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Introduction

1. Introduction

An enumerative invariant theory in Algebraic or Differential
Geometry is the study of invariants /,(7) which ‘count’
T-semistable objects £ with fixed topological invariants [E] = « in
some geometric problem, usually by means of a virtual class
[ME3(7)]virt for the moduli space M3 (7) of T-semistable objects
in some homology theory, with /,(7) = f[M?f(T)]virt [io for some
natural cohomology class .. We call the theory C-linear if the
objects E live in a C-linear additive category A. For example:

@ Invariants counting semistable vector bundles on curves.

@ Mochizuki-style invariants counting coherent sheaves on
surfaces. (Think of as algebraic Donaldson invariants.)
Donaldson—Thomas invariants of Calabi—Yau or Fano 3-folds.
Donaldson—Thomas type invariants of Calabi—Yau 4-folds.
Invariants counting representations of quivers Q.

U(m) Donaldson invariants of 4-manifolds.
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| have proved that many such theories in Algebraic Geometry, in

which either the moduli spaces are automatically smooth (e.g.

coherent sheaves on curves, quiver representations), or the

invariants are defined using Behrend—Fantechi obstruction theories
and virtual classes, share a common universal structure.

| expect this picture also to extend to Calabi—Yau 4-fold invariants

defined using Borisov—Joyce / Oh—Thomas virtual classes, provided

these virtual classes have a package of properties.

Here is an outline of this structure:

(a) We form two moduli stacks M, MP! of all objects E in A,
where M is the usual moduli stack, and MP! the ‘projective
linear’ moduli stack of objects E modulo ‘projective
isomorphisms’, i.e. quotient by Aidg for A € G,,,.

(b) We are given a quotient Ko(A) - K(A), where K(A) is the
lattice of topological invariants [E] of E (e.g. fixed Chern
classes). We split M = ][, cx(a) Ma. MP! = Hoexay MEL

(c) There is a symmetric biadditive Euler form
X : K(A) x K(A) = Z.

Dominic Joyce, Oxford University Counting semistable coherent sheaves on surfaces



Introduction

(d) We can form the homology H.(M), H,(MP!) over Q, with

H(M) = Becry HeMa), H(MP) = By He (M),
Define shifted versions H,(M ), /:I*(Mpl) by

HH(MCX) = Hn—x(oz,a)(Ma) (Mp ) - n+2—x(a,a)(Mgl)-
Then previous work by me glater) makes H,(M) into a graded
vertex algebra, and H,(MP®") into a graded Lie algebra.

There is a notion of stability condition 7 on A. When

A = coh(X), this can be Gieseker stability for a polarization
on X. For each a € K(A) we can form moduli spaces

M (1) C M(7) of 7-(semi)stable objects in class . Here
MBY(7) is a substack of MP!, and is a C-scheme with perfect
obstruction theory. Also M?®*(7) is proper. Thus, if

MY (1) = M(7) we have a virtual class [M3(7)]yirt, which
we regard as an element of H,(MP!). The virtual dimension is
vdimg [M(7)]vire = 2 — x(a, @), so [MZF(7)]virt lies in
Ho(MEY € Ho(MPY), which is a Lie algebra by (d).
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(f) For many theories, there is a problem defining the invariants
[ME(7)]vire when MEF(7) #£ M(7), i.e. when the moduli
spaces M (7) contain strictly T-semistable points.
| give a systematic way to define [M%(7)]virt in homology
over Q (not Z) in these cases, using auxiliary pair invariants.
(This method is well known, e.g. in Joyce-Song D-T theory.)
| prove the [M®(7)]virt are independent of the choices used in
the pair invariant method.

(g) If 7,7 are stability conditions and a € K(.A), | prove a wall
crossing formula

IMEEan = 3. O(anyam 7 7) - [ [IME (i
S M, (Dvir] - ] IME, (Din] . (11)

where (J(—) are combinatorial coefficients defined in my

previous work on wall-crossing formulae for motivic invariants,
and [, ] is the Lie bracket on Ho(MP') from (d).
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(h) In some theories the natural obstruction theory on
M (1) = M3(7) has a trivial summand C°* in its
obstruction sheaf for o, > 0, and so the virtual class
[M(7)]virt is zero. In these cases one defines a reduced
obstruction theory on MZ'(7) by deleting the C° factor, and
obtains reduced virtual classes [M(7)]yea. For example, this
holds for coherent sheaves on surfaces X with geometric
genus pgy > 0, with o, = pg when rank a > 0.
My theory extends to ‘reduced’ invariants, allowing o, to
depend on o € K(A) with o, + 03 > 0443, giving invariants
[M(T)]red in Hoo, (MPEY). Generalizing (1.1), they satisfy the
wall crossing formula

MEErea = Y Oat,..am,7) - ([ [IME (7)]veds

e IME, (Dhed)s - MG, (T)rea] - (1.2)

If o, =0>0 for all « this reduces to [M(7)]red = [ME (T)]red,
that is, the invariants are independent of stability condition.
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2. Vertex and Lie algebras on homology of moduli stacks
2.1. Vertex algebras (don't try to understand this slide.)

Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D" : V — V for
n=0,1,2,... with DO =idy and v, : V — V for all v € V and
n € Z, with v, R-linear in v, and a distinguished element 1 € V
called the identity or vacuum vector, satisfying:

(i) For all u,v € V we have u,y(v) =0 for n > 0.

(ii) If v € V then 1_41(v )—vand]l (v)=0for —1#neZ.
(iii) If ve V then v,(1)=D""1(v) for n<0 and v,(1)=0 for n>0.
(iv) un(v) = > 4=0(— )k+”+1D(k)(v,,+k(u)) for all u,v € V and
n € 7, where the sum makes sense by (i), as it has only finitely
many nonzero terms.

(v) ((v))m(w) = 2, (=1)" (2) (r=n(Vimn(w)) = (=1)'Vitm—n(un(w)))

forall u,v,w e V and I, m € Z, where the sum makes sense by (i).
We can also define graded vertex algebras and vertex superalgebras.
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Writing the vertex and Lie algebras explicitly

If V is a (graded/super) vertex algebra then V/(D®)(V), k > 1)
is a (graded/super) Lie algebra, with Lie bracket

[u+(DW(V), k=1), vH(DW(V), k=1)] = uo(v)+(DW(V), k>1).

Vertex algebras were introduced in mathematics by Borcherds, who
noticed that certain infinite-dimensional Lie algebras important in
Representation Theory were constructed as V/(D()(V), k > 1).
For example, Kac—Moody Lie algebras are (Lie subalgebras of) the
Lie algebras associated to lattice vertex algebras.

Vertex algebras are used in Representation Theory, both of
infinite-dimensional Lie algebras, and in Moonshine — the Monster
may be characterized as the symmetry group of a certain
infinite-dimensional vertex algebra.
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2.2. Vertex and Lie algebras on homology of moduli stacks

Let A be a C-linear abelian or triangulated category from Algebraic
Geometry or Representation Theory, e.g. A = coh(X) or D coh(X)
for X a smooth projective C-scheme, or A = mod-CQ or D’ mod-CQ.
Write M for the moduli stack of objects in A, which is an Artin
C-stack in the abelian case, and a higher C-stack in the
triangulated case. There is a morphism ¢ : M x M — M acting
by ([E],[F]) — [E @ F] on C-points.

Now G, acts on objects E in A with A € G, acting as

Aidg : E — E. This induces an action V : [%/Gp] x M — M of
the group stack [#/G ] on M. We write MP! = M /[/G ] for
the quotient, called the ‘projective linear’ moduli stack. There is a
morphism M — MP! which is a [*/G ,]-fibration on M\ {[0]}.
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Writing the vertex and Lie algebras explicitly

We need some extra data (there are always natural choices for this):

e A quotient Kp(A) — K(A) giving splittings
M = Taeka) Mar MP =TT epay) ME

o A symmetric biadditive Euler form x : K(A) x K(A) — Z

@ A perfect complex ©® on M x M satisfying some
assumptions, including rank ©°| v, x M, = X(a, B).
If Ais a 4-Calabi—Yau category, and we will use Borisov—Joyce
virtual classes, we take ©° = (Ext*®)Y, where Ext® — M x M
is the Ext complex. Otherwise we take ©° = (Ext®)Y @
o*(Ext®), where 0 : M x M — M x M swaps the factors.

@ Signs €, 3 € {£1} for o, B € K(A) with €55 €045 =
€a iy €4y aNd €05 - €50 = (—1)X(@ATX(@X(E, 8).
(These compare orientations on M, Mg, My 3.)
If ©° = (Ext®)Y @ o™ (Ext®) we take eq 5 = (—1) K&,

Then we can make the homology H.(M), with grading shifted to
H.(M) as in (d) above, into a graded vertex algebra.
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Writing the vertex and Lie algebras explicitly

Writing H.([*/Gm]) = Q[t] with degt = 2, the state-field
correspondence Y(z) is given by, for u € Hy(M,), v € Hy(Mpg)

Y(u,2)v = eq,5(—1)XEA 200 [ (¢ o (W x id)) (2.1)
{(Z z’f’)@[(u@v)ﬂexp(z(—l)j_l(j—l)!z_j chj([@']))]}.

i>0 i>1

The identity 1 is 1 € Ho(My). Define e?? : H,(M) — H.(M)][[z]]
by Y(v,z)1 = e?Pv. Then (H.(M),1,e?®,Y) is a graded vertex
algebra, so Hy42(M)/D(H.(M)) is a graded Lie algebra. In the
abelian category case at least, there is a canonical isomorphism
H.(MPY) = H, 5(M)/D(H.(M)). This makes H.(MP!) into a
graded Lie algebra, and Hy(MP!) into a Lie algebra.
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2.3. Writing the vertex and Lie algebras explicitly

In good cases we can write down H,(M) and H,(MP') with their
algebraic structures completely explicitly. This will be important for
our enumerative invariant programme, in which we write invariants
[M(T)]inv as elements of H.(MP'). It is helpful to take M, MP!
to be (higher) moduli stacks of objects in D? coh(X), not coh(X).

Theorem 2.1 (Jacob Gross arXiv:1907.03269)

Let X be a smooth projective C-scheme which is a curve, surface,
toric variety, or a few other cases. Write M for the moduli stack of
objects in DP coh(X) and K2, (X) for the semi-topological
K-theory of X (equal to Image(K°(coh(X)) — K2, (X)) for X a
surface). Then M = HaGKOt(X) M, with M, connected, and
H.(Mq, Q) = Sym* (Heven(X, Q) ®q tzQ[t2])®Q

N\ (H49(X, Q) &g tQ[£]). (22)

A similar equation holds for cohomology H*( M, Q).
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Writing the vertex and Lie algebras explicitly

Definition
Let X, M, M, be as in Theorem 2.1, and write U7, — X x M,
for the universal complex. Write m = dim¢ X and b = b*(X),
and choose bases (ej‘)j?il for Hi(X,Q) with e =1 and

m = [X]. For | > k/2 define Sjy € H*=k(M,) by
St — ch/(L{;)\ej‘. Regard Sjy as of degree 2/ — k, and as an even
(or odd) variable if k is even (or odd). Then Theorem 2.1 implies
that H*(M,,) is the graded ponnomiaI superalgebra

H* (Mo) Z QS : 0 < k <2m, 1 <j< b 1> k/2].  (2.3)
We also give a dual descrlptlon of homology H.(M,) by

H (M,) = e® @ Qlsip : 0<k<2m, 1< <bX, I>k/2], (2.4)
where e is a formal symbol to remember «, and

+ H mjk,!, mjk,:m’-k, aIIj, k,/,
m ; J
(I s) - (e 11 i) =
Jik,l

0, otherwise.
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Writing the vertex and Lie algebras explicitly

This pairing has the property that if ® : M x M — M maps
([E°],[F°]) = [E® @ F*] then

Ho(®) (e P(sjur) X €’ Q(sjua)) = €7 P(sj1) Qi)

for polynomials P, Q. Also — N Sj acts as %.
J
It will be convenient to restrict to sheaves of positive rank Write

M=o = [laexo, (x )rka>0 M, and similarly for ./\/lrk>0 Then

sst

Mixso @ Mixso — /\/lrk>0 induces a surjective morphism
H.(Myx>0) — (./\/lrk>0) It turns out this induces an

isomorphism from Ker(— N Si01) to H, (./\/lrk>0) where
Ker(— N S101) is functions independent of sj91. Thus we identify

1

Ho(MB_,) P ®Qls: 0<k<2m, 1<j<bF, (25)

aeK%,(X)rka>0  [>k/2, (j,k, 1) # (1,0,1)].
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Writing the vertex and Lie algebras explicitly

In the representation (2.5), with (Nj:;k/) the matrix of the symmetrized

. ) . v, 1
Mukai pairing, we may write the Lie bracket on H*(beo) as

[e” u(siu), eBV(S{/k/I/)} kso = Resz [(—1)X("’ﬁ)z>‘(°"ﬁ)+’<(ﬁ’a)eo‘+5-

{exp( k( +ﬂ (Zajksjk (14k/2) +Z$,k I+1) ))

Jik,l
rka 8
exp(— Z (—1)’(/ —kj2— 1)1 N k/ﬂj/k/ af .

ik’ K 1>k /2

(71)k/2(// . k'/2 o 1) k' /j2— /’Njk a,k,i

Jokod? K, 1>k /2 OS]y
’ N ot 2
Z (*1)/(/ +1 - (k+ k/)/z —1)! LK) 2=1=1" Nj'kk 87/)
Jiked’ K 7 0511081
/’>}</§, /}’>k’/2
(”(sjk/) : V(Sf/k’//))} sjlk/:Sjkl]' (2.6)
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3. Counting coherent sheaves on surfaces

Now restrict to X a complex projective surface, with geometric
genus pg, and to classes o € K2 (X) with tka > 0. Let (7, T, <)
be either Gieseker or p-stability on coh(X) with respect to a real
Kahler class w € Kah(X). Then my theory defines invariants

[MZS(T)]inv € H2+2pg—2x(a,a) (Mglv @) = eaQ[sjk/v (./’ k, I) 7é (17 0, 1)]7

which are reduced if p; > 0, and are virtual classes [M5(7)]virt if
ME(T) = ME(7). We may write [M(7)]iny = €*Pau(sjki), for
Pa(sjk/) a Q-polynomial in the infinitely many graded variables sj,
homogeneous of degree 2 + 2p; — 2x(c, &). When pg = 0 these
satisfy the wall-crossing formula (1.1) under change of stability
condition, using the Lie bracket (2.6). When p, > 0 they are
independent of stability condition. Our mission, should we choose
to accept it, is to compute the polynomials P,(sjx) (or better,
generating functions encoding the P, (sj«)) as explicitly as possible.

Dominic Joyce, Oxford University Counting semistable coherent sheaves on surfaces



Hilbert schemes of points
Constructing invariants by induction on rank
Counting coherent sheaves on surfaces What | hope to prove

Relation to other invariants in the literature

There is a big literature on computing invariants of M (7).
Essentially all of these are integrals f[MSS(r)] M of particular

universal cohomology classes € H*(M,,) over the virtual class

[ME(7)]vire- It is usually easy to write 1 explicitly as a polynomial

Q(Sjki) in the generating variables Sj in H*(M,). Then
f[MZS(T)]vir: K= (Q(%) ' Pa(sjk/)) |5jkI:0 €Q

Thus, if we can compute the P,(sjx), we know all the other

invariants as well. This applies to virtual Euler characteristics,

virtual x,-genera, Donaldson invariants, K-theoretic Donaldson
invariants, Segre integrals, and Verlinde integrals.

Donaldson invariants are defined when rk «a = 2 as integrals
f[MZS(T)]Virt Q(S102, Sj22 : j = 1,..., b?) of polynomials Q in

Si02 € H*(M,) and Sj» € H?(M,,). So they are determined by
taking Po(sjk/) and setting sjy = 0 if (j, k, 1) # (1,0,2) or (4,2,2).
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Relation to Mochizuki

An advantage of working with the full invariants [M(7)]iny,
rather than partial invariants f[M?f(T)]mv 1, is that partial invariants
may not be closed under wall-crossing formulae.

Mochizuki 2009 defined invariants counting (semi)stable coherent
sheaves on surfaces, and gave a method to (implicitly) compute
higher rank invariants from rank 1 invariants using ‘L-Bradlow
pairs’. The method | will explain in §3.2 (and other parts of my
Monster WCF paper) are based (with thanks) on Mochizuki's ideas.
Mochizuki also defines invariants when M5t (7) #£ M (7), but
they turn out to be different to mine.

My principal innovation compared to Mochizuki, for invariants of
surfaces, is showing that my invariants satisfy the WCFs
(1.1)—(1.2) using the explicit Lie bracket (2.6). Mochizuki can
compute simple WCFs by hand in rank 2 or 3, but doesn't have a
good way to write the general case.
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3.1. Hilbert schemes of points
Write o € K (X) as (r, 3, k) = (tka, c1(a), cha(a)). The Hilbert
scheme Hilb"(X) has a fundamental class [Hilb"”(X)]fung which we
regard as lying in Han( M1 _n)) = e(1’07_”)<@[sjk/]. Define a
generating functlon

[Hll ]fund
Hilb(X, q) =} 50— 0 — 9" € Qlsju]llall-
n>0
By weaponizing Ellingsrud—Gottsche—Lehn | show that
Hilb(X,q) =1+q(---), (3.1)

— Hilb(X, q) =
8q L (k+k y/2—1" i

32 - — T —— i X Sirgr
/XRes {z exp[ Z (I (k+k,)/2)|ujk €jk sjk/]

IS
">k’ j2: I' >(k+k")/2

0 0
o exp {—z €12 X qa—q —|—J kE/;k/z(/ — 1)Iz €jx X 8—} Hilb(X, q)} (3_2)
where (ejk)j?:l is the basis of H¥(X, Q) dual to (ejk)j-’zl, and (y,j:;(k/)
is the inverse Mukai pairing. These determine Hilb(X, g) uniquely.
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Then by solving (3.1)—(3.2) explicitly | prove:
Theorem 3.1

Writing u = (u1, ua, . . .), there exist formal functions A(q, u),
B(q,u), C(q,u),D(q,u) defined uniquely as the solutions to
p.d.e.s, such that for any complex projective surface X we have

Hilb(X, q):exp[/X(A(p, r)+ a(X)UB(p,r)

+ a1 (X)2 U C(p, r)+tda(X)UD(p, r))] . &
Here r = (ri, 12, ...) with
p=gq exp[— Z /\j:,/(k/ejk X sj/k/z}, (3.4)
. ik K :k>0
n= g > NE By, =12, (3.5)
Jrkig' k!

where ()\j:;(kl) is the inverse matrix of (c, ) — [y U B on H*(X).
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| can compute A(q, u),...,D(q,u) up to some order using
Mathematica.

If b1(X) = 0 then any rank 1 sheaf moduli space M pi(7) is
isomorphic to Hilb”(X) for some n. If b*(X) > 0 then M 5.10)(7)

is isomorphic to Pic®(X) x Hilb"(X). Thus Theorem 3.1 gives
generating functions for all rank 1 invariants [M(7 5 ) (7)]inv-
Note that (3.3) has the general form

M 5,60 (T)]inv _
Z%qcm k= exp[/ F.(8, c1(X), td2(X), p, r)
K e %

for some universal function F, depending on the rank, where p, r
as are in (3.4)—(3.5). We will see a similar equation later, though
also including a sum over Seiberg—Witten invariants.
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3.2. Constructing invariants by induction on rank

There is a method to compute invariants [M{? 5 ) (7)]inv by
induction on the rank r = 1,2, ... starting from rank 1 data. This
is due to Mochizuki 2009 in the algebraic case, and is the analogue
of the construction of Donaldson invariants from Seiberg—Witten
invariants. Fix a line bundle L — X, and define an auxiliary abelian
category A with objects (V, E, ¢), where V is a finite-dimensional
C-vector space, E € coh(X), and ¢ : V ®&c L — E is a morphism.
When V = C, Mochizuki calls these ‘'L-Bradlow pairs’'.

Write the class of (E, V,¢) as [E, V,¢] = ((r, B, k), d) where

[E] = (r, B, k) and dim¢ V = d. Starting from 7 on coh(X) we
define a 1-parameter family of stability conditions 7 on A for

t € [0,00). Thus we get semistable moduli stacks M({, 5 .y 4)(7¢)
of objects in A. My theory defines ‘pair invariants’
[M{E?r,ﬁ,k)_,d)(%t)]inv (at least when r > 0 a.n.d d= 0Z 1) satisfying a
wall-crossing formula under change of stability condition 7.
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It turns out that:

® When d =0, M, 54 0)(7t) = M} 5 y(7). Thus the sheaf
invariants [M{ 5 ) (7)]inv are pair invariants with d = 0.

o If r=1, M{(1 5 4)1)(7t) is independent of t and may be
written using Seiberg—Witten invariants and Hilbert schemes.

e Ifr>1,d=1and t> 0 then Mssrﬁk) y(Fe) =0, so
[M((,ﬁ K),d)(7t)]inv = 0. Thus wall-crossing from t >0 to
t = 0 gives a WCF of the general form

[M{{+.5.4),1)(F0)linv = sum of repeated Lie brackets of

[M (1 B, k/ (TO)]an and [M " B k// (T)]inv fOI' r” < r.
o If L=0x(— ) for N >> 0 we can recover [M 5 ) (7)]inv
from [M({, 5 4),1)(70)inv-
e By induction we may now compute [M{ 5 ) (7)]inv =
[M((r+1 B,k),1 )(%0)]11’1V = [M?i+1,57k)(7)]inv = ...
o Thus, we can compute [M{7 5 ) (7)]iny for r > 1 in terms of
classes of Hilb"(X), Pic®(X) and Seiberg-Witten invariants.
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| can carry this programme out explicitly, at least up to a certain
point. | work with generating functions in Q[sjx,other vars][[q*/?]]

Z [M?i@k)(T)]inv const—k Z [M??rvﬁak):l)(%t)]inv const—k
e(rvﬁvk) q ’ e((rvﬁvk)J) q )

| take T to be u-stability rather than Gieseker stability, as then the
combinatorial coefficients in the WCF are independent of k = chp(«),
so | can do the WCF for entire generating functions at once.
The difficulty in pushing the calculation through for higher ranks —
and getting a comprehensible answer — is that the Lie bracket in
the WCF (similar to (2.6) but with extra terms) involves a residue
and some horribly complicated exponentiated differential operators.
Going from rank r to rank r 4+ 1 involves three steps:

(i) Apply differential operator in z, involving L = Ox(—N).

(ii) Take residue in z.
(iii) Take limit N — oo in Ox(—N) (lower bound for N depends

on k) and recover r + 1 sheaf invariant from r + 1 pair invariant.
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So apparently, we would expect that the generating function for
rank r invariants [M(7 5 ) (7)]inv will involve r — 1 residues and

r — 1 limits, giving a complicated and unattractive answer.

The next part is still work in progress, and | haven't finished the
proofs yet. What | think is going to happen is that there is a way
to make the limit ‘cancel out’ with the residue in the inductive step
from rank r to rank r + 1, so that for each rank r > 1 we have a
generating function of the same general form, without residues.

An important idea in the proof is that in the residue in z, we
change variables from z to another variable y, such that invariants
being independent of N > 0 for L = Ox(—N) imply that parts of
the expression are not Laurent series in y but Laurent polynomials,
and then taking the residue in y is equivalent to setting y = 1.
This gives a cool way for algebraic numbers to appear in the
generating function. Parts of the expression must be Laurent series
of algebraic functions of y, as polynomials in the power series are
Laurent polynomials. Setting y = 1 gives an algebraic number.
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3.3. What | hope to prove
| expect that when pgy > 0, for r > 1 there should be a formula like

(M 8,k (7)]ta 152, 11 _
Q_B/r (:(r:ﬁ?k) e [qu(2rB + 2r td2(X)) k} (36)
r—1 )
Z I’2_IX tda(X) H SW(E’Ya) . e@ ;;%afx BUva |
Y15--Vr—1 a=1
EH?(X,Z)1: )
PN o] [ A1), 00, )

Here [M{7 5 4)(7)]ia is the ‘fixed determinant” invariant, equal to

[M{Z 5.6 (T)linv when b'(X) =0, and Q_g/, is an explicit change
of variables in Q[sj] which mimics E — E ® L for L a ‘line bundle’
with c1(L) = —f/r (though —3/r need not be integral), and A, is
a universal function, and SW(s.,) € Q are Seiberg-Witten invariants.

Note that most of (3.6) is independent of 3 € H2(X,Z)%1.
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The general shape of (3.6) is related to many conjectures and
theorems by Lothar Gottsche, Martijn Kool, and other authors.

For simplicity take b'(X) = 0, so we have variables s for

k =0,2,4 only. Now A,(---,r) involves r; in (3.5) which is a sum
of €j X 5j1j(112) With k 4+ k" = 4. The operation [, in [} A(---)
selects products of €j, in which the degrees k sum to 4. Because of
this, the [y A(71, - -, 71, c1(X), tda(X), g7, p, ) in (3.6)
involves terms which are:

@ At most linear in syg; for [ > 1.
o At most quadratic in sjp for j=1,...,b% and /| > 2.
@ Arbitrary power series in sy4; for [ > 3

The way many formulae in the literature get nice generating functions
is to (sometimes) first twist by a Hirzebruch genus of M7 5 (),
and then set si4; = 0 for | > 3, and exploit the fact that

Jx Ar(--+) has simple dependence on syqy, sj;.
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RENEILS

e For class (r, 3, k), equation (3.6) depends only on 3, k only via
[x B? —2rk and [, 3 U~ mod r for all Seiberg-Witten classes .
Often for any given (r, 3, k), we can find (r, 3, k") with the same
values of [, 82 — 2rk and [, U~ mod r, such that (r, 3’) is
|nd|V|S|b|e,. so t.hat M?tr’ﬁ/’.k/)(T) = M?iﬁ{’k,)(T) for generic T
Thus the invariants counting strictly semistables are determined by
the stable=semistable case (hence, integrality properties).

e When X is K3 and T*, higher rank moduli spaces with
stable=semistable can be identified with Hilb"(X) or

Pic®(X) x Hilb"(X). So the generating function can be written
explicitly in terms of the functions A, B, C, D in Theorem 3.1 in
this case. The only Seiberg—Witten class is v = 0, so this tells us
nothing about the Seiberg—Witten parts of the formula.

e A similar method should work when p, = 0, but is more
complicated as there are more terms in the WCF, and infinitely
many Seiberg—Witten classes.
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