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Motives of d-critical loci

9. Motives of d-critical loci

By similar (but easier) arguments to those used to construct the
perverse sheaves P§ _ in lecture 2, §6, we prove:

Theorem (Bussi, Joyce and Meinhardt arXiv:1305.6428)

Let (X,s) be a finite type algebraic d-critical locus over K, with an
orientation K )1/ 52 Then we can construct a natural motive MFx

in a certain ring of [i-equivariant motives M’; on X, such that if
(X, s) is locally modelled on Crit(f : U — A'), then MFx ¢ is

locally modelled on L.~ 4mU/2([X] — MF[2), where MFJ$t is the
motivic Milnor fibre or motivic nearby cycle of f.

v
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Torus localization of motives

Let (X, s) be an oriented, finite type d-critical locus, and

p:Gp x X — X a Gp-action on X preserving the orientation and
scaling the d-critical structure by p(A)*(s) = A9s for some d € Z.
If d =0 and pis ‘good’ and ‘circle compact’, Maulik (work in
progress) proves a torus localization formula for the absolute
motive m,(MFx s) € /\7lﬂ, with 7 : X — SpecK the projection

W*(MFX,S) — Zie[ L~ 1nd(X,' 7X)/2 ® W*(MFX;G’",S,(-Gm)7

where X®m is the G ,-fixed subscheme in X, and

XCGm = e XI-G’" its decomposition into connected components.
It would be interesting to extend this to d # 0, and to consider
torus localization for the perverse sheaves of lecture 2, §6.
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Relation to motivic D—T invariants

The first corollary in lecture 1, §2 implies:

Corollary

Let Y be a Calabi—Yau 3-fold over K and M a finite type classical
moduli K-scheme of (complexes of ) coherent sheaves on Y, with
(symmetric) obstruction theory ¢ : £* — Lrq. Suppose we are
given a square root det(£°)'/2 for det(£°) (i.e. orientation data,
K=S). Then we have a natural motive MF}, & on M.

This motive MF/{/(’S is essentially the motivic Donaldson—Thomas
invariant of M defined (partially conjecturally) by Kontsevich and
Soibelman, arXiv:0811.2435. K-S work with motivic Milnor fibres
of formal power series at each point of M. Our results show the
formal power series can be taken to be a regular function, and
clarify how the motivic Milnor fibres vary in families over M.
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Extension to Artin stacks

We can also generalize BJM to d-critical stacks:

Theorem (Ben-Bassat, Brav, Bussi, Joyce)

Let (X,s) be an oriented d-critical stack, of finite type and locally
a global quotient. Then we can construct a natural motive MFx

in a certain ring of fi-equivariant motives M5'" on X, such that if
@ : U— X is smooth and U is a scheme then

0" (MFx.s) = LY™92. 0 MFy y.0),

for the scheme case is as in BJM above.

where MFy sy )

For CY3 moduli stacks, these MFx s are basically Kontsevich—
Soibelman’s motivic Donaldson—Thomas invariants.
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Motives of d-critical loci

Note: all the rest of this lecture is either work in progress, or
projects | hope to do soon, or things I'd like to prove but don't
know how. A result in quotes (“Theorem”, ...) means we haven't
finished the proof yet.
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10. D-T style invariants for Calabi-Yau 4-folds

If Y is a Calabi—Yau 3-fold (say over C), then the Donaldson-
Thomas invariants DT*(7) in Z or Q ‘count’ 7-(semi)stable
coherent sheaves on Y with Chern character a € H*V*"(Y,Q), for
T a (say Gieseker) stability condition. The DT(7) are unchanged
under continuous deformations of Y, and transform by a
wall-crossing formula under change of stability condition 7.

We have 7-(semi)stable moduli schemes M (7) C MS(7), where
M (7) is proper, and M (7) has a symmetric obstruction theory.
The easy case (Thomas 1998) is when MZ(7) = MG (7). Then
DT*(1) € Z is the virtual cycle (which has dimension zero) of the
proper scheme with obstruction theory M, (7).

Note that the derived moduli scheme M (7) is —1-shifted
symplectic by PTVV, and M(7) is a d-critical locus by BBJ.
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Holomorphic Donaldson invariants?

In joint work with Dennis Borisov (in progress, preprint available
on https://sites.google.com/site/dennisborisov/), | am
developing a similar story for Calabi—Yau 4-folds. We want to
define invariants ‘counting’ 7-(semi)stable coherent sheaves on
Calabi—Yau 4-folds. If CY3 Donaldson—Thomas invariants are
‘holomorphic Casson invariants’, as in Thomas 1998, these should
be thought of as ‘holomorphic Donaldson invariants'.

The idea for doing this goes back to Donaldson—Thomas 1998,
using gauge theory: one wants to ‘count’ moduli spaces of
Spin(7)-instantons on a Calabi—Yau 4-fold (or more generally a
Spin(7)-manifold). However, it has not gone very far, as
compactifying such higher-dimensional gauge-theoretic moduli
spaces in a nice way is too difficult. (See Cao arXiv:1309.4230.)
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Virtual cycles using algebraic geometry?

Rather than using gauge theory, we stay within algebraic geometry,
so we get compactness of moduli spaces more-or-less for free. So,
suppose Y is a Calabi—Yau 4-fold, and o« € H*¥*"( Y, Q) such that
ME(7T) = MS(7) (the easy case). Then MS(7) is proper, and
the corresponding derived moduli scheme M (7) is —2-shifted
symplectic by PTVV. It need not have virtual dimension zero. Our
task is to define a virtual cycle for M, (7), or more generally for
any proper —2-shifted symplectic derived scheme (X, w).

There is a natural obstruction theory ¢ : £* — Lo on MZ(7),
but £° is perfect in [—2,0] not [—1, 0], so the usual
Behrend—Fantechi virtual cycles do not work.
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Virtual cycles using d-manifolds

Here is the first part of what we want to prove:

“Theorem” (Borisov—Joyce, in progress, proof nearly finished)

Let (X,w) be a —2-shifted symplectic derived scheme over C.
Then one can construct a d-manifold (derived smooth manifold)
Xdam which has the same underlying topological space X as (X, w),
with the complex analytic topology.

The construction involves arbitrary choices, but X, Is unique up
to bordisms which fix the topological space X.

The (real) virtual dimension of Xgy, is

vdimg Xgm = vdime X = £ vdimg X,

which is half what one would have expected.

Dominic Joyce, Oxford University Lecture 3: odds and ends

D-T style invariants for Calabi-Yau 4-folds

D-manifolds and bordisms

| haven't time to explain d-manifolds properly — see my webpage
people.maths.ox.ac.uk/~joyce/dmanifolds.html,

and arXiv:1206.4207, arXiv:1208.4948.

Two useful facts: firstly, a d-manifold Xy, is locally modelled by a
‘Kuranishi neighbourhood’ (V, E,s) of a real manifold V/, real
vector bundle E — V and smooth section s : V — E, where the
topological space of Xy, is locally homeomorphic to s~1(0) C V.
Think of X, as locally the (homotopy) fibre product V x5 g V.
Secondly, any (compact) d-manifold X can be perturbed to a
(compact) ordinary manifold X, which is unique up to bordism. In
a Kuranishi neighbourhood (V/, E,s), perturb s to a generic,
transverse $: V — E, so that 571(0) C V is a manifold.

Thus, if (X,w) is a proper —2-shifted symplectic derived C-scheme,
the “Theorem” will give us a bordism class of (unoriented)
compact manifolds X, which is basically a virtual cycle over Z.
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Orientations of —2-shifted symplectic derived schemes

To lift this to a virtual cycle over Z, we need to include
orientations of (X, w) and Xgn.

Recall that if (X, w) is a —1-shifted symplectic derived scheme (the
Calabi—Yau 3 case), an orientation of (X,w) is a square root line
bundle det(ILx)'/2. These were introduced by Kontsevich and
Soibelman, and are essential for motivic and categorified D—T
theory. Here is the Calabi—Yau 4 analogue:

Definition

Let (X,w) be a —2-shifted symplectic derived scheme. There is a
natural isomorphism ¢ : det(Lx)®" — Ox. An orientation of
(X, w) is an isomorphism « : det(Lx) — Ox with a ® a = ¢.

Note that this is simpler, one categorical level down from the CY3
case: a morphism in a category, not an object in a category.
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The next two results will be easy, given the “Theorem”.

In the “Theorem”, there is a natural 1-1 correspondence between
orientations on (X, w) and orientations on the d-manifold Xqy,.

“Corollary”

Let (X,w) be a proper, oriented —2-shifted symplectic derived
C-scheme. Then we construct a bordism class [X4qm] of compact
oriented manifolds. We consider this a virtual cycle for (X, w).

Observe that though all the input data is strictly complex
algebraic, the ‘virtual cycle’ can have odd real dimension, which is
weird, and very unlike Behrend—Fantechi style virtual cycles.
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Sketch proof of “Theorem”

Let (X,w) be a —2-shifted symplectic derived C-scheme. Then the
BBJ ‘Darboux Theorem’ gives local models for (X, w) in the
Zariski topology. As in lecture 1, §2, in the —2-shifted case, the
local models reduce to the following data:

@ A smooth C-scheme U

@ A vector bundle E — U

e A section s € H(E)

@ A nondegenerate quadratic form Q on E with Q(s,s) = 0.

The underlying topological space of X is {x € U : s(x) =0}. The
virtual dimension of X is vdim¢c X = 2dim¢ U — rankc E. The
cotangent complex Lx|x of X is

Qods d
[TUls=(0) S

Els10) Tu ls-1(0)]-
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The local model for Xy,

Here is how to build the d-manifold Xy, locally: regard E — U as
a real vector bundle over the real manifold U. Choose a splitting
E = E{ ® E_, where Q|g, is real and positive definite, and
E_ = iE; so that Q|g_ is real and negative definite. Write
s=s; ®s_ with sy € C®°(EL). Then Xy, is locally the derived
fibre product U X g, s, U, given by the ‘Kuranishi neighbourhood’
(U, E4+,st). It has virtual dimension

dimg U — rankg E; = 2dim¢ U — rankc E = vdim¢ X.
Observe that Q(s,s) = 0 implies that |s; |?> = |s_|?, where norms
|.| on E4, E_ are defined using + Re Q. Hence as sets we have

{xeU:s(x)=0}={xeU:s;(x)=0} C U.

This is why X and Xj,, have the same topological space X.
The difficult bit is to show we can choose compatible splittings
E = E, & E_ on an open cover of X, and glue the local models to
make a global d-manifold Xy,,.
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Relation to the perverse sheaf picture

Let (X,w) be an oriented —2-shifted symplectic derived scheme
over C, e.g. a Calabi—Yau 4-fold derived moduli scheme. Regard
the point * as an oriented —1-shifted symplectic derived scheme.
Its perverse sheaf is the constant sheaf Q,. Then w: X — % is
Lagrangian in (*,w), so the Conjecture in lecture 2, §7 gives a

morphism px : Qx[vdim X] — 7' (Q.) = Dx(Qx)
Taking hypercohomology induces a linear map
H™ X (X, Q) — Q.
If X is compact, this should be contraction with a class
[X]virt € Hyaimx (X, Q). | expect this to be the virtual cycle above.
Note that this also works over other fields K # C.

The perverse sheaf picture does not obviously explain why [X]yirt
should be deformation-invariant.
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11. Cohomological Hall Algebras

Let Y be a Calabi—Yau 3-fold, and M the derived moduli stack of
coherent sheaves (or suitable complexes) on Y, with its —1-shifted
symplectic structure w. Then BBBJ makes the classical stack M
into a d-critical stack (M, s). Suppose we have ‘orientation data’

for Y, i.e. an orientation Kl/Qs, with compatibility condition on
exact sequences. Then we have a perverse sheaf Pj’\/l,s, with
hypercohomology H* (P}, ().

We would like to define an associative multiplication on H*(P3}, ),
making it into a Cohomological Hall Algebra, in the style of
Kontsevich and Soibelman (arXiv:1006.2706).
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Cohomological Hall Algebras

Let £xact be the derived stack of short exact sequences
0 — FL — F, — F3 — 0 in coh(Y) (or distinguished triangles in
D" coh(Y)), with projections 71, 7o, 73 : Exact — M.

“Theorem” (Oren Ben-Bassat, work in progress.)

71 X mp X 73 : Exact — (M,w) X (M, —w) x (M, w) is
Lagrangian in —1-shifted symplectic.

Then apply the stack version of the Conjecture in lecture 2, §7 to
get COHA multiplication, as for the Fukaya category case.
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12. Gluing matrix factorization categories

Suppose f : U — Al is a regular function on a smooth scheme U.
The matrix factorization category MF (U, f) is a Zy-periodic
triangulated category. It depends only on U, f in a neighbourhood
of Crit(f), and we can think of it as a sheaf of triangulated
categories on Crit(f). By BBJ, —1-shifted symplectic derived
schemes (X, wy) are locally modelled on Crit(f : U — Al).

Problem

Given a —1-shifted symplectic derived scheme (X, wx) with extra
data (orientation and ‘spin structure’?), construct a sheaf of
Zy-periodic triangulated categories MFx ., on X, such that if
(X, wx) is locally modelled on Crit(f : U — A'), then MFy . is
locally modelled on MF(U, f).
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Although d-critical loci (X, s) are also locally modelled on
Crit(f : U — A), | do not expect the analogue for d-critical loci
to work; MFx ,,, will encode derived data in (X, wx) which is
forgotten by the d-critical locus (X, s).

| expect that a Lagrangian i: L — X (plus extra data) should
define an object (global section of sheaf of objects) in MFx ..,
with nice properties.

It is conceivable that one could actually define MFx ., as a
derived 'Fukaya category’ of Lagrangiansi:L — X in (X, wx).
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Kapustin—Rozansky 2-categories for complex symplectic
manifolds

Given a complex symplectic manifold (S, w), Kapustin and
Rozansky conjecture the existence of an interesting 2-category,

with objects complex Lagrangians L with KL1/2, such that

Hom(L, M) is a Z;-periodic triangulated category (or sheaf of such
on LN M), and if LN M is locally modelled on Crit(f : U — A?')
then Hom(L, M) is locally modelled on MF(U, f).

A lot of this K-R Conjecture would follow by combining lecture 2,
§8, Fukaya categories and §12, Gluing matrix factorization
categories above.

Seeing what the rest of the K—R Conjecture requires should tell us
some interesting properties to expect of MFx .
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Categorifying Cohomological Hall Algebras?

Do Cohomological Hall algebras of Calabi—Yau 3-folds Y admit a
categorification using matrix factorization categories, in a similar

way to the Kapustin—Rozansky conjectured categorification of the
‘Fukaya categories’ of complex symplectic manifolds?

Let M be the derived moduli stack of coherent sheaves on Y,
with its —1-shifted symplectic structure w, and discrete extra data
(orientation and ‘spin structure’). One would expect to build such
a categorification by writing M as a critical locus locally in the
smooth topology, and then ‘gluing’ the associated matrix
factorization categories.

Compare Kontsevich and Soibelman arXiv:1006.2706, §8.1,
‘Categorification of critical COHA'.
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