this for moduli of coherent sheaves
was proved using gauge theory by Joyce and Song arXiv:0810.5645,
and for moduli of complexes was claimed by Behrend and Getzler.
Note that the proof of the corollary is wholly algebro-geometric.
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The case of −2-shifted symplectic derived schemes

Let (X, ω) be a −2-shifted symplectic derived K-scheme. Then the
Zariski local models for (X, ω) given by the ‘Darboux Theorem’
depend on the following data:

A smooth K-scheme U
An algebraic vector bundle E → U
A section s ∈ H0(E )
A nondegenerate quadratic form Q on E with Q(s, s) = 0.

The underlying classical K-scheme X of X is locally s−1(0) ⊂ U.
The virtual dimension of X is vdimKX = 2dimK U − rankK E .
The cotangent complex LX|X of X is locally given by[

TU
−2
|s−1(0)

Q◦ds // E ∗
−1
|s−1(0)

ds // T ∗U
0
|s−1(0)

]
.
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This is the local model for (derived) moduli schemes of (simple)
coherent sheaves F on a Calabi–Yau 4-fold Y . Think of U as an
étale open neighbourhood of 0 in Ext1(F ,F ), and E → U as a
trivial vector bundle with fibre Ext2(F ,F ), and Q as the
nondegenerate quadratic form on Ext2(F ,F )

Ext2(F ,F )×Ext2(F ,F )
∧ // Ext4(F ,F )

Serre duality
// Ext0(F ,F )∗

id∗F // K,

and s as a Kuranishi map s : Ext1(E ,E ) ⊇ U → Ext2(E ,E ). The
special thing the theorem tells us is that we can choose U,E , s,Q
such that Q(s, s) = 0, rather than just Q(s, s) = 0 modulo s3, for
instance.

17 / 27 Dominic Joyce, Oxford University Donaldson–Thomas invariants for Calabi–Yau 4-folds

Introduction
PTVV’s shifted symplectic geometry

A Darboux theorem for shifted symplectic schemes
Virtual cycles for −2-shifted symplectic derived schemes

D–T style invariants for Calabi–Yau 4-folds

4. Virtual cycles for −2-shifted symplectic derived schemes

Here is the first part of what we prove:

Theorem 4.1 (Borisov–Joyce, arXiv:1504.00690)

Let (X, ω) be a −2-shifted symplectic derived scheme over C.
Then one can construct a d-manifold, or M-Kuranishi space, or
Kuranishi space with trivial isotropy, or Spivak derived
manifold (all forms of derived smooth manifolds, more-or-less
equivalent) Xdm which has the same underlying topological space
X as (X, ω), with the complex analytic topology.
The construction involves arbitrary choices, but Xdm is unique up
to bordisms which fix the topological space X .
The (real) virtual dimension of Xdm is

vdimR Xdm = vdimCX = 1
2 vdimRX,

which is half what one would have expected.
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Derived manifolds and bordisms

I haven’t time to explain derived smooth manifolds properly – see
people.maths.ox.ac.uk/∼joyce/dmanifolds.html,
and papers arXiv:1206.4207, arXiv:1208.4948 on d-manifolds, and
arXiv:1409.6908 on (M-)Kuranishi spaces. Some useful facts:
• Moduli spaces of solutions of nonlinear elliptic equations on
compact manifolds have the structure of derived manifolds.
• A derived manifold Xdm is locally modelled by a ‘Kuranishi
neighbourhood’ (V ,E , s) of a real manifold V , real vector bundle
E → V and smooth section s : V → E , where the topological
space of Xdm is locally homeomorphic to s−1(0) ⊂ V . Think of
Xdm as locally the (homotopy) fibre product V ×s,E ,0 V .
• Any (compact) derived manifold X can be perturbed to a
(compact) ordinary manifold X̃ , which is unique up to bordism. In
a Kuranishi neighbourhood (V ,E , s), perturb s to a generic,
transverse s̃ : V → E , so that s̃−1(0) ⊂ V is a manifold.
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Orientations of −2-shifted symplectic derived schemes

Thus, if (X, ω) is a proper −2-shifted symplectic derived
C-scheme, Theorem 4.1 gives us a bordism class of (unoriented)
compact manifolds X̃ , which is basically a virtual cycle over Z2.
To lift this to a virtual cycle over Z, we need to include
orientations of (X, ω) and Xdm.
Recall that if (X, ω) is a −1-shifted symplectic derived scheme (the
CY3 case), an orientation of (X, ω) is a square root line bundle
det(LX)1/2. These were introduced by Kontsevich and Soibelman,
for motivic and categorified D–T theory. Here is the CY4 analogue:

Definition

Let (X, ω) be a −2-shifted symplectic derived scheme. There is a
natural isomorphism ι : det(LX)⊗

2 −→OX. An orientation of
(X, ω) is an isomorphism α : det(LX)−→OX with α⊗ α = ι.
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Note that this is simpler, one categorical level down from the CY3
case: a morphism in a category, not an object in a category.
The next two results are easy, given Theorem 4.1.

Lemma 4.2

In Theorem 4.1, there is a natural 1-1 correspondence between
orientations on (X, ω) and orientations on the d-manifold Xdm.

Corollary 4.3

Let (X, ω) be a proper, oriented −2-shifted symplectic derived
C-scheme. Then we construct a bordism class [Xdm] of compact
oriented manifolds. We consider this a virtual cycle for (X, ω).

Observe that though all the input data is strictly complex
algebraic, the ‘virtual cycle’ can have odd real dimension, which is
weird, and very unlike Behrend–Fantechi style virtual cycles.

21 / 27 Dominic Joyce, Oxford University Donaldson–Thomas invariants for Calabi–Yau 4-folds

Introduction
PTVV’s shifted symplectic geometry

A Darboux theorem for shifted symplectic schemes
Virtual cycles for −2-shifted symplectic derived schemes

D–T style invariants for Calabi–Yau 4-folds

Sketch proof of Theorem 4.1

Let (X, ω) be a −2-shifted symplectic derived C-scheme. Then the
BBJ ‘Darboux Theorem’, Theorem 3.1, gives local models for
(X, ω) in the Zariski topology. As in §2, in the −2-shifted case, the
local models reduce to the following data:

A smooth C-scheme U
A vector bundle E → U
A section s ∈ H0(E )
A nondegenerate quadratic form Q on E with Q(s, s) = 0.

The underlying topological space of X is {x ∈ U : s(x) = 0}. The
virtual dimension of X is vdimCX = 2dimC U − rankC E . The
cotangent complex LX|X of X is[

TU
−2
|s−1(0)

Q◦ds // E ∗
−1
|s−1(0)

ds // T ∗U
0
|s−1(0)

]
.
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The local model for Xdm

Here is how to build the derived manifold Xdm locally: regard
E → U as a real vector bundle over the real manifold U. Choose a
splitting E = E+ ⊕ E−, where Q|E+ is real and positive definite,
and E− = iE+ so that Q|E− is real and negative definite. Write
s = s+ ⊕ s− with s± ∈ C∞(E±). Then Xdm is locally the derived
fibre product U ×0,E+,s+ U, given by the ‘Kuranishi neighbourhood’
(U,E+, s+). It has real virtual dimension

dimR U − rankR E+ = 2dimC U − rankC E = vdimCX.
Observe that Q(s, s) = 0 implies that |s+|2 = |s−|2, where norms
| . | on E+,E− are defined using ±ReQ. Hence as sets we have

{x ∈ U : s(x) = 0} = {x ∈ U : s+(x) = 0} ⊆ U.
This is why X and Xdm have the same topological space X .
The difficult bit is to show we can choose compatible splittings
E = E+ ⊕ E− on an open cover of X, and glue the local models to
make a global derived manifold Xdm.
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5. D–T style invariants for Calabi–Yau 4-folds

Suppose Y is a Calabi–Yau 4-fold over C, and α ∈ Heven(Y ,Q)
such that Mα

ss(τ) =Mα
st(τ). Write Mα

st(τ) for the corresponding
derived moduli scheme. Then Mα

st(τ) has a −2-shifted symplectic
structure by PTVV. Suppose we can choose an orientation. Then
Theorem 4.1 constructs a compact, oriented derived manifold
Mα

st(τ)dm with the same topological space, of dimension

vdimRMα
st(τ)dm =vdimCMα

st(τ)=2−deg(α∪ ᾱ∪ td(TY ))8 =d .

The derived manifold has a virtual cycle [Mα
st(τ)dm]vir in bordism,

or in homology Hd(Mα
st(τ);Z). If d = 0 this virtual cycle is an

integer, and we define DTα
4 (τ) = [Mα

st(τ)dm]vir ∈ Z.
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If d > 0 then as for Donaldson invariants, we hope to find
cohomology classes on Mα

st(τ) using the Chern characters of the
universal sheaf E →Mα

st(τ)× Y , and make integer invariants by
integrating products of these classes over [Mα

st(τ)dm]vir.

These invariants will have the nice property of being unchanged
under continuous deformations of the complex structure of the
Calabi–Yau 4-fold Y . There are still lots of interesting open
questions – computation in examples such as Hilbert schemes of
points, wall-crossing formulae, use for curve-counting, and so on.
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Motivation from gauge theory

We can explain using gauge theory why one should pass from the
−2-shifted symplectic derived scheme Mα

st(τ) to the derived
manifold Mα

st(τ)dm, which was part of our original motivation.
Consider a moduli space M of stable rank r holomorphic vector
bundles F → Y over Y , with c1(F ) = 0 for simplicity. By the
Hitchin–Kobayashi correspondence, each F has a unique
connection ∇F with curvature RF satisfying the
Hermitian–Einstein equations

R2,0
F = 0, R1,1

F ∧ ω3 = 0. (5.1)

These equations are overdetermined (13r2 equations plus r2 gauge
rescalings on 8r2 unknowns), which corresponds to the fact that
Mα

st(τ) does not have cotangent complex in [−1, 0] (is not
‘quasi-smooth’), and so does not have a virtual cycle.
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In the CY4 case, there is a splitting R2,0
F = R2,0+

F ⊕R2,0−
F into real

‘self-dual’ and ‘anti-self-dual’ components. So we can impose
instead the weaker ‘Spin(7) instanton equations’

R2,0+
F = 0, R1,1

F ∧ ω3 = 0. (5.2)

These equations are determined (7r2 equations plus r2 gauge
rescalings on 8r2 unknowns), and elliptic, and form a moduli space
Mα

st(τ)dm with a virtual cycle, at least if compact and oriented.
Since (5.2) is a subset of (5.1), one would expect the moduli space
MHE of solutions of (5.1) to be a subset of the moduli space
MSpin(7) of solutions of (5.2). But using L2 norms of components
of RF , one can show that (for suitable Chern characters α) we
have MHE =MSpin(7) as sets, they differ only as non-reduced
spaces. Thus it is reasonable to expect a derived scheme
MHE = Mα

st(τ) and a derived manifold MSpin(7) =Mα
st(τ)dm

with the same underlying topological space.
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