'Darboux theorems' for shifted symplectic derived schemes and stacks

Lecture 1 of 3

Dominic Joyce, Oxford University

January 2014

Based on: arXiv:1305.6302 and arXiv:1312.0090. Joint work with Oren Ben-Bassat, Chris Brav and Vittoria Bussi. Funded by the EPSRC.

1/21 Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Plan of talk:

1 PTVV's shifted symplectic geometry

2 A 'Darboux theorem' for shifted symplectic derived schemes

3 Extension to shifted symplectic derived Artin stacks

1. PTVV's shifted symplectic geometry

Let \mathbb{K} be an algebraically closed field of characteristic zero, e.g. $\mathbb{K} = \mathbb{C}$. Work in the context of Toën and Vezzosi's theory of *derived algebraic geometry*. This gives ∞ -categories of *derived* \mathbb{K} -schemes **dSch**_{\mathbb{K}} and *derived stacks* **dSt**_{\mathbb{K}}, including *derived Artin stacks* **dArt**_{\mathbb{K}}. Think of a derived \mathbb{K} -scheme **X** as a geometric space which can be covered by Zariski open sets $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$ for A = (A, d) a commutative differential graded algebra (cdga) over \mathbb{K} .

3 / 21

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Cotangent complexes of derived schemes and stacks

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a notion of *k*-shifted symplectic structure on a derived K-scheme or derived K-stack X, for $k \in \mathbb{Z}$. This is complicated, but here is the basic idea. The cotangent complex \mathbb{L}_X of X is an element of a derived category $L_{qcoh}(X)$ of quasicoherent sheaves on X. It has exterior powers $\Lambda^p \mathbb{L}_X$ for $p = 0, 1, \ldots$. The *de Rham differential* $d_{dR} : \Lambda^p \mathbb{L}_X \to \Lambda^{p+1} \mathbb{L}_X$ is a morphism of complexes, though not of \mathcal{O}_X -modules. Each $\Lambda^p \mathbb{L}_X$ is a complex, so has an internal differential $d : (\Lambda^p \mathbb{L}_X)^k \to (\Lambda^p \mathbb{L}_X)^{k+1}$. We have $d^2 = d_{dR}^2 = d \circ d_{dR} + d_{dR} \circ d = 0$.

p-forms and closed *p*-forms

A *p*-form of degree k on **X** for $k \in \mathbb{Z}$ is an element $[\omega^0]$ of $H^k(\Lambda^p \mathbb{L}_{\mathbf{X}}, d)$. A closed *p*-form of degree k on **X** is an element

$$[(\omega^0, \omega^1, \ldots)] \in H^k \big(\bigoplus_{i=0}^{\infty} \Lambda^{p+i} \mathbb{L}_{\mathbf{X}}[i], \mathrm{d} + \mathrm{d}_{dR} \big).$$

There is a projection $\pi : [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0]$ from closed *p*-forms $[(\omega^0, \omega^1, \ldots)]$ of degree *k* to *p*-forms $[\omega^0]$ of degree *k*. Note that a closed *p*-form *is not a special example of a p-form*, but a *p*-form with an extra structure. The map π from closed *p*-forms to *p*-forms can be neither injective nor surjective.

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Nondegenerate 2-forms and symplectic structures

Let $[\omega^0]$ be a 2-form of degree k on X. Then $[\omega^0]$ induces a morphism $\omega^0 : \mathbb{T}_X \to \mathbb{L}_X[k]$, where $\mathbb{T}_X = \mathbb{L}_X^{\vee}$ is the tangent complex of X. We call $[\omega^0]$ nondegenerate if $\omega^0 : \mathbb{T}_X \to \mathbb{L}_X[k]$ is a quasi-isomorphism. If X is a derived scheme then \mathbb{L}_X lives in degrees $(-\infty, 0]$ and \mathbb{T}_X in degrees $[0, \infty)$. So $\omega^0 : \mathbb{T}_X \to \mathbb{L}_X[k]$ can be a quasi-isomorphism only if $k \leq 0$, and then \mathbb{L}_X lives in degrees [k, 0]and \mathbb{T}_X in degrees [0, -k]. If k = 0 then X is a smooth classical \mathbb{K} -scheme, and if k = -1 then X is quasi-smooth. A closed 2-form $\omega = [(\omega^0, \omega^1, \ldots)]$ of degree k on X is called a k-shifted symplectic structure if $[\omega^0] = \pi(\omega)$ is nondegenerate.

5/21

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Calabi–Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi–Yau *m*-fold over \mathbb{K} and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a natural (2 - m)-shifted symplectic structure ω . So Calabi–Yau 3-folds give -1-shifted derived schemes or stacks.

We can understand the associated nondegenerate 2-form $[\omega^0]$ in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E, E)$ and $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E, E)^*$. The Calabi–Yau condition gives $\operatorname{Ext}^i(E, E) \cong \operatorname{Ext}^{m-i}(E, E)^*$, which corresponds to $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^i(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$. This is the cohomology at [E] of the quasi-isomorphism $\omega^0: \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$.

7 / 21

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Lagrangians and Lagrangian intersections

Let (\mathbf{X}, ω) be a *k*-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of *Lagrangian* \mathbf{L} in (\mathbf{X}, ω) , which is a morphism $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ of derived schemes or stacks together with a homotopy $i^*(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathbf{L}} \simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$. If \mathbf{L} , \mathbf{M} are Lagrangians in (\mathbf{X}, ω) , then the fibre product $\mathbf{L} \times_{\mathbf{X}} \mathbf{M}$ has a natural (k-1)-shifted symplectic structure. If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, M \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L \cap M = L \times_S M$ is a -1-shifted symplectic derived scheme.

TVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Examples of Lagrangians

Let (\mathbf{X}, ω) be k-shifted symplectic, and $\mathbf{i}_a : \mathbf{L}_a \to \mathbf{X}$ be Lagrangian in **X** for $a = 1, \ldots, d$. Then Ben-Bassat (arXiv:1309.0596) shows $\mathsf{L}_1 \times_{\mathsf{X}} \mathsf{L}_2 \times_{\mathsf{X}} \cdots \times_{\mathsf{X}} \mathsf{L}_d \longrightarrow (\mathsf{L}_1 \times_{\mathsf{X}} \mathsf{L}_2) \times \cdots \times (\mathsf{L}_{d-1} \times_{\mathsf{X}} \mathsf{L}_d) \times (\mathsf{L}_d \times_{\mathsf{X}} \mathsf{L}_1)$

is Lagrangian, where the r.h.s. is (k-1)-shifted symplectic by PTVV. This is relevant to defining 'Fukaya categories' of complex symplectic manifolds.

Let Y be a Calabi–Yau m-fold, so that the derived moduli stack \mathcal{M} of coherent sheaves (or complexes) on Y is (2-m)-shifted symplectic by PTVV, with symplectic form ω . We expect (Oren Ben-Bassat, work in progress) that

 $\boldsymbol{\mathcal{E}}\mathsf{xact} \stackrel{\pi_1 \times \pi_2 \times \pi_3}{\longrightarrow} (\boldsymbol{\mathcal{M}}, \omega) \times (\boldsymbol{\mathcal{M}}, -\omega) \times (\boldsymbol{\mathcal{M}}, \omega)$

is Lagrangian, where \mathcal{E} xact is the derived moduli stack of short exact sequences in coh(Y) (or distinguished triangles in $D^b \operatorname{coh}(Y)$). This is relevant to Cohomological Hall Algebras.

Lecture 1: Shifted symplectic geometry Dominic Joyce, Oxford University 9/21

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

2. A 'Darboux theorem' for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (\mathbf{X}, ω) is a k-shifted symplectic derived \mathbb{K} -scheme for k < 0. If $k \not\equiv 2 \mod 4$, then each $x \in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$ for (A, d) an explicit cdga over \mathbb{K} generated by graded variables x_i^{-i}, y_i^{k+i} for $0 \leq i \leq -k/2$, and $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, ...)]$ where x_j^I, y_j^I have degree I, and $\omega^{0} = \sum_{i=0}^{[-k/2]} \sum_{j=1}^{m_{i}} d_{dR} y_{j}^{k+i} d_{dR} x_{j}^{-i}.$ Also the differential d in (A, d) is given by Poisson bracket with a

Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 in the degree k/2 variables depending on some invertible functions.

Sketch of the proof of the theorem

Suppose (\mathbf{X}, ω) is a *k*-shifted symplectic derived K-scheme for k < 0, and $x \in \mathbf{X}$. Then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]. We first show that we can build Zariski open $x \in \mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$, for $A = \bigoplus_{i \leq 0} A^i$ a cdga over K with A^0 a smooth K-algebra, and such that A is freely generated over A^0 by graded variables x_j^{-i}, y_j^{k+i} in degrees $-1, -2, \ldots, k$. We take dim A^0 and the number of x_j^{-i}, y_j^{k+i} to be minimal at x. Using theorems about periodic cyclic cohomology, we show that on $Y \simeq \operatorname{Spec} A$ we can write $\omega|_Y = [(\omega^0, 0, 0, \ldots)]$, for ω^0 a 2-form of degree k with $d\omega^0 = d_{dR}\omega^0 = 0$. Minimality at x implies ω^0 is strictly nondegenerate near x, so we can change variables to write $\omega^0 = \sum_{i,j} d_{dR} y_j^{k+i} d_{dR} x_j^{-i}$. Finally, we show d in (A, d) is a symplectic vector field, which integrates to a Hamiltonian H.

When k = -1 the Hamiltonian *H* in the theorem has degree 0. Then the theorem reduces to:

Corollary

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived \mathbb{K} -scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth classical \mathbb{K} -scheme and $H : U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$. Combining this with results of Pantev et al. from $\S1$ gives interesting consequences in classical algebraic geometry:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H: U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

Here we note that $\mathcal{M} = t_0(\mathcal{M})$ for \mathcal{M} the corresponding derived moduli scheme, which is -1-shifted symplectic by PTVV. A complex analytic analogue of this for moduli of coherent sheaves was proved using gauge theory by Joyce and Song arXiv:0810.5645, and for moduli of complexes was claimed by Behrend and Getzler. Note that the proof of the corollary is wholly algebro-geometric.

13 / 21

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

As intersections of algebraic Lagrangians are -1-shifted symplectic, we also deduce:

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then the intersection $L \cap M$, as a \mathbb{K} -subscheme of S, is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

In real or complex symplectic geometry, where the Darboux Theorem holds, the analogue of the corollary is easy to prove, but in classical algebraic symplectic geometry we do not have a Darboux Theorem, so the corollary is not obvious.

The case of -2-shifted symplectic derived schemes

Let (\mathbf{X}, ω) be a -2-shifted symplectic derived \mathbb{K} -scheme. Then the Zariski local models for (\mathbf{X}, ω) given by the 'Darboux Theorem' depend on the following data:

- A smooth \mathbb{K} -scheme U
- An algebraic vector bundle E
 ightarrow U
- A section $s \in H^0(E)$
- A nondegenerate quadratic form Q on E with Q(s, s) = 0.

The underlying classical \mathbb{K} -scheme X of X is locally $s^{-1}(0) \subset U$. The virtual dimension of X is $\operatorname{vdim}_{\mathbb{K}} X = 2 \operatorname{dim}_{\mathbb{K}} U - \operatorname{rank}_{\mathbb{K}} E$. The cotangent complex $\mathbb{L}_{X}|_{X}$ of X is locally given by

$$\Big[\underbrace{TU}_{-2} \big|_{s^{-1}(0)} \xrightarrow{Q \circ \mathrm{d}s} E^*_{-1} \big|_{s^{-1}(0)} \xrightarrow{\mathrm{d}s} T^*_0 U \big|_{s^{-1}(0)} \Big].$$

We will use this in lecture 3 to define Donaldson–Thomas style invariants 'counting' coherent sheaves on Calabi–Yau 4-folds.

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

3. Extension to shifted symplectic derived Artin stacks

In Ben-Bassat, Bussi, Brav and Joyce arXiv:1312.0090 we extend the material of §2 from (derived) schemes to (derived) Artin stacks. We call a derived stack **X** a *derived Artin stack* **X** if it is 1-geometric, and the associated classical (higher) stack $X = t_0(\mathbf{X})$ is 1-truncated, all in the sense of Toën and Vezzosi. Then the cotangent complex $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty, 1]$, and $X = t_0(\mathbf{X})$ is a classical Artin stack (in particular, not a higher stack). A derived Artin stack **X** admits a smooth atlas $\varphi : \mathbf{U} \to \mathbf{X}$ with \mathbf{U} a derived scheme. If Y is a smooth projective scheme and \mathcal{M} is a derived moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^b \operatorname{coh}(Y)$ with $\operatorname{Ext}^{\leq 0}(F^{\bullet}, F^{\bullet}) = 0$, then \mathcal{M} is a derived Artin stack. PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

A 'Darboux Theorem' for atlases of derived stacks

Theorem (Ben-Bassat, Bussi, Brav, Joyce, arXiv:1312.0090)

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a k-shifted symplectic derived Artin stack for k < 0, and $p \in \mathbf{X}$. Then there exist 'standard form' affine derived schemes $\mathbf{U} = \operatorname{Spec} A$, $\mathbf{V} = \operatorname{Spec} B$, points $u \in \mathbf{U}$, $v \in \mathbf{V}$ with A, B minimal at u, v, morphisms $\varphi : \mathbf{U} \to \mathbf{X}$ and $\mathbf{i} : \mathbf{U} \to \mathbf{V}$ with $\varphi(u) = p$, $\mathbf{i}(u) = v$, such that φ is smooth of relative dimension $\dim H^1(\mathbb{L}_{\mathbf{X}}|_p)$, and $t_0(\mathbf{i}) : t_0(\mathbf{U}) \to t_0(\mathbf{V})$ is an isomorphism on classical schemes, and $\mathbb{L}_{\mathbf{U}/\mathbf{V}} \simeq \mathbb{T}_{\mathbf{U}/\mathbf{X}}[1-k]$, and a 'Darboux form' k-shifted symplectic form ω_B on $\mathbf{V} = \operatorname{Spec} B$ such that $\mathbf{i}^*(\omega_B) \sim \varphi^*(\omega_{\mathbf{X}})$ in k-shifted closed 2-forms on \mathbf{U} .

$17 \, / \, 21$

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Discussion of the 'Darboux Theorem' for stacks

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a *k*-shifted symplectic derived Artin stack for k < 0, and $p \in \mathbf{X}$. Although we do not know how to give a complete, explicit 'standard model' for $(\mathbf{X}, \omega_{\mathbf{X}})$ near p, we can give standard models for a smooth atlas $\varphi : \mathbf{U} \to \mathbf{X}$ for \mathbf{X} near p with $\mathbf{U} = \operatorname{Spec} A$ a derived scheme, and for the pullback 2-form $\varphi^*(\omega_{\mathbf{X}})$. We may think of $\varphi : \mathbf{U} \to \mathbf{X}$ as an open neighbourhood of p in the smooth topology, rather than the Zariski topology. Now $(\mathbf{U}, \varphi^*(\omega_{\mathbf{X}}))$ is not *k*-shifted symplectic, as $\varphi^*(\omega_{\mathbf{X}})$ is closed, but not nondegenerate. However, there is a way to modify \mathbf{U}, A to get another derived scheme $\mathbf{V} = \operatorname{Spec} B$, where A has generators in degrees $0, -1, \ldots, -k - 1$, and $B \subseteq A$ is the dg-subalgebra generated by the generators in degrees $0, -1, \ldots, -k$ only.

Then **V** has a natural *k*-shifted symplectic form ω_B , which we may take to be in 'Darboux form' as in §2, with $\mathbf{i}^*(\omega_B) \sim \varphi^*(\omega_X)$. In terms of cotangent complexes, \mathbb{L}_U is obtained from $\varphi^*(\mathbb{L}_X)$ by deleting a vector bundle $\mathbb{L}_{U/X}$ in degree 1. Also \mathbb{L}_V is obtained from \mathbb{L}_U by deleting the dual vector bundle $\mathbb{T}_{U/X}$ in degree k - 1. As these two deletions are dual under $\varphi^*(\omega_X)$, the symplectic form descends to **V**.

An example in which we have this picture

 $(\mathbf{V}, \omega_B) \xleftarrow{\mathbf{i}} \mathbf{U} \xrightarrow{\varphi} (\mathbf{X}, \omega_{\mathbf{X}})$ is a 'k-shifted symplectic quotient', when an algebraic group G acts on a k-shifted symplectic derived scheme (\mathbf{V}, ω_B) with 'moment map' $\mu \in H^k(\mathbf{V}, \mathfrak{g}^* \otimes \mathcal{O}_{\mathbf{V}})$, and $\mathbf{U} = \mu^{-1}(0)$, and $X = [\mathbf{U}/G]$. (See Safronov arXiv:1311.6429.)

$19 \, / \, 21$

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

-1-shifted symplectic derived stacks

When k = -1, (\mathbf{V}, ω_B) is a derived critical locus $\operatorname{Crit}(f : S \to \mathbb{A}^1)$ for S a smooth scheme. Then $t_0(\mathbf{V}) \cong t_0(\mathbf{U})$ is the classical critical locus $\operatorname{Crit}(f : S \to \mathbb{A}^1)$, and $U = t_0(\mathbf{U})$ is a smooth atlas for the classical Artin stack $X = t_0(\mathbf{X})$. Thus we deduce:

Corollary

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a -1-shifted symplectic derived stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ locally admits smooth atlases $\varphi : U \to X$ with $U = \operatorname{Crit}(f : S \to \mathbb{A}^1)$, for S a smooth scheme and f a regular function.

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic derived schemes Extension to shifted symplectic derived Artin stacks

Calabi–Yau 3-fold moduli stacks

If Y is a Calabi–Yau 3-fold and \mathcal{M} a moduli stack of coherent sheaves F on Y, or complexes F^{\bullet} in $D^b \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$, then by PTVV the corresponding derived moduli stack \mathcal{M} with $t_0(\mathcal{M}) = \mathcal{M}$ has a -1-shifted symplectic structure $\omega_{\mathcal{M}}$. So the previous corollary gives:

Corollary

Suppose Y is a Calabi–Yau 3-fold and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} locally admits smooth atlases $\varphi : U \to X$ with $U = \operatorname{Crit}(f : S \to \mathbb{A}^{1})$, for S a smooth scheme.

A holomorphic version of this was proved by Joyce and Song using gauge theory, and is important in Donaldson–Thomas theory. Bussi (work in progress) uses this to give a new algebraic proof of the 'Behrend function identities' in Donaldson–Thomas theory.

 $21 \, / \, 21$

Dominic Joyce, Oxford University Lecture 1: Shifted symplectic geometry