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1. PTVV’s shifted symplectic geometry

Let K be an algebraically closed field of characteristic zero, e.g.
K = C. Work in the context of Toën and Vezzosi’s theory of
derived algebraic geometry. This gives ∞-categories of derived
K-schemes dSchK and derived stacks dStK, including derived
Artin stacks dArtK. Think of a derived K-scheme X as a
geometric space which can be covered by Zariski open sets Y ⊆ X
with Y ' SpecA for A = (A,d) a commutative differential graded
algebra (cdga) over K.
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Cotangent complexes of derived schemes and stacks

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a
notion of k-shifted symplectic structure on a derived K-scheme or
derived K-stack X, for k ∈ Z. This is complicated, but here is the
basic idea. The cotangent complex LX of X is an element of a
derived category Lqcoh(X) of quasicoherent sheaves on X. It has
exterior powers ΛpLX for p = 0, 1, . . . . The de Rham differential
ddR : ΛpLX → Λp+1LX is a morphism of complexes, though not of
OX-modules. Each ΛpLX is a complex, so has an internal
differential d : (ΛpLX)k → (ΛpLX)k+1. We have
d2 = d2dR = d ◦ ddR + ddR ◦ d = 0.
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p-forms and closed p-forms

A p-form of degree k on X for k ∈ Z is an element [ω0] of
Hk
(
ΛpLX,d

)
. A closed p-form of degree k on X is an element

[(ω0, ω1, . . .)] ∈ Hk
(⊕∞

i=0 Λp+iLX[i ],d + ddR
)
.

There is a projection π : [(ω0, ω1, . . .)] 7→ [ω0] from closed p-forms
[(ω0, ω1, . . .)] of degree k to p-forms [ω0] of degree k.
Note that a closed p-form is not a special example of a p-form, but
a p-form with an extra structure. The map π from closed p-forms
to p-forms can be neither injective nor surjective.
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Nondegenerate 2-forms and symplectic structures

Let [ω0] be a 2-form of degree k on X. Then [ω0] induces a
morphism ω0 : TX → LX[k], where TX = L∨X is the tangent
complex of X. We call [ω0] nondegenerate if ω0 : TX → LX[k] is a
quasi-isomorphism.
If X is a derived scheme then LX lives in degrees (−∞, 0] and TX

in degrees [0,∞). So ω0 : TX → LX[k] can be a
quasi-isomorphism only if k 6 0, and then LX lives in degrees [k , 0]
and TX in degrees [0,−k]. If k = 0 then X is a smooth classical
K-scheme, and if k = −1 then X is quasi-smooth.
A closed 2-form ω = [(ω0, ω1, . . .)] of degree k on X is called a
k-shifted symplectic structure if [ω0] = π(ω) is nondegenerate.
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Calabi–Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi–Yau m-fold over K and
M is a derived moduli scheme or stack of (complexes of) coherent
sheaves on Y , then M has a natural (2−m)-shifted symplectic
structure ω. So Calabi–Yau 3-folds give −1-shifted derived
schemes or stacks.
We can understand the associated nondegenerate 2-form [ω0] in
terms of Serre duality. At a point [E ] ∈M, we have
hi (TM)|[E ]

∼= Exti−1(E ,E ) and hi (LM)|[E ]
∼= Ext1−i (E ,E )∗.

The Calabi–Yau condition gives Exti (E ,E ) ∼= Extm−i (E ,E )∗,
which corresponds to hi (TM)|[E ]

∼= hi (LM[2−m])|[E ]. This is the
cohomology at [E ] of the quasi-isomorphism
ω0 : TM → LM[2−m].
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Lagrangians and Lagrangian intersections

Let (X, ω) be a k-shifted symplectic derived scheme or stack.
Then Pantev et al. define a notion of Lagrangian L in (X, ω),
which is a morphism i : L→ X of derived schemes or stacks
together with a homotopy i∗(ω) ∼ 0 satisfying a nondegeneracy
condition, implying that TL ' LL/X[k − 1].
If L,M are Lagrangians in (X, ω), then the fibre product L×X M
has a natural (k − 1)-shifted symplectic structure.
If (S , ω) is a classical smooth symplectic scheme, then it is a
0-shifted symplectic derived scheme in the sense of PTVV, and if
L,M ⊂ S are classical smooth Lagrangian subschemes, then they
are Lagrangians in the sense of PTVV. Therefore the (derived)
Lagrangian intersection L ∩M = L×S M is a −1-shifted
symplectic derived scheme.
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Examples of Lagrangians

Let (X, ω) be k-shifted symplectic, and ia : La → X be Lagrangian
in X for a = 1, . . . , d . Then Ben-Bassat (arXiv:1309.0596) shows

L1×XL2×X· · ·×XLd −→ (L1×XL2)×· · ·×(Ld−1×XLd)×(Ld×XL1)

is Lagrangian, where the r.h.s. is (k−1)-shifted symplectic by
PTVV. This is relevant to defining ‘Fukaya categories’ of complex
symplectic manifolds.
Let Y be a Calabi–Yau m-fold, so that the derived moduli stack
M of coherent sheaves (or complexes) on Y is (2−m)-shifted
symplectic by PTVV, with symplectic form ω. We expect (Oren
Ben-Bassat, work in progress) that

Exact π1×π2×π3−→ (M, ω)× (M,−ω)× (M, ω)

is Lagrangian, where Exact is the derived moduli stack of short
exact sequences in coh(Y ) (or distinguished triangles in
Db coh(Y )). This is relevant to Cohomological Hall Algebras.
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2. A ‘Darboux theorem’ for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (X, ω) is a k-shifted symplectic derived K-scheme for
k < 0. If k 6≡ 2 mod 4, then each x ∈ X admits a Zariski open
neighbourhood Y ⊆ X with Y ' SpecA for (A,d) an explicit cdga
over K generated by graded variables x−ij , yk+i

j for 0 6 i 6 −k/2,

and ω|Y = [(ω0, 0, 0, . . .)] where x l
j , y

l
j have degree l , and

ω0 =
∑[−k/2]

i=0

∑mi
j=1 ddRyk+i

j ddRx−ij .

Also the differential d in (A,d) is given by Poisson bracket with a
Hamiltonian H in A of degree k + 1.
If k ≡ 2 mod 4, we have two statements, one étale local with ω0

standard, and one Zariski local with the components of ω0 in the
degree k/2 variables depending on some invertible functions.
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Sketch of the proof of the theorem

Suppose (X, ω) is a k-shifted symplectic derived K-scheme for
k < 0, and x ∈ X. Then LX lives in degrees [k , 0]. We first show
that we can build Zariski open x ∈ Y ⊆ X with Y ' SpecA, for
A =

⊕
i60 Ai a cdga over K with A0 a smooth K-algebra, and

such that A is freely generated over A0 by graded variables
x−ij , yk+i

j in degrees −1,−2, . . . , k . We take dimA0 and the

number of x−ij , yk+i
j to be minimal at x .

Using theorems about periodic cyclic cohomology, we show that on
Y ' SpecA we can write ω|Y = [(ω0, 0, 0, . . .)], for ω0 a 2-form of
degree k with dω0 = ddRω

0 = 0. Minimality at x implies ω0 is
strictly nondegenerate near x , so we can change variables to write
ω0 =

∑
i ,j ddRyk+i

j ddRx−ij . Finally, we show d in (A,d) is a
symplectic vector field, which integrates to a Hamiltonian H.
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The case of −1-shifted symplectic derived schemes

When k = −1 the Hamiltonian H in the theorem has degree 0.
Then the theorem reduces to:

Corollary

Suppose (X, ω) is a −1-shifted symplectic derived K-scheme.
Then (X, ω) is Zariski locally equivalent to a derived critical locus
Crit(H : U → A1), for U a smooth classical K-scheme and
H : U → A1 a regular function. Hence, the underlying classical
K-scheme X = t0(X) is Zariski locally isomorphic to a classical
critical locus Crit(H : U → A1).
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Combining this with results of Pantev et al. from §1 gives
interesting consequences in classical algebraic geometry:

Corollary

Let Y be a Calabi–Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y . Then M is Zariski locally isomorphic to the critical locus
Crit(H : U → A1) of a regular function on a smooth K-scheme.

Here we note that M = t0(M) for M the corresponding derived
moduli scheme, which is −1-shifted symplectic by PTVV.
A complex analytic analogue of this for moduli of coherent sheaves
was proved using gauge theory by Joyce and Song arXiv:0810.5645,
and for moduli of complexes was claimed by Behrend and Getzler.
Note that the proof of the corollary is wholly algebro-geometric.
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As intersections of algebraic Lagrangians are −1-shifted
symplectic, we also deduce:

Corollary

Let (S , ω) be a classical smooth symplectic K-scheme, and
L,M ⊆ S be smooth algebraic Lagrangians. Then the intersection
L ∩M, as a K-subscheme of S , is Zariski locally isomorphic to the
critical locus Crit(H : U → A1) of a regular function on a smooth
K-scheme.

In real or complex symplectic geometry, where the Darboux
Theorem holds, the analogue of the corollary is easy to prove, but
in classical algebraic symplectic geometry we do not have a
Darboux Theorem, so the corollary is not obvious.
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The case of −2-shifted symplectic derived schemes

Let (X, ω) be a −2-shifted symplectic derived K-scheme. Then the
Zariski local models for (X, ω) given by the ‘Darboux Theorem’
depend on the following data:

A smooth K-scheme U
An algebraic vector bundle E → U
A section s ∈ H0(E )
A nondegenerate quadratic form Q on E with Q(s, s) = 0.

The underlying classical K-scheme X of X is locally s−1(0) ⊂ U.
The virtual dimension of X is vdimKX = 2dimK U − rankK E .
The cotangent complex LX|X of X is locally given by[

TU
−2
|s−1(0)

Q◦ds // E ∗
−1
|s−1(0)

ds // T ∗U
0
|s−1(0)

]
.

We will use this in lecture 3 to define Donaldson–Thomas style
invariants ‘counting’ coherent sheaves on Calabi–Yau 4-folds.
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3. Extension to shifted symplectic derived Artin stacks

In Ben-Bassat, Bussi, Brav and Joyce arXiv:1312.0090 we extend
the material of §2 from (derived) schemes to (derived) Artin
stacks. We call a derived stack X a derived Artin stack X if it is
1-geometric, and the associated classical (higher) stack X = t0(X)
is 1-truncated, all in the sense of Toën and Vezzosi. Then the
cotangent complex LX lives in degrees (−∞, 1], and X = t0(X) is
a classical Artin stack (in particular, not a higher stack).
A derived Artin stack X admits a smooth atlas ϕ : U→ X with U
a derived scheme. If Y is a smooth projective scheme and M is a
derived moduli stack of coherent sheaves F on Y , or of complexes
F • in Db coh(Y ) with Ext<0(F •,F •) = 0, then M is a derived
Artin stack.
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A ‘Darboux Theorem’ for atlases of derived stacks

Theorem (Ben-Bassat, Bussi, Brav, Joyce, arXiv:1312.0090)

Let (X, ωX) be a k-shifted symplectic derived Artin stack for
k < 0, and p ∈ X. Then there exist ‘standard form’ affine derived
schemes U = SpecA, V = SpecB, points u ∈ U, v ∈ V with A,B
minimal at u, v , morphisms ϕ : U→ X and i : U→ V with
ϕ(u) = p, i(u) = v , such that ϕ is smooth of relative dimension
dimH1

(
LX|p

)
, and t0(i) : t0(U)→ t0(V) is an isomorphism on

classical schemes, and LU/V ' TU/X[1− k], and a ‘Darboux form’
k-shifted symplectic form ωB on V = SpecB such that
i∗(ωB) ∼ ϕ∗(ωX) in k-shifted closed 2-forms on U.
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Discussion of the ‘Darboux Theorem’ for stacks

Let (X, ωX) be a k-shifted symplectic derived Artin stack for
k < 0, and p ∈ X. Although we do not know how to give a
complete, explicit ‘standard model’ for (X, ωX) near p, we can give
standard models for a smooth atlas ϕ : U→ X for X near p with
U = SpecA a derived scheme, and for the pullback 2-form
ϕ∗(ωX). We may think of ϕ : U→ X as an open neighbourhood
of p in the smooth topology, rather than the Zariski topology.
Now (U,ϕ∗(ωX)) is not k-shifted symplectic, as ϕ∗(ωX) is closed,
but not nondegenerate. However, there is a way to modify U,A to
get another derived scheme V = SpecB, where A has generators
in degrees 0,−1, . . . ,−k − 1, and B ⊆ A is the dg-subalgebra
generated by the generators in degrees 0,−1, . . . ,−k only.
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Then V has a natural k-shifted symplectic form ωB , which we may
take to be in ‘Darboux form’ as in §2, with i∗(ωB) ∼ ϕ∗(ωX). In
terms of cotangent complexes, LU is obtained from ϕ∗(LX) by
deleting a vector bundle LU/X in degree 1. Also LV is obtained
from LU by deleting the dual vector bundle TU/X in degree k − 1.
As these two deletions are dual under ϕ∗(ωX), the symplectic form
descends to V.
An example in which we have this picture

(V, ωB)
i←−U

ϕ−→ (X, ωX) is a ‘k-shifted symplectic quotient’,
when an algebraic group G acts on a k-shifted symplectic derived
scheme (V, ωB) with ‘moment map’ µ ∈ Hk(V, g∗ ⊗OV), and
U = µ−1(0), and X = [U/G ]. (See Safronov arXiv:1311.6429.)
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−1-shifted symplectic derived stacks

When k = −1, (V, ωB) is a derived critical locus Crit(f : S → A1)
for S a smooth scheme. Then t0(V) ∼= t0(U) is the classical
critical locus Crit(f : S → A1), and U = t0(U) is a smooth atlas
for the classical Artin stack X = t0(X). Thus we deduce:

Corollary

Let (X, ωX) be a −1-shifted symplectic derived stack. Then the
classical Artin stack X = t0(X) locally admits smooth atlases
ϕ : U → X with U = Crit(f : S → A1), for S a smooth scheme
and f a regular function.
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Calabi–Yau 3-fold moduli stacks

If Y is a Calabi–Yau 3-fold and M a moduli stack of coherent
sheaves F on Y , or complexes F • in Db coh(Y ) with
Ext<0(F •,F •) = 0, then by PTVV the corresponding derived
moduli stack M with t0(M) =M has a −1-shifted symplectic
structure ωM. So the previous corollary gives:

Corollary

Suppose Y is a Calabi–Yau 3-fold and M a classical moduli stack
of coherent sheaves F on Y , or of complexes F • in Db coh(Y )
with Ext<0(F •,F •) = 0. Then M locally admits smooth atlases
ϕ : U → X with U = Crit(f : S → A1), for S a smooth scheme.

A holomorphic version of this was proved by Joyce and Song using
gauge theory, and is important in Donaldson–Thomas theory.
Bussi (work in progress) uses this to give a new algebraic proof of
the ‘Behrend function identities’ in Donaldson–Thomas theory.
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