D-critical loci, and categorification of Donaldson–Thomas theory using perverse sheaves

Lecture 2 of 3

Dominic Joyce, Oxford University

January 2014

Based on: arXiv:1304.4508, arXiv:1211.3259, and arXiv:1312.0090. Joint work with Oren Ben-Bassat, Chris Brav, Vittoria Bussi, Delphine Dupont, and Balázs Szendrői. Funded by the EPSRC.

Plan of talk:

4 D-critical loci

5 D-critical stacks

6 Categorification using perverse sheaves

Algebraic structures on perverse sheaves

(8) 'Fukaya categories' of complex symplectic manifolds

4. D-critical loci

Theorem (Joyce arXiv:1304.4508)

Let X be a classical \mathbb{K} -scheme. Then there exists a canonical sheaf S_X of \mathbb{K} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i : R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{K} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\mathrm{d}} \frac{T^*U}{I_{R,U} \cdot T^*U}\right).$$

Also S_X splits naturally as $S_X = S_X^0 \oplus \mathbb{K}_X$, where \mathbb{K}_X is the sheaf of locally constant functions $X \to \mathbb{K}$.

3 / 23

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci

D-critical stacks Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

The meaning of the sheaves $\mathcal{S}_X, \mathcal{S}_X^0$

If $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then taking R = X, $i = \operatorname{inclusion}$, we see that $f + I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\operatorname{red}}} : X^{\operatorname{red}} \to \mathbb{K}$ is locally constant, and if $f|_{X^{\operatorname{red}}} = 0$ then $f + I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f + I_{X,U} = f|_X$ in $\mathcal{O}_X = \mathcal{O}_U/I_{X,U}$. The theorem means that $f + I_{X,U}^2$ makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then we can remember f up to second order in the ideal $I_{X,U}$ as a piece of data on X, not on U. Suppose $X = \operatorname{Crit}(f : U \to \mathbb{A}^1) = \operatorname{Crit}(g : V \to \mathbb{A}^1)$ is written as a critical locus in two different ways. Then $f + I_{X,U}^2$, $g + I_{X,V}^2$ are sections of S_X , so we can ask whether $f + I_{X,U}^2 = g + I_{X,V}^2$. This gives a way to compare isomorphic critical loci in different smooth classical schemes.

The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical \mathbb{K} -scheme X and a global section $s \in H^0(\mathcal{S}^0_X)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i : R \to \operatorname{Crit}(f : U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I^2_{R,U}$, for f a regular function on a smooth \mathbb{K} -scheme U.

That is, a d-critical locus (X, s) is a \mathbb{K} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, with X a complex analytic space locally modelled on $\operatorname{Crit}(f : U \to \mathbb{C})$ for U a complex manifold and f holomorphic.

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci D-critical stacks

Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X, s) be an algebraic d-critical locus and X^{red} the reduced \mathbb{K} -subscheme of X. Then there is a natural line bundle $K_{X,s}$ on X^{red} called the **canonical bundle**, such that if (X, s) is locally modelled on $\text{Crit}(f : U \to \mathbb{A}^1)$ then $K_{X,s}$ is locally modelled on $K_U^{\otimes^2}|_{\text{Crit}(f)^{\text{red}}}$, for K_U the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An *orientation* on (X, s) is a choice of square root line bundle $K_{X,s}^{1/2}$ for $K_{X,s}$ on X^{red} .

This is related to orientation data in Kontsevich-Soibelman 2008.

A truncation functor from -1-symplectic derived schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X, s). The canonical bundle of (X, s)satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

That is, we define a *truncation functor* from -1-shifted symplectic derived \mathbb{K} -schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as *classical truncations* of -1-shifted symplectic derived \mathbb{K} -schemes.

An alternative semi-classical truncation, used in D–T theory, is *schemes with symmetric obstruction theory*. D-critical loci appear to be better, for both categorified and motivic D–T theory.

7 / 23

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci D-critical stacks Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

The corollaries in lecture 1, §2 imply:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) . The canonical bundle satisfies $K_{\mathcal{M},s} \cong \det(\mathcal{E}^{\bullet})|_{\mathcal{M}^{red}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the (symmetric) obstruction theory on \mathcal{M} defined by Thomas or Huybrechts and Thomas.

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then $X = L \cap M$ extends naturally to a d-critical locus (X, s). The canonical bundle satisfies $K_{X,s} \cong K_L|_{X^{red}} \otimes K_M|_{X^{red}}$. Hence, choices of square roots $K_L^{1/2}, K_M^{1/2}$ give an orientation for (X, s).

D-critical loci D-critical stacks

Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

5. D-critical stacks

To generalize the d-critical loci in §4 to Artin stacks, we need a good notion of sheaves on Artin stacks. This is already well understood. Roughly, a sheaf S on an Artin stack X assigns a sheaf $S(U, \varphi)$ on U (in the usual sense for schemes) for each smooth morphism $\varphi : U \to X$ with U a scheme, and a morphism $S(\alpha, \eta) : \alpha^*(S(V, \psi)) \to S(U, \varphi)$ (often an isomorphism) for each 2-commutative diagram

$$U \xrightarrow{\alpha \qquad \psi \qquad \psi} X \qquad (1)$$

with U, V schemes and φ, ψ smooth, such that $S(\alpha, \eta)$ have the obvious associativity properties. So, we pass from stacks X to schemes U by working with smooth atlases $\varphi : U \to X$.

D-critical stacks Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

The definition of d-critical stacks

Generalizing d-critical loci to stacks is now straightforward. As in §6, on each scheme U we have a canonical sheaf S_U^0 . If $\alpha : U \to V$ is a morphism of schemes we have pullback morphisms $\alpha^* : \alpha^{-1}(S_V^0) \to S_U^0$ with associativity properties. So, for any classical Artin stack X, we define a sheaf S_X^0 on X by $S_X(U,\varphi) = S_U^0$ for all smooth $\varphi : U \to X$ with U a scheme, and $S(\alpha, \eta) = \alpha^*$ for all diagrams (2). A global section $s \in H^0(S_X^0)$ assigns $s(U,\varphi) \in H^0(S_U^0)$ for all smooth $\varphi : U \to X$ with $\alpha^*[\alpha^{-1}(s(V,\psi))] = s(U,\varphi)$ for all diagrams (2). We call (X,s) a *d-critical stack* if $(U,s(U,\varphi))$ is a *d*-critical locus for all smooth $\varphi : U \to X$. That is, if X is a d-critical stack then any smooth atlas $\varphi : U \to X$

for X is a d-critical locus.

A truncation functor from -1-symplectic derived stacks

As for the scheme case in $\S4,$ we prove:

Theorem (Ben-Bassat, Brav, Bussi, Joyce)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived Artin stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ extends naturally to a d-critical stack (X, s), with canonical bundle $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) with canonical bundle $K_{\mathcal{M},s} \cong \operatorname{det}(\mathcal{E}^{\bullet})|_{\mathcal{M}^{\operatorname{red}}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the natural obstruction theory on \mathcal{M} .

 $11 \, / \, 23$

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci D-critical stacks Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

Canonical bundles and orientations

For schemes, a d-critical locus (U, s) has a canonical bundle $K_{U,s} \rightarrow U^{\text{red}}$, and an orientation on (U, s) is a square root $K_{U,s}^{1/2}$. Similarly, a d-critical stack (X, s) has a *canonical bundle* $K_{X,s} \rightarrow X^{\text{red}}$. For any smooth $\varphi : U \rightarrow X$ with U a scheme we have $K_{X,s}(U^{\text{red}}, \varphi^{\text{red}}) = K_{U,s}(U,\varphi) \otimes (\det \mathbb{L}_{U/X})^{\otimes^{-2}}$. An *orientation* on (X, s) is a choice of square root $K_{X,s}^{1/2}$ for $K_{X,s}$. Note that as $(\det \mathbb{L}_{U/X})^{\otimes^{-2}}$ has a natural square root, an orientation for (X, s) gives an orientation for $(U, s(U, \varphi))$ for any smooth atlas $\varphi : U \rightarrow X$.

6. Categorification using perverse sheaves

Theorem (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let (X, s) be an algebraic d-critical locus over \mathbb{K} , with an orientation $\mathcal{K}_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X, such that if (X, s) is locally modelled on $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, then $P_{X,s}^{\bullet}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ of (U, f). Similarly, we can construct a natural \mathscr{D} -module $D_{X,s}^{\bullet}$ on X, and when $\mathbb{K} = \mathbb{C}$ a natural mixed Hodge module $M_{X,s}^{\bullet}$ on X.

$13 \, / \, 23$

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci D-critical stacks Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

Sketch of the proof of the theorem

Roughly, we prove the theorem by taking a Zariski open cover $\{R_i : i \in I\}$ of X with $R_i \cong \operatorname{Crit}(f_i : U_i \to \mathbb{A}^1)$, and showing that $\mathcal{PV}_{U_i,f_i}^{\bullet}$ and $\mathcal{PV}_{U_j,f_j}^{\bullet}$ are canonically isomorphic on $R_i \cap R_j$, so we can glue the $\mathcal{PV}_{U_i,f_i}^{\bullet}$ to get a global perverse sheaf $P_{X,s}^{\bullet}$ on X. In fact things are more complicated: the (local) isomorphisms $\mathcal{PV}_{U_i,f_i}^{\bullet} \cong \mathcal{PV}_{U_j,f_j}^{\bullet}$ are only canonical *up to sign*. To make them canonical, we use the orientation $\mathcal{K}_{X,s}^{1/2}$ to define natural principal \mathbb{Z}_2 -bundles Q_i on R_i , such that $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j}^{\bullet} \otimes_{\mathbb{Z}_2} Q_j$ is canonical, and then we glue the $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i$ to get $P_{X,s}^{\bullet}$.

The first corollary in lecture 1, $\S2$ implies:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$ (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

(Compare Kiem and Li arXiv:1212.6444).

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a finite-dimensional graded vector space. The pointwise Euler characteristic $\chi(P^{\bullet}_{\mathcal{M},s})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus

 $\sum_{i\in\mathbb{Z}}(-1)^{i}\dim\mathbb{H}^{i}(P^{\bullet}_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}}).$

Now by Behrend 2005, the Donaldson–Thomas invariant of \mathcal{M} is $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$. So, $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a graded vector space with dimension $DT(\mathcal{M})$, that is, a *categorification* of $DT(\mathcal{M})$.

15 / 23

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci D-critical stacks **Categorification using perverse sheaves** Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

Categorifying Lagrangian intersections

The second corollary in lecture 1, §2 implies:

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme of dimension 2n, and $L, M \subseteq S$ be smooth algebraic Lagrangians, with square roots $K_L^{1/2}, K_M^{1/2}$ of their canonical bundles. Then we have a natural perverse sheaf $P_{L,M}^{\bullet}$ on $X = L \cap M$.

This is related to Behrend and Fantechi 2009. We think of the hypercohomology $\mathbb{H}^*(P^{\bullet}_{L,M})$ as being morally related to the Lagrangian Floer cohomology $HF^*(L,M)$ by

 $\mathbb{H}^{i}(P^{\bullet}_{L,M}) \approx HF^{i+n}(L,M).$

We are working on defining 'Fukaya categories' for algebraic/complex symplectic manifolds using these ideas (§8).

Extension to Artin stacks

Let (X, s) be a d-critical stack, with an orientation $K_{X,s}^{1/2}$. Then for any smooth $\varphi : U \to X$ with U a scheme, $(U, s(U, \varphi))$ is an oriented d-critical locus, so as above, BBDJS constructs a perverse sheaf $P_{U,\varphi}^{\bullet}$ on U. Given a diagram

with U, V schemes and φ, ψ smooth, we can construct a natural isomorphism $P^{\bullet}_{\alpha,\eta} : \alpha^*(P^{\bullet}_{V,\psi})[\dim \varphi - \dim \psi] \to P^{\bullet}_{U,\varphi}$. All this data $P^{\bullet}_{U,\varphi}, P^{\bullet}_{\alpha,\eta}$ is equivalent to a perverse sheaf on X.

17 / 23 Dominic Joyce, Oxford University Lecture 2: perverse sheaves
D-critical loci
D-critical stacks
Categorification using perverse sheaves

Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

Thus we prove:

Theorem (Ben-Bassat, Brav, Bussi, Joyce)

Let (X, s) be a d-critical stack, with an orientation $K_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X.

Corollary

Suppose Y is a Calabi–Yau 3-fold and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$. Then we construct a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a categorification of the Donaldson–Thomas theory of Y.

7. Algebraic structures on perverse sheaves

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a -1-shifted symplectic derived scheme, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ a Lagrangian, in the sense of PTVV. Choose an orientation $K_{X,s}^{1/2}$ for $(\mathbf{X}, \omega_{\mathbf{X}})$. There is then a notion of relative orientation for $\mathbf{i} : \mathbf{L} \to \mathbf{X}$, choose one of these. We get a perverse sheaf $P_{\mathbf{X},\omega_{\mathbf{X}}}^{\bullet}$ on \mathbf{X} , by BBDJS in §6.

Conjecture

There is a natural morphism in $D_c^b(\mathbf{L})$ $\mu_{\mathbf{L}} : \mathbb{Q}_{\mathbf{L}}[\operatorname{vdim} \mathbf{L}] \longrightarrow \mathbf{i}^!(P^{\bullet}_{\mathbf{X},\omega_{\mathbf{Y}}}),$

with given local models in 'Darboux form' presentations for X, L.

(2)

This Conjecture has important consequences (§8, §11).

I already know local models for $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ and $\mu_{\mathbf{L}}$ in (2). What makes the Conjecture difficult is that local models are not enough: $\mu_{\mathbf{L}}$ is a morphism of complexes, not of (perverse) sheaves, and such morphisms do not glue like sheaves. For instance, one could imagine $\mu_{\mathbf{L}}$ to be globally nonzero, but zero on the sets of an open cover of \mathbf{L} .

So to construct μ_L , we have to do a gluing problem in an ∞ -category, probably using hypercovers. I have a sketch of one way to do this (over \mathbb{C}). It is not easy.

Maybe gluing local models naïvely is not the best approach for this problem, need some more advanced Lurie-esque technology? Any help would be appreciated.

8. 'Fukaya categories' of complex symplectic manifolds

Let (S, ω) be a complex symplectic manifold, with $\dim_{\mathbb{C}} S = 2n$, and $L, M \subset S$ be complex Lagrangians (not supposed compact or closed). The intersection $L \cap M$, as a complex analytic space, has a d-critical structure s (Vittoria Bussi, work in progress). Given square roots of canonical bundles $K_L^{1/2}, K_M^{1/2}$, we get an orientation on $(L \cap M, s)$, and so a perverse sheaf $P_{L,M}^{\bullet}$ on $L \cap M$. I claim that we should think of the shifted hypercohomology $\mathbb{H}^{*-n}(P_{L,M}^{\bullet})$ as a substitute for the Lagrangian Floer cohomology $HF^*(L, M)$ in symplectic geometry. But $HF^*(L, M)$ is the morphisms in the derived Fukaya category D^b Fuk (S, ω) .

21/23

Dominic Joyce, Oxford University Lecture 2: perverse sheaves

D-critical loci D-critical stacks Categorification using perverse sheaves Algebraic structures on perverse sheaves 'Fukaya categories' of complex symplectic manifolds

Problem

Given a complex symplectic manifold (S, ω) , build a 'Fukaya category' with objects $(L, K_L^{1/2})$ for L a complex Lagrangian, and graded morphisms $\mathbb{H}^{*-n}(P_{L,M}^{\bullet})$.

Extend to derived Lagrangians L in (S, ω) .

Work out the 'right' way to form a 'derived Fukaya category' for (S, ω) out of this, as a (Calabi–Yau?) triangulated category. Show that (derived) Lagrangian correspondences induce functors between these derived Fukaya categories.

Question

Can we include complex coisotropic submanifolds as objects? Maybe using \mathscr{D} -modules?

The Conjecture in §7 is what we need to define composition of morphisms in this 'Fukaya category', as follows. If L, M, N are Lagrangians in (S, ω) , then $M \cap L, N \cap M, L \cap N$ are -1-shifted symplectic / d-critical loci, and $L \cap M \cap N$ is Lagrangian in the product $(M \cap L) \times (N \cap M) \times (L \cap N)$ (lecture 1, §1). Applying the Conjecture to $L \cap M \cap N$ and rearranging gives a morphism of constructible complexes

$$\mu_{L,M,N}: P^{\bullet}_{L,M} \overset{L}{\otimes} P^{\bullet}_{M,N}[n] \longrightarrow P^{\bullet}_{L,N}.$$

Taking hypercohomology gives the multiplication $\operatorname{Hom}^*(L, M) \times \operatorname{Hom}^*(M, N) \to \operatorname{Hom}^*(L, N).$

23 / 23

Dominic Joyce, Oxford University Lecture 2: perverse sheaves