Donaldson–Thomas theory of Calabi–Yau 3-folds, and generalizations

Lecture 3 of 3: D-critical loci, perverse sheaves, and motives

Dominic Joyce, Oxford University

'Modern Moduli Theory' graduate school, September 2017

Based on papers arXiv:1211.3259, arXiv:1304.4508, arXiv:1305.6302, arXiv:1305.6428, arXiv:1312.0090, arXiv:1506.04024 by Ben-Bassat, Brav, Bussi, Dupont, Joyce, Meinhardt and Szendrői

1 / 25	Dominic Joyce, Oxford University	Lecture 3: D-critical loci, perverse sheaves, and motives
	D-critical loci Categorification using perverse sheaves Motives of d-critical loci	The definition of d-critical loci D-critical stacks
Plan	of talk:	
6 D-critical loci		
6.1 The definition of d-critical loci		
6.2 D-critical stacks		
7 Categorification using perverse sheaves		
7.1 Perverse sheaves		
7.2 Algebraic structures on perverse sheaves		
8 N	lotives of d-critical loci	

6. D-critical loci and d-critical stacks

We will explain how to define 'd-critical loci' and 'd-critical stacks', classical truncations of -1-shifted symplectic derived schemes and stacks.

Theorem (Joyce arXiv:1304.4508)

Let X be a classical \mathbb{K} -scheme. Then there exists a canonical sheaf S_X of \mathbb{K} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i : R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{K} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\mathrm{d}} \frac{T^*U}{I_{R,U} \cdot T^*U}\right).$$

Also S_X splits naturally as $S_X = S_X^0 \oplus \mathbb{K}_X$, where \mathbb{K}_X is the sheaf of locally constant functions $X \to \mathbb{K}$.

D-critical loci Categorification using perverse sheaves Motives of d-critical loci

The definition of d-critical loci D-critical stacks

The meaning of the sheaves $\mathcal{S}_X, \mathcal{S}_X^0$

If $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then taking R = X, $i = \operatorname{inclusion}$, we see that $f + I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\operatorname{red}}} : X^{\operatorname{red}} \to \mathbb{K}$ is locally constant, and if $f|_{X^{\operatorname{red}}} = 0$ then $f + I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f + I_{X,U} = f|_X$ in $\mathcal{O}_X = \mathcal{O}_U/I_{X,U}$. The theorem means that $f + I_{X,U}^2$ makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then we can remember f up to second order in the ideal $I_{X,U}$ as a piece of data on X, not on U. Suppose $X = \operatorname{Crit}(f : U \to \mathbb{A}^1) = \operatorname{Crit}(g : V \to \mathbb{A}^1)$ is written as a critical locus in two different ways. Then $f + I_{X,U}^2$, $g + I_{X,V}^2$ are sections of S_X , so we can ask whether $f + I_{X,U}^2 = g + I_{X,V}^2$. This gives a way to compare isomorphic critical loci in different smooth classical schemes.

6.1. The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical \mathbb{K} -scheme X and a global section $s \in H^0(\mathcal{S}^0_X)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i : R \to \operatorname{Crit}(f : U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I^2_{R,U}$, for f a regular function on a smooth \mathbb{K} -scheme U.

That is, a d-critical locus (X, s) is a \mathbb{K} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, with X a complex analytic space locally modelled on $\operatorname{Crit}(f : U \to \mathbb{C})$ for U a complex manifold and f holomorphic.

Dominic Joyce, Oxford University Lecture 3: D-critical loci, perverse sheaves, and motives

D-critical loci Categorification using perverse sheaves Motives of d-critical loci

The definition of d-critical loci D-critical stacks

Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X, s) be an algebraic d-critical locus and X^{red} the reduced \mathbb{K} -subscheme of X. Then there is a natural line bundle $K_{X,s}$ on X^{red} called the **canonical bundle**, such that if (X, s) is locally modelled on $\text{Crit}(f : U \to \mathbb{A}^1)$ then $K_{X,s}$ is locally modelled on $K_U^{\otimes^2}|_{\text{Crit}(f)^{\text{red}}}$, for K_U the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An *orientation* on (X, s) is a choice of square root line bundle $K_{X,s}^{1/2}$ for $K_{X,s}$ on X^{red} .

This is related to orientation data in Kontsevich-Soibelman 2008.

A truncation functor from -1-symplectic derived schemes

Theorem 6.1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X, s). The canonical bundle of (X, s)satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

That is, we define a *truncation functor* from -1-shifted symplectic derived \mathbb{K} -schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as *classical truncations* of -1-shifted symplectic derived \mathbb{K} -schemes.

An alternative semi-classical truncation, used in D–T theory, is *schemes with symmetric obstruction theory*. D-critical loci appear to be more useful, for both categorified and motivic D–T theory.

Corollaries 5.3–5.4 in lecture 2 imply:

Motives of d-critical loci

Corollary 6.2

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) . The canonical bundle satisfies $K_{\mathcal{M},s} \cong \det(\mathcal{E}^{\bullet})|_{\mathcal{M}^{red}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the (symmetric) obstruction theory on \mathcal{M} defined by Thomas or Huybrechts and Thomas.

6.2. D-critical stacks

To generalize the d-critical loci in §6.1 to Artin stacks, we need a good notion of sheaves on Artin stacks. This is already well understood. Roughly, a sheaf S on an Artin stack X assigns a sheaf $S(U, \varphi)$ on U (in the usual sense for schemes) for each smooth morphism $\varphi : U \to X$ with U a scheme, and a morphism $S(\alpha, \eta) : \alpha^*(S(V, \psi)) \to S(U, \varphi)$ (often an isomorphism) for each 2-commutative diagram

$$U \xrightarrow{\alpha \qquad \psi \qquad \psi} X \qquad (1)$$

with U, V schemes and φ, ψ smooth, such that $\mathcal{S}(\alpha, \eta)$ have the obvious associativity properties. So, we pass from stacks X to schemes U by working with smooth atlases $\varphi: U \to X$.

The definition of d-critical stacks

Generalizing d-critical loci to stacks is now straightforward. As above, on each scheme U we have a canonical sheaf S_U^0 . If $\alpha: U \to V$ is a morphism of schemes we have pullback morphisms $\alpha^*: \alpha^{-1}(S_V^0) \to S_U^0$ with associativity properties. So, for any classical Artin stack X, we define a sheaf S_X^0 on X by $S_X(U,\varphi) = S_U^0$ for all smooth $\varphi: U \to X$ with U a scheme, and $S(\alpha, \eta) = \alpha^*$ for all diagrams (1). A global section $s \in H^0(S_X^0)$ assigns $s(U,\varphi) \in H^0(S_U^0)$ for all smooth $\varphi: U \to X$ with $\alpha^*[\alpha^{-1}(s(V,\psi))] = s(U,\varphi)$ for all diagrams (1). We call (X, s) a *d-critical stack* if $(U, s(U,\varphi))$ is a *d*-critical locus for all smooth $\varphi: U \to X$. That is, if X is a d-critical stack then any smooth atlas $\varphi: U \to X$ for X is a d-critical locus.

A truncation functor from -1-symplectic derived stacks

As for the scheme case in $\S6.1$, we prove:

Theorem 6.3 (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived Artin stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ extends naturally to a d-critical stack (X, s), with canonical bundle $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) with canonical bundle $K_{\mathcal{M},s} \cong \operatorname{det}(\mathcal{E}^{\bullet})|_{\mathcal{M}^{\operatorname{red}}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the natural obstruction theory on \mathcal{M} .

Dominic Joyce, Oxford University Lecture 3: D-critical loci, perverse sheaves, and motives

D-critical loci Categorification using perverse sheaves Motives of d-critical loci

The definition of d-critical loci D-critical stacks

Canonical bundles and orientations

For schemes, a d-critical locus (U, s) has a canonical bundle $K_{U,s} \rightarrow U^{\text{red}}$, and an orientation on (U, s) is a square root $K_{U,s}^{1/2}$. Similarly, a d-critical stack (X, s) has a *canonical bundle* $K_{X,s} \rightarrow X^{\text{red}}$. For any smooth $\varphi : U \rightarrow X$ with U a scheme we have $K_{X,s}(U^{\text{red}}, \varphi^{\text{red}}) = K_{U,s}(U,\varphi) \otimes (\det \mathbb{L}_{U/X})^{\otimes^{-2}}$. An *orientation* on (X, s) is a choice of square root $K_{X,s}^{1/2}$ for $K_{X,s}$. Note that as $(\det \mathbb{L}_{U/X})^{\otimes^{-2}}$ has a natural square root, an orientation for (X, s) gives an orientation for $(U, s(U, \varphi))$ for any smooth atlas $\varphi : U \rightarrow X$.

7. Categorification using perverse sheaves7.1. Perverse sheaves

It's not easy to explain what perverse sheaves are. We can think of a perverse sheaf as a system of coefficients for cohomology. Let X be a complex manifold. The cohomology group $H^k(X; \mathbb{Q})$ is the sheaf cohomology group $H^k(X, \mathbb{Q}_X)$, where \mathbb{Q}_X is the constant sheaf with fibre \mathbb{Q} . Working in complexes of sheaves of \mathbb{Q} -modules on X, consider the shifted sheaf $\mathbb{Q}_X[\dim_{\mathbb{C}} X]$. This is an example of a perverse sheaf. The shift means that Poincaré duality for X has the nice form $\mathbb{H}^i_{cs}(\mathbb{Q}_X[\dim_{\mathbb{C}} X]) \cong \mathbb{H}^{-i}(\mathbb{Q}_X[\dim_{\mathbb{C}} X])^*$. If instead X is a singular complex variety, rather than considering $H^*(X; \mathbb{Q})$, it can be helpful (e.g. in 'intersection cohomology', and to preserve nice properties like Poincaré duality) to consider cohomology $\mathbb{H}^*(X, \mathcal{P}^{\bullet})$ with coefficients in a complex \mathcal{P}^{\bullet} on X (a 'perverse sheaf') which treats the singularities of X in a special way.

Dominic Joyce, Oxford University Lecture 3: D-critical loci, perverse sheaves, and motives

D-critical loci Categorification using perverse sheaves Motives of d-critical loci

Perverse sheaves Algebraic structures on perverse sheaves

Let U be a complex manifold, and $f: U \to \mathbb{C}$ a holomorphic function. Then one can define a perverse sheaf $\mathcal{PV}_{U,f}^{\bullet}$ on Crit fcalled the *perverse sheaf of vanishing cycles*, with nice properties. The vanishing cohomology $\mathbb{H}^{\bullet}(\mathcal{PV}_{U,f}^{\bullet})$ measures how $H^*(f^{-1}(c); \mathbb{Q})$ changes as c passes through critical values of f. Kai Behrend observed that the pointwise Euler characteristic $\chi_{\mathcal{PV}_{U,f}^{\bullet}}$: Crit $f \to \mathbb{Z}$ is the Behrend function of Crit f, as used in classical Donaldson–Thomas theory.

Theorem 7.1 (Brav-Bussi-Dupont-Joyce-Szendrői arXiv:1211.3259)

Let (X, s) be an algebraic d-critical locus over \mathbb{K} , with an orientation $K_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X, such that if (X, s) is locally modelled on $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, then $P_{X,s}^{\bullet}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ of (U, f). Similarly, we can construct a natural \mathscr{D} -module $D_{X,s}^{\bullet}$ on X, and when $\mathbb{K} = \mathbb{C}$ a natural mixed Hodge module $M_{X,s}^{\bullet}$ on X.

Sketch of the proof of Theorem 7.1

Roughly, we prove the theorem by taking a Zariski open cover $\{R_i : i \in I\}$ of X with $R_i \cong \operatorname{Crit}(f_i : U_i \to \mathbb{A}^1)$, and showing that $\mathcal{PV}_{U_i,f_i}^{\bullet}$ and $\mathcal{PV}_{U_j,f_j}^{\bullet}$ are canonically isomorphic on $R_i \cap R_j$, so we can glue the $\mathcal{PV}_{U_i,f_i}^{\bullet}$ to get a global perverse sheaf $P_{X,s}^{\bullet}$ on X. In fact things are more complicated: the (local) isomorphisms $\mathcal{PV}_{U_i,f_i}^{\bullet} \cong \mathcal{PV}_{U_j,f_j}^{\bullet}$ are only canonical *up to sign*. To make them canonical, we use the orientation $K_{X,s}^{1/2}$ to define natural principal \mathbb{Z}_2 -bundles Q_i on R_i , such that $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j}^{\bullet} \otimes_{\mathbb{Z}_2} Q_j$ is canonical, and then we glue the $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i$ to get $P_{X,s}^{\bullet}$.

$15 \, / \, 25$

Dominic Joyce, Oxford University Lecture 3: D-critical loci, perverse sheaves, and motives

D-critical loci Categorification using perverse sheaves Motives of d-critical loci

Perverse sheaves Algebraic structures on perverse sheaves

Theorem 7.1 and Corollary 6.2 imply:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root det $(\mathcal{E}^{\bullet})^{1/2}$ for det (\mathcal{E}^{\bullet}) (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

(Compare Kiem and Li arXiv:1212.6444).

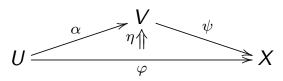
The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a finite-dimensional graded vector space. The pointwise Euler characteristic $\chi(P^{\bullet}_{\mathcal{M},s})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus

 $\sum_{i\in\mathbb{Z}}(-1)^{i}\dim\mathbb{H}^{i}(P^{\bullet}_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}}).$

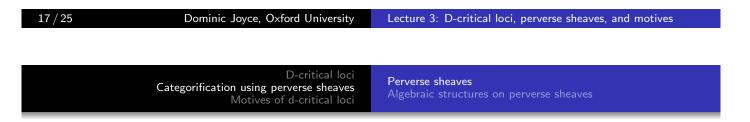
Now by Behrend 2005, the Donaldson–Thomas invariant of \mathcal{M} is $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$. So, $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a graded vector space with dimension $DT(\mathcal{M})$, that is, a *categorification* of $DT(\mathcal{M})$.

Extension to Artin stacks

Let (X, s) be a d-critical stack, with an orientation $K_{X,s}^{1/2}$. Then for any smooth $\varphi : U \to X$ with U a scheme, $(U, s(U, \varphi))$ is an oriented d-critical locus, so as above, BBDJS constructs a perverse sheaf $P_{U,\varphi}^{\bullet}$ on U. Given a diagram



with U, V schemes and φ, ψ smooth, we can construct a natural isomorphism $P^{\bullet}_{\alpha,\eta} : \alpha^*(P^{\bullet}_{V,\psi})[\dim \varphi - \dim \psi] \to P^{\bullet}_{U,\varphi}$. All this data $P^{\bullet}_{U,\varphi}, P^{\bullet}_{\alpha,\eta}$ is equivalent to a perverse sheaf on X.



Thus we prove:

Theorem (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (X, s) be a d-critical stack, with an orientation $K_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X.

Corollary

Suppose Y is a Calabi–Yau 3-fold and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$. Then we construct a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a categorification of the Donaldson–Thomas theory of Y.

7.2. Algebraic structures on perverse sheaves

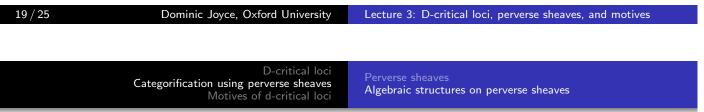
Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a -1-shifted symplectic derived scheme, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ a Lagrangian, in the sense of PTVV. Choose an orientation $K_{\mathbf{X},s}^{1/2}$ for $(\mathbf{X}, \omega_{\mathbf{X}})$. There is then a notion of relative orientation for $\mathbf{i} : \mathbf{L} \to \mathbf{X}$, choose one of these. We get a perverse sheaf $P_{\mathbf{X},\omega_{\mathbf{X}}}^{\bullet}$ on \mathbf{X} , by Theorem 7.1.

Conjecture 7.2 (Joyce; see Amorim and Ben-Bassat arXiv:1601.01536)

There is a natural morphism in $D_c^b(\mathbf{L})$ $\mu_{\mathbf{L}} : \mathbb{Q}_{\mathbf{L}}[\operatorname{vdim} \mathbf{L}] \longrightarrow \mathbf{i}^!(P_{\mathbf{X},\omega_{\mathbf{X}}}^{\bullet}),$ (2) with given local models in 'Darboux form' presentations for \mathbf{X} .

with given local models in 'Darboux form' presentations for X, L. These μ_L should satisfy a package of properties under products, composition of Lagrangian correspondences, Verdier duality, etc.

This conjecture has important consequences.

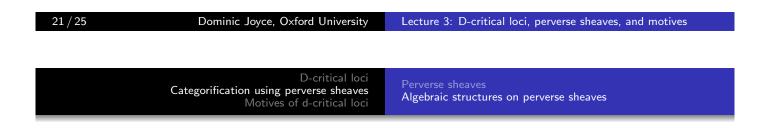


We already know local models for $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ and $\mu_{\mathbf{L}}$ in (2) (Joyce–Safronov arXiv:1506.04024). What makes the conjecture difficult is that local models are not enough: $\mu_{\mathbf{L}}$ is a morphism of complexes, not of (perverse) sheaves, and such morphisms do not glue like sheaves. For instance, one could imagine $\mu_{\mathbf{L}}$ to be globally nonzero, but zero on the sets of an open cover of \mathbf{L} . So to construct $\mu_{\mathbf{L}}$, we have to do a gluing problem in an ∞ -category, probably using hypercovers. I have a sketch of one way to do this (over \mathbb{C}). It is not easy.

Maybe gluing local models naïvely is not the best approach for this problem, need some more advanced Lurie-esque technology? Any help would be appreciated.

An application: Cohomological Hall Algebras

Let Y be a Calabi–Yau 3-fold, and \mathcal{M} the derived moduli stack of coherent sheaves (or suitable complexes) on Y, with its -1-shifted symplectic structure ω . Then Theorem 6.3 makes the classical stack \mathcal{M} into a d-critical stack (\mathcal{M}, s) . Suppose we have 'orientation data' for Y, i.e. an orientation $K_{\mathcal{M},s}^{1/2}$, with compatibility condition on exact sequences. Then we have a perverse sheaf $P_{\mathcal{M},s}^{\bullet}$, with hypercohomology $\mathbb{H}^*(P_{\mathcal{M},s}^{\bullet})$. We would like to define an associative multiplication on $\mathbb{H}^*(P_{\mathcal{M},s}^{\bullet})$, making it into a *Cohomological Hall Algebra*, in the style of Kontsevich and Soibelman (arXiv:1006.2706).



Let \mathcal{E} xact be the derived stack of short exact sequences $0 \rightarrow F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow 0$ in $\operatorname{coh}(Y)$ (or distinguished triangles in $D^b \operatorname{coh}(Y)$), with projections $\pi_1, \pi_2, \pi_3 : \mathcal{E}$ xact $\rightarrow \mathcal{M}$.

Claim (Oren Ben-Bassat, work in progress?)

```
\pi_1 \times \pi_2 \times \pi_3 : \mathcal{E}xact \to (\mathcal{M}, \omega) \times (\mathcal{M}, -\omega) \times (\mathcal{M}, \omega) is Lagrangian in -1-shifted symplectic.
```

Then apply the stack version of Conjecture 7.2 and manipulate using Verdier duality of perverse sheaves to get the COHA multiplication.

8. Motives of d-critical loci and d-critical stacks

By similar (but easier) arguments to those used to construct the perverse sheaves $P^{\bullet}_{X,s}$ in §7.1, we prove:

Theorem 8.1 (Bussi, Joyce and Meinhardt arXiv:1305.6428)

Let (X, s) be a finite type algebraic d-critical locus over \mathbb{K} , with an orientation $K_{X,s}^{1/2}$. Then we can construct a natural motive $MF_{X,s}$ in a certain ring of $\hat{\mu}$ -equivariant motives $\overline{\mathcal{M}}_X^{\hat{\mu}}$ on X, such that if (X, s) is locally modelled on $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, then $MF_{X,s}$ is locally modelled on $\mathbb{L}^{-\dim U/2}([X] - MF_{U,f}^{\mathrm{mot}})$, where $MF_{U,f}^{\mathrm{mot}}$ is the motivic Milnor fibre or motivic nearby cycle of f.

Here a motivic invariant I of finite type \mathbb{K} -varieties X in a ring R is $I(X) \in R$ satisfying $I(X) = I(X \setminus Y) + I(Y)$ for $Y \subset X$ closed and $I(X \times Y) = I(X)I(Y)$ for all X, Y. The obvious example is Euler characteristics, but there are others, e.g. virtual Poincaré polynomials. The ring $\overline{\mathcal{M}}_X^{\hat{\mu}}$ is R for 'universal motivic invariants'.

23 / 25

Dominic Joyce, Oxford University Lecture 3: D-critical loci, perverse sheaves, and motives

D-critical loci Categorification using perverse sheaves Motives of d-c<u>ritical loci</u>

Relation to motivic D–T invariants

Theorem 8.1 and Corollary 6.1 imply:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a finite type classical moduli \mathbb{K} -scheme of (complexes of) coherent sheaves on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root det $(\mathcal{E}^{\bullet})^{1/2}$ for det (\mathcal{E}^{\bullet}) (i.e. orientation data, K–S). Then we have a natural motive $MF^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

This motive $MF^{\bullet}_{\mathcal{M},s}$ is essentially the motivic Donaldson–Thomas invariant of \mathcal{M} defined (partially conjecturally) by Kontsevich and Soibelman, arXiv:0811.2435. K–S work with motivic Milnor fibres of formal power series at each point of \mathcal{M} . Our results show the formal power series can be taken to be a regular function, and clarify how the motivic Milnor fibres vary in families over \mathcal{M} .

Extension to Artin stacks

We can also generalize Theorem 8.1 to d-critical stacks:

Theorem (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (X, s) be an oriented d-critical stack, of finite type and locally a global quotient. Then we can construct a natural motive $MF_{X,s}$ in a certain ring of $\hat{\mu}$ -equivariant motives $\overline{\mathcal{M}}_X^{\mathrm{st},\hat{\mu}}$ on X, such that if $\varphi: U \to X$ is smooth and U is a scheme then

$$\varphi^*(MF_{X,s}) = \mathbb{L}^{\dim \varphi/2} \odot MF_{U,s(U,\varphi)},$$

where $MF_{U,s(U,\varphi)}$ for the scheme case is as in BJM above.

For CY3 moduli stacks, these $MF_{X,s}$ are basically Kontsevich– Soibelman's motivic Donaldson–Thomas invariants.

25 / 25

Dominic Joyce, Oxford University Lecture 3: D-critical loci, perverse sheaves, and motives