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Preface

These are notes of lectures on Kahler manifolds which I taught at the Univer-
sity of Bonn and, in reduced form, at the Erwin-Schrédinger Institute in Vi-
enna. Besides giving a thorough introduction into Kéahler geometry, my main
aims were cohomology of K&hler manifolds, formality of Kéhler manifolds af-
ter [DGMS], Calabi conjecture and some of its consequences, Gromov’s Kéhler
hyperbolicity [Gr], and the Kodaira embedding theorem.

Let M be a complex manifold. A Riemannian metric on M is called Her-
mitian if it is compatible with the complex structure J of M,

(JX,JY)=(X,Y).
Then the associated differential two-form w defined by
w(X,Y) = (JX,Y)

is called the Kahler form. It turns out that w is closed if and only if J is
parallel. Then M is called a Kahler manifold and the metric on M a Ké&hler
metric. Ké&hler manifolds are modelled on complex Euclidean space. Except
for the latter, the main example is complex projective space endowed with the
Fubini—Study metric.

Let N be a complex submanifold of a Kéhler manifold M. Since the re-
striction of the Riemannian metric of M to N is Hermitian and its Kahler
form is the restriction of the Kahler form of M to N, N together with the
induced Riemannian metric is a Kéhler manifold as well. In particular, smooth
complex projective varieties together with the Riemannian metric induced by
the Fubini—Study metric are Kéhlerian. This explains the close connection of
Kahler geometry with complex algebraic geometry.

I concentrate on the differential geometric side of Kéhler geometry, except
for a few remarks I do not say much about complex analysis and complex
algebraic geometry. The contents of the notes is quite clear from the table
below. Nevertheless, a few words seem to be in order. These concern mainly
the prerequisites. I assume that the reader is familiar with basic concepts
from differential geometry like vector bundles and connections, Riemannian
and Hermitian metrics, curvature and holonomy. In analysis I assume the
basic facts from the theory of elliptic partial differential operators, in particular
regularity and Hodge theory. Good references for this are for example [LM,
Section IIL.5] and [Wa, Chapter 6]. In Chapter 8, I discuss Gromov’s Kéhler
hyperbolic spaces. Following the arguments in [Gr], the proof of the main result
of this chapter is based on a somewhat generalized version of Atiyah’s L2-index
theorem; for the version needed here, the best reference seems to be Chapter
13 in [Ro]. In Chapter 7, I discuss the proof of the Calabi conjecture. Without
further reference I use Holder spaces and Sobolev embedding theorems. This is
standard material, and many textbooks on analysis provide these prerequisites.
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In addition, I need a result from the regularity theory of non-linear partial
differential equations. For this, I refer to the lecture notes by Kazdan [Ka2]
where the reader finds the necessary statements together with precise references
for their proofs. I use some basic sheaf theory in the proof of the Kodaira
embedding theorem in Chapter 9. What I need is again standard and can be
found, for example, in [Hir, Section 1.2] or [Wa, Chapter 5]. For the convenience
of the reader, I include appendices on characteristic classes, symmetric spaces,
and differential operators.

The reader may miss historical comments. Although I spent quite some
time on preparing my lectures and writing these notes, my ideas about the
development of the field are still too vague for an adequate historical discussion.
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brandt, Friedrich Hirzebruch, Ursula Hamenstddt, Daniel Huybrechts, Her-
mann Karcher, Jerry Kazdan, Ingo Lieb, Matthias Lesch, Werner Miiller,
Joachim Schwermer, Gregor Weingart, and two anonymous referees for very
helpful discussions and remarks about various topics of these notes. I would
like to thank Anna Pratoussevitch, Daniel Roggenkamp, and Anna Wienhard
for their careful proofreading of the manuscript. My special thanks go to Hans-
Joachim Hein, who read many versions of the manuscript very carefully and
suggested many substantial improvements. Subsections 4.6, 6.3, and 7.4 are
taken from his Diplom thesis [Hei]. Finally I would like to thank Irene Zim-
mermann and Manfred Karbe from the EMS Publishing House for their cordial
and effective cooperation.
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1 Preliminaries

In this chapter, we set notation and conventions and discuss some preliminaries.
Let M be a manifold! of dimension n. A coordinate chart for M is a tuple
(z,U), where U C M is open and z: U — R" is a diffecomorphism onto its
image. As a rule, we will not refer to the domain U of x. The coordinate frame
of a coordinate chart x consists of the ordered tuple of vector fields

j:%, 1<j<n. (1.1)
We say that a coordinate chart x is centered at a point p € M if z(p) = 0.

Let E — M be a vector bundle over M. We denote the space of sections of F
by E(E) or E(M, E). More generally, for U C M open, we denote by £(U, E) the
space of sections of E over U. Furthermore, we denote by &.(U, E) C (U, E)
the subspace of sections with compact support in U.

As long as there is no need to specify a name for them, Riemannian metrics
on E are denoted by angle brackets (-, -). Similarly, if E' is complex, Hermitian
metrics on E are denoted by parentheses (-,-). As a rule we assume that
Hermitian metrics on a given bundle E are conjugate linear in the first variable
and complex linear in the second. The induced Hermitian metric on the dual
bundle E* will then be complex linear in the first and conjugate linear in the
second variable. The reason for using different symbols for Riemannian and
Hermitian metrics is apparent from (1.12) below.

If E is a complex vector bundle over M and (-,-) is a Hermitian metric on
E, then

(0,7)2 = /M(U, T) (1.2)

is a Hermitian product on £.(M, E). We let L?(E) = L*(M, E) be the comple-
tion of & (M, E) with respect to the Hermitian norm induced by the Hermitian
product in (1.2) and identify L?(M, E) with the space of equivalence classes of
square-integrable measurable sections of E as usual?.

Let g = (-, ) be a Riemannian metric on M and V be its Levi-Civita con-
nection. By setting g(X)(Y) := ¢(X,Y), we may interpret g as an isomorphism
TM — T*M. We use the standard musical notation for this isomorphism,

V' (w) = (v,w) and (¢, w) = p(w), (1.3)

where v,w € TM and ¢ € T*M have the same foot points. It is obvious that
(v°)F = v and (¢*)" = .

For a vector field X, the Lie derivative Lxg of g measures how much g
varies under the flow of X. It is given by

(Lxg)(Y,Z) = (Vy X, Z) + (Y, V2 X). (1.4)

1Unless specified otherwise, manifolds and maps are assumed to be smooth.
2We use similar terminology in the case of real vector bundles and Riemannian metrics.
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In fact, by the product rule for the Lie derivative,

X(Y,Z)=Lx(9(Y,2)) = (Lxg)(Y,Z) + g(LxY,Z) + g(Y,Lx Z).
We say that X is a Killing field if the flow of X preserves g. By definition, X
is a Killing field iff Lxg = 0 or, equivalently, iff VX is skew-symmetric.

1.5 Exercises. Let X be a Killing field on M.

1) For any geodesic ¢ in M, the composition X o ¢ is a Jacobi field along
c. Hint: The flow of X consists of local isometries of M and gives rise to local
geodesic variations of ¢ with variation field X o c.

2) For all vector fields Y, Z on M

V2X(Y,Z)+ R(X,Y)Z = 0.
Hint: For Y = Z, this equation reduces to the Jacobi equation.

The divergence div X of a vector field X on M measures the change of the
volume element under the flow of X. It is given by

div X = tr VX, (1.6)
In terms of a local orthonormal frame (X1,...,X,) of TM, we have
divX =Y (Vx X, X;). (1.7)
By (1.4), we also have
tr Lxg = 2div X. (1.8)

1.9 Divergence Formula. Let G be a compact domain in M with smooth
boundary OG and exterior normal vector field v along OG. Then

/divX: (X,v).
G oG

1.1 Differential Forms. We let A*(M,R) := A*(T*M) be the bundle of
(multilinear) alternating forms on T'M (with values in R) and A*(M,R) :=
E(A*(M,R)) be the space of differential forms on M. We let A"(M,R) and
A"(M,R) be the subbundle of alternating forms of degree r and the subspace
of differential forms on M of degree r, respectively.

The Riemannian metric on M induces a Riemannian metric on A*(M,R).
Similarly, the Levi-Civita connection induces a connection V on A* (M,R),
compare the product rule 1.20 below, and V is metric with respect to the
induced metric on A*(M,R).

Recall the interior product of a tangent vector v with an alternating form
 with the same foot point, vy = ¢(v,...), that is, insert v as first variable.
There are the following remarkable relations between A and v,

(V" A, 1) = (@, 1)) (1.10)
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and the Clifford relation

0 A (weg) + wi (v’ A ) = (v, w)p, (1.11)
where v and w are tangent vectors and ¢ and v alternating forms, all with the
same foot point.

We let A*(M,C) := A*(M,R)®g C be the bundle of R-multilinear alternat-
ing forms on T'M with values in C and A*(M,C) := E(A*(M, C)) be the space
of complex valued differential forms on M. Such forms decompose, ¢ = p+iT,
where p and 7 are differential forms with values in R as above. We call p the
real part, p = Re ¢, and 7 the imaginary part, 7 = Im ¢, of ¢ and set ¢ = p—iT.
Via complex multilinear extension, we may view elements of A*(M,C) as C-
multilinear alternating forms on Tc M = TM ®g C, the complexified tangent
bundle.

We extend Riemannian metric, wedge product, and interior product com-
plex linearly in the involved variables to Tc M and A*(M, C), respectively. We
extend V complex linearly to a connection on A* (M,C), Vo = VReyp +
iV Im . Equations 1.10 and 1.11 continue to hold, but now with complex tan-
gent vectors v, w and C-valued forms ¢ and . There is an induced Hermitian
metric

(0, 9) == (B, ¢) (1.12)
on A*(M,C) and a corresponding L?-Hermitian product on A%(M,C) as in
(1.2).

Let E — M be a complex vector bundle. A differential form with values
in E is a smooth section of A*(M, E) := A*(M,C) ® E, that is, an element
of A*(M,E) := E(A*(M, E)). Locally, any such form is a linear combination
of decomposable differential forms ¢ ® o with ¢ € A*(M,C) and o € E(M, E).
We define the wedge product of ¢ € A*(M,C) with o € A*(M, E) by

pAa= (pAp;) @0y, (1.13)

where we decompose o = )" ¢; ® 0;. More generally, let E’ and E” be further
complex vector bundles over M and u: EQ E' — E” be a morphism. We define
the wedge product of differential forms o € A*(M, E) and o/ € A*(M, E’) by

angd =3 (0 Agh) @ ulo; @ of) € AGM, E"), (1.14)
7,k

where we write & =) ¢; ® 0 and &/ =) ¢} ® 0},. If @ and ¢ are of degree
r and s, respectively, then

(e Ay o/)(Xl, vy Xpts)

’I"'S' Z [1,{04 1),...,XU(T))®O/(XU(T+1),...,XU(T_FS))}. (1.15)
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This formula shows that the wedge products in (1.13) and (1.14) do not depend
on the way in which we write a and o as sums of decomposable differential
forms.

1.16 Exercise. Let F be a complex vector bundle over M and p and A be
composition and Lie bracket in the associated vector bundle End E of endo-
morphisms of E. Let a, o, and o be differential forms with values in End E.
Then

(N, )N =an, (@ A, a”)

and

rs I

aMad =an,d —(-1)"d A, «a,

if & and o' have degree r and s, respectively.

1.2 Exterior Derivative. We refer to the beginning of Appendix C for some
of the terminology in this and the next subsection. Let E be a complex vector
bundle over M and D be a connection on E. For a differential form o with
values in F and of degree r, we define the exterior derivative of o (with respect
to D) by

dPa:=Y (dp; ® 0 + (~1)"¢; A Do), (1.17)
where we decompose a = ) ¢; ® 0; and where d denotes the usual exterior

derivative. That this is independent of the decomposition of « into a sum of
decomposable differential forms follows from

d?a(Xo, ..., X;) =) _(~1YDx;(a(Xo, .-, Xj, ., Xp)) (1.18)

J
) (=) Ra((XG, X, Xo, o Xy X X,
i<k
Since d”(fa) — fdPa = df A a for any function f on M, the principal symbol
o: T*M @ A*(M, E) — A*(M, E) of d” is given by o(§ ® a) = £ A a.

1.19 Proposition. Let E be a vector bundle over M and D be a connection
on E. Then, for all « € A*(M, E),

dPdPa = RP A, a,

where we view the curvature tensor RP of D as a two-form with values in the
bundle End E of endomorphisms of E and where the wedge product is taken
with respect to the evaluation map e: EndF @ E — E. g

Via the product rule, A*(M, E) inherits a connection D from V and D,

Dx(p®0c):=(Vxp)Rc+ ¢ ® (Dxo). (1.20)
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In terms of D, we have
da =Y X7 ADx,o, (1.21)

where (X1, ...,X,) is alocal frame of TM and (X7,..., X}) is the correspond-
ing dual frame. We emphasize that the curvature tensors of V and D act as
derivations with respect to wedge and tensor products.
Let E, E', E” and u: EQ E' — E” be as in (1.14). Let D, D’ and D" be
connections on E, E’, and E”, respectively, such that the product rule
D (p(o @ 7)) = p((Dx0o) @ 7) + pi(o @ (Dx 7)) (1.22)

holds for all vector fields X of M. The induced connections on the bundles of
forms then also satisfy the corresponding product rule,

D% (a A, )= (Dxa) Ay o + (A, (Diya)). (1.23)
For the exterior differential we get

dP" (a Ay a!) = (dPa) Ay ol + (=1)a A, (dPa), (1.24)

where we assume that « is of degree 7.
Let h = (-,-) be a Hermitian metric on E. Then h induces a Hermitian
metric on A*(M, E), on decomposable forms given by

(p®opeT)=(p¢)(0,7), (1.25)
and a corresponding L2-Hermitian product on A%(M, E) as in (1.2).
1.26 Exercise. The analogs of (1.10) and (1.11) hold on A*(M, E),
(W’ A, B) = (a,v3) and 0’ A (wia) +wi (v’ Aa) = (v, w)a,
where v,w € TM and «a, 8 € A*(M, E) have the same foot point.

Let D be a Hermitian connection on E. Then the induced connection D on
A*(M, E) as in (1.20) is Hermitian as well.

1.27 Proposition. In terms of a local orthonormal frame (X1,...,X,) of M,
the formal adjoint (dP)* of dP is given by

(dD)*Oé = — Zle_ﬁXjOz.

Proof. Let o and § be differential forms of degree » — 1 and r. Let p € M and
choose a local orthonormal frame (X;) around p with VX (p) = 0. Then, at p,

(dPa,8) =Y (X; A Dx,a,3)
= Z(ZA)XjOé,XjI_ﬂ)
= Xj(a, X;u8) = Y (o, X;uDx, ).

The first term on the right is equal to the divergence of the complex vector
field Z defined by (Z, W) = («, WLS), see (C.3). O
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Since (dP)*(fa) — f(dP)*a = —grad fLa for any function f on M, the
principal symbol o: T*M ® A*(M, E) — A*(M, E) of (d”)* is given by (¢ ®
a) = —&La.

1.3 Laplace Operator. As above, we let E — M be a complex vector bundle
with Hermitian metric h and Hermitian connection D. We say that a differential
form o with values in E is harmonic if d°a = (dP)*a = 0 and denote by
H*(M, E) the space of harmonic differential forms with values in E.

The Laplace operator associated to dP is

Agp = dP(dP)* + (dP)*dP. (1.28)

Since the principal symbol of a composition of differential operators is the
composition of their principal symbols, the principal symbol o of Ayp is given
by

o(¢ ®a)=—(EA(Ea) +E(EAQ) = —[[¢]a, (1.29)

by (1.11). In particular, Ao is an elliptic differential operator.

1.30 Exercise. Assume that M is closed. Use the divergence formula (1.9) to
show that
(Agpa, B)o = (dPa,d"B)s + ((d")*a, (dP)*B)a.

Conclude that ¢ is harmonic iff Ajpa = 0. Compare also Corollary C.22.

Using the Clifford relation 1.11 and the formulas 1.21 and 1.27 for d” and
(dP)*, a straightforward calculation gives the Weitzenbick formula

Agpa= =Y D?a(X;,X;)+ Y Xj A (X;LRP (X, Xi)a), (1.31)
J j#k

where (X1,...,X,) is a local orthonormal frame of TM, (X;,...,X}) is the

corresponding dual frame of 7" M, and RP denotes the curvature tensor of the
connection D on A*(M, E). Denoting the second term on the right hand side
of (1.31) by K« and using (C.8), we can rewrite (1.31) in two ways,

Agpa = —trD*a+ Ka = D*Da + K. (1.32)

Assume now that D is flat. If (®;) is a parallel frame of E over an open
subset U of M, then over U, a € A(M,E) can be written as a sum « =
Y ¢ ®®; and

d’a =Y (dp;)®®; and (d°)'a=> (d"¢;)® ;. (1.33)

For that reason, we often use the shorthand da and d*« for d”« and (dP)*« if
D is flat. Then we also have d? = (d*)? = 0, see Proposition 1.19. The latter
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implies that the images of d and d* are L2-perpendicular and that the Laplace
operator is a square,

Ag = (d+d)> (1.34)

The fundamental estimates and regularity theory for elliptic differential oper-
ators lead to the Hodge decomposition of A*(M, E), see for example Section
II1.5 in [LM] or Chapter 6 in [Wal:

1.35 Theorem (Hodge Decomposition). If M is closed and D is flat, then
A" (M, E) = H*(M, E) + d(A*(M, E)) + d" (A" (M, E)),
where the sum is orthogonal with respect to the L2-Hermitian product on A*(M, E).

In particular, if M is closed and D is flat, then the canonical map to coho-
mology,

H*(M, E) — H*(M, E), (1.36)

is an isomorphism of vector spaces. In other words, each de Rham cohomology
class of M with coefficients in E contains precisely one harmonic representative.
In particular, dim H*(M, F) < co. The most important case is £ = C.

1.37 Remark. It is somewhat tempting to assume that the ring structure
of H*(M,C) is also represented by H*(M,C). However, this only happens in
rare cases. As a rule, the wedge product of harmonic differential forms is not
a harmonic differential form anymore. In fact, it is a specific property of the
Kahler form of a K&hler manifold that its wedge product with a harmonic form
gives a harmonic form, see Theorem 5.25. Compare also Remark 1.42 below.

In the above discussion, we only considered complex vector bundles. There
is a corresponding theory in the real case, which we will use in some instances.

1.38 Exercise. Show that for ¢ € A'(M,C), the curvature term K in the
Weitzenbock formula (1.32) is given by K¢ = (Ric o)’ where Ric denotes the
Ricci tensor of M. In other words, Agp = V*V + (Ric o).

The equation in Exercise 1.38 was observed by Bochner (see also [Ya]).
In the following theorem we give his ingenious application of it. Bochner’s
argument can be used in many other situations and is therefore named after
him. Let b;(M) be the j-th Betti number of M, b;(M) = dimg H/(M,R) =
dim¢ H7 (M, C).

1.39 Theorem (Bochner [Boc]). Let M be a closed and connected Riemannian
manifold with non-negative Ricci curvature. Then by (M) < n with equality if
and onlyif M is a flat torus. If, in addition, the Ricci curvature of M is positive
in some point of M, then by (M) = 0.
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Proof. Since M is closed, we can represent real cohomology classes of dimension
one uniquely by harmonic one-forms, by the (identical) version of Theorem 1.35
for real vector bundles. If ¢ is such a differential form, then

0=/ <Ads07<p>=/ W@II”/(RW”WW,
M M

by Exercise 1.38. By assumption, the integrand in the second integral on the
right is non-negative. It follows that ¢ is parallel, therefore also the vector field
¢, and that Ric * = 0. The rest of the argument is left as an exercise. g

1.40 Remarks. 1) The earlier theorem of Bonnet—Myers makes the stronger
assertion that the fundamental group of a closed, connected Riemannian man-
ifold with positive Ricci curvature is finite.

2) Let M be a closed and connected Riemannian manifold with non-negative
Ricci curvature. If the Ricci curvature of M is positive in some point of M,
then the Riemannian metric of M can be deformed to a Riemannian metric of
positive Ricci curvature [Aul] (see also [Eh]).

3) The complete analysis of the fundamental groups of closed and con-
nected Riemannian manifolds with non-negative Ricci curvature was achieved
by Cheeger and Gromoll [CG1], [CG2]. Compare Subsection 6.1.

1.41 Exercise. Conclude from the argument in the proof of Theorem 1.39 that
a closed, connected Riemannian manifold M with non-negative Ricci curvature
is foliated by a parallel family of totally geodesic flat tori of dimension b (M).
Hint: The space p of parallel vector fields on M is an Abelian subalgebra of
the Lie algebra of Killing fields on M. The corresponding connected subgroup
of the isometry group of M is closed and Abelian and its orbits foliate M by
parallel flat tori.

1.42 Remark (and Exercise). The curvature operator R is the symmetric
endomorphism on A%2(T'M) defined by the equation

(RXAY),UAV):=(R(X,Y)V,U). (1.43)
Gallot and Meyer showed that the curvature term in the Weitzenbock formula
(1.32) for Ay on A*(M,R) is positive or non-negative if R > 0 or R > 0,
respectively, see [GM] or (the proof of) Theorem 8.6 in [LM]. In particular,
if M is closed with R > 0, then b.(M) =0 for 0 < r < n, by Hodge theory
as in (1.36) and the Bochner argument in Theorem 1.39. If M is closed with
R > 0, then real valued harmonic forms on M are parallel, again by the Bochner
argument. Since the wedge product of parallel differential forms is a parallel
differential form, hence a harmonic form, this is one of the rare instances where
the wedge product of harmonic forms is harmonic (albeit for a trivial reason),
compare Remark 1.37. If M is also connected, then a parallel differential form
on M is determined by its value at any given point of M and hence b, (M) < (:)
for 0 < r < n. Equality for any such r implies that M is a flat torus.
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1.4 Hodge Operator. Suppose now that M is oriented, and denote by vol
the oriented volume form of M. Then the Hodge operator * is defined® by the
tensorial equation

xo A1) = (p, 1) vol. (1.44)

By definition, we have
*1=vol, *vol=1 and =*x*= Z(—l)r(”_T)PT, (1.45)

where P.: A*(M,R) — A"(M,R) is the natural projection.
Let ¢ and ¢ be differential forms with compact support and of degree r and

r — 1, respectively. Since d * ¢ is a differential form of degree n — r + 1 and

r —r? is even, we have

sxdx o= (1) HDO=D gy o = (—1)PrTTH
Hence
d(xp Ap) =dx o N+ (=1)""xp Nd
= (=)t oy (kdx @) A+ (=) k@ Ady) (1.46)
= (=)= e d x o, 0) + (g, d) } vol.

By Stokes’ theorem, the integral over M of the left hand side vanishes. We
conclude that on differential forms of degree r

d"=(=1)""xdx. (1.47)

It is now easy to check that
* Ad = Ad * . (148)

If M is closed, then * maps harmonic forms to harmonic forms, by Exercise 1.30
and Equation 1.48. Hence, for closed M,

«: H"(M,R) — H""(M,R) (1.49)

is an isomorphism. This is Poincaré duality on the level of harmonic forms.
Extend * complex linearly to A*(M,C). Let E be a vector bundle over M
and E* be the dual bundle of E. Assume that E is endowed with a Hermitian
metric. Via h(o)(r) = (o0,7) view the Hermitian metric of E as a conjugate
linear isomorphism h: E — E*. We obtain a conjugate linear isomorphism

*@h: A*(M,E) — A*(M,E"), (1.50)
where *p := %p. We have
((x® h)a) Ae B = (a, B) vol, (1.51)

3Note that the definition here differs from the standard one, the definition here gives a
more convenient sign in (1.47).
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where ¢: E* @ E — C is the evaluation map. Note that ((* ® h)a) Ac 5 is
complex valued.

Let D* be the induced connection on E*. With respect to D and D*, h is
a parallel morphism from E to E*,

(Dx (h(0)))() = X(0,7) = (0,Dx7) = (Dx0,7) = h(Dx0)(7).
The induced (conjugate) Hermitian metric h* on E* is given by
(h(o),h(T)) := (o, 7). (1.52)

Note that h* is complex linear in the first and conjugate linear in the second
variable. The connection D* is Hermitian with respect to h*,

X(h(0), h(1)) = X(0,7) = (Dx0,7) + (0, DxT)
= (h(DXU)ah(T)) (h(0), h(DxT))
= (D*(h(0)), h(7)) + (h(0), Dx (h(T)).

Via £(h*(n)) = (£,7n) we consider h* as a conjugate linear isomorphism from
E*to E. We have

(0,h*(h(7))) = h(o)(h*(h(T))) = (h(0), k(7)) = (0, T),
and hence h*h = id. It follows that
FOh)FQh) =FQh)(F®h") = (-1)"""") (1.53)

on forms of degree r and n — r. Using (1.24) with D" the usual derivative of
functions and computing as in (1.46), we get

(dP) = (=) (F@ h*)d”" (Foh). (1.54)

This implies that the corresponding Laplacians, for simplicity denoted A, sat-
isfy

A®h)=(*®h)A. (1.55)
If M is closed, then * ® h maps harmonic forms to harmonic forms, by Ex-
ercise 1.30 and Equation 1.55. Hence, for closed M, * ® h induces conjugate

linear isomorphisms
H'(M,E) — H" "(M, E"). (1.56)

This is Poincaré duality for vector bundle valued harmonic forms.



2 Complex Manifolds

Let V' be a vector space over R. A complex structure on V' is an endomorphism
J:V — V such that J? = —1. Such a structure turns V into a complex vector
space by defining multiplication with 4 by iv := Jv. Vice versa, multiplication
by 7 in a complex vector space is a complex structure on the underlying real
vector space.

2.1 Example. To fix one of our conventions, we discuss the complex vector
space C™ explicitly. Write a vector in C™ as a tuple

(2. 2™) = (2t iyt 2™ ™)

and identify it with the vector (z!,y!,..., 2™, y™) in R?™. The corresponding
complex structure on R?™ is

J(xl,yl,...wm,ym) = (—yl,xl,...,—ym,xm).

We will use this identification of C™ with R?*™ and complex structure .J on
R?™ without further reference.

Let M be a smooth manifold of real dimension 2m. We say that a smooth
atlas A of M is holomorphic if for any two coordinate charts z: U — U’ c C™
and w: V — V' C C™ in A, the coordinate transition map z o w™! is holo-
morphic. Any holomorphic atlas uniquely determines a maximal holomorphic
atlas, and a maximal holomorphic atlas is called a complex structure. We say
that M is a complex manifold of complex dimension m if M comes equipped
with a holomorphic atlas. Any coordinate chart of the corresponding com-
plex structure will be called a holomorphic coordinate chart of M. A Riemann
surface or complex curve is a complex manifold of complex dimension 1.

Let M be a complex manifold. Then the transition maps z o w™"! of holo-
morphic coordinate charts are biholomorphic. Hence they are diffeomorphisms
and the determinants of their derivatives, viewed as R-linear maps, are posi-
tive. It follows that a holomorphic structure determines an orientation of M,
where we choose dz! A dy' A --- Adz™ A dy™ as orientation of C™, compare
Example 2.1.

We say that a map f: M — N between complex manifolds is holomorphic
if, for all holomorphic coordinate charts z: U — U’ of M and w: V — V' of
N, the map w o f o 27! is holomorphic on its domain of definition. We say
that f is biholomorphic if f is bijective and f and f~' are holomorphic. An
automorphism of a complex manifold M is a biholomorphic map f: M — M.

To be consistent in what we say next, we remark that open subsets of
complex manifolds inherit a complex structure. For an open subset U of a
complex manifold M, we denote by O(U) the set of holomorphic functions
f: U — C, a ring under pointwise addition and multiplication of functions.
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The inverse mapping and implicit function theorem also hold in the holo-
morphic setting. Corresponding to the real case, we have the notions of holo-
morphic immersion, holomorphic embedding, and complex submanifold. The
discussion is completely parallel to the discussion in the real case.

Of course, complex analysis is different from real analysis. To state just
one phenomenon where they differ, by the maximum principle a holomorphic
function on a closed complex manifold is locally constant. In particular, C™
does not contain closed complex submanifolds (of positive dimension).

2.2 Examples. 1) Let U C C™ be an open subset. Then M together with the
atlas consisting of the one coordinate chart id: U — U is a complex manifold.
2) Riemann sphere. Consider the unit sphere

S% = {(w,h) € C xR | wiw + h? = 1}.

Let N = (0,1) and S = (0, —1) be the north and south pole of S2, respectively.
The stereographic projections wn: S2\ {N} — C and 7g: S? \ {S} — C are
given by my(w, h) = (1 —h)"tw and 7g(w, h) = (1 + h) 1w, respectively. The
transition map 7g o ' C\ {0} — C\ {0} is given by (75 o my")(2) = 1/Z.
It is smooth, and thus 7n and 7g define a smooth atlas of S?. However, it
is not holomorphic. We obtain a holomorphic atlas by replacing wg by its
complex conjugate, Ts. Then the transition map is (7s o 7y')(2) = 1/, and
hence the atlas of S? consisting of 7y and 7g is holomorphic. The Riemann
sphere is S? together with the complex structure determined by this atlas. It
is a consequence of the uniformization theorem that this complex structure on
52 is unique up to diffeomorphism. As we will see, the Riemann sphere is
biholomorphic to the complex line CP!, described in the next example.

3) Complex projective spaces. As a set, complex projective space CP™ is the
space of all complex lines in C™*1. For a non-zero vector z = (2°,...,2™) €
C™*+1, we denote by [2] the complex line generated by z and call (2Y,...,2™)
the homogeneous coordinates of [z]. For 0 < j < m, we let U; = {[z] € CP™ |
27 # 0}. Each [2] in U; intersects the affine hyperplane {27 = 1} in C™*! in
exactly one point. We use this to obtain a coordinate map

a;: U; = C™, a;([2]) = ziJ (2°,...,89,...,2™),

where the hat indicates that z7 is to be deleted. By what we said it is clear
that a; is a bijection. For j < k, the transition map a; o a;l is defined on
{w € C™ | w? # 0} and given by inserting 1 as k-th variable, multiplying the
resulting (m + 1)-vector by (w’)~!, and deleting the redundant j-th variable 1.
Thus the transition maps are holomorphic. It is now an exercise to show that
there is precisely one topology on CP™ such that the maps a; are coordinate
charts and such that CP™ together with this topology and the atlas of maps
a; is a complex manifold of complex dimension m. For m = 1, we speak of the

complex projective line, for m = 2 of the complex projective plane.
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For m < n, the map f: CP™ — CP", [z] — [2,0], is a holomorphic em-
bedding. More generally, if A: C™+! — C"*! is an injective linear map, then
the induced map f: CP™ — CP", [z] — [Az], is a holomorphic embedding.
Thus we can view CP™ in many different ways as a complex submanifold of
CP"™. We also conclude that the group PGl(m + 1,C) = Gl(m + 1,C)/C* acts
by biholomorphic transformations on CP™. It is known that PGl(m + 1,C) is
actually equal to the group of biholomorphic transformations of CP™.

For the Riemann sphere S? as in the previous example, the map f: S? —
CP!,

fp) = 4 )] ifp £ N,
[L,7s(p)] ifp#S,

is well defined and biholomorphic and thus identifies the Riemann sphere with
the complex projective line.

4) Complex Grassmannians. This example generalizes the previous one.
Let V be a complex vector space of dimension n and G,V be the space of
r-dimensional complex subspaces of V', where 0 < r < n.

Let M* be the set of linear maps F': C" — V of rank r. There is a canonical
projection

m M*— G, V, w(F)=[F]=:imF.

Let B: V — C™ be an isomorphism. Then the map
M*— C™", F— Mat(BF),

where Mat(BF') denotes the matrix of the linear map BF: C" — C", is a
bijection onto the open subset of (n x r)-matrices of rank r. This turns M*
into a complex manifold of dimension nr, and the complex structure on M*
does not depend on the choice of B. We write

Fy

Mat(BF) = <F1

) ., where Fy € C"*" and F, € C(»—7)xr,
and let Up be the subset of [F] in G,V such that Fy has rank r. We leave it
as an exercise to the reader to show that

Zp: Ug — C=1%" Zo([F)) = FiFy Y,

is a well defined bijection and that, for any two isomorphisms B,C: V — C",
the transition map Z BOZ&1 is holomorphic. With the same arguments as in the
previous example we get that GG,.V has a unique topology such that the maps
Zp are coordinate charts turning G,V into a complex manifold of complex
dimension r(n — r). Moreover, m: M* — G,V is a holomorphic submersion
and, for any isomorphism B: V — C",

* _ 1
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where 1 stands for the 7 X r unit matrix and where we consider the matrix on
the right as a linear map C” — C"™, is a holomorphic section of 7.

The group Gl(r,C) of invertible matrices in C™*" is a complex Lie group
(for complex Lie groups, see Example 8 below) and, considered as group of
automorphisms of C", acts on M™ on the right,

M* x Gl(r,C) — M*, (F,A)— FA.

This action is holomorphic and turns 7: M* — G,V into a principal bundle
with structure group Gl(r, C). The complex Lie group G1(V') of automorphisms
of V acts on M* and G,V on the left,

GI(V) x M* — M*, (A,F)— AF,

respectively
Gl(V) x G,V — G,V, (A,[F])~ [AF].
These actions are also holomorphic and 7 is equivariant with respect to them.
5) Tautological or universal bundle. Let 0 < r < n and M = G,V be

the Grassmannian of r-dimensional complex linear subspaces in V' as in the
previous example. As a set, the universal bundle over G,V is equal to

UV ={(W,w) | W e€GqG,V,we W}
There is a canonical projection
m: UV — GV, (Ww)—W.

For each W € G, V, the bijection #=}(W) > (W,w) — w € W turns the fiber
7~Y(W) into an r-dimensional complex vector space isomorphic to W.

Let B: V — C" be an isomorphism and Ug C G,V be as in the previous
example. Define a bijection

®p: Up xC" = a ' (Up), @5([F],v) = ([F],es([F])v),
where ¢p is as in the previous example. For each [F] € Ug, the map
(CT_’Wil([F])v UH(I)B([F],’U),

is an isomorphism of vector spaces. With arguments similar to the ones in the
previous examples it follows that U,V is a complex manifold in a unique way
such that 7: U,V — G,V is a complex vector bundle over G,V and such that
the trivializations ®p as above are holomorphic. In particular, the complex
dimension of U,V is r(n —r + 1) and 7 is holomorphic. Moreover, the left
action of GI(V') on G,V extends canonically to a holomorphic action on U,V

GIV)x UV = UV, (A (Ww))— (AW, Aw).
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This action has two orbits: the set of pairs (W, w) with w # 0 and of pairs
(W,0).

6) Complex tori. Choose an R-basis B = (by,...,bay) of C™. Let ' ¢ C™
be the lattice consisting of all integral linear combinations of B, a discrete
subgroup of the additive group C™. Then I' acts by translations on C™,

(k,2) — ti(2) =k + 2.

This action is free and properly discontinuous. For each fixed k € I, the
translation t;: C™ — C™ is biholomorphic. Hence the quotient T = I'\C™
inherits the structure of a complex manifold such that the covering map C™ —
T is holomorphic. Now T is diffeomorphic to the 2m-fold power of a circle,
hence T with the above complex structure is called a complex torus. We also
note that addition Tx T — T, (z,w) — z 4w, is well defined and holomorphic
and turns 7T into a complex Lie group as in Example 8 below.

Let T'=T\C™ be a complex torus and f: T"— T be a biholomorphic map.
Then any continuous lift g: C™ — C™ of f is I'-equivariant and biholomorphic.
Continuity implies that there is a constant C such that |g(z)| < C(14]z]) for all
z € C™. By a standard result from complex analysis, g is affine. Hence f is of
the form f(z) = Az+bwith b € T and A € Gl(m, C) such that A(T') =T. Vice
versa, for any such A € Gl(m,C) and b € T, themap f: T — T, f(z) = Az+b,
is well defined and biholomorphic.

A one-dimensional complex torus is called an elliptic curve. It follows from
the uniformization theorem that any complex curve diffeomorphic to the torus
St x 81 is an elliptic curve. In particular, the complex structure described in
the next example turns S' x S! into an elliptic curve.

7) Hopf manifold (complex structures on S?™~1 x S1). Let m > 1 and
z € C be a non-zero complex number of modulus |z| # 1. Then Z acts freely
and properly discontinuously on C™ \ {0} by (k,v) — z¥-v. The quotient
M = (C™\{0})/Z is called a Hopf manifold. It is an exercise to show that M
is diffeomorphic to S?™~! x S1. (Hint: Consider the case z = 2 first.) Since
multiplication by z* is biholomorphic, M inherits from C™ \ {0} the structure
of a complex manifold.

A generalization of this example is due to Calabi and Eckmann, who showed
that the product of odd-dimensional spheres carries a complex structure, see
[CE] (Example 2.5 in [KN, Chapter IX]).

8) Complex Lie groups. As an open subset of C"*™ the general linear group
G = Gl(n,C) is a complex manifold of complex dimension n?, and multipli-
cation G x G — G and inversion G — G are holomorphic maps. The special
linear group Sl(n, C) C Gl(n,C) is a complex Lie subgroup of complex codimen-
sion 1. If V is a complex vector space of dimension n, then any isomorphism
B:V — C" identifies the general linear group GlI(V) of V' with Gl(n,C) and
turns G1(V') into a complex Lie group, independently of the choice of B, and the
special linear group SI(V') is a complex Lie subgroup of complex codimension
1.
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The unitary group U(n) is not a complex Lie group — recall that its defining
equation is not holomorphic. In fact, the Lie algebra g of a complex Lie group
G is a complex vector space and the adjoint representation Ad of G is a holo-
morphic map into the complex vector space of complex linear endomorphisms
of g. Hence Ad is constant if G is compact. It follows that compact complex
Lie groups are Abelian, that is, complex tori.

For a Lie group G, a complexification of G consists of a complex Lie group G¢
together with an inclusion G — G¢ such that any smooth morphism G — H,
where H is a complex Lie group, extends uniquely to a holomorphic morphism
Gc — H. Clearly, if G¢ exists, then it is unique up to isomorphism. For
example, Sl(n,C) is the complexification of Sl(n,R). Any connected compact
Lie group has a complexification [Bu, Section 27]; e.g., the complexifications of
SO(n), SU(n), and U(n) are SO(n,C), Sl(n,C), and Gl(n,C), respectively.

9) Homogeneous spaces. We say that a complex manifold M is homogeneous
if the group of automorphisms of M is transitive on M. For example, if G
is a complex Lie group and H is a closed complex Lie subgroup of G, then
the quotient G/H is in a unique way a homogeneous complex manifold such
that the natural left action by G on G/H and the projection G — G/H are
holomorphic. Flag manifolds, that is, coadjoint orbits of connected compact
Lie groups, are homogeneous complex manifolds. In fact, if G is a connected
compact Lie group and G, is the stabilizer of some A € g* under the coadjoint
representation, then the inclusion of GG into its complexification G¢ induces an
isomorphism G /Gy — G¢ /Py, where Pj is a suitable parabolic subgroup of G¢
associated to A, a closed complex Lie subgroup of Gg, see Section 4.12 in [DK].
For example, U(n)/T = Gl(n,C)/B, where T is the maximal torus of diagonal
matrices in U(n) and B is the Borel group of all upper triangular matrices in
Gl(n, C), the stabilizer of the standard flag in C™. For more on flag manifolds,
see Chapter 8 in [Bes].

10) Projective varieties. A closed subset V' C CP™ is called a (complex)
projective variety if, locally, V' is defined by a set of complex polynomial equa-
tions. Outside of its singular locus, that is, away from the subset where the
defining equations do not have maximal rank, a projective variety is a complex
submanifold of CP™. We say that V is smooth if its singular locus is empty.
A well known theorem of Chow says that any closed complex submanifold of
CP™ is a smooth projective variety, see [GH, page 167].

We say that V is a rational curve if V' is smooth and biholomorphic to
CP!. For example, consider the complex curve C' = {[z] € CP? | 23 = 2122}
in CP2, which is contained in Uy U Uy. On U; N C we have 20/21 = (20/21)?,
hence we may use u; = zp/21 as a holomorphic coordinate for C on Uy N C.
Similarly, on Us N C we have 21/2z2 = (20/22)? and we may use us = zo/22 as
a holomorphic coordinate for C on Uy N C. The coordinate transformation on
U NU;NC is ug = 1/uy. Thus C is biholomorphic to CP! and hence is a
rational curve in CP2. In this example, the defining equation has degree two.
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The map CP! > [1,2] — [1,2,2%,...,2™] € CP™ extends to a holomorphic
embedding of CP! into CP™, and the maximal degree of the obvious defining
equations of the image is m.

Let M be a complex manifold. We say that a complex vector bundle £ — M
is holomorphic if E is equipped with a maximal atlas of trivializations whose
transition functions are holomorphic. Such an atlas turns F into a complex
manifold such that the projection £ — M is holomorphic.

2.3 Examples. 1) The tangent bundle 7'M together with its complex structure
J is a complex vector bundle over M. The usual coordinates for the tangent
bundle have holomorphic transition maps and thus turn T'M into a complex
manifold and holomorphic vector bundle over M.

2) If E — M is holomorphic, then the complex tensor bundles associated
to E are holomorphic. For example, the dual bundle E* is holomorphic. Note
however that TM ®gr C is not a holomorphic vector bundle over M in any
natural way.

3) Let E — M be a holomorphic vector bundle and f: N — M be a
holomorphic map. Then the pull back f*E — N is holomorphic.

4) The universal bundle U,V — G,V is holomorphic.

Let (z,U) be a holomorphic coordinate chart of M. As usual, we let 27 =

27 +iy? and write the corresponding coordinate frame as (X1, Y1, ..., X, Yin).
For p € U, we define a complex structure J, on T,M by
I Xi(p) =Y;(p), JpY;(p) = —X;(p). (2.4)

Since the transition maps of holomorphic coordinate charts are holomorphic, .J,
is independent of the choice of holomorphic coordinates. We obtain a smooth
field J = (J,) of complex structures on T'M.

Vice versa, if M is a smooth manifold of real dimension 2m, then a smooth
field J = (J,) of complex structures on TM is called an almost complex struc-
ture of M. An almost complex structure J = J,, is called a complex structure if
it comes from a complex structure on M as in (2.4) above. Any almost complex
structure on a surface is a complex structure (existence of isothermal coordi-
nates). A celebrated theorem of Newlander and Nirenberg [NN] says that an
almost complex structure is a complex structure if and only if its Nijenhuis
tensor or torsion N vanishes, where, for vector fields X and Y on M,

N(X,Y) =2{[JX,JY] - [X,Y] = J[X,JY] - J[JX, Y]} (2.5)

For an instructive discussion of the Newlander—Nirenberg theorem and its proof,
see [Ka2, Section 6.3].

2.6 Exercises. 1) N is a tensor. Compare also Exercises 2.15 and 2.32.
2) Let V be a torsion free connection and J be an almost complex structure
on M. Show that

1
FN(X,Y) = VIIX,Y) = JVI(X,Y) = VI(JY, X) + JVI (Y, X)
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to conclude that J is a complex structure if V.J = 0.

2.7 Example. In the normed division algebra Ca of Cayley numbers 4, consider
the sphere S8 of purely imaginary Cayley numbers of norm one. For a point
p € S® and tangent vector v € T,,S9, define

Jpv :=p-v,

where the dot refers to multiplication in Ca. Since p is purely imaginary of
length one, p- (p-z) = —x for all € Ca. It follows that J,v € T,S° and that

2, _ —
Jyv=p-(p-v)=—v.

Hence J = (J,) is an almost complex structure on S6. Since |z - y| = |z| - |y|
for all z,y € Ca and p € S% has norm one, .J is norm preserving.

By parallel translation along great circle arcs through p, extend v to a vector
field V in a neighborhood of p in S®. Then V is parallel at p. Along the great
circle arc cost-p+sint-u in the direction of a unit vector u in 7,59, the vector
field JV is given by (cost-p+sint-u) - V(cost-p+sint - u). Hence

dJV(u)=u-v+p-dV(u)=u-v+p-S(u,v),
where S denotes the second fundamental form of S¢. For v,w € T,,5%, we get

Nw,w)=2{(p-v) - w—(p-w)-v—p-(v-w)+p-(w-v)}=4p,v,w],

where [z,y,2] = (z-y) -z — 2 (y - z) denotes the associator of z,y, z € Ca. We
conclude that N # 0 and hence that J does not come from a complex structure
on S6. It is a famous open problem whether S6 carries any complex structure.

2.8 Exercise. View the sphere S? as the space of purely imaginary quaternions
of norm one and discuss the corresponding almost complex structure on S2.

2.1 Complex Vector Fields. Let V' be a real vector space, and let J be a
complex structure on V. We extend J complex linearly to the complexification
Ve=VerCof V,

Jv®a):=(Jv) ®a. (2.9)
Then we still have J2 = —1, hence V¢ is the sum
Ve=VaV" (2.10)

of the eigenspaces V/ and V" for the eigenvalues ¢ and —i, respectively. The
maps

1 1
V-Vived = 5(1} —iJv), VoV v = 5(1) +iJv), (2.11)

4Chapter 15 in [Ad] is a good reference to Cayley numbers.



2 COMPLEX MANIFOLDS 19

are complex linear and conjugate linear isomorphisms, respectively, if we con-
sider V' together with J as a complex vector space.

Let M be a smooth manifold with an almost complex structure J and
TcM = TM ®g C be the complexified tangent bundle. As in (2.10), we have
the eigenspace decomposition with respect to J,

TeM =T'M & T M. (2.12)

The decomposition in (2.11) shows that 7'M and T" M are smooth subbundles
of the complexified tangent bundle Tc M. Moreover, by (2.11) the maps

TM —T'M, v, and TM —T'M, v— ", (2.13)

are complex linear respectively conjugate linear isomorphisms of complex vector
bundles over M, where multiplication by ¢ on T'M is given by J.

A complex vector field of M is a section of TcM. Any such field can be
written in the form Z = X +4Y, where X and Y are vector fields of M, that
is, sections of T'M. Complex vector fields act as complex linear derivations on
smooth complex valued functions. We extend the Lie bracket complex linearly
to complex vector fields,

(X +iY,U +iV] := [X, U] — [\, V] + i([X, V] + [V, U)). (2.14)

2.15 Exercise. The Nijenhuis tensor associated to J vanishes iff 7'M is an
involutive distribution of Tc M, that is, if [Z71, Zs] is a section of T’ M whenever
Z1 and Zy are. And similarly for 7" M. More precisely,

N(X,Y)" = -8[X"Y']" and N(X,Y) =-8X",Y"],
where X and Y are vector fields on M.

Suppose from now on that M is a complex manifold. Then TM (with com-
plex multiplication defined via J) is a holomorphic vector bundle over M. The
isomorphism TM > v — v’ € T'M as in (2.13) turns 7'M into a holomorphic
vector bundle. The bundle T” M is a smooth complex vector bundle over M,
but not a holomorphic vector bundle in a natural way.

Let (z,U) be a holomorphic coordinate chart for M. Write 27 = 27 + iy’
and set

1 . = 0 1 _
Zj= g5 = 53X —iYy), Zji= g = (X +iY)), (2.16)
where (X1,Y1,..., X, Y,) is the coordinate frame associated to the coordi-

nates (z',y',...,2™,y™). In the notation of (2.13), Z; = X and Zj = X/
Similarly, any complex vector field Z has components

7 — %(z _iJZ) and 2" = %(Z +iJZ) (2.17)
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in 7'M and T M, respectively. We note that (X1,...,X,,) is a local holomor-
phic frame for T'M considered as a holomorphic vector bundle over M and that
(Z1,...,Zny) is the corresponding local holomorphic frame of T"M.

We say that a real vector field X on M is automorphic if the flow of X
preserves the complex structure J of M. This holds iff the Lie derivative
LxJ = 0 or, equivalently, iff [X, JY] = J[X,Y] for all vector fields ¥ on M.
The space a(M) of automorphic vector fields on M is a Lie algebra with respect
to the Lie bracket of vector fields.

2.18 Proposition. A real vector field X on M is automorphic iff it is holomor-
phic as a section of the holomorphic vector bundle TM. The complex structure
J turns a(M) into a complex Lie algebra.

Proof. To be automorphic or holomorphic is a local property. Hence we can
check the equivalence of the two properties in holomorphic coordinates (z, U).
Then the vector field is given by a smooth map X: U — C™ and J is given by
multiplication by 3.

Let Y: U — C™ be another vector field. Then the Lie bracket of X with Y
is given by dX (Y) — dY (X). Hence we get

)
=9X([EY) +9X([EY) —idY (X)
=i0X(Y) —idX(Y) —idY (X)
=i0X(Y)+i0X(Y) —idY (X) — 210X (Y)

Hence [X,iY] = i[X,Y] iff 0X(Y) = 0. O
2.19 Proposition. If M is a closed complex manifold. then dima(M) < co.

Proof. The space of holomorphic sections of a holomorphic vector bundle £
over M is precisely the kernel of the elliptic differential operator d on the space
of smooth sections of E, compare (3.4). O

2.20 Remark. A celebrated theorem of Bochner and Montgomery states that,
for a closed complex manifold M, the group Aut(M,J) of automorphisms
f: M — M is a complex Lie group with respect to the compact-open topol-
ogy® and that a(M) is the Lie algebra of Aut(M,J), see [BM]. In particular,
Aut(M, J) is either trivial, or a complex torus, or is not compact, compare
Example 2.2.8.

5This is a subtle point. Without the assertion about the topology, the theorem is a trivial
consequence of Proposition 2.19. There is a corresponding common misunderstanding in the
case of isometry groups of Riemannian manifolds and of other groups of automorphisms.
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2.2 Differential Forms. As above, let V be a real vector space with complex
structure J. The decomposition of V¢ in (2.10) determines a decomposition of
the space of complex valued alternating forms on Vg,

A’rvés — Ar(vl @ VI/)*
= Bprgr (AP (V)" @ AI(V")*) =t @y g r APIVE. (2.21)

Alternating forms on V¢ correspond to complex multilinear extensions of com-
plex valued alternating forms on V. In this interpretation, A»?V¢ corresponds
to complex valued alternating r-forms ¢ on V, r = p + ¢, such that, for a € C,

olavy,...,av.) = Pale(vy, ..., o), (2.22)

where we view V together with J as a complex vector space as usual. To see
this, write v; = v; + v} as in (2.11). We call elements of A7V alternating
forms on V of type (p,q). An alternating r-form ¢ of type (p, q) satisfies

(J ) (v1,. .. vr) = p(Jor, ..., Jup) = P (v, ..., 0p), (2.23)

but this does not characterize the type. We note however that a non-zero
alternating r-form ¢ satisfies J*¢ = ¢ iff r is even and ¢ is of type (r/2,r/2).

Conjugation maps APIVE to APPVE, and APPV{E is invariant under conju-
gation. The space of complex (p, p)-forms fixed under conjugation is the space
of real valued forms of type (p, p).

Suppose now that M is a complex manifold with complex structure J.
Note that A*(M,C) = A*TEM, where T¢M = T*M ®g C is the complexified
cotangent bundle. As in (2.21), we have the decomposition

AT(Mv (C) = @P+QZTAp7q(M7 (C)a (224)

where AP?(M,C) := AP2TiM. The complex line bundle Ky := A™%(M,C)
plays a special role, it is called the canonical bundle. Smooth sections of
AP9(M,C) are called differential forms of type (p,q), the space of such dif-
ferential forms is denoted A?9(M, C).

Let z: U — U’ be a holomorphic coordinate chart for M. Write 27 = 27 +iy
and set

dz? = da? +idy’ and dZF = dx? —idy’, (2.25)

differential forms of type (1,0) and (0, 1), respectively. In terms of these, a
differential form ¢ of type (p, q) is given by a linear combination

ZaJKdzJ/\de = ZaJKdz“ Ao Ndz' NdEYA - NdF, (2.26)
JK JK
where J and K run over multi-indices j; < --- < j, and k; < --- < kg. Under

a transformation z o w™! of holomorphic coordinates of M, we have

‘ 929 . 0z _
dz’ = Z dek and dz’ = Z dek- (2.27)
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This shows that the natural trivializations by the forms dz! as above turn the
bundles AP°(M,C) into holomorphic bundles over M. We also see that the
complex vector bundles A" (M,C) and AP9(M,C) are not holomorphic in any
natural way for 0 < r < 2m and 0 < g < m, respectively.

A quick computation gives

dp = (Xj(asx)da? +Yi(asx)dy’) Adz" A dzX
= Z (Zj(aJK)de + Zj(aJK)dEj) ANdz? A dZE (2.28)
=:0p + 5(,0.

The type of ¢ is (p + 1,¢), the type of Oy is (p,q + 1), hence they are well

defined, independently of the choice of holomorphic coordinates. Now d = 8+
and d?> = 0. Hence by comparing types, we get

9?=0, 9°=0, 00=-00. (2.29)

In particular, we get differential cochain complexes

2 At (g, 0) L ap (i, 0) L Arr (,0) L e (2.30)

whose cohomology groups HP?(M,C) are called Dolbeault cohomology groups
of M. Their dimensions, h?9(M,C) = dimc HP?(M,C), are called Hodge
numbers of M. They are invariants associated to the complex structure of M.

The kernel QP(M) of & on AP*(M,C) consists precisely of the holomor-
phic sections of the holomorphic vector bundle AP:%(M,C). These are called
holomorphic forms of degree p. By definition, QP(M) = HP°(M,C). The
alternating sum

X(M,0) := Y (=1)’PhP°(M,C) = Y (—1)" dime Q(M) (2.31)
is called the arithmetic genus of M.

2.32 Exercise. Let M be a smooth manifold with an almost complex structure
J. As in the case of complex manifolds, we have the decomposition

A" (Mv (C) = ®p+q:T’Ap7q(M7 (C)

into types. If ¢ is a smooth complex valued function, that is ¢ € A°(M,C),
then we can decompose as in the case of complex manifolds,

dp = d"%p +d™'p € AV (M,C) + A% (M, C),

where d° = 9 and d°' = 0 if J is a complex structure. However, if ¢ is of
type (1,0), then a new term may arise,

dp = d"0p +d" o +d Mo € A2°(M,C) + AV (M, C) + A%*(M, C),
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and similarly for ¢ € A%1(M,C). Show that =12 is a tensor field and that
P(N(X,Y)) =8-d M p(X,Y)

for all ¢ € AL9(M,C) and vector fields X,Y on M. Any differential form is
locally a finite sum of decomposable differential forms. Conclude that

dp € AP+29-1 (N[, C) + APHY9(M, C) + AP9TL(M, C) + AP~ 19+2(M, C)

for any differential form ¢ of type (p, ¢). Which parts of dy are tensorial in ¢?

2.3 Compatible Metrics. Let M be a complex manifold with corresponding
complex structure J. We say that a Riemannian metric g = (-, -) is compatible
with J if

(JX,JY) = (X,Y) (2.33)

for all vector fields X,Y on M. A complex manifold together with a compatible
Riemannian metric is called a Hermitian manifoldS.

Let M be a complex manifold as above. If g is a compatible Riemannian
metric on M, then the complex bilinear extension of g to Tc M, also denoted g
or (-,-), is symmetric and satisfies the following three conditions:

(21, Za) = (21, Zs);
<Z1, Zg> =0 for Zl, Zg in T/M; (234)
(Z,Z) >0 unless Z = 0.
Vice versa, a symmetric complex bilinear form (-,-) on TcM satisfying these
three conditions is the complex bilinear extension of a Riemannian metric sat-

isfying (2.33). Then (2.33) also holds for the complex linear extension of J to
TcM and complex vector fields X and Y.

2.35 Proposition. Let M be a complex manifold with complex structure J.
Then a Riemannian metric g = (-,-) is compatible with J iff about each point
po € M, there are holomorphic coordinates

z= (24 2™ = (@t +ayt, 2™ 4 iy™)
such that the associated coordinate frame (X1,Y1,..., Xm, Ym) satisfies
(X, X)(po) = (Y], Ye)(po) = 6 and (X;,Yk)(po) = 0.

The proof of Proposition 2.35 is straightforward and left as an exercise. We
note the following immediate consequence.

6The usual arguments give the existence of compatible Riemannian metrics.
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2.36 Corollary. Let M be a Hermitian manifold. Then the type decomposition
A7(M,C) = @pqmr API(M, C)

is orthogonal with respect to the induced Hermitian metric (p,v) = (@, ). In
particular, xp has type (m — q, m — p) if ¢ has type (p,q).

Proof. The first assertion is clear from Proposition 2.35. The second assertion
follows from the first since the volume form has type (m,m)7. O

2.4 Blowing Up Points. Consider the universal bundle U;C™ over CP™ 1.
The restriction of the map U;C™ — C™, (L,z) — 2z, to the open subset
{(L,z) € U1C™ | z # 0} is biholomorphic onto C™ \ {0}. Thus we can think
of U;C™ as C™, where the point 0 is replaced by the set {(L,0) € U;C™}.
We identify the latter with CP™ ! and thus have blown up the point 0 of C™
to CP™~!. A similar construction can be carried out for points in complex
manifolds.

2.37 Remark. For any r > 0, we can identify S, = {(L, z) € U1C™ | |z| = r}
with the sphere of radius r in C™. Then the projection 7: S, — CP™! turns
into the Hopf fibration: The fibers of 7 intersect .S, in Hopf circles, that is,
the intersections of complex lines in C™ with the sphere S,.. Renormalizing the
given Riemannian metric on S, (of sectional curvature 1/72) by adding the pull
back of any fixed Riemannian metric ¢ on CP™!, we obtain a Riemannian
metric g, on the sphere S?™~1. We can think of ($?™~1 g,) as a collapsing
family of Riemannian manifolds with limit (CP™~!, g), as r — 0. The differen-
tial geometric significance of this kind of collapse was first recognized by Berger:
The sectional curvature of the collapsing spheres stays uniformly bounded as
r — 0, see Example 3.35 in [CE], [Kar, page 221], and [CGr].

Let M be a complex manifold and p be a point in M. The blow up of M
at p replaces p by the space of complex lines in T, M. The precise construction
goes as follows. Let z = (21,...,2m): U — U’ be holomorphic coordinates
about p with z(p) = 0. In U’ x CP™~ !, consider the set

V = {(z,[w]) | 2w = 27w’ for all i, j},

where points in (Cme1 are given by their homogeneous coordinates, denoted
[w]. On the subset {w’ # 0} of CP™~1, V is defined by the m — 1 independent
equations

w .
= _*Zjv { 7é ja

wJ
the other equations follow. Hence the system of equations defining V' has
constant rank m — 1, and hence V is a complex submanifold of U’ x CP™~! of

dimension m with
S=vVn{z=0y=cpm .

"Recall that dz A dz = —2idz A dy.
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On V' \ S, [w] is determined by z, hence
VAS=UN\{p}.
More precisely, the canonical map
VAS = U\{0}, (2 [w])— 2

is biholomorphic. We use it to glue V' to M\ {p} and obtain a complex manifold
M, the blow up of M at p, together with a holomorphic map

7 M — M

such that 7' (p) = S and w: M\ S — M \ {p} is biholomorphic.

We consider V' as an open subset of M. Choose & > 0 such that the image
U’ of the holomorphic coordinates z contains the ball of radius € > 0 about 0
in C™. Then the map

Vo= {(z.lu]) €V |2 <2} = {(L.2) € TIC™ | 2] <},
(2. fu]) = ([w]. 2),

is biholomorphic. Hence a neighborhood of S in M is biholomorphic to a
neighborhood of the zero-section of U;C™ such that the map o: V, — CP™ ™1,
o(z, [w]) = [w], corresponds to the projection. For any r € (0,¢), the set

Sr=A{(z[w]) e V | [2] = 1}

corresponds to the sphere of radius r in C™. The fibers of 7 intersect S, in Hopf
circles, that is, the intersections of complex lines in C™ with S,.. Thus we can
again think of 7: S, — CP™ ! as the Hopf fibration and of the convergence
S, — S, as r — 0, as the collapse of §?™~! to CP™~! along Hopf circles;
compare with Remark 2.37 above.

2.38 Exercises. Let M be the blow up of M at p as above.

1) Let 2 = f(z) be other holomorphic coordinates of M about p with 2(p) =
0, and let M be the blow up of M at p with respect to the coordinates 2. Write
f(z) = 3 fi(2)27, where the maps f; are holomorphic with f;(0) = 9, f(0).

Show that _
£z ) = (£, [ fiew?])

extends the identity on M\ {p} to a biholomorphic map M — M. In this sense,
the blow up of M at p does not depend on the choice of centered holomorphic
coordinates.

2) Let f :M — N be a holomorphic map, where N is another complex
manifold. If f is constant on S, then there is a holomorphic map f: M — N
such that f = fom.
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2.39 Remark. By replacing centered holomorphic coordinates about p by a
tubular neighborhood of the zero section in the normal bundle, there is a rather
immediate generalization of the blow up of points to a blow up of complex
submanifolds, see e.g. Section 4.6 in [GH] or Section 2.5 in [Hu].

2.40 Examples. 1) Kummer surface. In this example it will be convenient
to enumerate coordinates by subindices. Consider the quotient Q = C?/Z,,
where Zo = {1,—1} acts by scalar multiplication on C?. Let go be the image
of 0 under the natural projection C> — Q. Note that away from 0 and g,
respectively, the projection is a twofold covering with holomorphic covering
transformations, turning @ \ {¢go} into a complex manifold. Via

20 =tity, 21 =13, 2z =13,
we can identify @) with the algebraic hypersurface
H = {(20,21,22) € C? | 23 = 2120} C C3,
which has a singularity at the origin 0. We blow up C? at 0 to get
C3 = {(z, [w]) € C> x CP? | zjw; = zjw;}.

We have R
mHHN\A{0}) = {(2, [w]) € C* | 2 # 0, w§ = wywy}.

In particular, the closure of 7=1(H \ {0}) in C3 is the regular hypersurface
H = {(z,[w]) € C* | w§ = wiwn} € C*.

Thus by blowing up 0 € C3, we resolved the singularity of H.

Recall that C = {[w] € CP? | w} = wyws} is an embedded CP!, com-
pare Example 2.2.10. There is a natural projection H — C. We choose
(uj, z;) as holomorphic coordinates for H over the preimage of U; under this
projection. The coordinate transformation over the preimage of Uy N Us is
(uz,22) = (u;*,u3z1). The holomorphic cotangent bundle A%°(C,C) has
du; as a nowhere vanishing section over Uj, and dus = —ufgdul over Ui N
Us. We conclude that the identification (u1,z1du1) < (u1,21) over Uy and
(ug, —zadug) < (ug,z2) over Us establishes a biholomorphic map between H
and AM0(C,C) = AYO(CPL, C).

Let T* = Z*\C2. Scalar multiplication by Zs on C? descends to an action
of Zy on T*. This action has 16 fixed points, namely the points with integral
or half-integral coordinates in T%. At each fixed point = € T*, the action is
locally of the form +1- (x +t) = x £t as above. Thus we can resolve each
of the quotient singularities on T#/Zy by the above construction and obtain a
compact complex surface, the Kummer surface. For more information on the

Kummer surface we refer to [Jo, Section 7.3].
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2) Dependence of blow-up on points.® Let m > 2 and T = I'\C™ be a com-
plex torus. Let (p1,...,px) and (p,...,p]) be two tuples of pairwise different
points in T. Let M and M’ be the blow ups of T in the points p1,...,px and
Pis--.,p), respectively, and let m: M — T and 7’: M’ — T be the projections.
Let S; and S be the preimages of p; and p; under m and 7', respectively.

Let f: M — M’ be a holomorphic map. Since S; = CP™™! is simply
connected, the restriction of 7’ o f to S; lifts to a holomorphic map S; — C™.
Now 5; is a closed complex manifold, hence any such lift is constant. It follows
that 7’ o f maps S; to a point in 7. In particular, there is a holomorphic map
g: T — T such that 7’ o f = gom.

Suppose now that f is biholomorphic. Then f is not constant on S; (we
assume m > 2). By what we said above, it follows that f maps each S;
biholomorphically to an S7. Thus k = [ and, up to renumeration, f(S;) = S}
for all i. Moreover, the induced map g: T"— T is biholomorphic with g(p;) = p}
for all 7.

Let now k =1=2,p; =p} =0, ps =p, p) = p'. In Example 2.2.6 above
we showed that any biholomorphic map of T is of the form h(z) = Az + b with
be T and A € Gl(m,C) such that A(T') =TI'. Hence the above g is of the form
g(z) = Az for some A € Gl(m,C) with A(I') =T and Ap = p' (in 7). On
the other hand, there are pairs of points p,p’ € T \ {0} such that there is no
A € Gl(m,C) with A(T) =T and Ap = p’. Then by what we just said, the
corresponding blow ups M and M’ of T in 0, p and 0, p’, respectively, are not
biholomorphic.

2.41 Exercise. In terms of oriented smooth manifolds, the blow up M of M at
p € M corresponds to the connected sum M #@m, where CP"" denotes CP™
with orientation opposite to the standard one: Choose w/wy as a coordinate
about ¢ = [1,0,...,0] in Uy = {Jwo,w] | wo # 0} € CP™. Let ¢ > 0 and
V. € M be as above. Set

Ul = {[wo,w] € cp" | Jwo| < elw]}.

Use coordinates z about p as in the definition of blow ups and ﬂ wp as above
to define the connected sum M#CP . Then the map f: M#CP" — M,

N if p’ € M\ {p},
f') = {(wow/|w|2, [w]) € Vo if p/ = [wo,w] € UL,

is well defined and an orientation preserving diffeomorphism. In particular, as
a smooth manifold, the blow up M does not depend on the choice of p € M.

We conclude our discussion of blow ups with a fact on the automorphism
group of a compact complex surface which we cannot prove in the framework

8] owe this example to Daniel Huybrechts.
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of these lecture notes, but which will provide us with an important example in
Subsection 7.4. For a closed complex manifold M with complex structure J,
denote by Aut(M) = Aut(M, J) the group of biholomorphic transformations of
M, endowed with the compact-open topology, and by Autg(M) the component
of the identity in Aut(M).

2.42 Proposition. Let M be a compact complex surface and m: M, — M
be the blow up of M in p € M. Then automorphisms in Autg(M,) leave the
exceptional divisor S = 7~1(p) invariant and, via restriction to M \ S,

Auto(Mp) 2 {® € Auto(M) | D(p) = p} =: Auto(M,p).
The action of ® € Auto(M,p) on S = P(T,M) is induced by d®,,.

The only issue is to show that an automorphism of M, in Aut(M,) leaves
S invariant. Given some facts about topological intersection properties of ana-
lytic cycles, the proof of this is actually quite simple and geometric, see [GH],
Chapter 4.1. A corresponding statement would be wrong for the full automor-
phism group, since if M itself is already a blow up, there may be automorphisms
permuting the various exceptional divisors.

2.43 Example. Consider the blow up of CP? in one or two points, which we
choose to be [1,0,0] and [1,0,0], [0, 1, 0], respectively. By Proposition 2.42, the
respective automorphism groups are

1 % % 1 0 =%
0 * x| eGl3,C), and 0 * x| eGl3,C),. (2.44)
0 * =« 0 0 =«

For a blow up of CP? in three points, the automorphism group, and hence
the complex structure, clearly depends on the choice of points, i.e., on whether
they are in general position or not.



3 Holomorphic Vector Bundles

Let £ — M be a holomorphic vector bundle. For U C M open, we denote by
O(U, E) the space of holomorphic sections of E over U, a module over the ring
o). If (®4,...,Px) is a holomorphic frame of E over U, then

Ok 3 o p'd, € OU,E) (3.1)

is an isomorphism.

3.1 Dolbeault Cohomology. We now consider differential forms on M with
values in E. Since M is complex, we can distinguish forms according to their
type as before,

AT(M,E)= Y API(M,E), (3.2)

ptg=r
where AP9(M, E) = AP9(M,C)®E. With respect to a local holomorphic frame
® = (®,) of E, a differential form of type (p,q) with values in F is a linear
combination
a=¢ @0, (3.3)

where the coefficients ¢/ are complex valued differential forms of type (p,q).
The space of such differential forms is denoted AP9(M,E). We define the
d-operator on differential forms with values in E by

da = (0¢p7) ® ®;. (3.4)

Since the transition maps between holomorphic frames of E are holomorphic,
it follows that da is well defined. By definition, da is of type (p,q + 1). We

have 89 = 0 and hence
9 ,q—1 a 9 +1 )
e — AP (ML E) — APY(M,E) — AP (M, E) — -+ (3.5)

is a cochain complex. The cohomology of this complex is denoted HP*(M, E)
and called Dolbeault cohomology of M with coefficients in E. The dimensions

h?9(M, E) := dimc H?Y(M, E) (3.6)
are called Hodge numbers of M with respect to E.

3.7 Remark. Let QP(F) be the sheaf of germs of holomorphic differential
forms with values in E and of degree p (that is, of type (p,0)). Let AP9(E)
be the sheaf of germs of differential forms with values in E and of type (p, q).
Then - - -

0— QP(E) — APY(B) -2 APV (B) L Ar2(B) 2 ..

is a fine resolution of QP (E). Hence H1(M, QP (E)) is isomorphic to H?4(M, E).
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We are going to use the notation and results from Chapter 1. We assume
that M is endowed with a compatible metric in the sense of (2.33) and that
FE is endowed with a Hermitian metric. Then the splitting of forms into types
as in (3.2) is perpendicular with respect to the induced Hermitian metric on
A*(M, E).

Suppose that « and 3 are differential forms with values in E and of type
(p,q) and (p,q — 1), respectively. By Corollary 2.36, (¥ ® h)« is of type (m —
p,m — q). Therefore ((*¥ ® h)a) Ac 8 is a complex valued differential form of
type (m, m — 1). Tt follows that

A(((F @ h)a) A B) = d(((* @ h)a) A B).
Since the real dimension of M is 2m, we have (x@ h*)(* ® h) = (—1)" on forms
of degree r = p 4 ¢q. Computing as in (1.46), we get

d((F @ h)a) A B) = (((F @ h)a) A B)
= (1> {—((3* @ h")O(* @ h)a, B) + (o, 03)} vol.
It follows that

0" =(®@h)O(*Qh). (3.8)
Here the d-operator on the right belongs to the dual bundle E* of E. Let
Ay =00" + 00 (3.9)

be the Laplace operator associated to 9. We claim that
As (*®@h)=(*x®h) As, (3.10)
where the Laplace operator on the left belongs to E*. In fact,

Ay (F®h)=0F®h)I(Fe ") (@ h) + (*@ h)I(x @ h*)I(* @ h)
=(F®h)0F2h)I(F®h)+ (3@ h)(*®h*)I(* ® h)d
=(*®h) Aé.

We denote by HP4(M, E) the space of Ag-harmonic forms of type (p, q) with
coefficients in E. By (3.10), ¥ ® h restricts to a conjugate linear isomorphism

HPU(M, E) — H™P™9(M, E). (3.11)

In the rest of this subsection, suppose that M is closed. Then by Hodge theory,
the canonical projection H??(M, E) — HP%(M, F) is an isomorphism of vector
spaces. From (3.11) we infer Serre duality, namely that ¥®h induces a conjugate
linear isomorphism

HPY(M,E) — H" P9 M, E"). (3.12)
In particular, we have h?9(M, E) = h™~P™m=49(M, E*) for all p and gq.

3.13 Remark. Equivalently we can say that * ® h induces a conjugate linear
isomorphism HI(M,QP(E)) = H™ 9(M,Q™ P(E*)), see Remark 3.7.
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3.2 Chern Connection. Let D be a connection on F and ¢ a smooth section
of . Then we can split
Do=D'oc+D"c (3.14)

with D'oc € AY9(M, E) and D"o € A%(M,E). Let (®1,...,®;) be a holo-
morphic frame of F over an open subset U C M. Then

D®, =0,9,, (3.15)
where 6 = (6,) is the connection form and ¢j;®, is shorthand for ¢, ® ®,.

3.16 Lemma. D" = 0 for all local holomorphic sections o of E iff D" = 0.
Then the connection form 6 € AYO(U, CF*F).

Proof. The assertion follows from comparing types in
D'oc+ D"o = Do = dp'®, + " D®,, = ((0 + 9)p" + ¢ 01)d,,,
where 0 = ¢*®,, in terms of a local holomorphic frame (®,) of E. O

3.17 Lemma. Let h = (-,-) be a smooth Hermitian metric on E. If D" = 0,
then D is Hermitian iff

(0,D7) = (0, 7)(X) or, equivalently, (Do,7)=0(c,7)(X)
for all vector fields X on M and local holomorphic sections o, 7 of E.

Proof. In the sense of 1-forms we write (o, D'T) = (o, 7) for the equality in
the lemma. If this equality holds, then

d(o,7) = d(o,7) + (0, T)
=(D'o,7) + (0,D'7)
= (Do, 7) 4+ (0, D7),

where we use D”oc = D"t = 0. Since E has local holomorphic frames, we
conclude that the equality in the lemma implies that D is Hermitian. The
other direction is similar. a

3.18 Theorem. Let E — M be a holomorphic vector bundle and h = (-,-) be
a smooth Hermitian metric on E. Then there is precisely one connection D on

E such that 1) D is Hermitian and 2) D" = 0.

Proof. Let (®1,...,®;) be a holomorphic frame of E over an open subset U C
M and ¢ = (0};) be the corresponding connection form as in (3.15). Now 2)
implies that 6 is of type (1,0). By Property 1),

dhl“’ = dh(q)#a (bl/) = h(@ﬁ(I’A, (I)u) + h(‘bﬂ, 05\(1)))
= gihku + h,u)\olé = hquﬁ + hHAoz'
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Now dhy,, = Ohy + 5hm,. Since 6 is of type (1,0), we conclude
Ohy, = h,n0) or 0=h"'0n, (3.19)

by comparison of types. This shows that Properties 1) and 2) determine D
uniquely. Existence follows from the fact that the local connection forms 6 =
h~'0h above transform correctly under changes of frames. Another argument
for the existence is that for local holomorphic sections o and 7 of E, 9(o, 1)
is conjugate O-linear in ¢ so that the equation in Lemma 3.17 leads to the
determination of the yet undetermined D’. O

The unique connection D satisfying the properties in Theorem 3.18 will be
called the Chern connection. It depends on the choice of a Hermitian metric
on E.

3.20 Exercises. 1) Let £ — M be a holomorphic vector bundle and h be
a Hermitian metric on E. Let f: N — M be a holomorphic map. Then
the Chern connection of the pull back Hermitian metric f*h on the pull back
f*E — N is the pull back of the Chern connection on E with respect to h.

2) Let E — M be a holomorphic vector bundle and E/ — M be a holomor-
phic vector subbundle of E. Let h be a Hermitian metric on E and I’ be the
restriction of h to E’. For a section o of E write 0 = ¢’ + ¢”, where ¢’ is a
section of E' and ¢” is perpendicular to E’. Let D be the Chern connection
on E with respect to h. Then the Chern connection D’ of E’ with respect to
h' is given by D'c = (Do)’.

Recall that this is the standard recipe of getting a Hermitian connection for
a subbundle of a Hermitian bundle with a Hermitian connection.

In what follows, we use the wedge product as defined in (1.15) and the
discussion in Example 1.16, applied to the trivial bundle E = M x CF.

3.21 Proposition. Let E — M be a holomorphic vector bundle with Hermitian
metric h and corresponding Chern connection D. Let (®q,...,Px) be a local
holomorphic frame of E and 6 and © be the corresponding connection and
curvature form. Then:

1) 0 = h='0h with h = (h,u);

2) D'=0+6 and D" = 0;

3) 0 is of type (1,0) and 09 = —0 A, 0;
4) © =06 and © is of type (1,1);

5) 00 =0and 900 =0 A 0=OA,0—0N,0.
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In the case of a holomorphic line bundle £ — M, a local nowhere vanishing
holomorphic section @, and h = (P, ®), Proposition 3.21 gives

=0Inh and © =399Inh. (3.22)
We will use these formulas without further reference.

Proof of Proposition 3.21. The first assertion follows from the proof of Theo-
rem 3.18, the second from Lemma 3.16. As for the third assertion, we have

00 = d(h~'oh) = —(h~'0hh™) A, Oh
= —(h"'0h) A, (h1Oh) = -0 A, 0.

In particular,

©=00+00+06NA,0=00.
Hence 0O = 0 and, by the Bianchi identity d® = © Ay 6, we conclude that
© Ax 0 =dO =090 + 00 = 00. O

3.23 Proposition. Let E — M be a holomorphic vector bundle with Hermitian
metric h and Chern connection D. Let pg € M and z be holomorphic coordi-
nates about po with z(pg) = 0. Then there is a holomorphic frame (1, ..., Py)
of E about py such that

1) h(z) =1+0(2);
2) ©(0) = 00h(0).

Proof. Suppose 1) holds. Then

©(0) = 96(0) = ((0h™*) Ay, Oh + h™*90h)(0) = Oh(0),

hence 1) implies 2). To show 1), we choose a holomorphic frame (®4,..., )
about pg such that h,,(0) = d,,. We define a new holomorphic frame

(i‘u = (bll —|— zial’:i@y
with al; = —(9hy,,,/02")(0). Tt is easy to check that h=140(]z?). O

3.24 Example (Tautological bundle). Let M = G,, = G,C" and E — M
be the tautological bundle as in Example 2.2.5. The standard Hermitian inner
product on C™ induces a Hermitian metric on F.

We identify sections of E over an open subset U of M with mapso: U — C™
such that o(p) € p for all p € U. Then a holomorphic frame over an open subset
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U C M is given by holomorphic mappings ®,: U — C", 1 < u < r, such that
(®1(p), ..., P.(p)) is a basis of p, for all p € U. For such a frame,

v

hw = (@, @) = > 0P = (°D)! with & = ().
A

If 0: U — C™ is a section of F and X is a vector field of M over U, then
the derivative do(X) of o in the direction of X need not be a section of E;
that is, dop(X,) need not be an element of p anymore. We obtain the Chern
connection D of E by setting

(Dx0)(p) = mp(day(Xp)),

where m,: C" — C" is the orthogonal projection of C" onto p, compare Exer-
cise 3.20.2 (where the ambient bundle is M x C™ in our case).

Consider the plane py spanned by the first » unit vectors, in homogeneous
coordinates in C™*" written as

1
Do = |:0:| €M7

where 1 = 1, is the r X 7 unit matrix. Then we get a holomorphic parameteri-
zation (the inverse of holomorphic coordinates) of M about py by

Cr=xr 5 5 E] e M.

1

Moreover, the r columns of the matrix (]

this frame we have

) are a holomorphic frame of E. For

hyw = O + Y Znz) =0 + (Z'2) .
A

In particular,
h=1+0(z%).

In z = 0, that is, in pg, we have
O(0) = 0Oh(0) = 9z' A 0z = dZ* A dz.

The canonical action of the group U(n) on M is transitive and extends canoni-
cally to an action on E which leaves h invariant. Each element from U(n) acts
biholomorphically on M and E. In particular, choosing py as above means no
restriction of generality.
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3.3 Some Formulas. For the following, we refer again to notation and results
introduced in Chapter 1. Let ¥ — M be a holomorphic vector bundle over
M. Let h be a Hermitian metric on £ and D be the corresponding Chern
connection. Then we have the associated exterior differential

dP: A"(M,E) — A" (M, E), (3.25)
see (1.18) and (1.21). Let (®,) be a local holomorphic frame of E and
a=p'd, (3.26)

be a differential form with values in E of type (p,q) with p 4+ ¢ = r. By the
characteristic property of the Chern connection, we have

dPa = dpt @ @, + (—1)"p" A D®,, = 0Pa + da, (3.27)

where
OPa = 00" @ ®, + (—1)"¢" A DD,,. (3.28)

Note that P« and da are of type (p + 1,¢) and (p, g + 1), respectively.

3.29 Proposition. Let E be a holomorphic vector bundle over M with Her-
mitian metric and associated Chern connection D. Then, for any differential
form a with values in E,

(0P)a = (0)’a=0 and (0°0+00°)a = (d”)*a = RP A, a,
where ¢: End(E) @ E — FE is the evaluation map.

Proof. If a is a differential form with values in E of type (p, q), then d®?dPa =
RP Ac a, see Proposition 1.19. By Proposition 3.21, R? is of type (1, 1), hence
dPdPa is of type (p + 1,q + 1). By definition,

dPdPa = 0PoPa + d0a + (0P + 907)a.

The first two forms on the right hand side vanish since they have type (p+2, q)
and (p, q + 2), respectively. a

We assume now that, in addition, M is endowed with a compatible Rie-
mannian metric as in (2.33). Let (X1,Y3,..., Xm,Y,) be a local orthonormal
frame of M with JX; =Y. Set

_ 1
Zy=5(X; —iY;) and Zj = Z(X; +iY)), (3.30)

N =

and let Z;,...,Z*, ZF, ..., Z* be the corresponding dual frame of TEM. With
our conventions, we have

1_, . 1,
Zj = Zj,) = 5Z; and Z}:=(Z; ) =7} (3.31)
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Since X; = Z; + Z; and Y; = i(Z; — Z;), we get
* 1 * 7% * * *
Xj:§(Zj+Zj) and Y= —-(Z; - Z7)

for the dual frame (X7, Y7, ..., X5, Y. ) of (X1,Y1,..., X, Ys). Therefore,

dD

ZZ{ (Z; +Z))ND, 5 +(Z; ~Z;)AD, 5}

(3.32)
=> {2 ADz,+Z; NDy } =0" +9,

meaning that the sum of the first terms is equal to 0P and the sum of the second
to 0. To compute the adjoint operator (d?)* of dP with respect to the induced
Hermitian metric as in (1.25), we note first that the relations in Exercise 1.26
also hold for complex tangent vectors. Since Z7 = 22? and Zj?* = 2Z; , we get
(@P)*=-2Y {ZjD; +Zj Dy} = (9°)" + 5", (3.33)

where we use the first relation from Exercise 1.26 for the first equality and
comparison of types for the second. The Laplace operators associated to 0 and
0P are defined by

A;=00"+0"9 and Ao =07 (07)" + (0")*0", (3.34)

respectively. Both preserve the type of forms. Using the second relation from
Exercise 1.26, a straightforward computation gives the following Weitzenbock
formulas,

Aza=—-2Y"D*a(Z;, Z;) +2ZZ* A (Ze (RP(Zy, Z;)e)

3.35
=-2) D*a(Z;, Z +2ZZ (Zi N(RP (Zy, Z5)a)), .

Agpa =23 D’o(Z;, Z +2ZZ (Zi N (RP(Zy, Zj)a))
o (3.36)
=-2> D’(Z;, Z +2ZZ* (Zr(RP(Zy, Z;)0)),
J
where the frame (Z; ,AZ, e Zms Zm) is as in (3.30) and where RP denotes the
curvature tensor of D on A*(M, E).
3.37 Exercises. 1) Show that, for a differential form ¢ ® o of degree 7,
P (p®0o)=0p@0+(-1)"p A Do,
INp@0)=0p@0+ (—=1)"pAD"0.
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2) Prove Formulas 3.35 and 3.36 and show that

4ZD20¢(Zj,Zj) = tr D%« +iZRD(Xj, JX;)a,
4ZD20¢(Zj,Zj) = tr D%« —f—iZRD(JXj,Xj)Oé.

3.4 Holomorphic Line Bundles. The results in this subsection will be
mainly used in Section 9. We continue to assume that M is a complex manifold.
Let E — M be a complex line bundle. Let (U, ) be an open covering of M such
that, for each «, there is a nowhere vanishing smooth section ¢,: U, — F.
If o is a smooth section of E, then we can write 0 = 0,®, over U,, where
0q: Uy — C is a smooth function, the principal part of o with respect to ®,,.

Over intersections U, N Ug, we have ®3 = t,3P,, where the transition
functions tap: Uy NUg — C* = C\ {0} are smooth. For the principal parts of
a section o as above we get

Oo = tagogs. 3.38
BYB

The family (tng) of transition functions satisfies
laa = taglga = taglpytya = 1. (3.39)

We say that with respect to the given covering, (to3) is a 1-cocycle of smooth
functions with values in C*.

Suppose E’ is another complex line bundle over M, and suppose there is an
isomorphism, F': E — E’. After passing to a common refinement if necessary,
suppose that we are given, for each «, a nowhere vanishing smooth section
®,: Us — E'. As above, we have smooth transition functions (t,5) with
iI”B = t;ﬁtI”a. Over each U,, we also have F(®,) = s,9P/,, where s,: U, — C*
is smooth. Comparing coefficients we get

ths = Satapsy - (3.40)

By definition, this means that the two cocycles (tos) and (t,5) are cohomolo-
gous.

Vice versa, suppose (U, ) is an open covering of M and (t,3) a C*-valued 1-
cocycle of smooth functions with respect to (Uy). On the set of triples (a, p, v)
with p € U, and v € C set (a,p,v) ~ (8,¢,w) iff p = ¢ and v = tapw. By
(3.39), ~ is an equivalence relation. The set E of equivalence classes [a, p, v]
admits a natural projection to M, 7([o, p,v]) = p. The fibers 7= 1(p), p € M,
are complex lines. As in the case of the universal bundles over complex Grass-
mannians, it follows that there is a unique topology on F such that 7: E — M
is a smooth complex line bundle with nowhere vanishing smooth sections

O,:U, — E, P,(p) =|a,p,1]. (3.41)
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If another cocycle t;, 5 is cohomologous to the given one, t, 5 = sataﬁsgl for a
family of smooth functions sq: U, — C*, then F(®,,) := s, P/, gives rise to an
isomorphism F: £ — E.

In the language of sheaves, we have established that the space of isomor-
phism classes of smooth complex line bundles over M is naturally isomorphic
to HY(M, E*), where £ is the sheaf over M of germs of smooth functions with
values in C*.

Replacing the word ‘smooth’ in the above discussion by the word ‘holomor-
phic’, we obtain the corresponding results for holomorphic line bundles. In
particular, the space of isomorphism classes of holomorphic line bundles over
M is naturally isomorphic to the Picard group Pic(M) := H'(M,O*), where
O™ is the sheaf of germs of holomorphic functions with values in C* and where
the group law in Pic(M) corresponds to the tensor product of line bundles.
Note that the tensor product L ® L* of a holomorphic line bundle L over M
with its dual bundle L* is holomorphically isomorphic to the trivial bundle so
that the dual bundle corresponds to the inversein Pic(M).

There is an important connection between complex hypersurfaces and holo-
morphic line bundles. Suppose H is a complex hypersurface. Let (Uy) be an
open covering of M with defining holomorphic functions f,: U, — C for H,

HNUqs ={p€Ual| falp) =0}, (3.42)
such that df,(p) # 0 for all p € H NU,. Then we have
fo =tapfs (3.43)

over intersections U, NUg, where the functions t,g: UoNUg — C* are holomor-
phic. The family (tqg) is a 1-cocycle of holomorphic functions and, therefore,
defines a holomorphic line bundle E as above such that the sections &, from
(3.41) are holomorphic and such that the section f of E with f|U, = fo®Pa
is well-defined and holomorphic. In this way we associate to H a holomorphic
line bundle E together with a holomorphic section f such that H = {p € M |
f(p) =0}

3.44 Remark. More generally, there are one-to-one correspondences between
so-called effective divisors and pairs consisting of a line bundle together with
a holomorphic section (up to isomorphism) respectively divisors and pairs of a
line bundle together with a meromorphic section (up to isomorphism), see for
example Chapitre V in [Wei|, Section 1.1 in [GH], or Section 2.3, Proposition
4.4.13, and Corollary 5.3.7 in [Hul.

3.45 Examples. We consider some line bundles over CP™. We will use the
open covering of CP™ by the sets U; = {[z] € CP™ | z; # 0}, 0 < i <m.

1) The tautological line bundle U = U; ,, — CP™, compare also Exam-
ples 2.2.5 and 3.24: Over U;,
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is a nowhere vanishing holomorphic section of U over U;. Over intersections
Ui N Uj, we have Ziq)i = qu)j.

Over U;, a section o of U is of the form ¢ = 0;®;, where o; is a function
called the principal part of o with respect to ®;. Over intersections U; N Uj,
we have

_ Zi .
o = % oj.

2) The canonical line bundle K = A™%(CP™,C) — CP™: Over U; as

above, let w;; = z;/2; and set

wi:(—l)idwio/\---/\cﬂu\“/\---/\dwim,

where the hat indicates that the corresponding term is to be deleted. Then w;
is a nowhere vanishing holomorphic section of K over U;. Over U; N Uj,

2

2k 2 Zi 2 Z5 z
wip ==L ==L w;, and d—J:——JQd—.
Zj Zi Zi Zi Z; Zj
Therefore
m+1 _ _ m+1
Zp W=z Wy,

and hence K is isomorphic to U™, the (m+1)-fold tensor product U®---®U.

3) A hyperplane in CP™ is determined by an m-dimensional vector subspace
V C C™*1. We choose the hyperplane H = {[z] € CP™ | zy = 0}. Over U; as
above, H is defined by the equation

2
fille)) = 2 =0,
Over UiﬁUj,
2
fi=>f;.
2

For the holomorphic line bundle over CP™ associated to H, also denoted by
H, the functions f; serve as principal parts of a holomorphic section f of H
which vanishes along the given hyperplane. It follows that in our case, H is
inverse to U, that is, H ® U is the trivial bundle.

4) Let M be a complex manifold of complex dimension m and M be the
blow up of M at a point p € M as in Subsection 2.4. We use the notation
introduced there and describe the holomorphic line bundle L — M determined
by the hypersurface S = 7~1(p). To that end, we consider the open covering
of M consisting of the subsets

Wo=M\S, W;={(z,[w]) €V ]w #0},1<i<m,
of M and corresponding defining holomorphic functions f;: W; — C of S,

fo=1 and fi(z[w])=2,1<i<m.
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These functions transform under the rules
ijo = fj and iji = Zlfj

The functions f; define a global holomorphic section f of L with S as its set of
zeros. We have f = f;®;, where ®; is a nowhere vanishing holomorphic section
of L over W; as in (3.41).

Let M be a complex manifold of complex dimension m and M be the blow
up of M at a point p € M as in Subsection 2.4. Let L — M be the holomorphic
line bundle as in Example 3.45.4. In the notation of Subsection 2.4, consider
the map o: V. — CP™ !, o(z, [w]) = [w]. Let H — CP™~! be the hyperplane
bundle, see Example 3.45.3.

3.46 Lemma. Let L* be the dual of L. Then
L*|V = 0"H.

Proof. Realize H as the line bundle over CP™~! associated to the hyperplane
{w; = 0}. Then the defining equations of H over W; are g; = wy/w; = 0.
The functions g; transform according to the rule w;g; = w;g;, or, equivalently,
2igi = %;9;. Hence o* H is inverse to L|V. ]

3.47 Lemma. The canonical bundles K = A™%(M,C) of M and K = A™°(M,C)
of M are related by .
K>rKgLm™ "

Proof. For W;, i > 1, as above, let u; = w;/w; = z;/%;. Then
(Uly ooy Uiy Ziy Uit 1y - ey U
are holomorphic coordinates on W;. Hence
U, =duy A--- ANduj—1 Ndzy ANdujpr N - Adugy,
is a nowhere vanishing section of K over W;. Since dzj = ujdz; + ziduy,
U, = zil_m dzi N ANdzpy,.
Hence we have

m—1 _ . m—=1y,.
z V=20

over W; N Wj. Similarly, o = dz; A--- A dz,, vanishes nowhere over Wy N W;
and
\Ifo = Z;n71Wj.

Over V, we view dz1 A --- ANdzp, qlso as a nowhere vanishing section of 7* K.
Now L is trivial over Wy = M \ S with nowhere vanishing section ®, as
above. Moreover, the differential of 7 induces an isomorphism, also denoted 7*,
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between K restricted to M \ {p} and K restricted to Wy. Hence over Wy, we
obtain an isomorphism as desired by sending 7*o to (ao7r)®¢>6”’1 . Similarly, we
obtain an isomorphism over W;, i > 1, by sending ¥; to (dz1 A- - -/\dzm)@)(I’;”_l.
By the choice of sections ¥;, these isomorphisms agree on the intersections
Wi N W, hence define an isomorphism over M. O



4 Kahler Manifolds

Let M be a complex manifold with complex structure J and compatible Rie-
mannian metric g = (-,-) as in (2.33). The alternating 2-form

w(X,Y):=g(JX,Y) (4.1)
is called the associated Kdhler form. We can retrieve g from w,
9(X,Y) =w(X,JY). (4.2)

We say that g is a Kdhler metric and that M (together with g) is a Kdhler
manifold if w is closed®.

4.3 Remark. View T'M together with J as a complex vector bundle over
M, and let h be a Hermitian metric on TM. Then g = Reh is a compatible
Riemannian metric on M and Im h is the associated Kéhler form:

g(JX,Y) =Reh(JX,Y) = Reh(iX,Y) = Re(—ih(X,Y)) = Im h(X,Y).

Vice versa, if g is a compatible Riemannian metric on M and w is the associated
Kahler form, then h = g 4 iw is a Hermitian metric on 7M.

In terms of holomorphic coordinates z on M and the frames introduced in
(2.13), we have

ik ={Zj, Zr) =0, g5 =(Zj, Zr) =0 (4.4)
and
9% (Zj, Z) = (Zx, Zj) 95 (4.5)
We also have
G = gjg- (4.6)
With
d2’ ©dz* = d2? @ dz" + dZF ® d2’ (4.7)
we finally get
9=9; dzd ©dz*, w= ing dz? A dz*. (4.8)

We call the matrix (ng) the fundamental matriz of g (with respect to the given
coordinates).

9K4&hler’s original article [K&1] contains much of what we say in this chapter. Compare
also Bourguignon’s essay in [K&2] or his review of Kéhler’s article in [Bo2].
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4.9 Remark. In terms of holomorphic coordinates z as above and the usual
notation, we have

<Xj — i}/j,Xk + ZYk>

DN = | =

1=
{(X;, Xp) —iw(X;, Xp) } = S hiks

where the hj; are the coefficients of the fundamental matrix of h with respect
to the local complex frame (X1,...,X,,) of TM.

4.10 Examples. 1) M = C™ with the Euclidean metric g. Then g is a Kéhler
metric with

1 S i S
g:§ZdzJ®dzJ, w:§Zdzj/\dzJ. (4.11)

For any lattice I' C C™, the induced metric on the complex torus T\C™ is a
Kahler metric.

2) Products of Kéahler manifolds (endowed with the product complex struc-
ture and the product metric) are Kéhler manifolds.

3) A complex submanifold N of a Kéhler manifold M is Ké&hlerian with
respect to the induced Riemannian metric since the Kéahler form on N is the
restriction of the Kahler form of M. More generally, if N — M is a holomorphic
immersion, then IV is Kéhlerian with respect to the induced Riemannian metric.

4) When endowed with the induced complex structure and Riemannian
metric, covering spaces of Kéhler manifolds and quotients of K&hler manifolds
by properly discontinuous and free group actions by holomorphic and isometric
transformations are again Kéhler manifolds.

5) The following construction yields the Fubini-Study metric in the case
of complex projective spaces. Let G, , be the Grassmannian of r-planes in
C™, compare Examples 2.2.4, B.42, and B.83.1. Let M* C C"*" be the open
subset of matrices of rank r and 7: M* — G, ,, be the canonical projection, a
holomorphic principal bundle with structure group Gl(r,C) acting on M* on
the right by matrix multiplication. Let Z be a holomorphic section of 7 over
an open subset U C G, . Define a closed form w of type (1,1) on U by

w =00 Indet(Z' 7). (4.12)

We show first that w does not depend on the choice of Z. In fact, any other
choice is of the form ZF, where F': U — Gl(r,C) is holomorphic, and then

d0Indet(F'Z'ZF) = 00Indet(Z'Z)
since In det F is holomorphic and In det F* antiholomorphic. This shows that w

is well defined independently of Z, and hence w is a smooth form of type (1, 1)
on all of G ,,. The defining formula for w shows that w is closed.
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In the case of complex projective space, that is, in the case r = 1, a straight-
forward computation gives an explicit formula for w (and the Fubini-Study
metric). Let U = {[2%,2] € CP"1 | 2% # 0}. Then w = (1,2/2°) is a section
of m over U and hence

w = i00Indet(1 + |w|?)

_ m((l o) Y dwt Adw - Y @t 2 Y wida). 1)
J j ;

The case n = 2 of complex dimension 1 and the comparison with Formula
4.15 are instructive. In the case 1 < r < n — 1, explicit formulas are more
complicated.

The r-plane spanned by Z € M* is denoted [Z], that is, [Z] = n(Z). We
recall the holomorphic action of Gl(n,C) on G, see Example 2.2.4. For A
in Gl(n,C), we set Aa([Z]) = [AZ] and show next that Aw = w for any A in
U(n). To that end we let Z be a holomorphic section of 7 over the open subset
U C Gy pn. Then A=1Z 0 A4 is a section of 7 over /\Zl(U) and

Nyw = iX4(00Indet(Z'2))
= i00(\y (Indet(Z2)))
= i00(Indet((Z'A) (A7 Z)) o Aa) = w
since A4 is holomorphic and A is unitary.

We want to show now that g(X,Y) = w(X, JY) is a Kahler metric on G, .
By our discussion above it remains to show that g is positive definite. Since
the action of U(n) is transitive on G, , and g is invariant under this action, it
suffices to show this in the point pg, the plane spanned by the first 7 unit vectors
in C™. About py we have holomorphic coordinates [ 1]+ w € C"~")*" where
1 stands for the r x r unit matrix. Hence

w(0) = 109 Indet(1 + W'w)|w=0
= i0tr(((0w")w)(1 + @w) ™) |w=o

= —itrdw’ A dw
= —itrd’ Ndw=1i» _ dwf Adi}.
gk
It follows that
g9(0) = duw © diw}, (4.14)
7,k

and hence g is positive definite. In conclusion, g is a Kéhler metric on G, ,
with Kéhler form w and the natural action of U(n) on G,.,, preserves g and w.
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6) This example is related to the previous one, compare again Examples B.42
and B.83.1. Let G;n C Gy be the open subset of r-planes on which the
Hermitian form @, ,—, as in (B.49) is negative definite. Write Z € C"*" as

7 = (?) with Zg € C"™*" and Z; € C("—7)x",
1

The columns of Z span an r-plane, [Z], in G, iff
Z'Qrin—rZ = =25 20 + Z1 Z1

is negative definite, that is, iff Z§Zy > Z{Z; in the sense of Hermitian matrices.
Then Zj is invertible. Consider the open subset

M* = {Z c (Cnxr | ZéZO > Zzltzl} C (Cnxr
and the canonical projection 7: M* — G, ,, a holomorphic principal bundle
with structure group Gl(r,C) acting on M* on the right by matrix multiplica-
tion. Define a closed form w of type (1,1) on G, by

w = —iddIndet(ZEZy — Z1 Zy),

where Z is a local holomorphic section of w. As in the previous example we see
that w is well defined and positive definite.

Let U(r,n — r) be the group of linear transformations of C" preserving
Qrn—r. Then the natural action of U(r,n —r) on G, , leaves G, invariant
and is transitive on G.,,. The stabilizer of the plane py € G, spanned by the
first 7 unit vectors is U(r) x U(n — r). As in the previous example we see that
w is invariant under the action of U(r,n — r) and that g(X,Y) = w(X,JY) is
a Kahler metric on G, ,,. The case r =1 gives complex hyperbolic space.

The principal bundle 7: M* — G, has a global holomorphic section since

rn

Zy is invertible for all planes in G,,,: If Z is a local holomorphic section, then
W =27y 1 does not depend on the choice of Z and Wy = 1, the r x r unit
matrix. The map

G — (C(n—r)xr

rn )

[Z] — w = W,

is biholomorphic onto the bounded domain D = {w € C"=")*" | @ty < 1}.
We leave it as an exercise to compute the induced action of U(r,n — r) on D.

In the case of complex hyperbolic space, that is, if r = 1, D is the unit ball
in C* !, and the Kihler form w on D is given by

w=—i0d(1 — |w|?)

R TERT IZw|2)2 ((1 —[w)> " dwl Adi? + " @ whdw’ A dw’“).
J 7.k

(4.15)
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For n = 2, we get the real hyperbolic plane with curvature —2. As in the
previous example, the case 1 < r < n — 1 is more complicated and the explicit
formula for w in the coordinates w does not seem to be of much use.

7) Bergmann metric. We refer to [Wei, pages 57-65] for details of the
following construction. Let M be a complex manifold of dimension m and
H(M) be the space of holomorphic differential forms ¢ of type (m,0) on M

such that
™ / YA @ < oo.
M

In a first step one shows that H (M) together with the Hermitian product

.m?2 -
(,9) =1 / pAY
M
is a separable complex Hilbert space. For a unitary basis (¢,) of H(D), set

=i Z On N Pn.

In a second step one shows that this sum converges uniformly on compact
subsets of M and that 6 is a real analytic differential form of type (m,m) on
M which does not depend on the choice of unitary basis of H(M).

Let My C M be the open subset of points p € M such that there are an open
neighborhood U of p € M and yy,...,pm € H(M) such that ¢o(q) # 0 for
all ¢ € U and such that the holomorphic map z: U — C™ given by ¢; = 23 g
defines a holomorphic coordinate chart of M on U. We may have My = ().

In holomorphic coordinates z on an open subset U of M, write

0 =i Fdz' A ANd2™ AdZEA - A dE™.

Then f is a non-negative real analytic function on U and f > 0 on U N M.
The differential form w := i0dIn f on U N My does not depend on the choice
of coordinates, hence w is a real analytic differential form of type (1,1) on
My. The symmetric bilinear form ¢(X,Y) := w(X, JY) is a Kéhler metric on
My with associated Kéhler form w. By construction and definition, My and
0, hence also w and g, are invariant under biholomorphic transformations of
M. More generally, any biholomorphic transformation F: M — M’ induces
a biholomorphic transformation between M, and M| such that the pull back
F*¢' = 6.

If the group of biholomorphic transformations of M is transitive on My,
then, by invariance, = ¢ vol for some constant ¢, where vol denotes the volume
form of g. In holomorphic coordinates z, this reads

i fdzE NdZEA - AdZ™ ANdZ™ = ci™ det GAZL A - Ad2™ A dE™,

where we use notation as in (4.20) below. Hence f = cdet G. From (4.63) below
we conclude that g = — Ric, where Ric denotes the Ricci tensor of g. Hence g
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is an Einstein metric with Einstein constant —1 if the group of biholomorphic
transformations of M is transitive on M.

If D is a bounded domain in C™, then pg = dz! A+ Adz™ and p; = 27 o,
1 < j < m, belong to H(D). Hence Dy = D; we obtain a Kihler metric g on
D, the Bergmann metric of D.

Let D be as in the previous example. Then up to a scaling factor, the
Bergmann metric of D coincides with the K&hler metric defined there since the
action of U(r,n — r) is transitive on D and preserves both metrics and since
the induced action of the stabilizer U(r) x U(n — r) of 0 on the tangent space
ToD = C("=")%7 ig irreducible. The scaling factor can be determined by the
above observation that the Bergmann metric of D is Einsteinian with Einstein
constant —1.

4.16 Proposition. Let M be a compler manifold with a compatible Rieman-
nian metric g = (-,-) as in (2.33) and Levi-Civita connection V. Then

dw(X,Y,2) = ((Vx )Y, Z) + (Vv J)Z,X) + {(VzJ)X,Y),
2(VxJ)Y, Z) = dw(X,Y, Z) — dw(X, JY, JZ).

Proof. Since M is a complex manifold, we can assume that the vector fields X,
Y, Z, JY, and JZ commute. Then

dw(X,Y,Z) = Xw(Y,Z) + Yw(Z,X) + Zw(X,Y),

and similarly for dw(X, JY, JZ). The first equation is now immediate from the
definition of w and the characteristic properties of V. As for the second, we
have

(Vx )Y, Z) = (Vx(JY), Z) = (J(VxY), Z)
=(Vx(JY), Z2) +(VxY, ] Z).

By the Koszul formula and the definition of w,

2UVx(JY),Z) = X(JY, Z)+ JY (X, Z) — Z(X,JY)
=Xw(Y,Z) = JYw(JZ,X) + Zw(X,Y)

and
2AVxY,JZ)=X{Y,JZ)+Y(X,JZ)— JZ(X,Y)
= Xw(lJY,JZ)+Yw(Z,X) - JZw(X,JY),
where we use that X,Y, Z, JY, and JZ commute. O

4.17 Theorem. Let M be a complex manifold with a compatible Riemannian
metric g = (-,-) as in (2.33) and Levi-Civita connection V. Then the following
assertions are equivalent:
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—_

. g 1s a Kdhler metric.
dw = 0.
VJ=0.

Ll

In terms of holomorphic coordinates z, we have
3ng 99, ang _ 8gjl_

1k .
—=  or, equivalently, = —.
e YoThz T azk

Azt 9z

5. The Chern connection of the Hermitian metric h on TM as in Remark 4.3
is equal to the Levi-Civita connection V.

6. For each point po in M, there is a smooth real function f in a neighbor-
hood of po such that w = i00f.

7. For each point pg in M, there are holomorphic coordinates z centered at
po such that g(z) =1+ O(|z|?).

A function f as in (6) will be called a Kdhler potential, holomorphic coordi-
nates as in (7) will be called normal coordinates at pg. The existence of normal
coordinates shows that a Kahler manifold agrees with the model example C™
in (4.10) up to terms of order two and higher.

Proof of Theorem 4.17. By definition, (1) and (2) are equivalent. The equiva-
lence of (2) and (3) is immediate from Proposition 4.16. The equivalence of the
two assertions in (4) follows from barring the respective equation. The equiv-
alence of (2) with (4)is immediate from d = & 4+ 0 and the formulas defining
0 and 0. The conclusions (6) = (2) and (7) = (3) are easy and left as an
exercise.

We show now that (3) is equivalent with (5). Let X be a local holomorphic
vector field and Y be another vector field on M. Then

VivX =Vx(JY)+[JY,X]=Vx(JY) + JY, X],
where we use that X is automorphic, see Proposition 2.18. On the other hand,
JVyX =J(VxY +[Y, X]) =JVxY + JX,Y].

Hence J is parallel iff VX is of type (0, 1) for all local holomorphic vector fields
of M. Tt is now obvious that (5) = (3). Vice versa, if J is parallel, then V is
Hermitian with respect to h, hence (3) = (5) by what we just said.

We show next that (2) = (6). Since w is real and dw = 0, we have w = da
locally, where « is a real 1-form. Then o = 8 + 3, where 3 is a form of type
(1,0). Since w is of type (1,1), we have

93=0, 98=0 and w=0p+ dp.
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Hence 3 = 9y locally, where ¢ is a smooth complex function. Then § = 0@
and hence

w=00p + 0% = 00(@ — @) = i00f

with f =i(¢ — @).

We explain now that (4) = (7). Let z be holomorphic coordinates centered
at po such that g(0) = 1. Then g(z) = 14+0(|z|). We solve for new holomorphic
coordinates Z such that

_ 1
J.— 3] T AT ksl
2 =2z 4+ 2Aklz z",

where
, 09,
Ay = —672(0)-
Applying (4) we get that §(z) = 1 + O(|2]?). O

4.18 Remarks. 1) Let J be an almost complex structure on a manifold M
and g be a compatible Riemannian metric on M. If J is parallel with respect
to the Levi-Civita connection of g, then J is a complex structure and hence
M is a Kahler manifold, see Exercise 2.6.2. This generalizes Criterion 3 of
Theorem 4.17.

2) It is immediate that V.J = 0 iff 7'M, T"”M are parallel subbundles of
the complexified tangent bundle TcM = T M ® C with respect to the canonical
complex linear extension of V to TeM, V(X +iY) = VX +iVY.

4.1 Kahler Form and Volume. One of the most basic features of a Kéhler
manifold is the intimate connection between its Kahler form and volume. Let
M be a Kéhler manifold of complex dimension m with Kahler form w. There
are the following expressions for w,

w=igpd NdZF =N X;AY] =53 2N, (4.19)

where (21,...,2™) are local holomorphic coordinates, (X1, Y1, ..., Xm, Ym) is a
local orthonormal field with JX; =Y}, and (Z;, Zj) is the associated complex

frame as in (3.30). In turn, we get the following equivalent expansions of w™,
W™ =i"mldet Gdzt AdZE Ao Adz™ AdZE™
=mIXFAYS A AXEAY
=i MIZINZE N NTE N T,

= m/!vol,

(4.20)

where G = (ng) and where vol denotes the volume form of M.
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4.21 Remark. A differential two-form w on a manifold M is called a symplectic
form if dw = 0 and w is non-degenerate at each point of M, that is, for each
point p € M and non-zero vector v € T, M there is a vector w € T), M such that
w(v,w) # 0. A manifold together with a symplectic form is called a symplectic
manifold. If w is a symplectic form on M, then the real dimension of M is
even, dim M = 2m, and w™ is non-zero at each point of M.

The Kéhler form of a Kéhler manifold is symplectic. Vice versa, the Dar-
boux theorem says that a symplectic manifold (M, w) admits an atlas of smooth
coordinate charts z: U — U’ C R?™ = C™ such that 2*wean = w, where

Wean = dej /\dyj = %Zdzj AdZ

is the Kahler form of the Euclidean metric on C™ as in Example 4.10.1. Refer-
ences for the basic theory of symplectic forms and manifolds are [Ar, Chapter
8] and [Du, Chapter 3]. Compare also our discussion of symplectic Lagrangian
spaces in Example B.53.

4.22 Exercise (Compare (5.43)). Show that *expw = expw, i.e., that

1 . 1
k—w! = ———w
J! (m — j)!
4.23 Theorem. Let M be a Kdhler manifold as above.
1) If M s closed, then the cohomology class of w* in H**(M,R) is non-zero
for 0 < k <m. In particular, H**(M,R) # 0 for such k.
2) If N C M is a compact complex submanifold without boundary of complex
dimension k, then the cohomology class of w* in H**(M,R) and the homology
class of N in Hap(M,R) are non-zero.

m—j

Proof. Evaluation of w™ on the fundamental cycle of M, that is, integration of
w™ over M gives

/ w™ =mlvol(M) # 0.
M

This shows the first assertion. As for the second, we note that N with the
induced metric is a Kéhler manifold, and the Kéhler form is the restriction of
w to N. Hence integrating w* over N gives k! times the volume of N. U

4.24 Example. For m > 2, the Hopf manifold $?™~! x S! has vanishing
second cohomology, hence does not carry a Kéhler metric.

4.25 Remark. Let (M,w) be a closed symplectic manifold of (real) dimension
2m. Since w is closed and w™ is non-zero at each point of M, the argument in
the proof of Theorem 4.23 applies and shows that H2*(M,R) #0, 0 < k < m.
It follows that S?™~! x S! does not even carry a symplectic form if m > 2. It
is natural to ask whether there are closed manifolds which carry a symplectic
form but not a Kahler metric. The answer is yes, see Example 5.37.2
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4.26 Wirtinger Inequality. Let W be a Hermitian vector space with inner
product (v,w) = Re(v,w) and Kdahler form w(u,v) = Im(u,v). Let V.C W be
a real linear subspace of even real dimension 2k and (v1,...,vax) be a basis of
V. Then

|wk(vl, ooy vag)] < Elvoly (v, ..., vag)
with equality iff V' is a complex linear subspace of W.

Proof. Observe first that both sides of the asserted inequality are multiplied by
| det A| if we transform (v1,...,ve,) with A € G1(2k,R) to another basis of V.
Hence we are free to choose a convenient basis of V.

Let v,w € W be orthonormal unit vectors with respect to (-,-). Then
w,w) = (Jv,w) € [-1,1] and w(v,w) = £1 iff w = £Jv. This shows
the assertion in the case k = 1. In the general case we observe first that the
restriction of w to V' is given by a skew-symmetric endomorphism A of V. Hence
there are an orthonormal basis (vi,...,vo,) of V and real numbers a1, ..., ax
such that

A('UQj_l) = a;V2; and A(’UQj) = —a;V2;5-1-
By what we said above, |a;| < 1 with equality iff vo; = +Jvgj_1. Therefore
|wk(v1, . ,ng)| = k!|a1 .. .ak| S k' = k‘!VOlv(Ul, e ,ng)
with equality iff V' is a complex linear subspace of W. O

4.27 Theorem. Let M be a Kdhler manifold as above. Let N C M be a
compact complex submanifold of real dimension 2k with boundary ON (possibly
empty). Let P C M be an oriented submanifold of dimension 2k and boundary
OP = ON. If N—P is the boundary of a real singular chain, then vol N < vol P
with equality if P is also a complex submanifold.

Proof. Since N — P is the boundary of a real singular chain and w* is closed,

we have
/wk—/wkzwk(N—P):O.
N P

On the other hand, by the Wirtinger inequality 4.26 we have

/ Wk =vol N and / wF < vol P,
N P

and equality holds iff P is a complex submanifold. O

It follows that a complex submanifold N C M is minimal, that is, the trace
of the second fundamental form S of N vanishes. In fact, Theorem 4.27 implies
that IV is pluri-minimal in the sense that any complex curve in N is minimal in
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M. This can also be seen by the following computation: Let X,Y be tangent
vector fields along N. Since N is complex, JY is tangent to N as well and

S(X,JY) = (Vx(JY))" = (JVxY) = J(VxY)t = JS(X,Y), (4.28)

where we use that the normal bundle of NV is invariant under J. It follows that
S is complex linear in Y, hence, by symmetry, also in X. Therefore

S(X,X)+S(JX,JX) = S(X,X) - S(X,X) =0,

which is what we wanted to show.

4.2 Levi-Civita Connection. Let M be a Kéhler manifold. Recall the com-
plex linear extension of V to TeM, V(X +1Y) = VX 4+ iVY. We now extend
V also complex linearly in the other variable,

v(U+iV)Z =VyZ+1iVyZ. (4.29)

The extended connection is symmetric with respect to the complex bilinear
extension of the Lie bracket to complex vector fields,

VwZ— VW =[W,Z], (4.30)

and metric with respect to the complex bilinear extension of the metric of M
to TcM,
V(U V) =(V,UV)+ (U VzV). (4.31)

We also have _
VVT/Z =VwZ. (4.32)

Since 7'M and T"” M are complex subbundles of Te M, they stay parallel with
respect to the extension. More precisely, since J is parallel,

v(X+iJX)(Y +iJY)=(VxY +VyX)+iJ(VxY + VyX) (4.33)
if [JX,Y] = 0. Furthermore, if [X,Y] = [JX,Y] =0, then

With respect to local holomorphic coordinates z of M, we let

0 1 0 .0 = 0 1 0 .0
Zj_@_§(%_’8_yf)’ Zj‘@‘i(%“@>’ (435

where 27 = 27 +iy’, 1 < j < m. By (4.34), the mixed covariant derivatives

vanish, B
VZjZk = VZ_Zk =0. (4.36)
J
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Since 7'M and T" M are parallel, we get unmixed Christoffel symbols
Vz,Zrk=T4%2 and V Z 7y = r%EZl. (4.37)
All Christoffel symbols of mixed type vanish. Furthermore, by Equation 4.32
we have .
ng =T%,. (4.38)

By (4.31) and (4.36),

_ a9, -
U590 = V2, 2k, Z1) = —Al

02
_ _ 09 09, -
g = (V- - Ikl _ Z7kl
Upom = (V2,26 20 = 527 = g5
Thus the Christoffel symbols are given by
7 gk
Fék = F;Lkguf/g ! = 8ZJ g l’ (439)

where the coefficients gEl denote the entries of the inverse of the fundamental
matrix.

4.3 Curvature Tensor. The curvature tensor of the complex bilinear exten-
sion of V to TcM is the complex trilinear extension of the usual curvature
tensor R of M to TcM. We keep the notation R for the extension. Then
R satisfies the usual symmetries, but now, more generally, for complex vector
fields X, Y, Z, U, V,

R(X,Y)Z = —R(Y,X)Z,

RX.YNZ+R(Y,Z) X+ R(Z,X)Y =0, (4.40)
and
(R(X,Y)U,V) =—(R(X,Y)V,U), (4.41)
(R(X,Y)U,V) = (R(UV)X,Y).
We also have the reality condition
R(X,Y)Z = R(X,Y)Z. (4.42)

In addition, since J is parallel,

R(X,Y)JZ = JR(X,Y)Z. (4.43)
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By (2.33), (4.41), and (4.43),
(R(X,Y)JU,JV) =(R(JX,JY)U,V) = (R(X,Y)U,V). (4.44)
Since 7'M and T" M are parallel, we have
RWU,VYT'M)CT'M and R(U,V)(T"M)CT"M. (4.45)
With respect to local holomorphic coordinates,
R(Zj, Zy) = R(Z;j, Zy,) = 0. (4.46)
For the mixed terms, we get from (4.45)

R(Z;, Zy) 2, = R;‘EZZ#, R(Z;, Zy)Z1 = R Z,,,

_ _ S (4.47)
R(Z;,Zy)Z = R;‘MZM, R(Z;,Zy)Z; = R;‘El_ZM.
Equation 4.42 implies that
R _=R" and R"_=R' . (4.48)
Jkl Jkl jkl Jkl
By (4.36), we have
Ll R L 4.49
B e VR (4.49)

Recall that the sectional curvature determines the curvature tensor. We define
the holomorphic sectional curvature of M to be the sectional curvature of the
complex lines in TM. If X is a non-zero tangent vector of M, then the com-
plex line spanned by X has (X, JX) as a basis over R and the corresponding
holomorphic sectional curvature is

(R(X,JX)JX,X)
X4

K(XAJX) = (4.50)

4.51 Proposition. The holomorphic sectional curvature determines R.

Proof. We follow the proof of Proposition IX.7.1 in [KN] and consider the
quadri-linear map

Q(X,Y,U,V) = (R(X,JY)JU,V) + (R(X, JU)JY,V) + (R(X, JV)JY,U).

It is immediate from the symmetries of R listed above that @ is symmetric.
Thus polarization determines @ explicitly from its values

Q(X,X,X,X)=3K(X AJX)-|X|* (4.52)
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along the diagonal. Hence it suffices to show that @) determines R. Now
Q(X,Y,X,Y)=2(R(X,JY)JY, X) + (R(X,JX)JY,Y).
By the second symmetry in (4.40),

(R(X,JX)JY,Y) = —(R(JX,JY)X,Y) — (R(JY, X)JX,Y)
= (R(X,Y)Y, X) + (R(X, JY)JY, X).

Therefore
QX,Y,X,)Y)=3(R(X,JY)JY, X) + (R(X, Y)Y, X),
and hence also
QX,JY, X, JY)=3(R(X,Y)Y,X) + (R(X,JY)JY, X).
In conclusion,
3Q(X,JY, X, JY) - Q(X,Y, X,Y) =8(R(X,Y)Y, X). (4.53)
Hence @ determines the sectional curvature, hence R. g

4.54 Exercise. The bisectional curvature of X, Y is defined to be (R(X, JX)JY,Y).
Show that it deserves its name,

(R(X,JX)JY,Y) = (R(X,Y)Y, X) + (R(X,JY)JY, X).

4.4 Ricci Tensor. The Ricci tensor is defined by
Ric(X,Y) =tr(Z — R(Z, X)Y), (4.55)

where we can take the trace of the map on the right hand side as an R-linear
endomorphism of T'M or as a C-linear endomorphism of Tc M. The Ricci tensor
is symmetric and

Ric(X,Y) = Ric(X,Y). (4.56)

The associated symmetric endomorphism field of TM or TeM is also denoted
Ric, that is, we let (Ric X,Y’) := Ric(X,Y).

4.57 Proposition. In terms of an orthonormal frame (X1, J X1, ..., Xm, JXm)
of M, the Ricci tensor is given by

Ric X =) R(X;,JX;)JX.

In particular, Ric JX = JRic X.
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Proof. We compute

Ric(X,Y) = Y (R(X;, X)Y, X;) + > (R(JX;, X)Y,JX;)

= (R(X;, X)JY,JX;) = Y (R(JX;,X)JY,X;)
(R(X,X;)JX;,JY)+ Y (R(JX;,X)X;,JY)

==Y (R(X;, JX;))X,JY) =Y (R(X;,JX;)JX,Y). DO

We conclude that
Ric(JX,JY) = Ric(X,Y). (4.58)

and hence there is an associated real differential form of type (1,1), the Ricci
form
p(X,Y) = Ric(JX,Y). (4.59)

In terms of local holomorphic coordinates,
Ric(Z;, Zy) = Ric(Z;, Zy,) = 0, (4.60)

by (4.47). For the mixed terms, we have

_ . orL [
Ric(Zj,Zk):Ré_jE: 821 = Ric; = Ric;, = Ric(Z;, Zy). (4.61)

With G = (ng) we get, by (4.39),

81“5# tr (gj G—l) =TIk (4.62)
Therefore,
Ric ; = —%. (4.63)
For the Ricci form we get
p=iRic dz A dzZ* = —i90Indet G. (4.64)

This formula shows that p is closed. In fact, by the above computation of the
Ricci curvature we have

p(X,Y) == (R(X,Y)E;, JE;) =Y (JR(X,Y)E;, E))
=iy (R(X,Y)E; Ej)+iy i(JR(X,Y)E;, E;) (4.65)
=iy h(R(X,Y)E;,E;) =itr R(X,Y),

where we consider T'M with the given complex structure J as a holomorphic
vector bundle over M with Hermitian metric h = g+iw. Now V is a connection
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on T'M considered as a complex vector bundle, namely the Chern connection
associated to h. By (A.33) and (A.35), the first Chern form of T'M associated
to V is given by

1 1

This shows again that p is closed. It also shows that [p/27] = ¢1(T'M) in
H?(M,R) and hence that [p/27] lies in the image of H?(M,Z) — H?(M,R).

The induced curvature on the canonical bundle Kjy; = A™C(M,C) is given
by

Cl(TM, V) =

R(X,Y)(dz1 A+ Ndzp,) = ip(X,Y) - dzi A+ -+ Adzn,. (4.67)

To prove this, we use that the curvature R acts as a derivation on A*(M,C),

RX,Y)(d2r A+ Adzm) =Y dzy Ao+ ANR(X,Y)dzj A+ Adzm
=—tr R(X,Y)(dz1 A+ Ndzp).

Now the claim follows from (4.65). We conclude that the first Chern form

- 1 1
cl(KM,V):—%trR:—%p:—cl(TM,V). (4.68)

4.5 Holonomy. Kaihler manifolds are characterized by the property that their
complex structure is parallel. This links the Kéhler condition to holonomy!°.
Suppose that M is a connected Kéhler manifold, and let p be a point in
M. Then the complex structure J, turns 7T, M into a complex vector space.
Since J is parallel, the holonomy group Hol M = Hol, M of M at p preserves
Jp. Hence up to a unitary isomorphism of (T,,M, Jp) with C™, m = dimc M,
the holonomy group Hol Mof M is contained in U(m). Vice versa, let M be a
connected Riemannian manifold of dimension n = 2m and p be a point in M.
Suppose that after some identification of T, M with R*™ and of R*™ with C™,
the holonomy group Hol, M C U(m) C SO(2m). Then the complex structure
Jp on T, M induced from the complex structure on C™ extends to a parallel
complex structure J on M, and M together with J is a Kahler manifold. We
formulate the result of our discussion in the following somewhat sloppy way.

4.69 Proposition. A connected Riemannian manifold of real dimension 2m
is a Kdhler manifold iff its holonomy group is contained in U(m). g

If the holonomy along a closed loop c of M at p is given by A on T, M, viewed
as a complex vector space, then the induced holonomy on the fiber Az”"O(M ,C)
of the canonical bundle is given by the complex determinant detc A. Hence
Hol(M) C SU(m) iff A™9(M,C) has a parallel complex volume form. It also
follows that the reduced holonomy group Holo(M) C SU(m) iff A™%(M,C) is
flat. By (4.67) this holds iff M is Ricci-flat, that is, if Ric = 0.

10Excellent references for holonomy are [Bes, Chapter 10], [Br], and [Jo, Chapter 3].
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4.70 Proposition. A connected Riemannian manifold of real dimension 2m

is a Ricci-flat Kdhler manifold iff its reduced holonomy group is contained in
SU(m). O

4.71 Remark. A connected Riemannian manifold M of real dimension 2m
with holonomy Hol(M) C SU(m) is called a Calabi-Yau manifold!. If the real
dimension of M is 4k, we may also have Hol(M) C Sp(k) C SU(m), then M is
called a hyper-Kdhler manifold. By Proposition 4.70, Calabi—Yau and hyper-
Kaéahler manifolds are Ricci-flat Kéhler manifolds. For examples of Calabi—Yau
and hyper-Kéahler manifolds, see Chapters 6 and 7 in [Jo].

Let M be a simply connected complete Riemannian manifold. Then we
have the de Rham decomposition,

M = My x My X -+ X My, (4.72)

where My is a Euclidean space and M;, ¢ > 1, is a simply connected complete
Riemannian manifold with irreducible holonomy'2. Moreover, this decomposi-
tion is unique up to a permutation of the factors M;, ¢ > 1. Hence we have, at
a point p = (po,p1,.-.,Pk) € M,

Hol M = Hol My X --- x Hol M. (4.73)
After identifying T}, M; with the corresponding subspace of T}, M, we also have
T, My = Fix Hol M, (4.74)
the set of vectors fixed by Hol M, and, for each ¢ > 1,
Ty, Mo + Ty, M; = Fix | [ Hol M;. (4.75)
J#i
Suppose now in addition that M is a Ké&hler manifold. Then the complex
structure J of M is parallel, and hence J,A = AJ, for all A € HolM. By
(4.74), we have J,T,, Mo = Tp, Mo, hence My is a complex Euclidean space.
From (4.75) we conclude that JpT,,M; = T,,M; for all i > 1. Now the de
Rham decomposition as in (4.72) implies the de Rham decomposition for Kéhler
manifolds.

4.76 De Rham Decomposition of Kihler Manifolds. Let M be a simply
connected complete Kdhler manifold. Then

M:M()XMlX---XMk,

where My is a complex Fuclidean space and M;, i > 1, is a simply connected
complete Kahler manifold with irreducible holonomy.

1 There are variations of this definition in the literature.
121t is understood that My = {0} and k = 0 are possible.
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4.6 Killing Fields. We start with a discussion of Killing fields on Riemannian
manifolds.

4.77 Proposition (Yano [Ya], Lichnerowicz [Lil]). Let M be Riemannian and
X be a vector field on M. Then

X is a Killing field = divX =0 and V*VX = Ric X.

If M s closed, then the converse holds true as well.

Proof. If X is a Killing field, then Lxg = 0 and hence div X = tr Lxg/2 = 0,
see (1.8). Furthermore, V*VX = Ric X by Exercise 1.5.2.

Suppose now that M is closed and let &€ = X”. The decomposition of the
bilinear form @5 into symmetric and skew-symmetric part is given by

. A Ao 1 1
VE = (VEP™™ + (Ve = ZLxg + Sd¢.

Using that V* =d* on alternating two-forms, we obtain
V*VE = %@*(Lxg) + %d*df.
The second ingredient is a simple consequence of the Bochner identity 1.38:
V*VX =RicX <= V*'V¢ = %Ad(g).

Assume now that divX = 0 and V*VX = RicX. Since divX = —d*¢, we
obtain
V*Lxg = dd*€ = 0.
It follows that Lxg is L2-perpendicular to im V. However, adding the term
d¢ to Lxg, which is pointwise and hence L?-perpendicular to Lxg, we get
2@5 € imV. We conclude that L x¢g = 0 and hence that X is a Killing field.
O

Recall that a vector field X on a complex manifold M is automorphic iff
[X,JY] = J[X,Y] for all vector fields Y on M. In Proposition 2.18 we showed
that X is automorphic iff X is holomorphic.

Suppose now that M is a Kédhler manifold, and let X be a vector field
on M. Since the Levi-Civita connection is equal to the Chern connection of
the holomorphic vector bundle T'M with the induced Hermitian metric, X is
automorphic iff VX is a form of type (1,0) with values in TM. In fact,

VoyX = VxJY — [X,JY]
= JVxY - [X,JY] (4.78)
= JVy X + J[X,Y] - [X, JY]

for any vector field Y on M. That is, X is automorphic iff VX o J = J o VX.
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4.79 Proposition (Lichnerowicz [Li2]). Let M be a Kdhler manifold and X
be a vector field on M. Then

X is automorphic — V*VX = Ric X.

If M is closed, then the converse holds as well.

Proof. We decompose the one-form VX into types,
1 1
VX =X 4+ Vvoix = §(VX— JoVXolJ)+ 5(VX+JOVXOJ).

This decomposition is pointwise and hence L?-perpendicular. From (4.78) we
getthat X is automorphic iff VO1X = 0.
The key observation is the following:

V*(JoVXolJ)=JoV*(VXolJ)=—RicX, (4.80)

where the first equality holds since J is parallel and the second follows from
Proposition 4.57. We conclude that

2V*VOL X = V*VX — Ric X.

Hence if X is automorphic, then V*V X = Ric X.

We now repeat the linear algebra argument from the end of the proof of
Proposition 4.77: Suppose that M is closed and that V*VX = Ric X. Then
V*Vo1X = 0, hence V¥ X is L?-perpendicular to imV. Adding the term
V10X, which is L2-perpendicular to V®'X, we get VX € imV. Hence
VOlX =0. O

Comparing Propositions 4.77 and 4.79 we arrive at the final result in this
subsection.

4.81 Theorem. Let M be a closed Kdhler manifold. Then Killing fields on
M are automorphic. Vice versa, an automorphic field is a Killing field iff it is
volume preserving. 0

4.82 Exercise. Find non-automorphic Killing fields on C™, m > 2.

4.83 Remark. The description of Killing and automorphic vector fields in
terms of the equation V*V X = Ric X is important for the global geometry of
compact Kéhler manifolds with Ric < 0 or Ric > 0, compare Chapters 6 and
7.

That Killing fields on a closed Kéhler manifold M are automorphic can
also be seen in a more conceptual way: A Killing field preserves the metric of
M. Hence in order to show that it preserves J as well, it is clearly enough to
show that it preserves w, that is, that Lxw = 0. But w is parallel and hence a
harmonic form.
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Now every diffeomorphism of M acts on H*(M,R), but isometries of M
act on H*(M,R) as well. Clearly, for isometries the two actions are compatible
with the Hodge isomorphism H*(M,R) — H*(M,R). It follows that homo-
topic isometries induce the same maps on H* (M, R), hence connected groups of
isometries act trivially on H*(M,R). In particular, Lxa = 0 for all harmonic
forms « and all Killing fields X.



5 Cohomology of Kahler Manifolds

Let M be a Kahler manifold. In our applications to cohomology further on
we will assume that M is closed. But for the moment this assumption is not
necessary since all of our computations are of a local nature.

Let E — M be a holomorphic vector bundle over M. Let h be a Hermitian
metric on £ and D be the corresponding Chern connection. In what follows,
we use notation and results introduced in Chapter 1.

We consider some endomorphism fields of A*(M, E) and their relation with
exterior differentiation. To that end we recall that each element « of A*(M, E)
can be written uniquely as a sum « = ) a,., where «, has degree r, or as a sum
a =Y a4, where o, 4 is of type (p,q). The corresponding maps P,: a — a,
and P, 4: a — oy q define fields of projections of A*(M, E).

The complex structure J of M acts on A*(M, E) via pull back. The induced
endomorphism field of A*(M, E) is denoted C. Note that C leaves the type of
a form invariant. In terms of the above projection fields, we have

C=> i""1P,, (5.1)
The adjoint operator is
C* =) i1PP,,=C"". (5.2)

We set W := (¥ ® h*)(x ® h). Again, W leaves the type of forms invariant.
Since the real dimension of M is even, we have

W=> (-1)"P,. (5.3)
The Lefschetz map is defined by

L) =wha=Y X;AY] ha=>"Z; A Zj Ao, (5.4)

where w is the Kihler form of M and (X;,Y;) and (Z;, Z;) are frames as in
(3.30). The Lefschetz map raises types of forms by (1,1). To compute the
adjoint operator L* of L we use the first relation in Exercise 1.26 3. Since
Zr=22"

J R

* 2 7
Lo =) Yju(XjLa) = - > Zj(Zjra). (5.5)
We have vanishing commutators
[L,C]|=[L,W]=[L",C]=[L"W] =0, (5.6)

by (5.1) and (5.3), where we note that C and W leave the type of forms invariant
and that L raises and L* lowers the type by (1,1).

13The L2-adjoint of a field of endomorphisms is the field of adjoint endomorphisms so that
there is no ambiguity here.
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5.7 Remark. The operators C, W, and L and their adjoints are real, that is,
also defined on A*(M,R) and corresponding bundle valued forms A*(M, E),
where F is a real vector bundle, endowed with a Riemannian metric.

5.8 Proposition. [L*,L] =Y (m — r)P,..
Proof. By (5.4), (5.5), and Exercise 1.26 (applied to complex tangent vectors),
LL*a =Y Zi NZ; N Zy(Zpea))

== Z; NMZe(Z; N Zeea) + Y Z5 N Z5 N (Zj(Zjia)).
J#k j=k

Vice versa,

L'La =Y Zy(Ze(Z; NZ; Aa))

== Zu(Z; NZe(Z N) + Y Z; (2 (25 NZ; N av)).
#k =k

The first terms on the right hand sides of the above formulas coincide, hence
cancel in the commutator [L*, L]. Assume now without loss of generality that

a=Z;NZ%® o, where I and J are multi-indices. Then the second term on
the right hand side in the first formula counts the number of j with j € I and
j € J. The second term on the right hand side in the second formula counts
the number of j with j ¢ I and j ¢ J. O

We recall now that the standard basis vectors

X:(g é), Y:(g g), H:((l) _01> (5.9)
of sl3(C) satisfy
[X,Y]=H, [H X]=2X, [HY]=-2Y. (5.10)
It follows that
XL YL Hw—Y (m-rP (5.11)

extends to a representation of sla(C) on (the fibers of) A*(M,E) and on
A*(M, E). Finite dimensional representations of sly(C) split into the sum of
irreducible ones, where the latter are classified by integers n > 0:

Vo=Cvo+CYv+---4+CY", (5.12)

where v € V,,, v # 0, is primitive, that is, Xv = 0, and where HY *v = (2k—n)v,
see e.g. Lecture 11 in [FH]|. We note that Hv = —nw.
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5.13 Exercise. Show that on A"(M, E) and for s > 1,
[L%,L*] = s(r —m)L*~ !,

The tensor field L* is parallel and has constant rank on A"(M, E). Hence
its kernel A% (M, E) of primitive forms of degree r is a parallel subbundle of
A"(M, E). We denote by AR (M, E) the space of smooth sections of A% (M, E).

By Proposition 5.8 and what we said about representations of sl (C), we
have A% (M,E) = 0 for r > m. Furthermore, if o € AL(M, E), a # 0, then
L’a#0for 0 < s <m—rand L°a = 0 for s > m — r. It follows that the
parallel tensor field L*: A"(M, E) — A""25(M, E) is injective for 0 < s < m—r
and surjective for s > m — r, and similarly for A"(M, E). Since any finite
dimensional representation of sly(C) splits into irreducible ones,

A"(M,E) = ©s50L° A2 (M, E), (5.14)
A"(M,E) = @550L°* Ay ** (M, E), (5.15)

the Lefschetz decompositions of A™(M,E) and A"(M, E).
Since Y (m —r) P, preserves types of forms and since L raises and L* lowers
types by (1, 1), we have refined decompositions,

Ap7q(M, E) = @SzoLSAZI)Di&qiS(M, E), (516)

.Ap’q(M, E) = @SzoLSAZ;_)_S’q_S(M, E), (517)

the Lefschetz decompositions of AP4(M, E) and AP9(M, E). Tt is trivial that
APYM,E) = ABY(M,E) and APY(M,E)= A% (M, E) (5.18)

ifp=0orifqg=0.

5.19 Remark. Since the tensor field L is parallel, the Lefschetz decompositions
of A"(M, E) and AP9(M, E) are parallel. It follows from Exercise 5.13 that they
are orthogonal as well.

5.1 Lefschetz Map and Differentials. We now compute commutators with
exterior derivatives. It is immediate from (3.32) and (4.19) that
[L,0°] =[L,0] = [L,d"”] =0. (5.20)

Hence the commutators of the adjoint operators also vanish,

L, (0°)"] = [L*, 8] = [L*, (d°)"] = 0. (5.21)
5.22 Proposition. We have

[L,(0P)*] =40, [L,0%]=—idP, |[L*,0P)=1i0*, [L*,0]=—i(dP)*.

Proof. By (3.33) and (4.19),

* { * % -
L(OP) a = = > ZiNZi N (22w Dy a) =
gk
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=—iy Zw(Z; NZj ANDg a)+iY  Z; N(Zj(Z; A Dy )
Jj#k Jj=k

and

* i - * 7%
(0P)*La = -3 > 22Dy (Z; NZ; Na)
gk
=—iY Zw(Z; NZ; A Dy a)).
gk

In conclusion,

L, (0P) =Y {Z; N(Zj(Z; A ﬁzja)) +Z;(Z; N(Z; AD, o))}
J
= ZZZJ* /\ﬁza = i0a.
J

The proof of the second equation [L, 9*] = —id” is similar. The remaining two
equations are adjoint to the first two. O

We now discuss the three Laplacians Ag, A
with the Lefschetz map.

50 and Agp and their relation

5.23 Proposition. We have
[L,Ag] = —iRP A.  and [L,Agp] =iRPA.,
where RP A, is the operator sending o to RP A, o

Proof. From Proposition 3.29 we recall that RPA. = 8P0+ 00”. By Equation
5.20 and Proposition 5.22, we have

[L,Aj] = LAJ* + L&*0 — 90" L — 9* 9L
= JLI* + 8" LI — idPd — HLI* — idd” — §* L
= —i(dP0 + 99P).
Similarly,
[L, Agp] = LOP(8P)* + L(9P)*aP — oP(8P)* L — (9P)*oP L
= 9P L(OP)* + (9P)*LoP +iddP — dPL(9P)* + 0P — (0P)*LoP
=i(0P0 + 20"). O
5.24 Lemma. We have
P9 + 070" = 8(0")* + (97)*0 = 0.
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Proof. By Proposition 5.22, we have
(8P)* 4+ (9P)*d = iOL*0 — iDOL* + iL*dd — iDL*d = 0

since 00 = 0. Now 9P 0* + 0*9" is the adjoint operator of d(dP)* 4 (9P)*0.
The lemma follows. |

5.25 Theorem. We have
Aé +App =Ayp  and Ag —Ayp = [iRD/\E, L.
In particular, [L, Agp] = 0 and Agp preserves the type of forms.

Proof. We compute

Agp = (0P +9)((0P)* + %) + ((0P)* + 9%)(9"

(0" +9)
= App + A5+ 079" +9(07) + (07)*0+ 90

P=App + A5,
by (5.24). Now the two last claims follow from Proposition 5.23 and since Agp
and Aé preserve the type of forms.

To prove the second equality, let o and 8 be differential forms with values
in E, where 8 has compact support. Then there is no boundary term when

considering integration by parts as in the L?-products below. By Equation 5.20
and Proposition 5.22,

(i0*a, 0 B)s = (L* 0P, *B)2 — (0P L*at, 0" )2
= (8L 0P, B)y — (80P L*a, ),
= (L*00"a, B)2 + (i(8P) 0P v, B)2 — (9OP L* v, B)2.

Similarly,
(i9a, 38)> = —(Dav, iDB)s
— (0o, L(OP)*B)2 + (Dcv, (0P)*LB)2
—(L*da, (87)* B)2 + (L*0P D, )2
—(OL*, (OP)B)2 + (i(d) e, (8P)*B)2 + (L* 87 Dav, B)o
—(@PdL*a, B)y + (0P (0P)* o, B)2 + (L*OP B, B),.

The sum of the terms on the left hand side is equal to (iAza, )2, hence the
second equality. O

5.26 Corollary. If D s flat, then 2A5 = 2A5p = A4.
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Since L commutes with Ago and Agp = (Ayp)*, L* commutes with Ayp
as well. Hence the representation of sl3(C) on A*(M, E) as in (5.11) induces
a representation of slo(C) on the space H*(M, E) of Agz-harmonic forms. Say
that a harmonic form « is primitive if L*a = 0, and denote by Hp (M, E) C
H"(M, E) the space of primitive harmonic forms of degree r. A primitive
harmonic form is primitive at each point of M. This will be important in some
applications further on.

The following results are immediate consequences of the above commu-
tation relations and the Lefschetz decompositions of A"(M, E) in (5.15) and
AP(M,E) in (5.17).

5.27 Hard Lefschetz Theorem. The map L*: H"(M, E) — H"25(M, E) is
injective for 0 < s < m —r and surjective for s > m —r, s > 0. Furthermore,
HT(Mv E) = ®SZOLSH;72S(M7 E)a
the Lefschetz decomposition of H" (M, E). O

If E is the trivial line bundle with the standard Hermitian metric, then
RP = 0 and hence [iRPA.,L*] = 0. This is the important special case of
differential forms with values in C. More generally, if D is flat, that is, if RP =
0, then we also have [iRPA., L*] = 0 and, in particular, 205 =20pp = Aq.

5.28 Theorem. Assume that D is flat. Then
H'(M,E) = ®ptrq=rH"Y(M,E), HPYM,E)= @sZOLSH;‘;,_S’q_S(M, E),
the Hodge and Lefschetz decompositions of H" (M, E) and HP4(M, E). |

5.29 Remark. Note that L, L*, and Y (m — r)P, preserve square integra-
bility of differential forms so that Theorems 5.27 and 5.32 also hold for the
corresponding spaces of square integrable harmonic forms. Moreover, the de-
compositions are pointwise and hence L2-orthogonal.

Suppose that D is flat and that p + ¢ < m = dim¢ M. Then, by Theo-
rem 5.28,

HPU(M, E) = @.50L iy > (M, E)

Lol (5.30)

=HRYM,E)® LHP =9 (M, E).
Furthermore, the Lefschetz map L*: HY ®97 (M, C) — HP2(M, C) is injective
for all s > 0, by Theorem 5.27.

5.2 Lefschetz Map and Cohomology. If D is flat, then d”d” = 0 and
we get the associated cohomology H*(M, E). If M is closed, then cohomology
classes in H*(M, E) are uniquely represented by harmonic forms, by Hodge
theory.
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5.31 Hard Lefschetz Theorem. Assume that M is closed and D is flat.
Then the map L*: H" (M, E) — H"T25(M, E) is injective for 0 < s < m —r
and surjective for s > m—r. Furthermore, we have the Lefschetz decomposition

H"(M,E) = ®s>0L°*Hp > (M, E). O

We recall that Poincaré duality also shows that H"(M, C) = H?>™~"(M,C).
However, the isomorphism in Theorem 5.31 is not obtained using the Hodge
operator but the (m — r)-fold cup product with a cohomology class, the Kéhler
class. The existence of a cohomology class with this property is a rather special
feature of closed Kéahler manifolds.

5.32 Theorem. Assume that M is closed and D is flat. Then we have Hodge
and Lefschetz decompositions,

H"(M,E) = @pyqep H?I(M, E), HP9(M,E) = ®y50L° HE 9 (M, E).
O

Suppose that M is closed and D is flat. Let
W54(M, E) := dim HZY(M, E) = dim H%(M, E). (5.33)
If p + ¢ < m, then by Theorem 5.32,

WM, E) =Y R (M, E) = Bp(M, E) + hP 2N (M, E),  (5.34)

s>0

see also (5.30) above. Recall that b.(M) = dim H"(M,C) and define Betti
numbers b, (M, E) :=dim H" (M, E).

5.35 Theorem. If M is closed and D is flat, then
1) br(M,E) =3,y W(M, E);
2) hP q(M E) =hpm=Pm=4(M, E*);
3) h?P(M,C) = hP9(M,C) = =P 9(M,C);
4) b.(M) is even if r is odd, by (M) = 2h*9 (M, C).
In particular, h*:°(M,C) is a topological invariant of M.

Proof. Assertion 1) is immediate from Theorem 5.32. Assertion 2) follows from
Serre duality 3.12 as does the second equality in Assertion 3) since the dual
bundle of the trivial line bundle is the trivial line bundle. Since conjugation
commutes with Ay (for complex valued differential forms on any Riemannian
manifold), the map

H?»I(M,C) — H"P(M,C), ¢—,

is (well defined and) a conjugate linear isomorphism. This shows the first equa-
lity in Assertion 3). The remaining assertions are immediate consequences of
Assertions 1) and 3). O
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5.36 Remarks. 1) The above results motivate a graphic arrangement of the
Dolbeault cohomology groups in a diamond with vertices H%°(M, E) and
H™™(M, E) to the south and north and H™%(M, E) and H%™(M, E) to the
west and east, respectively. This diamond is called the Hodge diamond. The
Lefschetz isomorphism L": H"(M, E) — H?>™~"(M, E) is compatible with the
type decomposition and corresponds to a reflection about the equator of the
Hodge diamond. In the case E = C = E*, Serre duality corresponds to the
reflection about the center. Conjugation corresponds to the reflection about
the vertical axis between north and south pole.

2) If M is a closed complex manifold, then Betti numbers and Euler characte-
ristic of M satisfy the Frolicher relations

be(M)< Y hPUM,C) and x(M) =Y (~1)PT7hP(M,C),

pt+q=r p,q

see [GH, page 444] and [Hir, Theorem 15.8.1]. In the Kéahler case, these are
clear from Theorem 5.35.1.

5.37 Examples. 1) We see again that Hopf manifolds M = $?™~1 x S! do
not carry Ké&hler metrics for m > 2 since their first Betti number is odd,
bi(M) = 1. It is easy to see that h1'°(M,C) = 0, see Lemma 9.4 in Borel’s
Appendix to [Hir]. In Theorem 9.5 loc. cit. Borel determines the Dolbeault
cohomology of Hopf and Calabi—Eckmann manifolds completely.

2) We come back to the question whether there are closed symplectic mani-
folds which do not carry Kéahler metrics, compare Remark 4.25. A first example
of this kind is due to Thurston: Let H(R) be the Heisenberg group, that is, the
group of (3 x 3)-matrices of the form

1
Alz,y,2)= |0
0

O~ 8

z
Yyl $7y72€Ra
1

and H(Z) be the closed subgroup of matrices in H(R) with z,y,z € Z. The
natural projection H(R) — R2?, A(x,y,2) — (z,y), descends to a projection of
the quotients

7: N:= HR)/H(Z) — R?/Z?,

a fiber bundle with fiber a circle R/Z. In particular, N is a closed manifold.
Since H(R) is diffeomorphic to R, H(R) is simply connected. Therefore the
fundamental group of N is isomorphic to H(Z). It follows that the first homol-
ogy Hi(N,Z) = H(Z)/[H(Z), H(Z)] = Z?, and hence b;(N) = 2.

Let M := N x S', where the parameter of the factor S! is denoted ¢. In
this notation, the differential form w = dx A dt + dy A dz is well defined and
symplectic on M. However, M does not carry a K&hler metric since the first
Betti number of M is 3, an odd number. For more on this topic see [TO] and
the survey [BT]. Compare also with the Iwasawa manifold in Example 5.58.
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3) There are closed complex manifolds satisfying h??(M, C) # h9?(M,C).
For example, the Iwasawa manifold in Example 5.58 satisfies h':(M,C) = 3
andh®1(M,C) = 2, see [Zh, Example 8.9]. This is one of the arguments that
show that this manifold does not carry a Kéhler metric.

On a closed oriented manifold M of real dimension 2m, the intersection
form S is a bilinear form on the middle cohomology,

S: H™(M,Z) x H"(M,Z) — Z, S(x,y) = {(zUy,[M]), (5.38)

where [M] denotes the oriented fundamental cycle of M and the angle brackets
denote evaluation. Poincaré duality implies that S is non-degenerate. If m
is odd, then S is skew-symmetric. If m is even, then S is symmetric. Thus
closed oriented manifolds with real dimension divisible by four come with a
remarkable topological invariant, a non-degenerate integral symmetric bilinear
form on their middle cohomology.

We can coarsen this picture and consider the intersection form on H™ (M, R).
Via representing closed differential forms, it is then given by

S(p, ) = /Msmw- (5.39)

The index of S is called the signature of M, denoted o(M).
In the case of a closed Kahler manifold, there is a variation T" of S which is
defined on H"(M,R), 0 < r < m. Via representing closed differential forms,

T(p, ) := / WA @ A (5.40)
M

We may also view T' as a complex bilinear form on H"(M,C) = H"(M,R)® C.
We have

T(p, ) = (=1)"T(¥,¢p) and T(Cp,¥)=T(p,C*9Y). (5.41)

For the proof of the second equality, we note that since the volume form has
type (m, m), we have T'(¢,%) = 0 if ¢ is of type (p,q) and ¢ is of type (p’,q’)
with (p, q) # (¢',p").

In our discussion below, we represent cohomology classes of M by their
harmonic representatives. It is important that the harmonic representative of
a primitive cohomology class is a differential form which is primitive at each
point of M.

5.42 Theorem (Hodge-Riemann Bilinear Relations). Let M be a closed Kdihler
manifold. Let @, 1) be primitive cohomology classes of type (p,q) and (p',q") and
s,t >0 satisfyp+q+2s=p +¢ +2t=r <m. Then

T(LSSD7 Ltw) =0 wunless s = t, p/ =gq, and q/ =p; (1)
iq_p(_l)%T(Ls _,LSQO) > 0 unless o= 0 (2)
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Proof. If s =t, then (1) is immediate since the volume form has type (m,m).
Since ¢ is primitive, L™ P~y = 0. Now m —r + 25 = m — p — ¢q. Hence if
s < t, then

WA LS A Ly = L™ o A g = 0.

The case s > t is similar. This completes the proof of (1).
The main and only point in the proof of (2) is a formula for the *-operator
on primitive differential forms. If s < m — p — g, then

(r+a)(p+q—1) s!
R B e e S L— 5 o o P 5.43
=) (m—p—q—s) (543)
For a proof see e.g. [Wei], Théoréme 2 on page 23.

Since L* is a real operator, ¢ is primitive of degree (g, p). Hence, by (5.43),

{9PT(L 3, L) = / WTPTINCP A @
M

(pta)(pta—1)
2

=(-1) (m—p—q)!/M*@/\w

(m—p—q)!/MW. .

We discuss a few applications of the Hodge-Riemann bilinear relations. Let
r be even. Then T is symmetric, see (5.41), hence the form T (p, ) = T(p, ¥)
is Hermitian on H" (M, C). By Theorem 5.42, T is non-degenerate and Hodge
and Lefschetz decomposition are orthogonal with respect to Ty.

Let p,q,s > 0 be given with p 4+ ¢ + 2s = r. Since r is even, p + ¢ is even
as well, that is, p and ¢ have the same parity. Hence (p + ¢)? is a multiple of 4
and therefore

(1)
From Theorem 5.42.2 we conclude that Ty is positive definite on LSH39(M, C)
if p and ¢ are even and negative definite if p and ¢ are odd. For example, since
dim H%°(M,C) = 1, the index of Ty on H*'(M,C) is (1,hYY(M,C) — 1),
compare also the discussion of Kéhler surfaces below.

5.44 Hodge Index Theorem. Let M be a closed Kdihler manifold with even
complex dimension m. Then the signature

o(M)= > (=1)%h"9(M,C)="> (~1)'n"*(M,C).
p+q even p,q

Proof. By Theorem 5.35, >_ . _; (=1)?0P4(M,C) = 0 if k is odd. Hence we
only need to prove the first equality. To that end, we note that by the above

discussion
o(M)= > h3(M,C)— Y  h3YM,C).

p+g<m p+g<m
p,q even p,q odd

(pta)(pta—1)
2

- (-1)

@r0Gra=l) q—p _ ;(p+a)(p+a—1)+a—p _ (—1)P = (-1)°.
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On the other hand, since p + ¢ < m,
RBY(M,C) = h9(M,C) — h?~ 197 1(M, C),
see (5.34). This gives

o(M)= Y (=1)%h"9(M,C) - h"~4"(M,C))

p+q<m
p+q even

The terms h?9(M,C) with p + ¢ even and < m occur twice and with the same
sign. Since h?9(M,C) = h™ P™ 4(M,C) and p = m —p, ¢ = m — g mod 2,
we conclude that

o(M)= > (-1)%h"9(M,C). O

p+q even

5.45 Remarks. Suppose that the complex dimension m of M is even.

1) If p+ ¢ = m then p = ¢ modulo 2 so that we can substitute (—1)? for
(—1)? in Theorem 5.44.

2) For p fixed, x,(M,C) :=>_ (—1)7h"9(M, C) is the Euler characteristic
of the cohomology of the Dolbeault chain complex

o L (L) 2 A, ) L At 0) s

For p = 0, we get the arithmetic genus xo(M,C) of M as in (2.31). The
Hirzebruch-Riemann-Roch formula expresses the numbers x,(M,C) in terms
of the Chern classes of the tangent bundle T'M, viewed as a complex vector
bundle. We get that the sum of these numbers is a topological invariant of M,

2. xp(M,C) = o(M).

We point out a few other applications of the Hodge-Riemann bilinear re-
lations 5.42. Let M be a closed Kahler manifold with Kéhler form w. The
space H'(M,C) and the dimensions of H'%(M,C) and H*!(M,C) are topo-
logical invariants of M, but the inclusions of H°(M,C) and H%'(M,C) into
HY0(M,C) depend on the complex structure of M. By the Hodge Riemann
bilinear relations, the form T is a symplectic form on H!(M,C) and the sub-
spaces HY'0(M,C) and H%!(M,C) are Lagrangian subspaces; for the latter,
compare Example B.53. The associated Hermitian form T (¢, ) := iT(, ¢)
is negative definite on H°(M,C) and positive definite on H%*(M,C). Thus
we obtain a map, the period map, which associates to a complex structure on
M with a Kihler form cohomologous to w the Lagrangian subspace H:°(M, C)
in the period domain, the Hermitian symmetric space of Lagrangian subspaces
on which T is negative definite, see again Example B.53. In other words, we
obtain a tool to study the space of complex structures on M together with a
Kahler structure with Kéhler form cohomologous to w. For example, let M be
a closed surface of genus g. Then H'(M,C) =2 C?9 and T is the intersection
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form on H'(M,C). By the Torelli theorem, the period map is a holomorphic
embedding of Teichmiiller space into G (L, g) = Sp(g,R)/ U(g). Note that by
definition, the period map is equivariant with respect to the induced actions of
diffeomorphisms.

Suppose now that M is a closed Kéahler surface, that is, dim¢ M = 2.
Then the Hodge numbers h':? = h1:0(M, C), h%1, h*1 and h'? are topological
invariants of M. We have

2h%0 4 M = by (M) = by and AN =hp' + %0 =hpt + 1.

By the Hodge—Riemann bilinear relations, the Hermitian form Ty (p,v) =
S(@, 1) on H?(M, C) is negative definite on H},’l (M, C) and positive definite on
the remaining summands in the Hodge decomposition of H2(M,C). Hence the
intersection form S of M has signature (b —h'1 +1, 11 —1) and the signature
of M is by — 2h*! 4+ 2. We conclude that the remaining Hodge numbers h?°,
K02 and hY! are invariants of the smooth structure of M. Furthermore, we
obtain again a period map, in this case from the space of complex structures
on M together with a Kéhler structure with Kéhler form cohomologous to w to
the corresponding period domain, the Grassmannian of subspaces of H?(M,C)
of dimension h};l on which Ty is negative definite; for the latter, compare
Examples 4.10.6 and B.42. See [Wel, Section V.6], [Jo, Section 7.3], and [CMP]
for more on period maps, period domains, and Torelli theorems.

5.3 The dd.-Lemma and Formality. We assume throughout this subsec-
tion that D is flat, that is, that RP = 0. Then the connection form 6 of D with
respect to a local holomorphic frame is holomorphic, see Proposition 3.21. It
follows that E has parallel local holomorphic frames. If (®1,...,®y) is such a
frame and o = p*®,, a local smooth section of F, then d°c = dp* ® ®,, and
0Po = 0" ® ®,,. Therefore we will omit the superindex D and simply write
d and 0 instead of d” and 9”. From Theorem 5.25 we conclude that

Ag =205 =2Ay.
We introduce the complex differential
d. =i(0—0) = C*dC = C~'dC, (5.46)

where C is as in (5.1). The two last expressions show that d. is real, that is,
that d. is well defined on the space A*(M,R) of real valued differential forms
on M. We have

di = C*d*C = C'd*C (5.47)

and
dd, = 2i00 = —2i00 = —d.d, (5.48)
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where we use that D is flat. Let Ay, = d.d} + d}d. be the Laplacian of d..
Since M is a Kédhler manifold, A, preserves the type of forms. Therefore

Ay = CilAdC = Ag,. (5.49)

5.50 Lemma (dd.-Lemma). Suppose that M is closed and D s flat. Let o be
a differential form with values in E with

a=dp and d.a =0  or, respectively, da =0 and o = d.[3.
Then there is a differential form v with values in E such that o = dd.y.

Proof. In what follows, ¢ denotes one of the operators d or d.. By (5.49), we
have Ay = Ay, =: A. Recall the eigenspace decomposition of the Hilbert space
of (equivalence classes of) square integrable sections,

L*(A*(M, B)) = &Vx,

where V) € A*(M, E) is the eigenspace of A for the eigenvalue A. Since &
commutes with A on A*(M, E), we have §(Vy) C Vj.

Let G: L2(A*(M, E)) — L?(A*(M, E)) be the Green’s operator associated
to A. Recall that

0 if a € 1,
Gla) =9, . .
At if @€ V) with A > 0.

It follows that G and 6 commute on A*(M, E). Since G is self-adjoint, we con-
clude that G and §* commute as well on A*(M, E). Elliptic regularity implies
that G(A*(M, E)) C A*(M, E). This is also immediate from the displayed
formula.
The Hodge decomposition theorem asserts that we have an L2-orthogonal
sum
A*(M,E) =H*"(M,E) ® §(A* (M, E)) @ §*(A* (M, E)),

where H*(M, E) =V = ker A is the space of §-harmonic forms. Any differen-
tial form (8 with values in E satisfies

B ="HpB+ AGS,

where H denotes the L2-orthogonal projection onto H*(M, E). By assumption
and the Hodge decomposition,
Ha =0

since o € im§. The latter also implies da = 0, hence

a=AGa = (66" 4+ 0%0)Ga = 66" Gy,
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where we use that G and § commute on A*(M, E). In the first case we also
assume that d.a = 0, in the second that da = 0, hence

a=dd;Ga and a=dd"Ga
in the first and second case, respectively. In both cases we conclude
a=dd*Gd.d;Ga = dd*d.Gd;Ga = —dd.(d*Gd.Ga),

where we note that the commutation relation 5.24 implies that d*d. = —d.d*.
O

5.51 Exercises. 1) Calculate that, for functions ¢,
(ddep,w) = 2(i00p, w) = —2¢7F —— =

This is a truly remarkable formula: It shows that, for Kdhler manifolds, the
Laplacian of a function does not involve derivatives of the metric. The for-
mula implies that, for M closed and connected, the kernel of dd,: A°(M,C) —
A%(M, C) consists precisely of the constant functions.

2) If « is a differential form of type (p,q) and a = df or a = d.3, then
o =dd.y.

3) Formulate and prove a d0-Lemma.

What follows is taken from [DGMS]. Assume throughout that M is closed
and D is flat. Since dd. = —d.d, the subcomplex A} (M, E) of A*(M,E)
consisting of d.-closed differential forms is closed under the exterior differential
d. Let Hj (M, E) be the cohomology of the complex (A} (M, E),d).

5.52 Lemma. The inclusion A} (M, E) — A*(M, E) induces an isomorphism
H; (M,E) = H*(M,E).

Proof. We show first that the induced map on cohomology is surjective. Let «
be a closed differential form on M. Let 8 = d.a. Then dfB = —d.da = 0, hence
B = dd.7y, by Lemma 5.50, and

de(a+dy) =P+ dedy =5 —ddey=0.

Hence the cohomology class of o contains a representative in A} (M, E).
Suppose now that d.cw = 0 and « = df. Then a = d(d.7), by Lemma 5.50.

Now d.(dcy) = 0, hence « is a d-coboundary in A} (M, E), and hence the

induced map on cohomology is injective. O

Set now AZC (M, E) := A (M, E)/d.A*(M, E). Then d induces a differen-
tial d on A;C (M, E) and turns the latter into a chain complex. The cohomology
of the complex (A} (M, E), d) will be denoted H} (M, E).
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5.53 Lemma. The differential d = 0 and the projection A} (M, E) — A% (M, E)
induces an isomorphism

Hj (M,E) = H} (M,E).

Proof. Let a € A} (M, E) and set 3 = da. Then d.8 = —dd.a = 0, and hence

do = 8 = d.dy € imd,, by Lemma 5.50. Hence d = 0.

Let a € A} (M, E). Then d.a = 0 and hence da = d.dj for some 3. Let
v = a+d.B. Then d.y =0, hence v € A} (M, E), dy = 0, hence v represents
an element in Hj (M, E), and finally o = v modulo d..A*(M, E).

Let now o € A;C (M, E) with do = 0 and such that « = d.3. Then o = dd.~y
for some ~, hence a is cohomologous to 0 in A} (M, E). |

For E the trivial line bundle, the chain complex (Aq, (M, C),d) is invariant
under the wedge product and the chain complex (A*(M,C),d) therefore also
inherits a product, turning them into graded differential algebras over C, com-
mutative in the graded sense as in the case of differential forms. We use cgda
as a shorthand for commutative graded differential algebra.

A homomorphism between cgda’s A and B (over a field F) is called a quasi-
isomorphism if it induces an isomorphism of their cohomology rings. Then A
and B are called quasi-isomorphic, in letters A ~ B. A cgda A is called formal
if there is a sequence By = A, By, ..., By of cgda’s over F' such that B;_; ~ B;,
1 < i < k, and such that the differential of By is trivial. For a closed Kéahler
manifold M we have established that

A (M,C) « A; (M,C) — Ay (M,C)/d.A"(M,C) (5.54)
are quasi-isomorphisms and that the differential of the latter is trivial.

5.55 Theorem ([DGMS]). If M is a closed Kdhler manifold, then M is formal
over C, that is, A*(M,C) is a formal commutative differential graded algebra.
]

Since d. is a real operator, the proofs also work in the case of real numbers
and show that A*(M,R) is a formal cgda. In other words, M is also formal
over R.

5.56 Remark (See Remark 1.42). Let M be a closed Riemannian manifold
with curvature operator R > 0. Then real valued harmonic forms on M are
parallel. Since the wedge product of parallel differential forms is parallel, hence
harmonic, we get that H*(M,R) together with wedge product and trivial dif-
ferential is a cgda over R. Moreover, the inclusion

H*(M,R) — A*(M,R)

induces an isomorphism in cohomology, see (1.36). Hence M is formal over R.



5 COHOMOLOGY OF KAHLER MANIFOLDS 77

We refer to [DGMS] for a discussion of the meaning of formality for the
topology of M. In a sense made precise in Theorem 3.3 and Corollary 3.4
in [DGMS], the R-homotopy type of a closed and simply connected Ké&hler
manifold M is a formal consequence of the real cohomology ring of M.

To give at least one application of Theorem 5.55, we explain one of the
features which distinguish formal cgda’s from general ones. Let A be a cgda
and a,b,c € H*(A) be cohomology classes of degree p,q and r, respectively,
such that a Ub = bUc = 0. Let a,8,7 € A be representatives of a,b,c,
respectively. Then a A 3 = dp and B Ay = di for p,9 € A of degree p+q— 1
and ¢ + r — 1, respectively. The Massey triple product

(a,b,c) := [ Ay — (=1)Pa Ay] € HPTITT1(A). (5.57)

We leave it as an exercise to the reader to show that the Massey triple product
is well defined up to a A H9T"~1(A) ++ A HPT9=1(A), that it is preserved under
quasi-isomorphisms, and that it vanishes for cgda’s with trivial differential. We
conclude that Massey triple products vanish for formal cgda’s, in particular for
the real cohomology of closed Kéahler manifolds.

5.58 Example. Let G = H(C) be the complex Heisenberg group, that is, the
complex Lie group of matrices A(z,y,2) as in Example 5.37.2, but now with
z,y,z in C. Let I' ¢ H(C) be the discrete subgroup of A(z,y,z) with z,y, z
in R := Z + iZ. Since I' acts by biholomorphic maps on G, the [wasawa
manifold M = T\G, is a complex manifold of complex dimension 3. The
homomorphism G — C2, A(z,y, z) — (z,y), induces a holomorphic submersion
7: M — R?\C? with fibers biholomorphic to R\C. In particular, M is a closed
manifold and, more specifically, a torus bundle over a torus.

The differential (1,0)-forms dz, dy, and dz — zdy on G are left-invariant,
hence they descend to differential (1,0)-forms a, b, and ¢ on M. We have
da = db=0and dp = —aAb. Let o = [a], 8 = [b] in H}(M, C). Since 7 induces
an isomorphism from H;(M,Z) = T/[[,T] = R? to H1(R*\C?,Z) = R?, we
conclude that (a, @, 3, 3) is a basis of H'(M,C). We have

(o, B,8) = [p A Y]

Since dyp # 0, it follows that (a, 8, 3) # 0 modulo aAH*(M,C)+3AH (M, C).
It follows that the Iwasawa manifold is not formal over C. Hence M does not
carry a Kahler metric'4. Note that the first Betti number of M is 4. It can be
shown that by(M) = 8 and bs(M) = 10, so that the Betti numbers of M alone
do not show that M is not Kéahlerian.

A nilmanifold is a quotient I'\G, where G is a nilpotent Lie group and T is
a discrete subgroup of G. The Iwasawa manifold M in Example 5.58 is a nil-
manifold since H(C) is nilpotent. A theorem of Benson-Gordon and Hasegawa

MFor interesting other arguments, see [GH, page 444] and [Zh, Example 8.9]. See also
[FG].
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says that a compact nilmanifold T\G does not admit a Kéhler structure un-
less G is Abelian, see [BeG], [Ha], [TO]. This generalizes our discussion in
Example 5.58.

5.4 Some Vanishing Theorems. Let M be a closed complex manifold. We
say that a differential form w on M of type (1,1) is positive and write w > 0 if

9(X,Y) == w(X, JY) (5.59)

is a Riemannian metric on M. If w is closed and positive, then g turns M
into a Kéhler manifold with Kéhler form w. We say that a cohomology class
c € HY1(M,C) is positive and write ¢ > 0 if ¢ has a positive representative. We
say that a holomorphic line bundle £ — M is positive, denoted E > 0, if its
first Chern class ¢1(E) > 0. Negative differential forms and cohomology classes
of type (1,1) and negative line bundles are defined correspondingly. We have
E > 0 iff the dual bundle E* < 0.

Let E — M be a holomorphic line bundle over M. Let h be a Hermitian
metric on F and D be the associated Chern connection. We note that the
curvature form © of D acts by scalar multiplication on sections and is indepen-
dent of the local trivialization. Thus © and RP are complex valued differential
forms on M. In this sense we have © = RP.

5.60 Examples. We continue the discussion of Examples 3.45 and consider
some line bundles over CP". As before, we will use the open covering of CP™
by the sets U; = {[z] € CP™ | z; # 0}, 0 < j < m.

1) The tautological bundle U — CP™. In the notation of Example 3.45.1,
the canonical Hermitian metric A on U is given by

1 -
h(ej,¢j) = ﬁzzk'zk-
3%j

In the point 2z € U; with coordinates z; = 1 and 2, = 0 for k # j, the curvature
of the Chern connection D of h is

6= aalnh (v, %5) 288 2kZk) Zdzk A dzZy,
k#j k#j

as we already checked in Example 3.24 in greater generality. Hence, in the
above point z,

i _
(U, D) = - Zdzk AdZ, < 0.
k#j
Now the homogeneity of U and h under the canonical action of the unitary
group U(m + 1) implies that ¢, (U, D) < 0 everywhere. Hence U is negative.

2) The canonical line bundle K = A™%(CP™,C) — CP™: We saw in
Example 3.45.2 that K is isomorphic to U™*!. For the curvature of the Chern
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connection of the canonical metric on K we get (m + 1)©, where © is the
curvature of U with respect to the Chern connection of its canonical Hermitian
metric. By the previous example, we have i(m + 1)© < 0, hence K < 0.

More generally, for a Kéhler manifold M with Ricci form p, the curvature of
the canonical bundle K is given by ip, see (4.67). Since the canonical metric
on CP™ has positive Ricci curvature, this confirms ¢(m + 1)© = —p < 0.

3) The hyperplane bundle H — CP™: H is inverse to U, that is, H is
isomorphic to the dual line bundle U*. It follows that H is positive.

5.61 Lemma. Let E — M be a holomorphic line bundle. Then E > 0 iff there
is a Hermitian metric h on E such that the curvature © of its Chern connection
satisfies i© > 0, and similarly in the case E < 0.

Proof. Since 2mcq(E) = [i0], E is positive if E has a Hermitian metric with
10 > 0. Suppose now that ' > 0. Choose a Kéhler metric g on M with Kéhler
form w € 2me(F). This is possible since ¢1(E) > 0. Let h be any Hermitian
metric on E, © be the curvature form of its Chern connection, and ¢ be a local
and nowhere vanishing holomorphic section of E (a local frame of E). Then

© =0d91nh,,

where h, = h(p, ). In particular, 900 = 90 = 0. We also have dw = Jw = 0.
Now [i©] = 2m¢q (E) = [w] by the definition of ¢; (M) and the choice of w. Since
M is a closed Kéahler manifold, the dd.-Lemma 5.50 applies and shows that

w — i = 0O

for some real function . Let A’ = h - e¥. Then the curvature ©' of the Chern
connection of h' satisfies

i® =i0dInh' =i®@+w—i® =w > 0. O

5.62 Proposition. Let E — M be a holomorphic line bundle and h be a
Hermitian metric on M such that the curvature © of its Chern connection D
satisfies iNO > 0 for some A € R. Then w := i\O is the Kdhler form of a
Kahler metric on M, and with respect to this Kdhler metric

1
Az —App = 3 Z(r —m)P,.
Proof. By Theorem 5.25 and Proposition 5.8, we have

Aé—mw:ﬁRW@Lﬂ:§@mLﬂ:%MJﬂ:%E}r—mﬁy O
5.63 Remark. Proposition 5.62 refines the Nakano inequalities, which usually
go into the proof of Kodaira’s vanishing theorem 5.64, compare [Wei, Proposi-
tion VI.2.5]. We note that these inequalities are special cases of the last two
(groups of) equations in the proof of Theorem 5.25. In [Mo], Moroianu proves
Proposition 5.62 by a direct computation using a Weitzenbock formula.
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5.64 Kodaira Vanishing Theorem. Let M be a closed compler manifold
and E — M be a holomorphic line bundle.

1. If E >0, then H?9(M,E) =0 for p+q > m.
2. If E <0, then H»Y(M,E) =0 for p+q < m.

Proof. In view of Serre duality 3.12, the two assertions are equivalent since
E > 0iff E* < 0. We discuss the second assertion (and a similar argument
shows the first). Let h be a Hermitian metric on F such that the curvature ©
of its Chern connection satisfies i® < 0. Let g be the Kdhler metric on M with
Kéhler form w = —i©. Let a be a Azy-harmonic form with values in £ and of
type (p,q). Then, by Proposition 5.62,

0 < (m—p—gllall} = —(Aspa,a), <0. 0

5.65 Corollary. Let M be a closed complex manifold and E — M be a holo-
morphic line bundle with K* @ E > 0. Then H»Y(M,E) =0 for ¢ > 1.

This will be important in the proof of the Kodaira embedding theorem 9.6.
Another application: If K* ®@ E > 0, then

Xo(M, E) := Y (=1)?dim H**(M, E) = dim H**(M, E),

the dimension of the space of holomorphic sections of E. Hence if K*® E > 0,
then the Hirzebruch-Riemann-Roch formula [LM, Theorem III.13.15] com-
putes the dimension of H*°(M, E).

Proof of Corollary 5.65. We note first that a differential form of type (m,q)
with values in a holomorphic bundle L is the same as a form of type (0,¢) in
the bundle K ® L. Therefore,

HY"Y(M,E)=H"M,K® K*® E) = H™(M,K* ® E) =0
by Theorem 5.64 since m + g > m. a

Let M be a Kéhler manifold and £ — M be a holomorphic line bundle. Let
h be a Hermitian metric on E and D be the corresponding Chern connection.
Let p € M. Then there exist an orthonormal frame (X1, Y3,..., X, Yy,) with
Y; = JX, in (or about) p and real numbers 61, ..., 6,, such that the curvature
of D at p is given by

1 _
Ry = 0,Z; NZ}, (5.66)

where the frame (Z1, Z1, ..., Zm, Zm) is as in (3.30) and (Z5,Z5,..., 2%, Z%)
is the corresponding dual frame. For a local section o of E about p and a
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differential form o = Z3 A Zx @ o, we have
123 NZIN Lo =Y {Z; MNMZ; AN Zk(Ziea))) — Zi(Zu(Z5 N(Z5 A a)))}
k

= 73 N(Z N (Z(Ziia) = Z3(Z3 (2 N (Z] N a)))
a ifjeJnK;
={—a ifj¢ JUK; (5.67)

0 otherwise.

It follows that for a as above
. " 1
iRPALla=5( D 6= Y 0)a (5.68)
JEJNK ¢ JUK

This refines Proposition 5.8.

We interpret (the proof of) Theorem 5.64 as the case of “constant curvature”
RP = wiw. Theorem 5.25 gives us some room for extensions to pinching
conditions. We prove a simple model result in this direction.

5.69 Theorem. Let M be a closed Kdhler manifold with Kahler form w. Let
E — M be a holomorphic line bundle and h be a Hermitian metric on E with
Chern connection D. Let k: M — R and € > 0 and suppose that

|IRP(X,Y) +irw(X,Y)| < e|X]||Y]
for all vector fields X and Y. Then HP9(M, E) =0 for all p,q with
e-(m—=Ip—ql) <r-(p+q—m).

We note that there are two cases: k > 0 for p+¢ > m and « < 0 for
p+qg<m.

Proof of Theorem 5.69. Let pg € M. The condition on R” implies that the
numbers 0; as in (5.66) satisfy |0; — k(po)| < € for all j. Let I, J be multi-
indices with |I| = p and |J| = ¢, and set a = [I N J|. Then

(X 65— 3 0) > alstw) —) — (m—p— g+ a)(slpo) +)

jeJNK JEJUK

> (p+q—m)k(po) — (m—|p—gql)e >0.

Hence ([iRP, L*]a,a)2 > 0 unless & = 0. The rest of the argument is as in
Theorem 5.64. g

For more on vanishing theorems, see [Ko2| and [ShS].
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Let M be a closed Riemannian manifold. Recall that the isometry group of M
is a compact Lie group (with respect to the compact-open topology) with Lie
algebra isomorphic to the Lie algebra of Killing fields on M (with sign of the
Lie bracket reversed).

6.1 Theorem (Bochner [Boc]). Let M be a closed Riemannian manifold with
Ric < 0 and X be a vector field on M. Then X is a Killing field iff X is
parallel.

Proof. Tt is clear that parallel fields are Killing fields. Vice versa, let X be a
Killing field on M. By Proposition 4.77, we have V*V.X = Ric X. Therefore

og/|VX|2=/<V*VX,X>:/<R1CX,X>go,

and hence X is parallel. d

6.2 Corollary. Let M be a closed and connected Riemannian manifold with
Ric < 0. Then the identity component of the isometry group of M is a torus
of dimension k < dim M, and its orbits foliate M into a parallel family of flat
tori. If M is simply connected or if Ric < 0 at some point of M, then the
isometry group of M is finite.

Proof. The first assertion is clear from Theorem 6.1 since the Lie algebra of the
isometry group is given by the Lie algebra of Killing fields. As for the second
assertion, it suffices to show that M does not carry a non-trivial Killing field.
Let X be such a field. By Theorem 6.1, X is parallel. If M is simply connected,
then X points in the direction of a Euclidean factor R of M, by the de Rham
decomposition theorem. This is in contradiction to the compactness of M. In
any case we note that R(-, X)X = 0since X is parallel. This implies Ric X =0
and is in contradiction to Ric < 0. g

What we need in the proof of Theorem 6.1 is the inequality Ric < 0 together
with the differential equation V*VX = Ric X. Recall now that automorphic
vector fields on closed Kéhler manifolds are characterized by the latter equation,
see Proposition 4.79. Hence we have the following analogue of Theorem 6.1.

6.3 Theorem. Let M be a closed Kdahler manifold with Ric < 0 and X be a
vector field on M. Then X is automorphic iff X is parallel. O

We recall now again that the automorphism group of a closed complex
manifold M is a complex Lie group with respect to the compact-open topology
with Lie algebra isomorphic to the Lie algebra of automorphic vector fields on
M (again and for the same reason with sign of the Lie bracket reversed), see
[BM].
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6.4 Corollary. Let M be a closed Kdihler manifold with Ric < 0. Then the
Lie algebras of parallel, Killing, and automorphic vector fields coincide. The
identity components of the automorphism group and of the isometry group of
M coincide and are complex tori of complex dimension < dim¢ M. O

6.5 Remark. By a famous result of Lohkamp [Loh], all smooth manifolds of
dimension > 3 admit complete Riemannian metrics of strictly negative Ricci
curvature. Corollary 6.4 shows that, on closed complex manifolds, there are
obstructions against Kahler metrics of non-positive Ricci curvature.

6.1 Ricci-Flat Kahler Manifolds. A celebrated theorem of Cheeger and
Gromoll says that the universal covering space M of a closed and connected
Riemannian manifold M with Ric > 0 splits isometrically as M = Ex N, where
E is a Euclidean space and N is closed and simply connected with Ric > 0, see
[CG1]. The following application is given in [Beal.

6.6 Theorem. Let M be a closed and connected Kdahler manifold with Ric = 0.
Then there is a finite covering M of M which splits isometrically as M =FxN,
where F is a closed flat Kdhler manifold and N is a closed and simply connected
Kdhler manifold with Ric = 0.

6.7 Remark. By the Bieberbach theorem, a closed flat Riemannian manifold
is finitely covered by a flat torus [Wo, Chapter 3].

Proof of Theorem 6.6. According to the de Rham decomposition theorem for
Kéhler manifolds 4.76 and the theorem of Cheeger and Gromoll mentioned
above, the universal covering space M of M decomposes as

M=CFxN, k>0,

where N is a closed and simply connected Kahler manifold with Ric = 0. Hence
the isometry group I(M) of M is the product of the isometry group of C* and
the isometry group I(N) of N. By Corollary 6.2, I(NV) is finite.

The fundamental group I' of M acts isometrically as a group of covering
transformations on M, hence is a subgroup of I(M). Consider the projection
of T to the factor I(N) of I(M). Since I(N) is finite, the kernel I" has finite
index in I' and gives a finite cover of M as asserted. O

6.8 Remark. Let (M, J) be a closed complex manifold with ¢; (M) = 0. Then
for each Kéhler form w of M, there is exactly one Ricci-flat Kahler metric ¢’
on M with Kéhler form w’ cohomologous to w, by the Calabi conjecture 7.1.
Therefore the space of Ricci-flat Kédhler metrics on M can be identified with
the cone of Kihler forms in HYY(M,R) = HY(M,C) N H?(M,R), an open
subset of H11(M,R), hence of real dimension h''!(M,C) if non-empty 5. A
reference for this are Subsection 4.9.2 and Section 6.8 in [Jo|, where Joyce
discusses deformations of complex and Calabi—Yau manifolds.

15We do not elaborate on the topology of spaces of metrics.
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6.2 Nonnegative Ricci Curvature. Let M be a closed K&hler manifold and
© be a form of type (p,0). Let (X1,Y1,..., X, Y:) be a local orthonormal
frame of M such that JX; = Yj, and define Z; and Z; as in (3.30). Using that
¢ is of type (p,0) and the formulas (3.32) for 9 and (3.33) for 0%, we get

Agp = 2050 = 20%0p = —4ZZj|_ZZ A lA)Qcp(Zj, Zy).
Now D2p(Z;, Zy) is still of type (p,0), hence the right hand side is equal to

—4> " D*p(2;,Z;) = —tr Do —i Yy R(X;,Y))

where we use Exercise 3.37.2 for the latter equality. In conclusion,
Agp =200 = V*Vp + Ko, (6.9)

with curvature term K = —i 3 R( 7, Y;). Now the curvature acts as a deriva-
tion on A*(M,C). Hence to compute its action on AP:°(M,C), p > 0, we first
determine its action on forms of type (1,0). For X € T"”M, the dual vector
X° = (X,-) is of type (1,0). For Y € T'M, we get

(KXP V") = =iy (R(X;, V)X, Y") = =iy (R(X;,Y;)X,Y)
==Y (R(X;,Y;)X,JY) = Ric(X,Y),

where we recall that (-,-) denotes the complex bilinear extension of the Rie-
mannian metric of M to the complexified tangent bundle Tc M. Now at a given
point in M, we may choose the above frame (X1,Y1,..., X, Y:) to consist of
eigenvectors of the Ricci tensor, considered as an endomorphism. For multi-
indices J: j; < --- < jp and K: k; < --- < kp, we then have, at the chosen
point,

4w Ric(Z;,,7;,) itJ =K,

) (6.10)
0 otherwise,

(K(Z; N---NZ5 ), Zj N+ N2 ) = {

see (3.31). Hence the curvature term K in the above equation is non-negative
if Ric is non-negative and positive if Ric is positive.

6.11 Theorem (Bochner [Boc]). Let M be a closed, connected Kdhler manifold
with Ric > 0. Then holomorphic forms of type (p,0) are parallel; in particular,

hPO(M,C) = h%P(M, C) < @)

If Ric > 0 at some point of M, then M does not have non-trivial holomorphic
forms of type (p,0) for p > 0, and then h?°(M,C) = h%P(M,C) = 0 for p > 0.
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Proof. If ¢ is a holomorphic form of type (p,0), p > 0, then Agp = 20y = 0.
Hence

0:/M<@*@¢,¢>+/M<K<p,sa> =/M|WIQ+/M<K%¢>-

As we just explained, (K¢, ¢) > 0 if Ric > 0. O

The last assertion in Theorem 6.11 also follows from the Kodaira vanishing
theorem. To see this we note that Ric > 0 implies that the anti-canonical
bundle K3, — M is positive, see (4.68). On the other hand, if K7}, is positive
and E — M is the trivial complex line bundle or, generalizing Definition 5.59
slightly, a non-negative line bundle, then K}, ® E is positive, and we may
apply Corollary 5.65 to conclude that h%4(M, E) = 0 for ¢ > 1. Observe that
Bochner’s argument above works in this case as well (Exercise).

6.12 Theorem (Kobayashi [Kol]). Let M be a closed, connected Kdihler mani-
fold with Ric > 0. Then M is simply connected and the arithmetic genus

X(M,0) = " (=1)’hP(M,C) = 1.

Proof. Consider the universal covering : M — M. With respect to the in-
duced Kéhler structure on M, 7 is a local isometry. Since the Ricci curvature of
M is positive, the fundamental group of M is finite, by the theorem of Bonnet—
Myers. Hence M is closed as well. Now the Hirzebruch-Riemann—Roch formula
expresses the arithmetic genus of a closed Kéhler manifold as an integral over
a universal polynomial in the curvature tensor. Since 7 is a local isometry, this
implies

where I' denotes the fundamental group of M. By Theorem 6.11,
X(M,0) = x(M,0) =1,

hence |T'| = 1, and hence M is simply connected. O

In his article [Ko1], Kobayashi observed the application of the Kodaira van-
ishing theorem mentioned before Theorem 6.12 and conjectured that closed
and connected Kahler manifolds with positive first Chern class are simply con-
nected, compare (4.68). Now the Calabi conjecture implies that closed Kéhler
manifolds with positive first Chern class carry Ké&hler metrics with positive
Ricci curvature, see Corollary 7.3. Hence they are in fact simply connected, by
Kobayashi’s original Theorem 6.12.
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6.3 Ricci Curvature and Laplace Operator. Let M be a closed, con-
nected Riemannian manifold of real dimension n. Denote by A the Laplace
operator on functions on M. If Ric > A > 0, then the first non-zero eigenvalue

A1 of A satisfies
n
AL >

—\ (6.13)

Moreover, equality holds iff M is a round sphere of radius \/(n — 1)/A. The
inequality (6.13) is due to Lichnerowicz [Li3], the equality discussion to Obata
[Ob]; see also [BGM, Section II1.D]. The next theorem deals with a remarkable
improvement of the above inequality in the Kéahler case.

6.14 Theorem (Lichnerowicz). Let M be a closed Kihler manifold with Ric >
A > 0. Then the first non-zero eigenvalue Ay of A satisfies

A1 > 2

Equality implies that the gradient field X = grad ¢ of any eigenfunction ¢ for
A1 is automorphic with Ric X = A X.

Proof. Let ¢ € £(M,R) be any non-constant eigenfunction, so that Ay = g
for some p > 0. Then £ := dyp satisfies Az = p&. Hence, by the Bochner
identity 1.38, X := ¢ = grad ¢ # 0 fulfills
V*VX = (4 — 20X + (2AX — Ric X).
In the notation introduced there, (4.80) implies
1
\ARVAED = 5@ —20)X + (AX — Ric X).

Therefore, by the assumption Ric > A,

0 < [[VHX)3 = (V*X,VX)2 = (VV*X, X)o < 5 (u— 201 X3,

N =

where the index 2 indicates L?-inner products and norms. We conclude that
u > 2 for all non-trivial eigenvalues u of A. Equality implies that V%1X = 0,
that is, X is automorphic, and that Ric X = A X. O

6.15 Exercise. Discuss Theorem 6.14 in the case of the round S? (and observe
thatn/(n — 1) < 2 if n > 2). Compare with Theorem 6.16.

Let M be a closed Kéhler manifold. Let a be the complex Lie algebra of
automorphic vector fields on M and £ C a be the real Lie subalgebra of Killing
fields. The next theorem completes the equality discussion in Theorem 6.14 in
the case where M is a Kéhler-Einstein manifold.
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6.16 Theorem (Matsushima). Let M be a closed Kdhler—Einstein manifold
with Einstein constant A > 0. Then we have an isomorphism

grad: {p € E(M,R) | Ap =2 p} =: Egoy — JE, ¢+ grade.

Proof. We note first that grad is injective on the space of smooth functions on
M with mean zero.

By the proof of Theorem 7.43 below, JE consists precisely of automorphic
gradient vector fields. Hence by the equality case in Theorem 6.14, grad maps
E5y to Jt. By the above remark, grad is injective on Es).

Vice versa, let X in JE&. Write X = grad ¢, where ¢ is a smooth function
on M with mean zero. Now X is automorphic, hence V*VX = Ric X = A\ X,
by Proposition 4.79. Hence Ay = 2y, by Exercise 6.17 and since ¢ and Agp
have mean zero. g

6.17 Exercise (Ricci Equation). Let M be a Riemannian manifold and ¢ be
a smooth function on M. Show that

grad Ay = (V*V)(grad ¢) + Ric grad .

We recall that, on functions, A = V*V, where we write V instead of grad.
Thus the formula computes the commutator [V, V*V]. Derive an analogous
formula for metric connections on vector bundles.



7 Calabi Conjecture

In this section we discuss the Calabi conjecture and present a major part of its
proof16. We let M be a closed and connected Kahler manifold with complex
structure J, Riemannian metric g, Kéahler form w, and Ricci form p. Recall
that the Ricci form of any K&hler metric on M is contained in 27mweq (M).

7.1 Theorem (Calabi-Yau). Let p’' € 2mc1(M) be a closed real (1,1)-form.
Then there is a unique Kdhler metric g¢' on M with Kdhler form w’ cohomolo-
gous to w and with Ricci form p'.

This was conjectured by Calabi, who also proved uniqueness of the solution
g’ [Cal], [Ca2]. Existence was proved by Yau [Ya2], [Ya3], [Kal]. One of the
most striking immediate applications of Theorem 7.1 concerns the existence of
Ricci-flat Kahler metrics:

7.2 Corollary. If ¢;(M) = 0, then M has a unique Ricci-flat Kdhler metric
g with Kdhler form w' cohomologous to w.

As a consequence, M is finitely covered by a product of a simply connected
closed complex manifold with vanishing first Chern class and a complex torus
(where one of the factors might be of dimension 0), see Theorem 6.6.

Recall Definition 5.59 of positive and negative cohomology classes of type
(1,1). Say that a closed complex manifold M is a Fano manifold if ¢1(M) is
positive or, equivalently, if the anti-canonical bundle K7, is ample!”. Since
their first Chern class is represented by their Ricci form, closed Ké&hler mani-
folds with positive Ricci curvature are Fano manifolds. For example, Hermitian
symmetric spaces of compact type are Fano manifolds. Theorem 7.1 implies
that Fano manifolds are characterized by positive Ricci curvature:

7.3 Corollary. If M is a Fano manifold, then M carries Kdhler metrics with
positive Ricci curvature.

Proof. By assumption, M has a positive closed differential form w of type (1, 1).
Then g(X,Y) = w(X, JY) is a Kéhler metric on M with Kéhler form w. Choose
a further positive differential form p’ € 2mei (M), for example p) = w. By
Theorem 7.1, there is a unique Kéahler metric ¢’ with Kéahler form cohomologous
to w and Ricci form p’. Hence the Ricci curvature of ¢’ is positive. O

The argument for Corollary 7.3 works equally well in the case ¢ (M) < 0.
In this case, however, we have the stronger Theorem 7.14 below.

7.4 Examples. 1) Let M C CP"™ be the (regular) set of zeros of a homogeneous
polynomial of degree d. Then ¢;(M) = (n+ 1 — d)¢, where c¢ is the restriction

16 My main sources for this are [Au3] and [Jo]. Other good references are [Bol], [Sil], [Ti3].
7For the equivalence, see Exercise 9.5 and the Kodaira Embedding Theorem 9.6.
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of the first Chern class of the hyperplane bundle H over CP™ to M, see [Hir,
p.159]. By Example 5.60.3, ¢ > 0. We conclude that ¢;(M) > 0 if d < n,
aM)=0ifd=n+1,and n(M) <0ifd >n+1.

2) Let My, be the blow up of CP? in k > 0 points in (very) general position.
Then ¢ (M) > 0 for 0 < k < 8. Moreover, besides CP! x CP!, these are the
only closed complex surfaces with positive first Chern class [Hit], [Yal]. The
rich geometry of these surfaces is discussed in [Va, Lectures 13-15].

From these examples one gets the impression that Fano manifolds might be
rare and special. In fact, from Corollary 7.3 and Theorems 6.11 and 6.12 we
conclude that Fano manifolds are simply-connected and that they do not admit
any holomorphic p-forms for p > 0. Moreover, for each m > 1, there are only
finitely many diffeomorphism types of Fano manifolds of complex dimension m,
for example 104 for m = 3, see [De].

Before we go into the details of the proof of Theorem 7.1, we reformulate
it into a more convenient analytic problem and discuss another question, the
existence of Kahler—Einstein metrics.

Recall that w™ = m!voly, where vol, denotes the oriented volume form of
g, see (4.20). Hence if w’ is cohomologous to w, then ¢’ and g have the same
volume. For such an w’ given, there is a smooth function f: M — R with

(W)™ =elfw™. (7.5)
Then the volume constraint turns into
/efdvolg = vol(M, g). (7.6)
In other words, e/ has mean 1. With (4.64) we get
p' = —iddIndet G’ = —iddIn(ef det G) = p — DI . (7.7)

Vice versa, for any closed real (1,1)-form p’ cohomologous to p, there is a
smooth function f: M — R such that

o —p= —%ddcf = —id0f, (7.8)

by the dd.-Lemma 5.50 and Exercise 5.51. Moreover, f is unique up to an
additive constant. Thus in our search for the Kéhler form w’ we have replaced
the Ricci form p’, which depends on second derivatives of the metric, by the
function f, which depends only on w’ itself.

For any Kéahler form w’ cohomologous to w, there is a smooth real function

© such that

1 _
W —w= gddcgp =00y, (7.9)
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again by the dd.-Lemma 5.50. Vice versa, any such form «w’ is cohomologous
to w. Thus we seek ¢ with

efw™ = (W)™ = (w4 i00p)™ (7.10)

and _
W =w+i0dp > 0. (7.11)

By the latter we mean that ¢’(X,Y) = w'(X, JY) is a Kéhler metric on M.
In a first step we show that w’ > 0 if (7.10) holds. Consider the Hermitian
metric on 7'M given by
(Z,W) =(Z, W>,

where we note that this Hermitian metric is conjugate linear in the second
variable. With respect to a coordinate frame (71, ..., Z;,) of T'M as in (2.13),
its fundamental matrix is (ng). We write the Hermitian metric (-,-)" on 7'M

induced by ¢’ as (-,-)’ = (A-,-), where A is a Hermitian field of endomorphisms
of T'M. Since e/ is non-zero everywhere, (7.10) and (4.20) imply that det A =
ef # 0 at each point of M. We want to show that at each point of M all
eigenvalues of A are positive. To that end we note that with respect to local
coordinates

0%
— of = - )1 _
M(p):=e’ =det A= det(gjk) det <gjk + 92,0 ) (7.12)

It follows that all eigenvalues of A are positive at a point where ¢ attains a
minimum. Such points exist since M is compact. Suppose now that there is a
point p € M such that A has a negative eigenvalue at p. Then on a path from
p to a point where ¢ attains a minimum, there is a point where A has 0 as
an eigenvalue. In such a point, det A = 0 in contradiction to (7.10). We have
achieved the following reformulation of Theorem 7.1:

Given a smooth function f on M such that ef has mean 1, there is a smooth
real function ¢ on M such that

InM(p) = f. (7.13)

This is a non-linear partial differential equation of Monge-Ampere type.
The solution ¢ of (7.13) is unique up to constant functions, see Proposition 7.25.
Since w’ = w + 100y is cohomologous to w, the assumption on the mean of
el is automatically fulfilled. In other words, we may delete the normalizing
assumption on the mean and ask for a solution of (7.13) up to an additive
constant f + ¢ instead. This point of view will be useful further on.

Before we discuss the proof of Assertion 7.13, we discuss a related problem,
namely the question of the existence of Kéhler-Einstein metrics.
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7.14 Theorem (Aubin-Calabi-Yau). Let M be a closed complex manifold
with negative first Chern class. Then up to a scaling constant, M has a unique
Kahler—Finstein metric (with negative Einstein constant).

Theorem 7.14 was conjectured by Calabi and proved independently by
Aubin [Au2] and Yau [Ya2], [Ya3]. The case of positive first Chern class is
complicated, we discuss it briefly in Subsection 7.4 below. The case of Ricci-
flat Kahler metrics is treated in Corollary 7.2.

We now reformulate Theorem 7.14 into an analytic problem similar to (7.13)
above. Suppose ¢1 (M) < 0 and choose a constant A < 0. Let w be a positive real
differential form of type (1,1) with Aw € 2mci(M). Then ¢g(X,Y) = w(X, JY)
is a Kéhler metric on M with Kahler form w.

Let ¢’ be a Kahler—Einstein metric on M with Kahler form w’ and Einstein
constant A. Then M\’ = p’ € 2m¢; (M), hence w’ is cohomologous to w, and
therefore w’ — w = iddyp. Since the Ricci form p € 2mc; (M), there is a smooth
real function f on M, unique up to an additive constant, such that p — Aw =
i00f. We want to solve p’ = A\w’. The latter gives

—i00In M (p) = p' — p = MW — w) —id0f = Niddp — i, (7.15)
and hence, by Exercise 5.51,
In M(p) = —Ap + f + const. (7.16)

Replacing ¢ by const/A+ ¢, the constant on the right side vanishes. Vice versa,
suppose ¢ solves (7.16). Then the above computation shows that w’ = w+iddp

solves p' = Aw’. We explain after Equation 7.18 below why w+i0d is positive.
In conclusion, Theorem 7.14 is a consequence of the following assertion:

Given A < 0 and a smooth function f on M, there is a unique smooth real
function ¢ on M such that

In M(p) =—Ap+ f. (7.17)

Both equations, (7.13) and (7.17), are of the form

In M(p) = f(p, ), (7.18)

where f = f(p,¢) is a smooth real function 8. Since exp(f(p,¢)) > 0, the
same argument as further up shows that for any smooth solution ¢ of (7.18),
w + 100y is a positive (1,1)-form. With this question out of the way, we can
now concentrate on the solvability of our equations. If not specified otherwise,
inner products and x-operator are taken with respect to the metric g.

181t is understood that f(p, ) = f(p, ¢(p))-
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7.1 Uniqueness. Let p € M. Given a second Kéhler metric g’ about p, there

exists a centered holomorphic chart z = (z!,...,2™) about p with
1 i ods. o — i & 5
gp = §Zdzp®dzp, 9y = 52% dz) © dz), (7.19)
where aq, ..., a,, are positive numbers. Correspondingly,
) - s ) . _
wp =5 Z dz) NdZ),  w, = 5 Z ajdz) A dzzlg. (7.20)

The volume forms are related by

vol'(p) = (T]as) - vol(p)- (7.21)
We also see that w7~ A (w;,)’ is a positive linear combination of the forms

m—1 —

7 - = m zm
g4 NAZ A NdzE NAZEA - Nz A dE (7.22)

where behatted terms are to be deleted.

7.23 Lemma. With respect to the x-operator of g, *(w™ 771 A (w')?) is a
positive (1,1)-form.

Proof. Immediate from (7.22). O

7.24 Lemma. Let ¢ be a smooth real function on M. If n is a differential
form of degree 2m — 2, then

dp N dep A = *n(grad ¢, J grad ) vol. (1)
In particular,

1
do ANdep ANw™ ™1 = E| grad p[2w™. (2)

Note that if 7 is of type (m — 1,m — 1) and *n is non-negative (of type
(1,1)), then *n(grad ¢, J grad ¢) > 0.

Proof of Lemma 7.24. We have d.¢ = —dpo J. Hence (d.p)* = J-grad ¢, and
therefore

dp Ndep A = (dp A dep, *1) vol
= (dc, grad pLn) vol
= xn(grad ¢, J grad ¢) vol.

This proves the first equation. The second equation follows from the first and
Equations 4.20 and 4.22. O
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We now come to the uniqueness of solutions of (7.18). It is related to the
dependence of f on the variable ¢.

7.25 Proposition. Suppose ¢1 and @o solve (7.18).
1) If f is weakly monotonically increasing in @, then 1 — o is constant.
2) If f is strictly monotonically increasing in @, then v1 = @a.

In particular, solutions to Equation 7.17 are unique and solutions to Equa-
tion 7.13 are unique up to an additive constant.

Proof of Proposition 7.25. Set w1 = w + i85<p1 and wo = w + iaém. Then

/w{”z/wm:/wén,
where we integrate over all of M. Hence

0=2 [ @ -up)
M
- /ddc(% — o) AW Wl T Awp -+ wpt ).

Applying Stokes’ theorem and Lemmas 7.23 and 7.24 we get
0= /d((% —2)de(p1 = @2) A (W' W TP Awp + o Wi )
— [dtor = pa) ndelior = o) A P R )
U (CETAEEED
> [ lgrad(or - g2l ol + [ (o1 = @)/ - SOom,

where the index g; means that we take the norm with respect to the metric
g1. If f is weakly monotonically increasing in ¢, then both terms on the right
hand side are non-negative. g

7.2 Regularity. Let U C C%(M) be the open subset of functions ¢ such that
w + 00y is positive. Let F: U — C°(M) be the functional

Flp) =InM(p) = f(p,¢), (7.26)

where f = f(p, ) is a smooth real function. We want to study the solvability of
the equation F(¢) = 0 using the continuity method. To that end, the regularity
of solutions will play an essential role in Subsection 7.3 since we will need a
priori estimates of their higher order derivatives, compare (7.40) and (7.41).
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For ¢ € U and w, = w + 100y, a continuous differential form, we let g, be
the associated continuous Riemannian metric as in (4.2). Since w,, is of type
(1,1), g, is compatible with the complex structure of M. We call

2

A, = 2ng

200 5 (7.27)

the Laplacian of g,, compare Exercise 5.51.1. Since ¢ € U, A, is elliptic.
For ¢ € U and ¢ € C%(M), the directional derivative of F at ¢ € U in the
direction of v is

(Flo+19)) im0 = 580~ folp.) -0, (7.25)

where f, denotes the partial derivative of f in the direction of the variable ¢.
It follows that F is continuously differentiable with derivative dF(p) - ¢ given
by the right hand side of (7.28). The same statements also hold for F when
considered as a functional from U N C*¥+2+(M) to C*+*(M), where k > 0 is
an integer and « € (0,1).

7.29 Proposition. If o € UNC?*t*(M) solves F(p) = 0, then ¢ is smooth.

Proof. Since f is smooth and ¢ is C?**, the function
det(g ) det(g; + @) — f(p.9)

is C?*® in p € M and the (free) variables Pir By (7.28), ¢ is an elliptic
solution of the equation F(¢) = 0. Hence ¢ is C4*t* and, recursively, C¥+* for

any k > 6, by the regularity theory for elliptic solutions of partial differential
equations 1°. O

7.3 Existence. From now on, we only consider Equations 7.13 and 7.17,
Flo)=InM(p)+Xp—f=0 onUnC* (M), (7.30)

where U is as above, a € (0,1), f is a given smooth function on M, and A = 0
in the case of (7.13) and A < 0 in the case of (7.17). We also recall that in the
case of A = 0, we are only interested in f modulo an additive constant.

7.31 Remark. In the case of complex dimension m = 1, Equation 7.30 be-
comes )
ef Mg =g — §Ag0.

In this case, the arguments below are much easier. It is a good exercise to follow
the argument below in this more elementary case. This is still a non-trivial case,

the uniformization of closed Riemann surfaces.

1n [Ka2], Kazdan gives a nice exposition (with references) of this theory.
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For the proof of the existence of solutions we apply the method of continuity.
Welet 0 < ¢ < 1andreplace f by ¢f in (7.30). That is, we consider the equation

Fi(p) =InM(p) + o —tf =0 on UNC*H(M). (7.30.t)

We let 7, be the set of ¢ € [0,1] for which a C?T-solution of Equation 7.30.t
exists (modulo a constant function if A = 0). The constant function ¢ = 0
solves 7.30.0. Hence 7 is not empty. The aim is now to show that 7, is open
and closed. We distinguish between the cases A < 0 and A = 0.

We start with the openness and let t € 7, and ¢ be a solution of Equation
7.30.t. Now

AT () = dF () = —%Aw 4 (7.32)

defines a self-adjoint operator on L?(M, g,,). If A < 0, then the kernel of dF;(y)
on L?(M) is trivial and hence dF;(¢) is an isomorphism from its domain H2(M)
of definition onto L2(M), by the spectral theorem. Therefore, by the regularity
theory for linear partial differential operators, dF;(¢): C?*T*(M) — CY(M) is
an isomorphism as well. Hence by the implicit function theorem, there is a
unique solution ¢ of Equation 7.30.s which is close to ¢; in C?*T*(M), for all
s close enough to t. Hence 7, is open.

In the case A = 0, we only need to solve modulo constant functions. We let
Z C L*(M) be the space of functions with g,-mean zero, a closed complement
of the constant functions in L?(M). Since constant functions are smooth, Z N
H?(M) and ZNC*k*t*(M) are closed complements of the constant functions in
H?(M) and C*+(M), for all k > 0. By the spectral theorem, dF;(p) = —A,/2
is surjective from H?(M) onto Z. Hence dF;(p): C?*T*(M) — Z N C*(M) is
surjective, by the regularity theory for elliptic differential operators. Hence
by the implicit function theorem, there is a family of functions ¢, for s close
enough to t, such that ¢, solves Equation 7.30.s up to constant functions.
Hence 7, is open in this case as well.

We now come to the heart of the matter, the closedness of 7,. We need to
derive a priori estimates of solutions ¢ of Equation 7.30.t, or, what will amount
to the same, of Equation 7.30.

7.33 Lemma. Let A < 0 and suppose that ln M (o) = —Ap + f. Then
1
lelloo < 7l flloo-
Al

Proof. Let p € M be a point where ¢ achieves its maximum. Then M (p)(p) <
1, by (7.12), and hence A\p(p) > f(p). Since A\ < 0,

<o) < %f(p) < LHfHoo-

A
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If ¢ achieves a minimum at p, then M(p)(p) > 1, and hence Ap(p) < f(p).

Therefore 1

02 6l0) 2 310) 2 ~5rll 0

The case A = 0 is much harder.

7.34 Lemma. Suppose that ¢ is a smooth function on M with In M () = f
and mean 0 with respect to g. Then ||¢|lcc < C, where C is a constant which
depends only on M, g, and an upper bound for C(f) := |1 — expof] oo-

It will become clear in the proof that the constant C' is explicitly computable
in terms of C(f) and dimension, volume, and Sobolev constants of M.

Proof of Lemma 7.34. We let ¢ be a smooth function on M with In M () = f.
Recall that the latter holds iff (w')™ = efw™. We have

(1—elw™ =w™ — (W)™

=w-wW)A (W T W EAY 4 4 (W)
= —%ddcgp AW P 0™ 2AW F - (W)™,
For p > 2, Stokes’ theorem gives
[ deleP e n @+t @) =0,

where we note that ¢|p[P~2 is C! for p > 2. Now

d(plelP™2) = (p — 1)|¢|P~2de,
hence
-1 [ JeP 2o ndpn @+ @) =2 [ (- ehglelr .
M M
By Lemma 7.24, the left hand side is equal to
pP— 1 — m
P2 [ el rad gl + @,
m M
where ® > 0. From
1 _
107 lel" 2| grad o] = | grad ||/ ?

and w™ = m!voly, we conclude that, for p > 2,

2
mp _
|| grad |o[P/?13 < mc(f)llwllﬁ_i (7.35)
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where the index refers to the corresponding integral norm.
By the Sobolev embedding theorem, there is a constant C; with

[l zmez < Cr - ([loll2 + [l grad o]l2). (7.36)

From now on we assume that ¢ has mean 0 with respect to g. Then we
have
[ll2 < Cy - || grad ¢ o, (7.37)

where 1/C3 is the first eigenvalue of the Laplacian of (M, g).
By (7.35), applied in the case p = 2, we have

Igradll3 < 2mC(f)]lel1-
Now [[¢|1 < vol(M)Y/2 . |¢l||2. Hence, by (7.37),
| grad |3 < 2mC(f)Cs vol(M)"/?|| grad |l2.
With C3 := 2mCs vol(M)'/?, we get
[gradells < C5C(f) and lgll2 < C2C3C(f),
where we apply (7.37) for the second estimate. Hence, by (7.36),
pllzme2 < C1(C2 + 1)C5C(f). (7.38)

We now apply an iteration argument to get the desired uniform bound for ¢.
With a = (m + 1)/m and p > 2a, we have

1/« , %
||so||§;a=( / |so|m) =( / W?a) TR
M M

<207 - (|lg|l + || grad [¢[P/?|)3)
2
C(hleln=1)

mp
2(p—1)

2
m —
<26} (el + 55, T O (vl M) Pl )

< Cap - max{1, [|p[[7}-

<207 - (llelp +

By Equation 7.38, there is a constant C' > 1 such that

m+1

l¢ll2a < C - (Ca2a)™ 2.

We choose C such that

m-+41

C-(Cyp) 7

>1
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for all p > 2a and assume recursively that

m+1

lellp < C - (Cap)™>

for some p > 2a.. Since ma = m + 1, we then get that

lllpe < Cgp™CP(Cyp)~ " D™ = CP(Cyp) =™

and hence that

_m

m+1
[@llpa < C(Cap)™ >
Since [|¢]lp = ||¢lleo as p — 00, we conclude that ||¢]|e < C. O

For A < 0 fixed, Lemmas 7.33 and 7.34 give an priori estimate on the
C%-norm of solutions ¢ of Equation 7.30,

[elloe < CUlflloc, M. 9), (7.39)

where we assume that the mean of ¢ is 0 if A = 0. This is the main a priori
estimate. There are two further a priori estimates. They are less critical?? and
hold, in particular, for positive A\ as well. However, their derivation is space
and time consuming and will therefore not be presented here. At this stage, the
reader should be well prepared to turn to the literature to get the remaining
details.

Let 0 < § < 1. The first of the two remaining a priori estimates concerns
the g-Laplacian of ¢,

1A¢llco < C'(llpllocs | fllsos 1A lloos [AL M, g), (7.40)

see [Au2], [Ya3] or [Au3, §7.10]. By the definition of the metric g, associated
to ¢, (7.40) gives a uniform upper bound for g, against the given metric g.
Now the volume elements of g, and g only differ by the factor expof, see (7.5),
hence (7.40) gives also a lower bound for g, against g. In particular, (7.40)
gives estimates between norms associated to g and g.

The second a priori estimate concerns the g-covariant derivative of dd.p,

IVddepllso < C"([|1AG] oo [ fllcaany [Al M, g), (7.41)

[Ca3], [Au2], [Ya3] or [Au3, §7.11]. In the derivation of this latter estimate, one
actually estimates Vdd,. first in the C°-norm associated to gp- By what we
said above, this is equivalent to the estimate in (7.41). The derivation of this
estimate is, among others,; a true fight against notation and in our sources, the
authors refer to the original articles cited above.

From (7.41) and Exercise 5.51.1 we conclude that

IVAQlloo < C"([|A¢los, 1f lca(ary, (AL, M, g). (7.42)

20 An examination of the case m = 1 is recommended.
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Hence A is uniformly bounded in the C'®-norm associated to the fixed metric
g. Using the Schauder estimates, we conclude that ¢ is bounded in the C%+5-
norm associated to g, where the bound now also depends on (5.

Note that in our application of the continuity method, we consider the
family of functions tf, 0 <t < 1, in place of the original f, whose norms are
bounded by the corresponding norms of f.

We are ready for the final step in the proof of Theorems 7.1 and 7.14. It
remains to show that 7, is closed. Let 0 < o < 8 < 1. Let t,, € 7, and suppose
t, — t € ]0,1]. Let @, be a solution of Equation 7.30.t,. In the case A = 0, we
assume that ¢, has mean 0. Then by the above, there is a uniform bound on
the C?*A-norm of the functions ¢,,. Now the inclusion C2*#(M) — C*+e(M)
is compact. Hence by passing to a subsequence if necessary, ¢, converges in
C?**t2(M). The limit ¢ = lim ¢,, solves 7.30.t. Hence 7, is closed.

7.4 Obstructions. In Corollary 7.2 and Theorem 7.14, we obtained existence
of Kahler-Einstein metrics on closed Kéhler manifolds assuming non-positve
first Chern class. In the case of positive first Chern class, the arguments break
down to a large extent. When applying the continuity method as explained in
the previous subsection, it is no longer possible to show openness or closedness
of 7., along the lines of what is said there.

Concerning the openness of 7, the operator A, —2\ might have a kernel for
A > 0. This problem can be overcome [Aud]: In the notation of Subsection 7.3,
we need to solve the Monge—Ampere equation In M (@) +Ap— f =0 with A > 0
and a given smooth real function f. In the A < 0 case, we replaced f with ¢f,
so that we obtained a (trivially) solvable equation for ¢ = 0. Here the trick
is to keep f, but to replace ¢ with tp. Then the equation for ¢ = 0 is highly
non-trivial, but solvable according to our previous results for A = 0. A simple
calculation shows that if w; is a solution, then the Ricci form p; of wy is given
by

pt = Atw + A(1 — t)wo,

therefore Ric; > Atg: for t < 1 and Ric; = Ag;. Hence the linearized operator
Ay — 2t is invertible for all ¢ € [0,1) for which a solution exists, see Theo-
rem 6.14. This is enough for the continuity method to work, provided we can
ensure that 7, is closed. Observe that if the manifold admits automorphic
vector fields, the linearized operator has a kernel for ¢ = 1, see Theorem 6.16.

As for the closedness of 7,, the a priori estimates (7.40) and (7.41) do
not depend on the sign of A\ and continue to hold. However, the remaining
CP-estimate (7.40) is critical and might fail. Indeed, there are closed complex
manifolds with positive first Chern class which do not admit Kéhler—Einstein
metrics at all. As we will see, this can be deduced from special properties
of their automorphism groups, a kind of guiding theme: Non-discrete groups
of automorphisms yield obstructions to the existence of Kédhler—Einstein met-
rics. Even though a general criterion for the solvability of the Kahler-Einstein
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problem cannot possibly be based on the automorphism group alone — mani-
folds with trivial and non-trivial automorphism groups can, but need not be
obstructed —, the underlying ideas related to holomorphic actions of complex
Lie groups seem to be at the heart of the (still conjectural) full solution.

In the remainder of this subsection, we will treat the two classical obstruc-
tions against positive Kahler—Einstein metrics that rely on the automorphism

group.

7.43 Theorem (Matsushima [Mal]). Let M be a closed Kdhler—Einstein mani-
fold. Let a be the complex Lie algebra of automorphic vector fields on M and
t C a be the real Lie subalgebra of Killing fields. Then a = ¢+ Jt. If the
Einstein constant of M is positive, then a = £ @ JE.

7.44 Exercise. Verify this explicitly for the Fubini-Study metric on CP™.

Proof of Theorem 7.43. Let X be a vector field on M and & := X°. By Hodge
theory, £ = + ¢, where 17 € imd and ¢ € kerd*. In other words, Y := nf is a
gradient field and Z := ¢* is volume preserving (recall that div Z = —d*().

Assume now that X is automorphic. Our first goal is to prove that Y and Z
are automorphic as well. Now Proposition 4.79 and the Bochner identity 1.38
imply that

dd*n + d*d¢ = Agn + AgC = Ag€ = 2RicE = 206 = 2Xn + 2XC,

where A is the Einstein constant of M. On the other hand, n € imd and ( €
ker d*, so dd*n = 2\n and d*d¢ = 2A( according to the Hodge decomposition
theorem, and hence An = 2 Ricn and A{ = 2Ric(. Again by Proposition 4.79,
Y and Z are automorphic.

Now Z is a volume preserving automorphic field, therefore a Killing field,
by Theorem 4.81. Hence VY is symmetric and VZ is skew-symmetric. Let
s be the real vector space of all holomorphic vector fields Y such that VY
is symmetric. By Exercise 7.45.1, multiplication by J yields an isomorphism
£ — s of real vector spaces. Hence a = ¢ + J¢&.

Now £ N s is the space of parallel holomorphic vector fields. If A > 0, the
Ricci curvature of M is positive, and then M does not carry parallel vector
fields. Hence a =t JEif A > 0. O

7.45 Exercise. Let M be a Kihler manifold and X be a real vector field on
M.

1) If X is holomorphic, then JX is a Killing field if and only if VX is
symmetric.

2) If VX is symmetric, then JX is volume preserving.

3) Visualize 1) and 2) pictorially if dim¢ M = 1.

A Lie algebra is called reductive if it is isomorphic to the direct sum of
its center and a semi-simple Lie algebra. A connected Lie group is called
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reductive if its Lie algebra is reductive. We note the following consequence of
Theorem 7.43.

7.46 Corollary. If M is a closed Kdhler—Einstein manifold, then the compo-
nent of the identity of the automorphism group of M is reductive.

Proof. Let a and ¢ be as above. Since £ is the Lie algebra of a compact Lie
group, ¢ = 3 @ [¢, €], where 3 is the center of £. Moreover, the commutator
subalgebra [¢, €] of £ is semi-simple. Now €N J¢ consists of parallel vector fields,
see Exercise 7.45.1, hence €N J¥ C 3. Therefore

a=t+Jt=(3+J3 @ ([¢, ¢ + J[t,¥€]).
Since a = £+ J¢t, the center of a is 3+ J3, and [¢, €] + J[¢, €] is semi-simple. O

7.47 Example. Let M be the once blown up CP? as in Example 2.43. The
Lie algebra a of the automorphism group of M consists of the matrices

0 * =x
0 % x| eC3*3.
0

The center of a is trivial. However, a is not semi-simple since the space of
matrices in a with zero entries in second and third row is an Abelian ideal.
Hence a is not reductive, and hence M does not carry Kahler—Einstein metrics.

By an analogous argument, the blow up of CP? in two points does not carry
a Kéahler-Einstein metric either; we leave this as an exercise. The blow up of
CP? in one or two points carries Kéhler metrics with Ric > 0, see [Hit], [Yal].
Moreover, the blow up of CP? in one point carries Riemannian metrics with
Ric > 0 and sectional curvatures > 0 [Che| and Einstein metrics with Ric > 0
which are conformal to Kéhler metrics [PP].

7.48 Remark. For closed Kéhler manifolds of constant scalar curvature, we
still have a = €4 J¢, see [Li2]. Hence the argument in the proof of Corollary 7.46
applies and shows that the identity components of the automorphism groups
of such manifolds are also reductive. In particular, the once and twice blown
up CP? do not even admit Kéhler metrics of constant scalar curvature.

We now discuss a second obstruction to the existence of positive Kéahler—
Einstein metrics which is also related to the automorphism group. Let M be a
closed Kéahler manifold with Kéhler form w and Ricci form p.

7.49 Theorem (Futaki [Fu]). Assume that w € 2mc1 (M) and write p — w =
i00F,, with F, € E(M,R). Then the map

Fora—R, Fu(X) ::/ X(F,)w™,
M

does not depend on the choice of the Kdahler form w € 2mey (M).
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We remark that the function F,, in the definition of the map F,, exists, and
is unique up to a constant, since p € 2wcy (M) € HY1(M,R), see Exercise 5.51.

The map F = F,, with w € 2mc¢; (M) an arbitrary Kéhler form, is called
the Futaki invariant of M. If w is a Kédhler—Einstein metric, w = p, then F,, is
constant and the Futaki invariant F_, vanishes on a. The Futaki invariant of
both the once and the twice blown up CP? is non-zero, see [Ti3, Section 3.2].
Hence we conclude again that these two do not admit Kahler—Einstein metrics.

Let H; — CP' and Hy — CP? be the hyperplane bundles. Let M be the
total space M of the projective bundle of the product H; x Hy — CP! x CP?, a
closed and complex manifold of complex dimension 4. Futaki [Fu, §3] shows that
M is a Fano manifold with reductive automorphism group but non-zero Futaki
invariant. Hence the Matsushima criterion for the non-existence of Kéhler—
Einstein metrics does not apply in this case, whereas the Futaki obstruction
does.

Proof of Theorem 7.49. We let wy, —¢ < t < €, be a smooth family of Kéhler
forms in 2mwcy (M). The goal is to show that

O (Fu (X)) = 0.

By Exercise 5.51, wy — wp = i00®, and Pt — Wy = i00F, for families of smooth
functions ®; and F;. From the proof of the dd.-Lemma 5.50 we see that these
families of functions can be chosen to be smooth in ¢. As in (7.15), we compute

—iagln M(q)t) =Pt — pPo = 285(Ft + (I)t - FQ),
hence —In M (®,) = F; + &, — Fy + constant.

From now on, we mostly suppress the parameter ¢ in our notation and
indicate differentiation with respect to t by a dot or by 9;. With ¢ = ® and
f=F we get w=100p and p—w = 100 f. The displayed equation above gives

Ap =2f 4 20,
compare Exercise 5.51. By Exercise 7.50, we have

20,w" = 2me A w™ ! = 2middp A W™ = —Ap - w™.

Thus
20; (Fwt (X)) = 2/M {(XfHw™+ (XF)ow™}

= /M {X(Ap —2¢) — (XF)Ap}w™.
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From now on, we suppress the measure of integration since it is always w™.
Because X is holomorphic,

X(Ap) = / (X, grad Ap)
M M

-/ {Ric(X, grad ¢) + (X, V*V(grad ¢))}

= [ {Ric(X,grady)+ (V*VX, gradp)}
M

= 2/ Ric(X, grad ¢),
M
by Exercise 6.17 and Proposition 4.79. It follows that
/ X(Ap —2¢p) = 2/ { Ric(X, grad¢) — (X, grad ¢) }
M M
= 2/ {p(X,Jgradp) — w(X, Jgrad¢) }
M
—9 / (i09F)(X, J grad o)
M
= / {V?F(gradp, X) + V?F(J grad ¢, JX)},
M
because of p — w = id0F and Exercise 7.50. Now

div((XF)grad¢) = (grad(X F), grad ¢) — (X F) A,

hence

/(XF)A@:/ (grad(X F), grad )
M M

— / {V?F(grad ¢, X) + (Vgrad o X, grad F') }.
M
Since X is automorphic and J is parallel,
(Varad X, grad F) = (V s grad X, J grad F) = —(V jgrad o J X, grad F).

Adding up, we get
20, (Fur (X)) = / (V2 F(J grad g, JX) + (V1 graa I X, grad F)}
M

- / (J grad ) (JX (F)) = — / (JX(F)) div(.J grad ).
M M

Now div J grad ¢ = 0, see Exercise 7.45.2, hence 0;(F,, (X)) = 0. O
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7.50 Exercise. Let M be a Kéahler manifold and ¢ be a smooth function on
M. Show that

2middp Aw™ 1t = —Agp - W™, (1)
2i00p(X, JY) = V2p(X,Y) + VZp(J X, JY). (2)

The complex Hessian of ¢ is defined by Hess. ¢(X,Y) = id0¢(X,JY). Write
down Hess ¢ = V29 and Hess,. ¢ in Kihler normal coordinates.

7.51 Remark. Calabi generalized the Futaki invariant to general closed Kéhler
manifolds M: Fix a K&hler metric w on M and write p,, = =, +190F,,, where
is the unique w-harmonic form in 27c¢; (M). Then the Calabi-Futaki invariant

CF,:a—R, CF,(X) ::/ X(F,)w™, (7.52)
M

does not depend on the choice of w in its Kéhler class. It vanishes if the
Kahler class of w contains a Kahler metric with constant scalar curvature. The
previously defined Futaki invariant is the special case where w € 2mwe; (M) (if the
latter is positive definite). Our proof of Theorem 7.49 follows Futaki’s original
argument. For a discussion of the more general Calabi—Futaki invariant, see
for example Chapter 2.I in [Bes], Section 3.1 in [Ti3], or Section 1.6 in [Bo3].

It follows from work of Siu, Tian, and Yau that among the Fano surfaces
as in Example 7.4.2, only the blow ups of CP? in one or two points do not
admit Kéhler-Einstein metrics [Si2], [Til], [Ti2], [TY]. These are precisely the
ones whose automorphism group is not reductive and whose Futaki invariants
do not vanish. In higher dimensions, the situation is much more complicated.
There are examples, where the C?-estimates in the continuity method could be
verified. For example, the Fermat hypersurfaces

zg—i—---—i—zﬁ:O

in CP™ carry Kéhler-Einstein metrics if (n + 1)/2 < d < n, see [Na], [Si2],
[Til] and compare Example 7.4.1. For surveys on Kéhler—Einstein metrics, we
refer to [Bo3] and [Ti3]. More recent references are [Bi] and [Th]. All these
references contain extensive bibliographies as well.



8 Kahler Hyperbolic Spaces

A question attributed to Chern asks whether the Euler characteristic of a closed
Riemannian manifold M of dimension 2m satisfies

(=D)"x(M) >0 (8.1)

if the sectional curvature K of M is negative. The answer is yes if m < 2, see
[Chr] for the case m = 2. Dodziuk and Singer remarked that Atiyah’s L?-index
theorem implies (8.1) if the space of square integrable harmonic forms on the
universal covering space of M vanishes in degree # m and does not vanish in
degree = m. In [Gr], Gromov proves this and more in the case where M is
a Kahler manifold; in this section we are concerned with his arguments and
results.

Let M be a complete and connected Riemannian manifold and E be a flat
Hermitian vector bundle over M. Choose an origin o € M and let r = d(o, -)
be the distance to o. Let a be a differential form on M with values in £ and
w: Ry — R, be a non-decreasing function. We say that « is O(u(r)) if there
is a constant ¢ such that

la| < epler +¢) + ¢, (8.2)

where we consider the norm |a| = |a(p)| as a function on M. Following Gromov,
we say that « is d(O(u(r))) if there is a differential form 8 on M with a = df
and such that 5 is O(u(r)). We also write d(bounded) instead of d(O(1)), that
is, in the case where 3 can be chosen to be uniformly bounded.

8.3 Examples. 1) Let M = R"™ with Euclidean metric and origin 0. Let « be
the volume form of M, a = da' A--- Ada™. Let 8 be an (n — 1)-form with
dfB = . Then on B = B(r,0),

volnB:/ a:/ B8 < max{|5(p)| | p € OB} vol,,_1 OB.
B oB

It follows that

vol,, B r
max{|B(p)l |p € 0B} > o——p =

Hence « is not d(bounded). In a similar way one can treat each of the differ-
ential forms da’, where I is a multi-index.

2) Let « be a bounded 1-form on M and f be a smooth function with
df = a. Then

ldf | = || < [[e]loe := sup{|e(p)[ | p € M}

Hence f is Lipschitz continuous with Lipschitz constant ||a|eo if ||ct]|eo < 00.
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8.4 Proposition. Let M be complete and simply connected and o be a differ-
ential form on M of degree k with ||a||e < 00 and da = 0.

1) If K <0, then a = d(O(r)).

2) If K < —c* <0 and k > 2, then o = d(bounded).

Proof. Since M is complete and simply connected with non-positive sectional
curvature, the theorem of Hadamard-Cartan implies that exp,: T,M — M is
a diffeomorphism. Hence we may define

7i(p) := exp,(texp, ' (p)),

where 0 < t < 1. Comparison with Euclidean space shows that the differential
of 1 satisfies
|Tesv] < tlv].

The usual proof of the Poincaré lemma provides a (k — 1)-form 8 with df = a.
In Riemannian normal coordinates, 3 is given by

B(z) = 7'/0 t*Y(vLa)(tx) dt = T/O 71 (vea)(z) dt,

where r = |z| and v is the radial normal field. By the above estimate
I (vea)| < 7 Hoeal < 7710l

and hence -
8)] < Tllalle.

where p = exp(x). Note that this estimate is optimal, see Example 8.3.1 above.
Suppose now that the sectional curvature of M is negative, K < —c? < 0.
Comparison with hyperbolic space shows that, for v perpendicular to v,

sinh(ctr)
sinh(cr)

[0l

|Tv] <

where r is the distance of the foot point of v to 0. Hence

L sinh(ctr _
B)] < r/o (IR Ve

sinh(cr)
_ /r (Sinh(cs))k—l ds - Ha”
o sinh(er) >
0 (k—1)cs 1
< (e )ds - ||alle = =T [l oo

therefore ao = d(bounded). O
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8.5 Remark. The estimates in the proof are explicit. Note also that the lift of
a differential form on a compact manifold to any covering manifold is uniformly
bounded.

8.6 Proposition. Let (G, K) be a Riemannian symmetric pair such that M =
G/K is a symmetric space of non-compact type. If a is a G-invariant differen-
tial form on M, then « is parallel and hence closed. If o is of positive degree,
then the restriction of a to mazimal flats in M vanishes and o = d(bounded).

This result seems to be well known to experts, I learned it from Anna
Wienhard. The proof (and even the statement) of Proposition 8.6 requires
more on symmetric spaces than we develop in Appendix B. Therefore we only
give a brief sketch of the argument. Good references for symmetric spaces of
non-compact type are Chapter 2 in [Eb] and Chapter VI in [Hel].

Sketch of proof of Proposition 8.6. We can assume that (G, K) is an effective
pair. By Remark B.36, G contains the connected component of the identity of
the isometry group of M. By Theorem B.24.3, « is parallel and hence closed.

Let F C M be a maximal flat and p € F. There is a basis of T,,F' such
that the reflections of 7T}, F' about the hyperplanes perpendicular to the vectors
of the basis are realized by the differentials of isometries g € G fixing p. Since
« is invariant under G, it follows easily that o|T,F = 0.

Let ¢c: R — M be a regular unit speed geodesic and b: M — R be the
Busemann function centered at c¢(oo) with b(c(t)) = —t. Let V = — grad b and
(ft) be the flow of V. Then, for each p € M, ¢,(t) = fi(p), t € R, is the unit
speed geodesic through p asymptotic to c. In particular, ¢, is also regular and,
therefore, contained in a unique maximal flat Fj,. The flats F}, constitute a
smooth foliation F of M by totally geodesic Euclidean spaces.

For any unit tangent vector u of M perpendicular to F, (R(u, V)V, u) is
negative and, by homogeneity, bounded away from 0 by a negative constant
which does not depend on u. In particular, the Jacobi fields of geodesic vari-
ations by geodesics ¢, and perpendicular to F decay uniformly exponentially.
Since a vanishes along F, it follows easily that

v = —/ Fradt
0

is a well defined smooth differential form on M such that Lyvy = « and dy = 0.
With 8 = Viy we get

a=Lyy=dVviy)+ Vidy =dg.
Now < is uniformly bounded and |V| = 1, hence a = d(bounded). O

8.7 Definition (Gromov). Let M be a Ké&hler manifold with Kéhler form
w. We say that M is Kdhler-hyperbolic if the Kéhler form @ of the universal
covering space M of M is d(bounded).
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Recall that the cohomology class of the Kahler form of a closed Kahler mani-
fold M is non-trivial. Hence closed Kéahler manifolds with finite fundamental
group are not Kahler-hyperbolic. On the other hand, if the sectional curvature
of M is strictly negative, then M is Kahler-hyperbolic, by Proposition 8.4. By
Proposition 8.6, Hermitian symmetric spaces of non-compact type are Kéhler
hyperbolic as well. These do not have strictly negative curvature if their rank,
that is, the dimension of their maximal flats, is larger than 1.

Kéhler-hyperbolic Kéhler manifolds are the main topic in Gromov’s article
[Gr]. Cao and Xavier [CX] and independently Jost and Zuo [JZ] observed that
the arguments of Gromov concerned with the vanishing of square integrable
harmonic forms work also under the weaker assumption that the Kéhler form
is d(O(u)), where > 7°1/u(n) = co. Note that this assumption is fulfilled if M
is simply connected with non-positive sectional curvature, by Proposition 8.4.1.
We include this extension into our discussion, see Theorem 8.9 below.

For the rest of this section we assume that M is a complete and connected
Kahler manifold with Kéhler form w and complex dimension m. We let E — M
be a flat Hermitian vector bundle. Declaring parallel sections as holomorphic
turns F into a holomorphic vector bundle such that the Chern connection of
the given Hermitian metric is the given flat connection.

Without further notice we use notation and results from Appendix C. We
do not assume throughout that differential forms are smooth and indicate their
regularity when appropriate.

8.1 Kahler Hyperbolicity and Spectrum. One of the remarkable proper-
ties of Kahler manifolds is that the Lefschetz map commutes with the Laplacian:
If «v is a harmonic form with values in F, then w A « is harmonic as well. This
is one of the cornerstones in the arguments which follow.

8.8 Lemma. Suppose that w is d(O(u(r))), where > 7" 1/pu(n) = oo. Let a be
a closed and square integrable differential form with values in E. Then

dwha)=0 = wAa=0.

Proof. Choose an origin o € M, and let r: M — R be the distance to o. Since
M is complete and connected, the sublevels of r are relatively compact and
exhaust M. Choose cut off functions ¢,: M — R, n > 1, with ¢, (p) = 1 if
r(p) <n, pp(p) =0if r(p) > n+1 and |dp,| < co.

Let w = dn with |n| = O(u(r)). Since da = 0 = d*(w A «) and ¢,n is
smooth with compact support,

0:/M(d*(wAa),cpnnAa):/M(w/\oz,d(gpnn/\a))

:/ (w/\oc,dgpn/\n/\oz)—i—/ (WA, ppw A @),
A, M
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where A, ;== {p € M | n < r(p) < n+ 1} contains the support of dy,,. The
L2-norm of w A « is finite since w is parallel and, therefore, uniformly bounded.
Hence the second term on the right tends to the square of the L?-norm of w A«
as n — 0o. Now

/ |(w A a,don A Aa)| < (culen+c)+c) - ||w|\oo/ o2
Ap

n

Hence the assertion follows if the limes inferior of the sequence on the right
hand side is 0. If the latter would not hold, then there would be an £ > 0 such

that
&
Hall2=/ af? = /|a|2z = 0.
) ML D DY NS B P CISs s vy o

This would be in contradiction to the assumption that « is square integrable.
O

8.9 Vanishing Theorem (Cao—Xavier [CX], Jost—Zuo [JZ]). If w is d(O(u)),
where Y17 1/u(n) = oo, then

HE(M,E) =0 for k # dime M.

Proof. For k < m this follows from Theorem C.49 and Lemma 8.8. For k > m,
vanishing follows from Poincaré duality. |

8.10 Main Lemma. Suppose w = dn with ||1||e < c0. Let a € L*(A*(M, E))
be in the domain of Agmax and suppose that k # m or that o L HT' (M, E).
Then

(Adgmax, )2 > Nlallz  with A* = c(m)/|In]|% > 0.

Proof. Assume first that k = m + s > m. The s-th power of the Lefschetz map
defines a parallel field of isomorphisms A™ (M, E) — A™*$(M, E), see the
discussion in Section 5. In particular, there is 3 € L%(A™~*(M, E)) such that
a=wAp.

Since F is flat, Ay = (d + d*)?, hence Ay max = Admin, by Theorem C.19.
Hence we can assume that « and 3 are smooth with compact support. Let

O:=npAw AL

Then
dd=w* ANB—nAWIAdE=a—d.

Now |6 < [n]|w*~ |||, hence

16112 < lInlloc e 11112,

where we note that |w®~!| is constant. Since L** is parallel, there is a positive
constant ¢g such that |L*y| < ¢ol|y| for all v € A™ ¢(M, E) and |L™%v| < ¢o|7|
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for all v € A™*T$(M, F). Since L* commutes with A4, we have L*A408 = Aya,
hence

[dB115 < (AaB,B)2 < | Aafll2llBll2 < cillAgallz]|allz.
We conclude that
1/2 1/2
2 2 -

lo/ll2 < collnlloclw® | Aacrlly et

We also have

(d*a,0)s < [[d*all2]10]l2 < (Aga, @)y?]|0]]

_ 1/2 1/2
< |7l solw® =M1 Agelly |3 11812

_ 1/2 3/2
< collnlloole® Ml Aacrlly* 3.

Therefore

el = (a,df + '),
= (o, df)a + (a, @’ )2
d*a, 0)2 + [lal2]le/[|2

1/2

<
< 2co||nll ool [ Agally ]

3/2
5.

Since Ag max is self-adjoint and non-negative, this proves the asserted inequality
in the case k > m. By applying Poincaré duality we conclude that it also holds
in the case k < m.

We note that for a differential form « of pure degree, we have

a € dom(d + d*)max  f  « € dom dpax N domd;

max"*

Since (d + d*)max = (d + d*)min, the above inequality shows that, for k # m,

dimaxall3 + lldiaxerll3 > A[lall3

for any differential k-form a € dom(d + d*)max. Now imd C dom dpax, hence

dom dyax = dom dpax N (ker d,

= dom dpax Nkerdy, . +imd.

Since imd C ker dyax, it follows that the image of dp,.x on differential forms of
degree m — 1 is equal to the image of its restriction to

dom dppax Nker df,, N L2 (A™ Y (M, E)).

max

By the above estimate we have

dmaxcrll3 > A*[lal3
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for any « in the latter space. In particular, the image of dyax on differential
forms of degree m — 1 is closed. Therefore it contains imd N L%(A™ (M, E)).
There is a similar discussion for d .. on forms of degree m + 1. Hence we

max

can represent any v € dom Ay maxNL2(A™ (M, E)) perpendicular to H3' (M, E)
as

Y= dmaxa + drnaxﬁa

where dypaxa € imd L imd* 5 df . [ and

T @ = max3 = 0, ||dmaxalla > N[all2, || d5axBllz > A[B]l2-
We have
v € dom Ag max = dom Ag min C dom(d + d*)min = dom(d + d*)max-

Considering degrees, we get

*
max?

dmax € domd d; 0B € domdpax,

and hence a, 8 € dom Ay max. In conclusion,

713 = lldmaxarll3 + | diaxBl13
= (Agmax; @)2 + (Agmax, 8)2
< [Admaxel2]lell2 + | AdmaxBll2|8]]2
<A (| Agmaxall3 + [|AdmaxB13)
=272 ([d5a I3 + ldmaxylI3) = A7% - (A7, 7)2. O

Let E', E" — M be Hermitian vector bundles over M and D be a differential
operator of first order from E(E’) to E(E”). Let F — M be a further Hermitian
vector bundle with Hermitian connection V2. Define

S F@T"M@F - E'@F, Sfla®dp®o)=(S(dp)a)®o, (8.11)

where S is the principal symbol of D, see (C.10). The twist of D by V is the
differential operator DV : £(E' ® F) — E(E" ® F) defined by

DY¥(a®o) = (Da)® o+ S (a® Vo). (8.12)
8.13 Example. For D = d + d*, we have
SFa@Vo):=> {(X]Aa)® Vx,0— (X;La) ® Vx,0},

where (X)) is a local orthonormal frame of T'M.

21'We are short of symbols since D is in use already.
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If V, VY are Hermitian connections on F and A =V — V°, then
(DY — DY) a® o) = SF(a® Ao) = S*a® o) (8.14)

is of order 0, a potential perturbing DY’. We apply this in the case where
F = M x C is the trivial line bundle over M with the canonical Hermitian
metric and canonical flat and Hermitian connection V°. Let ¢ be a real valued
differential one-form on M. Then

V=V44, (8.15)

where
Ao =i ® o, (8.16)

is a connection form for F. Since i( is purely imaginary, V is Hermitian. The
curvature form of V is id(. Vice versa, if V is a Hermitian connection on a
Hermitian line bundle F' — M and the curvature form of V is exact, say equal
to id(, then V® = V —i¢ ®1id is a flat Hermitian connection (and F is trivial
if M is simply connected).

8.17 Lemma. Suppose w = dn with ||1]|ec < 0o. Let D = 0+ 0* on A*(M, E)
and X be as in Lemma 8.10. Let F' = M x C be the trivial line bundle over M
with VO and V = V° + i ®1id as above. Assume that |SA3| < c-|B| for some
positive constant ¢ < /\/\/5 Then

ker Dppax = 0 = ker DY

max

=0.

Proof. Assume that ker Dy, = 0. Since VY is flat, we have

0 1 A2
IDY 513 = (A58, )2 = §(Ad5,5)2 > =183
for all B € A%(M,E ® F), by Lemma 8.10. Hence, for all such 3,

IDV B2 = | DY’ B+ S4B
> IDY°Bll2 — 15482 = (\/V2 = ¢)|| Bl

Now DY. = DY __ see Theorem C.19. Hence ker DY

min max max = 0 as asserted. O
8.2 Non-Vanishing of Cohomology. We start with a little detour (and a
corresponding change in notation) and discuss Atiyah’s L?-index theorem [At].
Let M — M be a normal Riemannian covering, where M and M are connected
and M is closed. Let E — M be the pull back of a Hermitian vector bundle
E — M. Then the group I' of covering transformations of M — M acts on E,

hence on sections of E by y-0 :=vyoogo~y™1.



8 KAHLER HYPERBOLIC SPACES 113

Let H C L?*(M, E) be a closed subspace and (®,,) be an orthonormal basis
of H. Then the function

f: M — [0700]7 f(p) = Z |(I)n(p)|27 (8'18)

does not depend on the choice of (®,). It follows that f is T-invariant if H is,
and then f is the lift of a function f on M and we set

dimp H = /M £, (8.19)

the I'-dimension of H. It is important that dimpr H # 0 iff H # 0.

Let E* — M be Hermitian vector bundles and D: £(ET) — E(E~) be a
differential operator. Let E* and D be the pull backs of E¥ and D to M.
Then the kernels of D and its formal adjoint D* are I-invariant. By definition,
the T-index of D is

indr D = dimp ker D — dimp ker D*. (8.20)
The T-index of D is well-defined if one of the dimensions on the right is finite.

8.21 Theorem (Atiyah [At]). If D is elliptic, then the I'-dimensions on the
right hand side of (8.20) are finite and

indr D = ind D.

Theorem 8.21 applies in the case of non-positively curved closed Kéhler
manifolds and shows that their Euler characteristic has the right sign. More
precisely, we have the following result.

8.22 Theorem (Cao-Xavier [CX], Jost-Zuo [JZ]). Let M be a closed Kdhler
manifold and M — M be its universal cover. If the Kdhler form © of M is
d(O(p)), where Y 7°1/pu(n) = oo, then

(=1)"x(M, E) = 0.

Proof. By Hodge theory, x(M, E) = ind D, where D = d+d* from A®V**(M, E)
to A°4(M, E). We have D = d+d*, but now from A®¥*"(M, E) to A°(M, E).
By Theorem 8.21, ind D = indr D, where T is the fundamental group of M.
By Theorem 8.9, there are no non-trivial square integrable harmonic forms on
M of degree different from the middle dimension. Hence

(=1)™indr D = dimp H™(M, E) > 0. O

Gromov uses an extended version of (part of) Theorem 8.21. He considers
the twist of the pull back of a specific bundle E with the trivial complex line
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bundle endowed with a Hermitian connection V which is not invariant under
T", whereas the curvature of V still is.

For the reader’s convenience, but without proof, we state a more general
version of Gromov’s extension. Let E — M be a Hermitian vector bundle of
rank 7, not necessarily the pull back of a Hermitian vector bundle over M. Let
G be an extension of I' by a compact group K,

1 —K—G-5T —1. (8.23)
Suppose that G acts by Hermitian isomorphisms on F such that
mog=p(g)omr forall g€ @G, (8.24)
where 7 denotes the projection of E. Then G acts on L2(J\~47 E) by

g-o:=gooop(g) L (8.25)
Let H be a G-invariant subspace of L2(M,E). Then the function f as in
(8.18) is I'-invariant, and we define the G-dimension of H by the integral of the
corresponding function f on M as in (8.19).
Let E* be Hermitian vector bundles with Hermitian G-actions satisfying
(8.24) (where now 7 denotes the projections of E*). Suppose that D is a
differential operator from £(E*) to £(E~) commuting with the actions of G,

D(g-0)=g-(Do). (8.26)

Then the kernels of D and D* are invariant under G, and we define the G-index
of D as in (8.20). The case considered in Theorem 8.21 corresponds to the
trivial extension G = I'. The extension we state concerns the case where E =
Et @ E~ is a graded Dirac bundle and Dt: £(ET) — £(E™) the associated
Dirac operator in the sense of Gromov and Lawson, see Subsection C.24.

8.27 Theorem. Suppose that Fisa graded Dirac bundle and that the Hermi-
tian action of G on E satisfies (8.24) and leaves invariant connection, Clifford
multzplzcatwn and splitting E=Et®E of E. Then the associated Dirac
operator D satisfies (8.26), the G-dimensions of ker Dt and ker D~ are finite,
the canonical index form & of D is the pull back of a form o on M, and

indg(D1) = / Q.
M
About the proof. It seems that the arguments in Section 13 of [Ro| generalize
to the setting of Theorem 8.27. g

8.28 Remark. We will need Theorem 8.27 for the Hirzebruch—Riemann—Roch
formula, that is, for the twisted Dolbeault operator d 4+ 0* (times v/2) on the
Dirac bundle

AP*(M,E) = A»*(M,C) ® A»°(M,C) @ E
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with splitting into forms with % even and odd, respectively, see Example C.27.2.
In this case, the canonical index form is

Td(M) A ch(AP°(M,C) ® E) = Td(M) A ch(AP°(M, C)) A ch(E),

where Td and ch denote Todd genus and Chern character, see Theorem I11.13.15
in [LM].

Before returning to the discussion of Kéhler manifolds, we discuss a situation
where a group G as above arises in a natural way. To that end, suppose in
addition that M is simply connected. Let F — M be a Hermitian line bundle
with Hermitian connection V such that the curvature form w of V is I'-invariant.

8.29 Lemma. Letpe M, vy €T, and u: F, — F,, be a unitary map. Then
there is a unique lift of v to an isomorphism g of F over v with g, = u and
such that g preserves Hermitian metric and connection of F'.

Sketch of proof. Let ¢ € M and y € F,. Choose a piecewise smooth path c
in M from p to q. Let x be the element in F,, which is parallel to y along c.
Set g(y) = z, where z is parallel to ux along v o ¢. The dependence of parallel
translation on curvature together with the I'-invariance of w shows that z only
depends on the homotopy class of ¢. Since M is simply connected, g is well
defined. By definition, u preserves parallel translation, hence V. Since V is
Hermitian, g preserves the Hermitian metric of F. |

It follows from Lemma 8.29 that there is an extension
1-U1)—-G—-T—-1 (8.30)

of T by U(1) which lifts the action of I" on M to an action of G on F as in
(8.24). Furthermore, the action of G preserves metric and connection of F.

We now return to the discussion of Kahler-hyperbolic Kahler manifolds. We
let M be a closed and connected Kéhler manifold and £ — M be a flat vector
bundle. We let M — M be the universal covering of M and E — M be the
pull back of E.

8.31 Main Theorem. If & = dn with ||n]|c < 00, then
HEYUM,E)#0 ifp+q=m.

Proof. Let F = M x C be the trivial line bundle with canonical Hermitian
metric and flat connection V, and consider the Hermitian connections

Vi = V0 +itn.

The curvature form of Vt is itdn = it®, where & denotes the Kihler form of
M with respect to the induced Kéahler metric. Since @ is I'-invariant, we get
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extensions Gy of I by U(1) with induced actions on F' as in Lemma 8.29 above.
For each fixed ¢, consider the twist DV’ of the Dolbeault operator D = 0 4 0*
on AP*(M, E’) by F with connection V!. With respect to the splitting into
forms with * even and odd, the index form of (DV')* is

Td(M) A ch(AP°(M, C)) A ch(E) A ch(F),

where ch F' = exp(—tw/2m), see (A.44) and Remark 8.28 above. Hence the
index form is a power series in t, where the coefficient of ¢ in degree dimg M

is
rk B m\ .,
ml(=2m)™ \ p v

By Theorem 8.27, the index indg, ((DV')") is the integral of the index form
over M. It follows that indg, (DV')*) is a polynomial in ¢, where the coefficient
of ™ is non-zero?2. Hence the zeros of this polynomial are isolated.

On the other hand, H%(M, E) = 0 would imply that indg, (DV') = 0 for
all ¢ sufficiently small, by Lemma 8.17. O

8.32 Theorem. If @ = dn with ||n]|e < 00, then
(—1)™x(M) = > dimp HYI(M, E) > 0,
ptg=m
where I denotes the fundamental group of M.

Proof. This is immediate from Theorems 8.21, 8.9, and 8.31, compare the proof
of Theorem 8.22. g

22This is in contrast to the case of compact manifolds, where the index of elliptic differential
operators is integral and would not depend on t.



9 Kodaira Embedding Theorem

Let M be a closed complex manifold of complex dimension m. Recall that a
holomorphic line bundle £ — M is positive or negative if its first Chern class
c1(E) has a positive or negative representative, respectively, see Definition 5.59.
It is immediate that a holomorphic line bundle is positive iff its dual is negative.
In Examples 5.60 we showed that the tautological bundle U — CP™ is negative
and that the hyperplane bundle H — CP™ is positive.

If M admits a positive holomorphic line bundle, then a positive representa-
tive of its first Chern class is a Kéahler metric on M. In this sense the topic of
this section belongs to Kahler geometry.

9.1 Remark. We say that a cohomology class in H?(M, C) is integral if it is in
the image of the canonical morphism H?(M,Z) — H?(M,C). If M is a Kihler
manifold, then a cohomology class in H2(M,C) is the first Chern class of a
holomorphic line bundle iff it is of type (1,1) and integral, see e.g. Proposition
II1.4.6 in [Wel]. It follows that a closed complex manifold M admits a positive
holomorphic line bundle iff M has a Ké&hler metric g with integral Kahler class
[w]. Then M is called a Hodge manifold.

Closed oriented surfaces are Hodge manifolds: Let S be such a surface and
g be a Riemannian metric on S. Then the rotation by a positive right angle, in
the tangent spaces of S, is a parallel complex structure on S and turns S into
a Kihler manifold. Since S is of real dimension two, H?(S,R) = R. Now the
image of H?(S,Z) in H?(S,R) is a lattice, hence a proper rescaling of g has an
integral Kéahler class. Hence S is a Hodge manifold. By the latter argument we
also get that a closed K&hler manifold M with first Betti number by (M) = 1 is
a Hodge manifold.

The pull back of a positive holomorphic line bundle along a holomorphic
immersion is positive. In particular, if M admits a holomorphic immersion into
CP™ for some n > m, then M admits a positive holomorphic line bundle. Vice
versa, Hodge conjectured and Kodaira proved that M admits a holomorphic
embedding into CP"™ for some n > m if M has a positive line bundle. We
present Kodaira’s proof of his embedding theorem; our source is Section VI.4
in [Wel].

Kodaira’s proof uses the following general construction which associates to
a holomorphic line bundle £ — M a holomorphic map from an open part M’
of M to a complex projective space: Let O(M, E) be the space of holomorphic
sections of F and M’ be the open set of points p € M such that o(p) # 0
for some o € O(M, E). Since M is compact, O(M, E) is of finite dimension.
Consider the evaluation map

e B = O(M,E)", e(p)(0) = ¢(a(p)), (9-2)

where p is the foot point of ¢. Clearly € is holomorphic. For ¢ € E* non-zero,
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e(p) # 0 precisely for p € M’'. Hence we obtain a holomorphic map
ki M'— P(O(M,E)"), k(p) = [e(¢)], (9.3)

where ¢ is any non-zero element of the fiber of E* over p.

There is a somewhat less abstract way of describing k. Let B = (o9, ...,0k)
be a basis of O(M, E) and ¢ be a nowhere vanishing holomorphic section of
E* over an open subset U of M. Then the holomorphic map

kp: U — CP*,  kp(p) =[pooo,...,0004], (9.4)

does not depend on the choice of ¢. Hence kg is well defined on M’. Tt is clear
that kp corresponds to k in the coordinates of O(M, E)* defined by the basis
B.

We say that a holomorphic line bundle E — M is very ample if, in the
above construction, M’ = M and k (or kp) is an embedding. We say that E
is ample if some positive power of E is very ample.

9.5 Exercise. Show that E* is isomorphic to the pull back under k of the tau-
tological bundle over P(O(M, E)*). Conclude that ample bundles are positive.

Kodaira proves the following more precise version of the embedding theo-
rem.

9.6 Kodaira Embedding Theorem. Let M be a closed complex manifold
and E — M be a holomorphic line bundle. If E is positive, then E is ample.

Let E be a holomorphic line bundle over M and p be a point in M. Let
@: U — E* be a nowhere vanishing holomorphic section of E*, where U is an
open subset of M containing p. Then the 1-jet of a smooth section o of E at
p with respect to ¢ is

Jpp(0) = ((po0)(p), (po0)(p)) € Co(T;M&C), (9.7)

where (poo)’ denotes the derivative of poo. The proof that positive holomor-
phic line bundles are ample relies on the following lemma.

9.8 Lemma. Let E be a line bundle over M. Suppose that
1) for any two different points p,q € M, the map

J0 . O(M,E) = E, & By, J0 (o) = (o(p), o(q)),

p.q

is surjective and that
2) for any point p € M and section ¢ about p as above, the map

J},: O(M,E) — C® (T; M @ C)

is surjective. Then E is very ample.
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Proof. We first observe that M’ = M, by Assumption 1). For a basis B =
(00,...,0k) of O(M, E), we consider kp: M — CP* as above.

Let p, g be different points of M. By Assumption 1), there are global holo-
morphic sections o, and o, of F with

op(p) #0, 05(q) =0 and  o4(q) # 0, oq(p) = 0.

Then o, and o, are linearly independent. If we choose B with o9 = o, and
01 = 04, then clearly kp(p) # kp(q). It follows that kp is injective, for any
choice of basis B.

Let p be a point in M and ¢ be a holomorphic section of E* in an open
neighborhood U of p as above. By Assumption 2), there are holomorphic
sections 00,...,0m, in O(M,E) such that J} (00) = (1,0) and J} ,(0;) =
(0, 8:), where (B1,...,m) is a basis of TyM @ C. Since Jé)p is a linear map,
00y .- .,0m are linearly independent in O(M, E). Therefore we can complete
them to a basis B of O(M, E). With respect to affine coordinates (z1, ..., 2x)
on {29 # 0} C CP*, we get

dkp(p) = ((Brs- -, Bm, (9 0 omi1) (p), -, (0 0%)' (p)).

Since (f1, ..., 0m) are linearly independent, dkg(p) has rank m. Hence kg is
an immersion. Now M is compact, hence kp is an embedding. O

9.1 Proof of the Embedding Theorem. We use notation and results from
Subsection 3.4, in particular Examples 3.45 and Lemmas 3.46 and 3.47. We
denote the blow up of M in a point p by M, and use an index p for objects
associated to M),. For points p # ¢ in M, we let M,,q = (M,,)q and mpq: Mpq —
M be the canonical projection. There is a natural identification of M), with
Mg, such that mpq = mg,. We let Ly, be the holomorphic line bundle associated
to the hypersurface m, ' (p) U, (q).

9.9 Lemma. Let E, F' be holomorphic line bundles over M and suppose E > 0.
Then given kg > 1 there is ng > 0 such that

* TN * *\k * n * * \k
T E"@m F®(L,)" >0 and 7, E" @, F®(L,)" >0
forallp#qe M, n>ng, and k € {1,...,ko}.

Proof. Choose a Hermitian metric on E such that the curvature of its Chern
connection satisfies i@ > 0, see Lemma 5.61. Fix a Hermitian metric on F
and denote the curvature of its Chern connection by © . The Chern connection
of the tensor product F; ® E5 of two Hermitian holomorphic vector bundles
FEq, Ey — M with induced Hermitian metric

(e1 ®eg, €] ®@ey) = (e1,€)) (e, €5)
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is given by the usual product rule, hence its curvature is the sum of the cur-
vatures of the Chern connections on F; and F3, © = ©1 + Oy. Since M is
compact and i®g > 0, there is an ng > 0 such that i(ng©g + ©r) > 0. In
particular, E™ ® F' > 0 for all n > ny.

Let p € M and consider the projection m,: M;, — M. The Chern connection
of the pull back of a Hermitian metric on the pull back of a holomorphic vector
bundle is the pull back of the Chern connection of the original Hermitian metric
on the original bundle. Hence the Chern connection of the pull back metric
on T, E" @ m I has curvature ©,, equal to the pull back of the curvature on
E"™ ® F'. Therefore i0,,(v, Jv) > 0 for v not in the kernel of m,., that is, except
for v = 0 or v tangent to Sp.

Positive powers of Ly will bring positivity everywhere. To get ng indepen-
dent of the chosen point p € M, we proceed as follows: Choose holomorphic
coordinates z: U — U’ on M, where U’ contains the ball of radius 4 about 0
in C™. Set

Ui={peU|lzp)| <i}.

Fix a cut off function x on M with x =1 on Us and x =0 on M \ Us.

For p in the closure U; of Uy, we use z — z(p) as holomorphic coordinates
in the construction of the blow up M,. Via the canonical projection m,, we
identify M, \ 7rp’1([71) with M \ U;. In this sense, we view L}, restricted to
My \ 7, 1(U,) as a holomorphic line bundle over M \ U;. The holomorphic
section ®@f dual to the holomorphic section ®( as in Example 3.45.4 turns it
into a trivial bundle. We define a Hermitian metric h; on this part of Lj
by associating length 1 to ®§. Then ®j is parallel with respect to the Chern
connection of hj,, and hence the curvature of the latter vanishes identically.

Since the hyperplane bundle H — CP™~! is positive, there is a Hermitian
metric h on H such that the curvature of its Chern connection satisfies i©; >
0. Over m,'(Us), we have L = o4 H, where op,: m, ' (Us) — CP™ ! is the
canonical projection. Therefore we view h) = o;h as a Hermitian metric on
that part of Lj. The curvature © of the Chern connection of hj is the pull
back of ©y, and hence i@;’ > 0 and i@g > 0 on the tangent bundle of S,. We
now let

hy = (x © mp)hy + (1 — x 0 7p) .
Then the curvature O, of the Chern connection of h,, vanishes on M, \ 7, ! (Us)
and ©, = © on 7' (U,). Since 0,(q) is smooth in p € Uy and q € Uz \ Us,
the family of Hermitian metrics hy, p € U1, is uniformly bounded on Us \ Us,
together with derivatives of any order. It follows that ©, is uniformly bounded
on Us \ Us, independently of p € Uy.

The curvature of the Chern connection of the induced Hermitian metric on
E"®F® (L*)F is © = ©,, + kO, Clearly i is positive outside Us \ Uy. If we
increase the above ng if necessary, the positivity of i0,, outweighs the possible
negativity of ki®, on Us \ Uz. By the uniform boundedness of ©,, ng can be
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chosen independently of p € U;. Now M is compact, hence can be covered by
a finite number of sets Uy as in the argument.

The argument in the case of two points p # ¢ in a set U; as above is similar.
We use the same construction, but now with two pull backs of H corresponding
to the two points p and ¢. For p and ¢ uniformly far apart, we can apply the
argument for the case of one point twice. O

We now come to the final steps of the proof of the embedding theorem. We
will assume some elementary facts from sheaf theory. For a sheaf F over M
and an open subset U of M, we denote by F(U) the space of sections of F over
U. For p € M, we denote by F, the stalk of F at p.

Let O be the structure sheaf of M, that is, the sheaf of rings of germs of
holomorphic functions on M. For p € M, let A, and A;% be the subsheaves of
ideals in O of germs of holomorphic functions which vanish at p respectively
vanish at p at least of second order. Then we have a short exact sequence

0—A2—0—0/A2—0. (9.10)
For q # p, the stalk (O/A2), = 0. Moreover, the map
Jy: Op = Co(TyM®C),  Jy(f) = (fp), f' () (9.11)
induces an isomorphism
(0/A2), - Co (Ty M & C). (9.12)

Let FF — M be a holomorphic line bundle. Denote by O(F') the sheaf of germs
of holomorphic sections of F'. Since O(F) is a locally free sheaf of modules over
the structure sheaf O of M, we obtain an induced short exact sequence

0— O(F) @ A2 — O(F) — O(F) © (0/A2) — 0, (9.13)

where the tensor product is taken over O. We may view O(F) ® A2 as sheaf
of germs of holomorphic sections of F' which vanish at least of second order at
the distinguished point p. The stalks in ¢ # p are

(O(F)® £2), = O(F), and (O(F)® (0/A2),={0}.  (9.14)

To identify the stalk of O(F) ® (O/A2) at p, we observe that the map J_ ,
from Lemma 9.8 is also defined on the stalk O(F), and that it induces an
isomorphism

(O(F) ® (0/A2), — Ca (T M ® C). (9.15)

9.16 Lemma. Let E — M be a positive holomorphic line bundle. In Lemma 9.9,
let F' be the canonical bundle of M, F = K, and kg = m~+1. Then E™, n > ng,
satisfies the assumptions of Lemma 9.8 and hence E is ample.
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Proof. The proof of Assumption 1) in Lemma 9.8 is similar to and easier than
the proof of Assumption 2). Therefore we concentrate on Assumption 2) and
leave the proof of Assumption 1) to the reader.

Let p € M. By (9.14), the restriction map induces an isomorphism from
the space HO(M,O(E™) ® (O/A2)) of global holomorphic sections of O(E™) ®
(O/A2) onto the stalk (O(E™) ® (O/A2)),. Hence it remains to show that

O(M,E") = H(M,O(E")) — H°(M,O(E") ® (O/A2)) (9.17)

is surjective, by (9.15). Since points in M have codimension m and do not
correspond to line bundles if m > 1, we will need to pass to blow ups of M to
show the surjectivity in (9.17).

Let M = M, be the blow up of M in p. Let m: M — M be the canonical
projection and E = 7*E. Denote by O the structure sheaf of M and by Ag
and A% the subsheaves of O of germs of holomorphic functions which vanish
along S respectively vanish at least of second order along S. Composition with
7 induces injective morphisms 7*: @ — O and m,: O(E") — O(E™). Now E"
is trivial in a neighborhood of p in M, and the pull back of a local trivialization
defines a trivialization of E™ in a neighborhood of S. From the coordinate
description of M in Subsection 2.4 it is then clear that a holomorphic section o
of E™ vanishes of at least second order at p iff o o 7w vanishes of at least second
order about S. It follows that 7 induces morphisms

my: O(E™)® Ag — O(E™) @ N

and

T O(E™) ® (0/A2) — O(E™) @ (O/AY).

p

Hence we get a commutative diagram
0 —— O(E"®AY, —— O(E") —— O(E")®0/Ay —— 0

* * *
T Ty T,

0 —— O(E") @A —— O(E") —— O(E")®0/A; —— 0
(9.18)
of short exact sequences of sheaves.

Clearly 73 and 7}, are injective. We claim that they are also surjective. This
is clear in the case m = 1 since then blowing up is trivial and 7 is biholomorphic.
For m > 1, asection & of E™ over M restricts to a section o, of E™ over M\ S =
M\{p}. By Hartogs’ theorem [GH, page 7], 0, extends to a holomorphic section
o of E™ over M. By the continuity of o and &, we have 7,0 = 6. Moreover, if
o vanishes of order at least 2 along S, then also o at p. Hence 7} and 7, are
surjective, hence isomorphic. The five lemma implies that 77 is an isomorphism
as well.



9 KoODAIRA EMBEDDING THEOREM 123

A fortiori, the vertical morphisms in (9.18) induce isomorphisms between
the corresponding cohomology groups in the long exact sequences associated to
the horizontal short exact sequences. Thus by (9.17), it remains to show that

HO(M,O(E™)) — H°(M,O(E™) @ (O/A%))

is surjective. By the long exact sequence, this follows if H(M, O(E™)® A%) =
0.

To show this we observe first that Ag = O(L*). In the notation of Exam-
ple 3.45.4, this follows in W;, i > 1, since there f € Ag can be expressed as
f = fiz; with f; holomorphic. That is, the functions z; serve as a frame over
Wi and fiz; = f = fjz; over Wy N W;. Now E"@ K*® (L*)? > 0 by Lemmas
3.46 and 3.47, hence

HY(M,O(E" ® (L*)?)) =0

by the Kodaira vanishing theorem 5.65. 0

9.2 Two Applications. The Kodaira embedding theorem has many appli-
cations. We discuss two immediate ones.

9.19 Corollary. Let M be a closed complex manifold and M, be the blow up
of M in a point p € M. If M admits a holomorphic embedding into a complex
projective space, then M, as well.

Proof. Suppose f: M — CP™ is a holomorphic embedding. Then the pull back
E — M of the hyperplane bundle H over CP" is positive. By Lemma 9.9,
B @ (L*)* is positive for k sufficiently large, where m,: M, — M is the
natural map. Hence M,, admits a holomorphic embedding into some complex
projective space, by Theorem 9.6. g

9.20 Corollary. Let M be a closed complex manifold and M — M be a finite
covering of M. If M admits a holomorphic embedding into a complex projective
space, then M as well.

Proof. Suppose f: M — CP™ is a holomorphic embedding. Then the pull
back E — M of the hyperplane bundle H over CP™ is positive, therefore the
pull back E — M of E is positive as well. Hence M admits a holomorphic
embedding into some complex projective space, by Theorem 9.6. O

9.21 Remark. For a finite covering M — M as above, averaging leads to
the converse assertion: If M admits a holomorphic embedding into a complex
projective space, then also M, see [GH, page 192].

To complete the picture, we quote the theorem of Chow which says that
a complex analytic submanifold of a complex projective space is a smooth
projective variety, see for example [GH, page 167].



Appendix A Chern—Weil Theory

In this appendix, no Kahler classes are in the way and, therefore, connection
and curvature forms are denoted by the more standard w and €2, respectively.
Let V1,..., Vi and V be vector spaces over the field F € {R,C} and

P: Vi X xVp—>V (A.1)

be a k-linear map. Let AfR"™ be the algebra of alternating forms on R"™ with
values in F. The map

((plavlv" 'a(pkvvk) = (4101 AREE /\(Pk) ®(I)(Ula- --7Uk)7 (A2)

where p; € AfR™ and v; € V;, is linear in each of its 2k arguments. Therefore
it gives rise to a k-linear map

Bp: (AR"® V1) X - x (MR @ Vi) — AIR" ® V. (A.3)

We view A;R™ ® V; and AfR™ ® V' as the space of alternating forms on R
with values in V; and V', respectively. If a1, ..., a; are alternating forms on R™
with values in Vi, ..., V) and degrees dy, . .., dy, respectively, and if we express
o = E Pij & Vi with Yij € AE‘;R” and Vij € V;, then

p(ar,..am) = Y (P1js A Aors) @ (01, vkg,). (A
(J1sesdr)

The degree of ®5(aq,...,ax)isd=di+---+dg. For z1,...,24 € R", we have

Pp(ar,...,ar)(®y,...,2q) (A.5)
1 :
Tl dy)! D (@) (1(@o(r)s s To(an)s s W Tod-dyt1)s - > To(a))):

This is immediate from (A.4) and the definition of the wedge product. It is
also clear from this formula that we are discussing a generalization of the wedge
product introduced in (1.15).

Let G be a Lie group, and suppose that G acts linearly on the vector
spaces V1,..., Vi, and V (via given representations, which we suppress in the
notation). Then G acts also on AfR" ®@ V,

9(p ®@v) = p @ (gv), (A.6)

and similarly for AfR™ ® V;. We say that ® (from (A.1)) is equivariant (with
respect to these G-actions) if

D(gvr,...,gqvr) = gP(v1,...,0k) (A7)
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forall g € G and v; € V;, 1 < i < k. We say that ® is invariant if it is
equivariant with respect to the trivial action on V. That is, if (A.7) holds
without the factor g on the right hand side. If ® is equivariant or invariant,

then the induced map ®, is equivariant or invariant as well. This is immediate
from (A.4) and (A.6).

A.8 Examples. 1) Via the adjoint representation, G acts on its Lie algebra
g. The Lie bracket [A, B] defines an equivariant bilinear map A: g X g — g.

2) The adjoint representation of the general linear group G = Gl(m,F) on
its Lie algebra g = gl(m,F) = F™*™ is given by conjugation, Ad, A = gAg~*.
The product AB of matrices defines an equivariant bilinear map p: g x g — g.
The trace tr: g — F is an invariant linear map since tr(gAg=!) = tr A for all
g € G and A € g. Via polarization, the determinant gives rise to an invariant
m-linear map g x --- x g — F, see below.

Let P — M be a principal bundle with structure group G. Let E = PxgV
and F; = P xXg V; be the vector bundles associated to the representations of
GonVand V;, 1 < ¢ < k. Recall that E consists of equivalence classes of
tuples [f,v] with relation [fg,v] = [f,gv] for all f € P, g € G, and v € V,
and similarly for F;. Suppose that ® is equivariant. Then ® induces a field of
morphisms

Fi1 x:---xEy, — FE,
([f,Ul],---,[f,Uk]) = [qu)(vlv"'vvk)]'

Let a; € A*(M, E;) be differential forms on M with values in E;, 1 < i < k.
With respect to a local section 7: U — P of P, we can write (or identify)

i = Z%‘j ® [1, 03] = Z[Ta Pij ® vijl, (A.10)

where the ¢;; are differential forms on U with values in F and the v;; are
smooth maps from U to V;. We call (o;)r = ) ¢ij ® v;; the principal part of
«; with respect to 7. If ® is equivariant, then ®, is equivariant as well, and
we obtain an induced field of morphisms on differential forms,

A*(M, Ey) x --- x A*(M, Ey,) — A*(M, E),
(a1, ...;ak) — [1,Pa((a1)ry - (g)r)] (A.11)
=D [n (i A Aprgy ) @B (v, o),

where the degree is additive in the degrees of the arguments. In the case where
V = F with trivial action of G, we view A*(M, E) = A*(M,F), the space of
differential forms on M with values in F.

Although some of the following holds in greater generality, we now specialize
to the case where V} = --- = V}, = g with the adjoint action of G and V =TF
with the trivial G-action. That is, we consider an invariant k-linear map

P:gx---xg—F. (A.12)

(A.9)



126 LECTURES ON KAHLER MANIFOLDS

Recall that for A, B € g,
A4, B) := (Ad(e")B),_, = [A, B]. (A.13)

The induced map on alternating forms associates to alternating forms o and g
with values in g an alternating form

(o, B) =an\ B (A.14)

with values in [F, where the notation is from (A.3) on the left hand side and
from (1.15) on the right, compare also Exercise 1.16. On decomposable forms
a=pRAand f =9 ® B with A, B € g,

aiyB=(pNY)®I[A Bl (A.15)
A.16 Lemma. For A, By,...,B; € g,

S @(Bi,...., AN Bi,....By) = 0.

Proof. Since @ is invariant,
d(Ad(e!)By, ..., Ad(e*)By) = ®(By, ..., By).
Differentiation of this equation yields the claim. g

A.17 Corollary. Let «, (1,..., 0k be alternating forms with values in g and
of degrees d,dy, ..., dy, respectively. Then, with s(i) :== (d1 + -+ + d;—1)d,

ST O@x (B, a A Biy- .. Br) = 0.

%

Proof. By multilinearity, it is sufficient to consider decomposable forms. For
these, the claim is immediate from (A.4) and Lemma A.16. The sign arises
from moving the differential form part of « to the leading position. g

We return to the principal bundle P — M with structure group G and let D
be a connection on P. We interpret the curvature R of D as a differential two-
form on M with values in P X g. With respect to a local section 7: U — P,
we denote the principal parts of D and R by w and (2, differential one- and
two-forms on U with values in g. By the above, we obtain a differential 2k-form
®(P,R) on M with values in F by setting

O(P,R) = [r, DA (..., Q). (A.18)

A.19 Fundamental Lemma. For the curvature R of a connection D on P,
the differential form ®(P, R) is closed and its cohomology class in H**(M,T)
does not depend on the choice of D.
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Proof. Fix a local section 7 of P. In the notation of (A.14) and (1.15), the
Bianchi identity says d2 = Q A w, where A is the Lie bracket of g. By Exer-
cise 1.16, Q Ay w = —w Ay 2. Hence

d(®(P,R)) =) [1,®A(Q,...,dQ, ..., Q)]
= oA, QN w,..., Q)] =0,
by (A.17). This shows the first assertion.

Let Dy and D; be connections on P. Then D; = (1 — t)Dg + tDs is also a
connection on P. The principal part of D; with respect to 7 is

wi = (1 = two + twr = wo + 0,
where the difference 8 = w1 — wp is a one-form with values in g. We recall the

structure equation

1
Qt = dwt + §wt /\A Wt.

By Exercise 1.16, w; Ay wy = wy Ay w}, where the prime indicates differentiation
with respect to t. Hence

1 1
Q) = dw; + §w,§ Ay wr + Fut Ax Wi

= dw} + w; Ay wi = df + B Ax wy.

With the Bianchi identity and Corollary A.17,

d(Z(I’A(Qt,...,ﬂ,...,Qt))

=D A, dDy B )+ Y PA(, ., dB, Q)
j<i i
= BN, By Ay, Q)
3>
=D OA(Q, U Awr, B )
j<i
= BAQ- B AW )
= BA QB U A w2
3>

) By Q)

= (PpA(, .-, 2)),
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the principal part of ®(P, R;)’. Hence
®(P,Ry) — (P, Ry) = dT, (A.20)

where T is the transgression form,
1
T = [T,Z/ DA, ..., By .., Q)] (A.21)
— Jo

Note that ( is the principal part of B = Dy — Dy, a one-form on M with values
in P xg g. Hence T is well defined on M. |

Since the curvature form of a connection D has degree two, ®(P, R) = 0 if
there is a pair ¢ < j such that ® is alternating in the corresponding variables,

DAy, Aiy Ay Ag) = —D(Ar, . Aj L A A,

In the applications of Theorem A.19, we are therefore only interested in the
case where ® is symmetric and invariant.

Let Si(g) be the space of symmetric k-linear forms on g with values in F.
Let F[g] be the algebra of polynomials on g with values in F and Fy[g] be the
subspace of homogeneous polynomials of degree k. The evaluation along the
diagonal gives rise to an isomorphism

Si(g) — Frlg], ® — ®, where ®(A) := ®(A4,..., A). (A.22)

The inverse of this isomorphism goes under the name polarization. Since the
isomorphism is equivariant with respect to the natural G-actions, G-invariant
symmetric multilinear forms correspond exactly to G-invariant polynomials.

In terms of a given basis (Bi, ..., By;,) of g, a homogeneous polynomial ®
of degree k on g can be written as
®(A) = Z Tulpu(ay - Qur) (A.23)
n
where p runs over all non-decreasing maps p: {1,...,k} — {1,...,m}, the

coefficients f,, are in IF and the a; are the coordinates of A with respect to the
chosen basis, A = )" a;B;. Then the polarization of ® is

~ 1
q)(Al, RN Ak) = E Z fuag(l)#(l) .. .ag(k)u(k), (A24)
w,o
where now, in addition, ¢ runs over all permutations of {1,...,k} and the a;;

are the coordinates of the vector A;. By multilinearity and (A.23),

Q(A,...,A)= > O(Bj,....Bj)aj, ...a;, = > futuq)- - auu). (A.25)
1

J1ssk
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We let AZ"R" := ®AFR™ and consider
o= Zgoj ® Bj € AF"R" ®g. (A.26)

Since AFY°"R"™ is a commutative algebra, (A.25) implies

Ppla,...,a) = Z é(le,...7Bjk)g0jl/\---/\QDjk
i (A.27)

= Z fu(p#(l) A A Puk) = (I)A(Oz) S Al%vean.

The definition of ®4(«) is very natural, and we could have started with it. On
the other hand, the detour over polarization shows that we are in the framework
of what we discussed before.

Equation A.27 implies that for homogeneous polynomials ¢ and ¥,

(@ - U)p(a) = Bpla) A Ta(a). (A.28)

In particular, linear extension to the algebra F[g] of polynomials gives rise to
an algebra morphism

Flg] — AS"R™, & — $p(a). (A.29)

If « is a sum of forms of strictly positive (and even) degrees, then the natural
extension of this map from F[g] to the larger algebra F[[g]] of formal power
series in g over F is well defined. For this we note that ®,(a) has degree kd if
® is homogeneous of degree k and « is of pure degree d and that alternating
forms on R™ of degree > n vanish. In both cases, Flg| or F[[g]], if ® is invariant
under the natural action of G, then also @ («).

We return again to the principal bundle P with structure group G. Denote
by Flg]® C Fg] and F[[g]¢ C F[lg]] the subalgebra of G-invariant polynomials
and G-invariant formal power series, respectively. Let a € AV (M, P X g).
By what we said above, « gives rise to a morphism of commutative algebras,
the Weil homomorphism

Flg)]® — A®(M,F), ® — ®(P, ), (A.30)

where ®(P,a) = [r,Pa(a, )] with respect to a local section 7 of P, compare
(A.11). Moreover, if « is a sum of forms of strictly positive (and even) degrees,
then the natural extension to F[[g]]“ is well defined.

A.31 Main Theorem. Let P — M be a principal bundle with structure group
G. Let D be a connection on P and R be the curvature of D. Then the Weil
homomorphism

Fllg]® — A% (M,F), ® — (P, R),

is a morphism of commutative algebras. Moreover,
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1. ®(P, R) is closed and its cohomology class in H*V*™(M,F) does not depend
on the choice of D;

2. if P' — M’ is a G-principal bundle with connection D' and F: P’ — P
18 a morphism over a smooth map f: M' — M with D' = F*D, then
O(P',R) = f*®(P,R).

Proof. The first part is clear from the discussion leading to (A.30). Assertion
(1) follows from Lemma A.19. Assertion (2) is immediate from the definitions.
g

A.1 Chern Classes and Character. Let G = Gl(r,C) and g = gl(r,C) =
C™*". We get invariant homogeneous polynomial @y, of degree k on gl(r, C) by
setting

det(t] + A) = it“’“@k(A). (A.32)
k=0

If A is diagonalizable, then ®;(A) is the k-th elementary symmetric function
of the eigenvalues of A. In particular, ®g = 1, &; = tr, and ®,, = det. We note
that ®5(A) is real if A is real.

Let E — M be a complex vector bundle of rank r and P be the bundle of
frames of E. Then the structure group of P is G = Gl(r,C) and P xg g =
End E. Let D be a connection on FE, or, what amounts to the same, on P.
Then the k-th Chern form of E with respect to D is defined as

cr(E, D) = &y (P, lR), (A.33)
27
where R is the curvature of D. The total Chern form of E with respect to D is
(B, D) = det (I + ZLR) =1+ c(E,D)+ - +c(B,D), (A.34)
™

where r is the rank of F. The corresponding cohomology classes

cx(E) = [cx(E, D)) € H**(M,C) and (A.35)
c(B)=1+c(E)+--+c¢(E)e H(M,C) '
are called the Chern classes and the total Chern class of E, respectively.

By definition, Chern classes of isomorphic bundles are equal. If F is trivial
and D is the trivial connection on E, then c¢x(E, D) = 0 for k > 0, and hence
¢(E) = 1. Therefore we view the Chern classes as a measure of the deviation
of E from being trivial.

For a complex manifold M with complex structure J, we consider T'M
together with J as a complex vector bundle and use the shorthand ¢ (M) and
¢(M) instead of ¢ (T M) and (T M), respectively.
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A.36 Proposition. If D is compatible with a Hermitian metric on E, then
the Chern forms ci(E,D) are real. In particular, cx(E) € H**(M,R) C
H?k(M,C).

Proof. With respect to a local orthonormal frame of F, that is, a local section
of P, the principal part  of the curvature of D is skew-Hermitian, Q = —Q°.
Hence

i 1 = _
c(E, D) = det (I + %Q) = det (1 - %Q) _ &(E, D),
where we use that transposition does not change the determinant. g

A.37 Remark. There is a topological construction of Chern classes in H*(M, Z),
see [MS]. The Chern classes we discuss here are their images under the natu-
ral map H*(M,Z) — H*(M,R). In particular, the Chern classes here do not
contain as much information as the ones coming from the topological construc-
tion. On the other hand, the construction here gives explicit differential forms
representing the Chern classes, an advantage in some of the applications in
differential geometry.

A .38 Proposition. The Chern forms satisfy the following properties:
1. (Naturality) c(f*E, f*D) = f*(c(E, D)).
2. (Additiity) ¢«(E'® E", D' ® D") = c¢(E',D’) Ac(E",D").

3. ¢j(E*,D*) = (-1)i¢;(E, D), where E* = Hom(E,C) is the dual bundle
with induced connection D*.

The corresponding properties of Chern classes follow as a corollary.

Proof of Proposition A.38. The first assertion is immediate from f*Qp = Qy-p.
With respect to local frames of E' and E” over an open subset U C M, the
principal part of the curvature of D = D’ & D" is

Q 0
2= <0 Q”) '
Over U we have
/ 2 ! "y __ I+ #Q/ 0
co(E'®E",D @D)—det/\<( 0 I_’_%Q//
— deta (I n iQ’) A deta (I + LQ“)
21 2

=c(E',D')Nc(E",D"),

compare (A.27). This proves the second assertion. With respect to a local
frame, —§2¢ is the principal part of the curvature of D*. Hence the last assertion.
O
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A.39 Examples. 1) If the bundle £ — M is trivial and D is the trivial
connection on E, then ¢(F, D) = 1. In particular, ¢(F) = 1. More generally, if
E has a flat connection, then ¢(EF) = 1.

2) If F has rank r and splits as £ = E' @ E” with E” trivial of rank s, then
¢;(E)=0forj>r—s.

3) Let S be the oriented surface of genus g, endowed with a Riemannian
metric and the corresponding Levi-Civita connection D. The rotation J = J,
by a positive right angle in T,,S, p € S, is a parallel field of complex structures
which turns S into a Kéhler manifold of complex dimension 1 and T'S into a
complex line bundle over S. Let p € S and (v, w) be an oriented orthonormal
basis of T},S. Then w = Jv and K (p) = —(R(v,w)v, w), and hence

Qp(v,w) = =i K(p),

where K is the Gauss curvature of S. Therefore

K
e1(TS, D) = - dA,

where dA denotes the (oriented) area form. The Gauss-Bonnet formula gives

/ c1(T'S, D) = x(S) = Euler number of S.
s

We make this more explicit in the case of S = CP! = S2. On the open subset
U = {[#z0,z1] € S| z1 # 0} of S, consider the coordinates = + iy = z := zp/21.
Let X = 9/0x and Y = 0/0y be the corresponding coordinate vector fields.
The complex structure on S turns 7'S into a complex line bundle. The standard
metric of constant curvature 1 is the real part of the Hermitian metric on T'S
which, over U, is given by

4

MEX) = T ey

(A.40)

By Proposition 3.21.1, the connection form of the Chern connection D is

—2Zdz

_ 1 —1 _ 2\2 2\—2\ __
w="h""0h=(1+]2[*)?0((1+ |2?) )_71“2'2.

By Proposition 3.21.4, the principal part of the curvature is

- 2dz N dz
Q= = .
PR
Hence the first Chern form
; z 2
¢/ (TS, D) = idzANdz  2dx Ndy

m(L+ 122 w1+ 222
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It follows that

/Cl(TS, D) /Cl(TS D)
s
/ / o pdpdso
(1+p?)
:4/ _pdp :2/ du_y
o (1+p%)? 1o’
where we substitute x + iy = pexp(ip) and u = 1 + p?, respectively. As
expected, the right hand side is the Euler number of CP! = 52
4) In Example 3.24, we consider the canonical metric of the tautological
bundle U over the complex Grassmannian Gy, and compute the principal

part of the curvature of the Chern connection D. In the case U — G132 = CP!
and with respect to the coordinates z as in the previous example, we obtain

Q(0) = —dz A dz.

It follows that [, c1(U, D) = —1 and that ¢;(CP') = —2¢,(U).

5) Let m: §?m+1 — CP™ be the natural projection, x € S?*™*+1 and p =
7(z). Then the differential of 7 at = identifies the orthogonal complement p*
with the tangent space of CP™ at p. However, this isomorphism depends on
the choice of p.The ambiguity is resolved by passing from p* to Hom(p, p*). In
other words, TCP™ =~ Hom(U, U J-), where U+ is the orthogonal complement of
the tautological bundle U — CP™ in the trivial bundle C*! x CP™ — CP™
with respect to the standard Hermitian metric.

By the naturality of Chern classes, the first Chern class ¢; (U) has value —1
on the complex line CP! ¢ CP™. Now Hom(U,U) = C x CP™, the trivial line
bundle over CP™. Hence

TCP™ & C = Hom(U, U+ @ U) = Hom(U,C™"") = U* ¢ --- @ U*,
where we have m + 1 summands on the right hand side. Therefore
¢(CP™) = ¢(TCP™" ¢ C) = (1 — c,(U))™™ = (1 4 a)™ ",

where a is the generator of H2(CP™, C) which has value 1 on the complex line
CP! c CP™. In particular,

1 (CP™) = (m+ 1)a. (A.41)
It follows that ¢, (CP™)[CP™] = m + 1, the Euler number of CP™.

A.42 Remark. If E is a complex vector bundle of rank r over a manifold M,
then ¢, (E) is the Euler class of E, considered as an oriented real vector bundle
of rank 2r, see Proposition A.59 below.
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On gl(r,C) = C™*", consider the invariant formal power series
1
D(A) ::trepr:r+trA+§trA2+---. (A.43)

Let E — M be a complex vector bundle of rank r and P be the bundle of
frames of E. Let D be a connection on E and R be the curvature of D. Then
the cocycle

ch(E, D) = (P, %R) € A7V (M, C) (A.44)

is called the Chern character of E with respect to D. Its cohomology class
®(E) in HV(M,C) is called the Chern character of E. If A is diagonal,
A= D(ay,...,a,), then

trA=a1+ - +a, =o01(a,...,a,),

tr A2 = a% + ---af =o1(a1,...,a,)% —201(ay,...,a,),

where 01, 09, . .. denotes the sequence of elementary symmetric functions. Since
diagonal matrices are dense in C"*", we conclude that

trA=®1(A), and %tr A? = %@1(14)2 — Dy (A), (A.45)

where ®; and @ are as in (A.32). By the fundamental theorem on sym-
metric polynomials, the symmetric function tr D(ay, ..., a,)* can be expressed
uniquely as a polynomial in o1,...,0,. It follows that ch(E, D) can be ex-
pressed as a polynomial in the Chern forms ¢y (E, D). From what we noted
above, we have

1
ch(E,D) =7+ c1(E,D) + (icl(E, D)? — c»(E, D)) +e (A.46)
We leave it as an exercise to compute the term of degree 6 in this formula.
A .47 Exercise. Follow the argument in Proposition A.38.2 and show that
ch(E' ® E",D' ® D") = ch(E’, D") + ch(E", D").

Recall that the derived action of the Lie algebra gl(r, C) x gl(s,C) on C" @ C*
is given by (A, B)(z,y) = (Az) ® y + ¢ ® (By) and show that

ch(E' ® E",D' ® D") = ch(E', D) A ch(E", D").

It follows that the Chern character induces a homomorphism from the Grothen-
dieck ring K (M) generated by equivalence classes of complex vector bundles
over M to the even cohomology ring H®V" (M, C).
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A.2 Euler Class. On gl(2r,R) = R?"*?" consider the homogeneous polyno-
mial

1

Pf(A) := 5o

> e(0)ao)o@) - - Gazr—1)o() (A.48)
of degree r, the Pfaffian of A. It is easy to show that
Pf(BAB') = Pf(A) det B. (A.49)

Therefore the Pfaffian defines an invariant polynomial on so(2r), the Lie algebra
of the group of rotations SO(2r). The normal form on so(2r) is

Ay
A= with A; = (0 _“J) . (A.50)
aj 0
A,
For such a matrix A, we have Pf(A) = (-1)"a;...a,. By invariance, we
conclude that on so(2r),
Pf(A)? = det A. (A.51)

Let E — M be an oriented real vector bundle of rank 2r with a Riemannian
metric g. Then the principal bundle P of oriented orthonormal frames of E has
structure group SO(2r). If D is a connection on P, that is, a metric connection
on F, and R denotes the curvature of D, then the associated form

x(E,g,D) := Pf (P, %R) (A.52)

is called the Fuler form of E with respect to g and D. It is clear that
X(f°E, f g, f"D) = [*Xx(E, g, D) (A.53)

and that

X(E®E.gog,DeD')=x(E,g,D)Ax(E g, D). (A.54)

Let ¢’ be another Riemannian metric on F and write ¢’ = g(B-,-) where B is
a field of symmetric and positive definite endomorphisms of E. Let C' = v/B,
then ¢'(x,y) = g(Cz, Cy), and hence C is an isomorphism of F with C*g = ¢'.
It follows that x(F,¢’,C*D) = x(E, g, D). We conclude that the cohomology
class x(E) of x(E, g, D) in H*"(M,R) does not depend on g and D. It is called
the Fuler class of E.

A.55 Remark. If F has a Riemannian metric g with a flat metric connection
D, then x(E,g,D) = 0 and hence also x(E) = 0. However, there are vector
bundles E with flat non-metric connections such that x(E) # 0, see for example
[MS, 312pp]. In fact, in the definition of the Euler form we need a Riemannian
metric and a corresponding metric connection on E.
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Our next aim is to compare Euler class and Chern classes. We identify C”
with R?" via the correspondence

(Zl,. ..7ZT) A— (xlayla"'axrﬂyr)a

where 2/ = 27 4 iy’. This induces an inclusion U(r) < SO(2r) of the unitary
group and a corresponding inclusion u(r) < so(2r), A — Ag, of Lie algebras.
Under this inclusion, diagonal matrices

a1 Ay
A= — = Ag, (A.56)

ia, A,

where A; is as above. For such a diagonal A, det(i4) = (—1)"a1...a, =
Pf(Ag). By invariance,
det(iA) = Pf(Agr) (A.57)

for all A € u(r).

Suppose now that £ — M is a complex vector bundle of rank r. Endow F
with a Hermitian metric h and a corresponding Hermitian connection D. If we
consider F as an oriented real vector bundle of rank 2r, the real part g = Reh
of the Hermitian metric defines a Riemannian metric on E and D is metric
with respect to g.

Let w and € be the connection and curvature forms of D with respect to
a local unitary frame of E. If we consider E as an oriented real vector bundle
and choose D as a metric connection for the Riemannian metric g as above,
then wg and Qg are the connection and curvature forms of D with respect to
the induced oriented and orthonormal frame of E. By (A.33) and (A.57),

er(E, D) = det (ég) =pt ( %QR) —(E,g,D).  (A58)

A.59 Proposition. For a complex vector bundle E — M of rankr, x(F) =
cr(E). O

Proposition A.59 and Equations A.53, A.54 imply that the Euler class of
(the tangent bundle of) an oriented closed manifold M, applied to the fun-
damental class of M, gives the Euler number of M. This is the celebrated
Chern—Gauf—Bonnet formula.



Appendix B Symmetric Spaces

In this appendix we collect a few of the basic facts about symmetric spaces.
Good references for unproved statements and further reading are [Bor|, [Hel],
[Wo].

We say that a Riemannian manifold M is a symmetric space if M is con-
nected and if, for all p € M, there is an isometry s, of M with

sp(p) =p and dsy(p) =—id. (B.1)
We then call s, the geodesic reflection at p.

B.2 Exercise. Let M be a connected Riemannian manifold and fi, fa be
isometries of M. Suppose there is a point p € M with fi(p) = f2(p) and
df1(p) = df2(p). Then fi = fo.

We say that a Riemannian manifold M is locally symmetric if each point
p € M has a neighborhood U in M with an isometry s,: U — U such that

sp(p) = p and dsp(p) = —id.

B.3 Exercises. 1) Let M be a symmetric space and M — M be a covering.
Show that M with the induced Riemannian metric is also a symmetric space.
2) Let M = M; x M5 be a Riemannian product. Show that M is symmetric
if and only if M; and Ms are symmetric.
3) Prove the corresponding assertions in the case of locally symmetric
spaces.

B.4 Proposition. Let M be a locally symmetric space and F be a tensor field
on M of type (k,1). If F is invariant under the local isometries sy, p € M,
then F' =0 if k+1 is odd.

For example, if M is locally symmetric, then the curvature tensor is parallel,
VR = 0. In fact, it is not hard to see that M is locally symmetric if and only if
the curvature tensor of M is parallel. Another application of Proposition B.4:
If M is locally symmetric and J is an almost complex structure on M which is
invariant under the local isometries s, p € M, then J is parallel.

Proof of Proposition BA4. Letp € M, vy, ...,vx € T, M, and ¢, ..., € Ty M.
Since sp(p) = p, dsp(p) = —id, and (s, F'), = F}, we conclude

Fp(viy- 3 Uk, 15, 01) = Fp(Spav1, - ooy $peUks $p01, -+, Sp401)
= p(_vh"'7_Uk7_3017"'7_30l)
:(—1)k+ZFp(U1,...,Uk,(pl,...,(pl). O

The fundamental theorem about locally symmetric spaces is as follows:
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B.5 Theorem (Cartan). Let M and N be locally symmetric Riemannian
spaces, where M is simply connected and N is complete. Letp € M and q € N,
and let A: T,M — TyN be a linear isomorphism preserving inner products and
curvature tensors,A*géV = géw and A*Rév = Rﬁ/[. Then there is a unique local
isometry F: M — N with F(p) = q and F'(p) = A.

As for a proof, see for example the more general Theorems 1.1.36 in [CEDb]
or IIL.5.1 in [Sa]?3.

B.6 Corollary. Let M be a complete and simply connected locally symmetric
space. Then M is a symmetric space. More precisely, the differentials of the
isometries of M fixing a point p in M are given precisely by the orthogonal
transformations of T, M preserving the curvature tensor Réw . g

This is one of the most important immediate applications of Theorem B.5.
Another immediate application asserts that a simply connected symmetric
space is determined, up to isometry, by the inner product and the curvature
tensor at a point (using Propositions B.7 and B.8 below). This implies, for ex-
ample, the uniqueness of the model Riemannian manifolds of constant sectional
curvature.

B.7 Proposition. If M is symmetric, then M is homogeneous.

Proof. Let ¢: [a,b] — M be a geodesic in M, and let m be the midpoint
of ¢. Then the geodesic reflection s,, of M at m reflects ¢ about m, hence
sm(c(a)) = c(b).

Since M is connected, any two points p,q € M can be connected by a
piecewise geodesic c. If ¢: [a,b] — M is such a curve, then there is a subdivision
a=ty <ty <---<tp=">bof [a,b] such that c|[t;—1,t;] is a geodesic, 1 <i < k.
By the first part of the proof, there is an isometry f; of M mapping c(¢;—1) to
c(t;). Hence fr o---o f1 is an isometry of M mapping p = c(a) to g = ¢(b).

U

B.8 Proposition. If M is homogeneous, then M is complete.

Proof. Let p € M. Then there is an € > 0 such that the closed ball B(p, ) of
radius € about p is compact. Since M is homogeneous, the closed ball B (g,€)

of radius € about any point ¢ € M is compact. It follows that M is complete.
d

Let M be a symmetric space. Let c: [a,b] — M be a piecewise smooth
curve. An isometry f: M — M is called transvection along c if f(c(a)) = ¢(b)
and if df (¢(a)) is equal to parallel translation along ¢ from c(a) to ¢(b).

Let p be a point in M. Let ¢: R — M be a geodesic through p. Let s; be
the geodesic reflection about c(t) and f; = s4/3 0 so. Then f; is an isometry of
M with fi(c(1)) = c(r +¢t) for all 7 € R.

23Both references contain also introductions to symmetric spaces.
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Let X be a parallel vector field along ¢. Then dsgo X is parallel along sgoc.
Since sp(c(s)) = ¢(—s) and dso(p) = —id, we have

dsoX(s) = =X (—s).
Similarly,
dsi/aX(s) = =X (t — s).
We conclude that, for all 7 € R,
dfi X (1) = X (1 + t).

Hence df;(c(7)) is parallel translation along ¢ from ¢(7) to ¢(7 + t). Hence f;
is a transvection along ¢; more precisely, it is the transvection along c|[r, T + t]
for any 7 € R. It follows that the family (f;) is a smooth one-parameter group
of isometries of M which shifts ¢ and whose derivatives correspond to parallel
translation along c. We call it the one-parameter group of transvections along
c. Associated to this family we have the Killing field

X(p) = 0:(f:(p))li=o-

We call X the infinitesimal transvection along c.

B.9 Lemma. Let c: R — M be a geodesic with ¢(0) = p. Then a Killing field
X on M is the infinitesimal transvection along ¢ if and only if X (p) = ¢/(0)
and VX (p) = 0.

Proof. Let X be the infinitesimal transvection along ¢. Then X(p) = ¢/(0)
since fi(p) = c(t). As for the covariant derivative of X in p, let v € T,,M and
o = o(7) be a smooth curve with ¢(0) = p and 0’(0) = v. Then

Vo X = V:0i(fi(o(7)))|t=r=0
= V10-(fi(o(7)))|r=t=0
= Vi(dftv)lt=0 =0

since df; is parallel translation along c¢. Since M is connected, a Killing field
on M is determined by its value and covariant derivative at one point. O

B.10 Proposition. Let M be a symmetric space, p be a point in M. Let
¢: la,b] = M be a geodesic loop at p. Then c is a closed geodesic, ¢'(a) = ¢/ (b).

Proof. Let v € T, M and X be the infinitesimal transvection along the geodesic
through p with initial velocity v. Then X (p) = v and VX (p) = 0, by Lemma B.9.
Since X is a Killing field, X oc is a Jacobi field along ¢, see Exercise 1.5. Recall
that for any two Jacobi fields V, W along ¢, the function (V/, W) — (V,W’) is
constant, where the prime indicates covariant derivative along c. We apply this
to the Jacobi fields X o ¢ and tc/,

(Xoe),td) — (X oc, ) = const.
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Since ¢(a) = ¢(b) = p and VX (p) = 0, we get

(X(p), c(a)) = (X(p), ' (b))-
Since X (p) = v € T, M was arbitrary, we conclude that ¢’(a) = ¢/ (b). O

B.11 Corollary. The fundamental group of a symmetric space is Abelian.

Proof. Let M be a symmetric space and p be a point in M. Shortest loops in
homotopy classes of loops at p are geodesic and hence closed geodesics through
p, by Proposition B.10. The geodesic reflection at p maps closed geodesics
through p into their inverses. Hence s, induces the inversion on 71 (M, p). Now
a group is Abelian if its inversion is a homomorphism. O

B.12 Definition. Let M be a symmetric space. We say that M is of compact
type or, respectively, non-compact type if the Ricci curvature of M is positive
or, respectively, negative. We say that M is of Fuclidean type if M is flat, that
is, if the sectional curvature of M vanishes.

If M is a symmetric space of compact type, then M is compact and the
fundamental group of M is finite, by the theorem of Bonnet—-Myers. Flat tori
and their Riemannian covering spaces are symmetric spaces of Euclidean type.

B.13 Proposition. If M is a symmetric space of non-compact type, then M
does not have non-trivial closed geodesics.

Proof. Let ¢: R — M be a closed geodesic of unit speed. Set p = ¢(0) and
u = ¢(0). Since M is of non-compact type, Ric(u, u) < 0. Hence the symmetric
endomorphism R(-, u)u of T, M has a negative eigenvalue x and a corresponding
unit eigenvector v perpendicular to u. Let V' be the parallel vector field along
¢ with V(0) = v. Since R is parallel, R(V,c')¢’ = kV along c¢. Therefore
J = cosh(y/—kt)V is the Jacobi field along ¢ with J(0) = v and J'(0) = 0.

Let X be the infinitesimal transvection through p with X (p) = v, that is,
along the geodesic determined by v. Then Y = X o ¢ is a Jacobi field along ¢
with the same initial conditions as J: Y(0) = v and Y’(0) = 0, hence ¥ = J.
Now as the restriction of a vector field on M to ¢, Y is periodic along ¢. On
the other hand, J is definitely not periodic. Contradiction. g

B.14 Corollary. Let M be a symmetric space of non-compact type. Then:

1) M is simply connected.

2) If G denotes the component of the identity of the group of isometries of
M and K C G the stabilizer of a point p € M, then K is connected.

Proof. Since shortest loops in homotopy classes of loops at p are geodesic loops,
the first assertion is immediate from Propositions B.10 and B.13. As for the
second, we note that the last piece of the long exact homotopy sequence of the
fibration G — M, g — gp, reads

1=m(M)— mo(K) — m(G) = 1. O
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B.15 Remark. In Remark B.29 we show that a symmetric space has non-
negative sectional curvature iff its Ricci curvature is non-negative and, simi-
larly, that it has non-positive sectional curvature iff its Ricci curvature is non-
positive. In particular, a symmetric space is of Euclidean type if and only if
its Ricci curvature vanishes. Furthermore, if M is a symmetric space of non-
compact type, then M is diffeomorphic to R™®, n = dim M, by the theorem
of Hadamard—Cartan and Corollary B.14.1. It follows that, for K and G as
in Corollary B.14.2) K is a deformation retract of G. This improves Corol-
lary B.14.2.

B.1 Symmetric Pairs. Let (G, K) be a pair consisting of a Lie group G and
a closed subgroup K. We say that (G, K) is a symmetric pair if M = G/K is
connected and if there is an involutive automorphism o: G — G with

Fy CK CF, (B.16)

where F = {g € G | 0(g) = g} and Fy denotes the component of the identity of
F. In what follows, (G, K) is a symmetric pair with involutive automorphism
.

Let g be the Lie algebra of left-invariant vector fields of G, via evaluation
identified with the tangent space T.G of G at the neutral element e € G.
Denote by o, the differential of o at e, and let

t={Xecg|lo. X=X}, p={Xeg|o.X=—X} (B.17)

the eigenspaces of o, for the eigenvalues 1 and —1, respectively. Since o, is
involutive,

g=¢t+p. (B.18)

Since Fy C K C F, € is the Lie algebra of K. Since K C F, o(kgk™!) =
ko(g)k=! for all k € K and all g € G, and hence o, commutes with all Ady,
k € K. Therefore

Adp(®) ct and Adg(p)Cp forallke K. (B.19)

Furthermore,
g ce [epCp, [pplCt (B.20)

In particular, € is perpendicular to p with respect to the Killing form of g. As
for the proof of (B.20), the first and second inclusion follow from (B.19) above.
For the proof of the third, let X,Y € p. Since o, is an automorphism of g, we
have

0. X, Y] = [0.X,0.Y] = [-X,-Y] = [X,Y]

and hence [X,Y] € €. Note that the first two inclusions also follow by a similar
argument.
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Since we divide by K on the right, G acts from the left on M. We denote
by gp € M the image of p € M under left multiplication by g € G. Sometimes
it will be convenient to distinguish between the element g € G and the diffeo-
morphism of M given by left multiplication with g. Then we will use A4 to
denote the latter, A\y(p) := gp.

B.21 Exercise. Let M be a manifold and G be a Lie group which acts on M.
For X € g, define a smooth vector field X* on M by

X*(p) = (e (p))le=0-
By definition, exp(tX) is the flow of X*. Show that [X,Y]* = —[X*,Y*].

We denote by o = [K] the distinguished point of M and by 7: G — M the
canonical map, 7(g) = [¢K] = Ag(0). We use 1, = dr(e): p — T, M to identify
p and T,M. An easy computation shows that for all k € K

e 0 Ady = dAi(0) o 7. (B.22)

Thus with respect to the identification p = T, M via m,, the isotropy represen-
tation of K on T, M corresponds to the restriction of the adjoint representation
of K to p.

We say that a symmetric pair is Riemannian if there is an inner product
(-,+) on p which is invariant under Adg, that is, under all Adg, k¥ € K. Note
that such inner products are in one-to-one correspondence with G-invariant
Riemannian metrics on M.

B.23 Example. Let M be a symmetric space and o € M be a preferred
origin. Let G be the group Iso(M) of all isometries of M or the component
of the identity in Iso(M). Let K be the stabilizer of o in G. Then (G, K) is
a Riemannian symmetric pair with respect to the involution o of G given by
conjugation with the geodesic reflection s, of M in 0. The pull back of the
inner product in T,M to p is invariant under Adx and turns (G, K) into a
Riemannian symmetric pair with G/K = M.

B.24 Theorem. Let (G, K) be a Riemannian symmetric pair with correspond-
ing involution o of G and inner product (-,-) onp. Let M = G/K and endow
M with the G-invariant Riemannian metric corresponding to (-,-). Then we
have:

1. M is a symmetric space. The geodesic symmetry s at o is s([gK]) =
[o(g) - K]. In particular, s o Xy = Ay(g) © 5.

2. For X € p, the curve €% (0), t € R, is the geodesic through o with initial
velocity m, X, and left multiplication by e*X, t € R, is the one-parameter
group of transvections along this geodesic.
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3. With respect to the identification p = T,M, Adk-invariant tensors on p
correspond to G-invariant tensor fields on M and these are parallel.

4. With respect to the identification p = T,M, the curvature tensor R and
Ricci tensor Ric of M at o are given by

R(X7 Y)Z = _[[X7 Y]? Z] = —[[X*, Y*]v Z*](p),
1
Ric(X,Y) = —§B(X, Y),
where B denotes the Killing form of g and X*,Y™*, Z* are associated to
XY, Z as in Fxercise B.21.

5. With respect to the identification p = T, M, a subspace q C p is tangent to
a totally geodesic submanifold of M through o if and only if [[q,4q],9q] C g.
If the latter inclusion holds, then N = exp(q)(0) is such a submanifold
and is a symmetric space in the induced Riemannian metric.

B.25 Remarks. 1) We can rewrite the first formula in B.24.4 as follows:
R(X,Y)=—adixy; or R(:,Y)Z=—adzoady,

where XY, Z € p and both maps are considered on p.
2) The totally geodesic submanifold in B.24.5 need not be closed. A good
example for this is a non-rational line through 0 in a flat torus.

Proof of Theorem B.24. Tt is easy to see that s([gK]) := [0(g) - K] defines an
involutive smooth map s of M with so A\, = A\;(4) o s. Since s is involutive, s

is a diffeomorphism of M. Moreover s(o) = o and ds(o) = —id.
Let p = g(0) € M and u € T, M. Choose v € T,M with d\;(v) = u. By
the G-invariance of the metric, we have |lu|| = ||dA\g(v)|| = ||v|| and hence
[ds(u)|| = llds(dAg(v))I| = [[dAc(g) (ds(v))I| = || = dAo(g) (V)| = [Jv]] = [[ul].

It follows that s is an isometry. This completes the proof of (1).
Let X € p and X* be the corresponding Killing field of M as in Exer-
cise B.21. Since X € p, we have

¥ (s(p)) = s(e™"*(p))

for all p € M, hence s, X* = —X*. Let u € T,M. Since s is an isometry, we
get
_vuX* = ds(vuX*) = vds(u) (S*X*) = vUX*’
and hence VX*(0) = 0. Hence X* is the infinitesimal transvection with
X*(0) = m.X. This proves (2).
It is clear that Adg-invariant tensors on p correspond to G-invariant ten-
sor fields on M. Now the one-parameter groups (exp(tX)), X € p, are the
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transvections along the corresponding geodesics through o. It follows that G-
invariant tensor fields are parallel at 0 and hence parallel everywhere in M.
Hence (3).

Let X,Y,Z € pand X*,Y™*, Z* be the corresponding Killing fields of M as
in Exercise B.21. Then X* Y*, and Z* are parallel at 0. Let u = Z*(0) = m.Z
and compute V,[X*, Y*] using the differential equation for Killing fields. This
gives the first equation in (4). In the proof of the second we can assume that
X =Y, by the symmetry of the Ricci tensor. Since X € p, we have ad X (£) C p
and ad X (p) C t. Therefore trad? X|¢ = trad® X|p, and the claim about the
Ricci tensor follows.

It remains to prove (5). Note that for a totally geodesic submanifold N
through the origin o, R(u,v)w € T, N for all u,v,w € T,N. Hence the necessity
of the condition on ¢ is immediate from the formula for R in (3).

Suppose now that [[q,q],q] C q. Let [ = [q, q]. Then [ is a Lie subalgebra of ¢
and h = [4q is a Lie subalgebra of g. Let H be the corresponding connected Lie
subgroup of G. Then the orbit N of o under H, N = H(0), is a submanifold of
M. Now N is totally geodesic at o since N = exp(q)(0) locally about o. Since
H is transitive on N and H acts isometrically on M, N is totally geodesic
everywhere. Since M is a complete Riemannian manifold and N is connected
we have N = exp(q)(o). In particular, N is complete. Since N is invariant
under s, s|N is the geodesic symmetry of N in o. Since N is homogeneous, N
is symmetric. O

B.26 Remark (Coverings). The groups K with Fy C K C F correspond to
Riemannian coverings
G/Fy — G/K — G/F.

For example, if M = S™ C R™"!, the unit sphere of dimension n, then the
component G of the identity in Iso(M) is equal to SO(n + 1). If we let s be the
reflection in a chosen unit vector v € S™ and ¢ be conjugation with s, then the
stabilizer K of v is isomorphic to SO(n) and K = Fy # F. If we pass to the
quotient RP™ keeping G, then we have K = F'. A similar phenomenon occurs
for some of the other symmetric spaces of compact type.

It is remarkable that the fixed point set of an involution of a compact
and simply connected Lie group is connected, see [Hel, Theorem VII.7.2].
Thus the symmetric space associated to a Riemannian symmetric pair (G, K)
with G compact and simply connected is simply connected. For example,
the unit sphere S™ is associated to the Riemannian symmetric pair (Spin(n +
1), Spin(n)). Real projective space RP™ is a homogeneous space of Spin(n+1),
but is not associated to a Riemannian symmetric pair (G, K) with G simply
connected.

B.27 Remark (Effective Pairs). Let (G, K) be a Riemannain symmetric pair
and N C G be the normal subgroup of elements acting trivially on M = G/K,

N = {g € G| g acts as identity on M }.



APPENDIX B SYMMETRIC SPACES 145

Then N C K, hence the involution ¢ of G factors over G/N. Since M is
connected, an isometry of M = G/K fixing the preferred origin o of M is
determined by its differential at o, see Exercise B.2. Hence

N = {k € K | Ady is the identity on p}.

In particular, the adjoint action of K on p factors over K/N. It follows that
(G/N, K/N) is a Riemannian symmetric pair with (G/N)/(K/N)=G/K =M
and Lie algebra g/n = ¢/n + p.

We say that the Riemannian symmetric pair (G, K) is effective or, respec-
tively, infinitesimally effective if N is trivial or, respectively, a discrete subgroup
of G. The pair (G, K) is effective iff G is a subgroup of the isometry group
of M. The above pair (G/N,K/N) is the effective pair associated to (G, K).
Thus it becomes plausible that, for many purposes, it is sufficient to consider
effective or infinitesimally effective pairs.

B.28 Remark (Killing Form). Let (G, K) be an infinitesimally effective Rie-
mannian symmetric pair with K/N compact, where N is as in Remark B.27.
Let X € €. From (B.20) we know that adx (£) C € and adx (p) C p. Hence

B(X, X) = tr(adx [£)? + tr(adx |p)? = Br (X, X) + tr(adx |p)?,

where B is the Killing form of G and Bk the Killing form of K. Since N C K
is a discrete subgroup and K/N is compact, Bx < 0 and hence B(X,X) <
tr(adx |[p)%. On the other hand, since N is discrete and X € €, adx |p # 0 for
X # 0, compare Exercise B.2. Furthermore, adx is skew-symmetric on p with
respect to the given inner product on p since the adjoint representation of K on
p preserves this product. Now the square of a skew-symmetric endomorphism
has negative trace unless the endomorphism vanishes. Therefore B is negative
definite on . Hence G is semi-simple if and only if the Ricci curvature of
M = G/K is non-degenerate.

B.29 Remark (Curvature). Let (G, K) be an infinitesimally effective Rieman-
nian symmetric pair with K/N compact, where N is as in Remark B.27. Since
the Ricci tensor of M = G/ K is parallel, there are real numbers \; and pairwise
perpendicular parallel distributions E; on M such that Ric X = A\; X for all X
tangent to F;. Identify p = T,M and let X,Y € p be tangent to E; and Ej,
respectively. Then, by Theorem B.24.4,

B([X7 Y]? [X, Y]) = —B([X, [X7 Y]],Y) = QRiC([X, [X7 Y]],Y)
= 2)\j<[X, [X,Y],Y) = —20(R(Y, X)X, Y),

where we use that Y is tangent to F;. By the same computation,

B([Y, X],[Y, X]) = —2X\(R(X,Y)Y, X).
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Hence B([X,Y],[X,Y]) = 0if X\; # X\j orif \; = 0 or A\; = 0. Since B is
negative definite on €, this implies that the curvature tensor R vanishes on the
kernel of Ric. For A\; # 0 and X,Y € p both tangent to F;, we get

! B([X,Y],[X,Y)).

(ROXY)Y.X) = 5=

In particular, the sectional curvature of a symmetric space is non-negative
respectively non-positive iff its Ricci curvature is non-negative respectively non-
positive.

By definition, M is of compact or, respectively, non-compact type iff all
A; > 0 or, respectively, all \; < 0. In particular, a symmetric space of non-
compact type is a complete and simply connected Riemannian manifold of
non-positive sectional curvature, compare Corollary B.14 and Remark B.15.

If M is simply connected, the distributions F; give rise to a splitting of M
as a Riemannian product with factors M; tangent to F;. For each i, M; is
a symmetric Einstein space with Einstein constant \;. Applying this to the
universal covering space of M, we see that we can renormalize the metric of M
without destroying the geometry of M so that the constants A; are in {£1,0}.
For example, if M is of compact type, we can renormalize the metric so that
M becomes an Einstein space with Einstein constant 1.

B.30 Remark (Curvature Operator). Let (G, K) be a Riemannian symmetric
pair. Suppose that the inner product on p is the restriction of an Adg-invariant
bilinear form?*, also denoted (-,-), on g. Then all adx, X € g, are skew-
symmetric with respect to (-,-), and then, with respect to the identification
p=T,M,

(R(X,Y)V,U) = =([X,Y],V],U) = ([X, Y], [U,V]). (B.31)
Recall the definition of the curvature operator R in (1.43) and define a mor-
phism
F:AN%p—¢ F(XAY):=[X,Y] (B.32)
By (B.31), we have
(RIXAY),UAV)=(F(X ANY),F(UAV)). (B.33)
In particular, if (-,-) is an inner product on g, then

(R(X,Y)Y,X)=[X,Y]]? and R=F*F >0. (B.34)

Compare Remarks 1.42 and 5.56 for important consequences of R >0.

24For example, a negative or positive multiple of the Killing form of G if (G, K) is infini-
tesimally effective and M = G/K is of compact or non-compact type, respectively.
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B.35 Remark (De Rham Decomposition). Let M be a simply connected sym-
metric space. If N is a factor in the de Rham decomposition of M, then N is
tangent to one of the distributions F; as in Remark B.29 (but TN might be
smaller than E;). From Remark B.29 we conclude that N is an Einstein space.
Let A be the Einstein constant of N. We have:

1) If A <0, then N is a symmetric space of non-compact type.

2) If A =0, then N is a Euclidean space.

3) If A > 0, then M is of compact type.

In particular, a compact symmetric space is of compact type if and only if
its fundamental group is finite.

B.36 Remark (Holonomy). Let (G, K) be a Riemannian symmetric pair and
set M = G/K. Then n: G — M is a principal bundle with structure group K.
The tangent bundle T'M is (canonically isomorphic to) the bundle G x k p asso-
ciated to the adjoint representation of K on p. The left-invariant distribution
on G determined by p is a principal connection which induces the Levi-Civita
connection on M. In particular, the holonomy group Hol(M) of M at o = [K]
is contained in the image of K under the adjoint representation on p.

Assume now that (G, K) is infinitesimally effective with K/N compact,
where N is as in Remark B.27. Suppose furthermore that the Ricci curvature
of M is non-degenerate. By (B.20), h = [p,p] + p is an ideal in g. By Remark
B.29, B|tis negative definite. By assumption, B|p is non-degenerate. Moreover,
¢ and p are perpendicular with respect to B, by (B.20). In particular, G is
semi-simple and Blh is non-degenerate with p C h. Hence the B-perpendicular
complement ht of b is contained in € and h N h+ = 0. Since b is an ideal in g,
ht is an ideal as well. Hence [h, h*] = 0. We conclude that for X € h=,

ot XY o—tX _ Y
for all Y € p and t € R. Since exp(tX) € K, this implies that exp(tX) acts as
the identity on M. Hence X = 0 since (G, K) is infinitesimally effective. We
conclude that g = b, that is € = [p, p].

For X,Y € p, [X,Y] € £ and the curvature tensor is R(X,Y) = —ad[x,y]
on p. Moreover, the endomorphisms R(X,Y) are in the Lie algebra of the
holonomy group Hol(M). Hence, under the above assumptions on (G, K), the
adjoint image of the component K of the identity of K is equal to the reduced
holonomy group of M. In particular, if (G, K) is effective and M is of compact
or non-compact type, then Ky is equal to the reduced holonomy group of M.
If, moreover, M is simply connected and G is connected, then K is equal to
the holonomy group of M at the preferred origin and hence G is equal to the
component of the identity of the isometry group of M. Then parallel tensors
on M are also G-invariant, compare Theorem B.24.3 for the converse assertion.

B.37 Exercise (Dual Pairs). Let (G, K) be a Riemannian symmetric pair and
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g = t+p be the associated decomposition of the Lie algebra g of G. Show that

X, Y] [X,Y] if X e,
~[X,Y] ifX,Yep

defines a (new) Lie bracket on g. Note that this change corresponds to passing
from g to g’ = €4 ip in the complexification gc of g. We say that a Riemannian
symmetric pair (G', K’) is dual to (G, K) if the corresponding decomposition
of the Lie algebra g’ of G’ is up to isomorphism given by g’ = ¢ + p with Lie
bracket [-,-]". We also say that the corresponding symmetric spaces are dual.
Show:

1) Under duality, the curvature tensor changes sign and compact type cor-
responds to non-compact type.

2) For each symmetric space M, there is a simply connected symmetric
space M’ dual to M and M’ is unique up to isometry.

3) If M and N are simply connected dual symmetric spaces and K re-
spectively L denotes the group of isometries fixing a point p € M respec-
tively ¢ € N, then there is an orthogonal transformation A: T, M — T, N with
A*RY = —RJ) and, for any such transformation, L = AKA™".

B.2 Examples. This subsection is devoted to examples which are relevant
in our discussion. To keep the presentation transparent, we divide them into
three classes, Examples B.38, B.42, and B.53.

B.38 Example. Let G = Sl(n,R) with involution o(A) := (A*)~!. The set of
fixed points of ¢ is K = SO(n). The map

G/K - R", AK — AA!,

identifies G/K with the space of positive definite symmetric (n X n)-matrices
with determinant 1. We view these as the space of normalized inner products
on R"™, or, more geometrically via their unit balls, as the space of ellipsoids in
R™ with volume equal to the volume of the Euclidean unit ball. We have

g=sl(n,R)={AeR" |trA =0},
t=so(n) ={U €sl(n,R) |U" = -U},
p={Xesl(nR)| X' =X}

The symmetric bilinear form
(A,B) =tr AB (B.39)

on R" is invariant under the adjoint action of Gl(n,R). Its restriction to p
is positive definite and turns (G, K) into a Riemannian symmetric pair. Since
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(-,-) is Adg-invariant, each ads, A € g, is skew-symmetric with respect to
(+,-). Therefore we have, for X, Y, Z € p,

(R(X,Y)Y,X) = ([X,Y],[X,Y]) <0, (B.40)

where we note that (-,-) is negative definite on ¢.
The complexification is gc = sl(n,C) = {A € C" |trA= 0}. We see that

t+ip =su(n) = {U € 5l(n,C) | U' = ~U}.

Hence (SU(n),SO(n)) is a dual pair to (Sl(n,R),SO(n)), where the involution
on SU(n) is given by the passage to the conjugate matrix. See also Exer-
cise B.59.

B.41 Exercises. 1) Discuss (Gl(n,R),O(n)) as a symmetric pair.

2) Show that S1(2,R)/SO(2) with the above Riemannian metric has con-
stant negative curvature —2 and construct isometries to some (other) models
of the hyperbolic plane (with curvature —2).

B.42 Example. We show that the Grassmann manifold Gg(p, q) of p-planes
in FPT4 together with a natural Riemannian metric is a Riemannian symmetric
space, where F = R, C, or H. We also discuss the dual symmetric space
Gr (p, q). These symmetric spaces are also discussed in Examples 2.2.4, 4.10.5,
4.10.6, and B.83.1.

Let G = O(p+q), U(p+q), and Sp(p+q) for F = R, C, and H, respectively?®.
The natural action of G on Gg(p, q) is transitive?S. The stabilizer of the p-plane
FPx {0} C FP™is K = O(p)xO(q), U(p)xU(q), and Sp(p) x Sp(q), respectively,
hence Gr(p,q) = G/K.

Let S be the reflection of FPT4 about F? x {0}. Then conjugation with S
is an involutive automorphism of G with K as its set of fixed points. Hence
(G, K) is a symmetric pair.

We write square (p + ¢)-matrices as blocks of four matrices corresponding
to the preferred decomposition FPT9 = [F? x F9. In this notation

£ = {(g 3) |U'=-U, V' = —V}, (B.43)
p— {()0( _§t> | X € FZXP} & Faxp, (B.44)

We write
(‘g g) — D(A,B) and ()0( _g_(t) —: P(X). (B.45)

25For the definition of Sp(n), see the discussion after (B.69).
26We multiply vectors in HP19 with scalars from the right and with matrices from the left.
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For D(A,B) € K, D(U,V) € ¢, and P(X),P(Y) € p, we have

Adp(a,py P(X) = P(BXA"),
[D(U,V),P(X)] = P(VX — XU),
[P(X),P(Y)]=D({Y'X - X'V, YX' - XY").

There is an Adg-invariant inner product on g,
1 -
(A, B) = 3 Retr(A'B). (B.46)

Its restriction to p turns (G, K) into a Riemannian symmetric pair. With
respect to the identification P of F?*P with p above, the curvature tensor of
Gr(p,q) is given by

R(X,Y)Z =XY'Z+2ZY'X -YX'Z - ZX'Y. (B.47)
By the Adg-invariance of the inner product on g,
(R(X,Y)Y,X) = |[X,Y]> >0. (B.48)

Hence the sectional curvature of Gy(p, q) is non-negative.
Inside Gr(p, q), we consider the open subset Gy (p, ¢) of p-planes on which
the non-degenerate form

Qpa(T,y) = =D Ty + > Ty (B.49)
J<p i>p

on FPT4 is negative definite. Let G~ = O(p, q), U(p, q), and Sp(p, q), respec-
tively, be the group of linear transformations of FP*9 preserving this form.
Then G~ is transitive on Gy (p, ¢) and Gy (p,¢) = G~ /K, where K is as above.

Conjugation with the reflection S of FP*7 about F? x {0} is an involutive
automorphism of G~ which has K as its set of fixed points. Hence (G, K) is
a symmetric pair as well. Now we have

Yt
p— {()0( )é ) | X e FW} o [axP, (B.50)

whereas K and £ are as above. We write

()0( )_gt> - P~ (X).

Then
[D(U,V),P~(X)] =P (VX — XU),
[P~(X),P (V)] =DX'Y - Y'X, XY' - YX.
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We see that with respect to the identifications P and P~ of p with F?*P above,
the Lie bracket [¢, p] remains the same, but the Lie bracket [p,p] changes sign.
That is, Gr(p, ¢) and Gy (p,q) are dual symmetric spaces in the sense of Ex-
ercise B.37. There is a corresponding change in sign for curvature tensor and
sectional curvature.

B.51 Exercise. Show that the Riemannian metrics on Gr(p,q) and Gg (p, q)
are Einsteinian with Einstein constant k(p + ¢+ 2) —4 and —k(p+ ¢+ 2) + 4,
respectively, where k = dimg F.

B.52 Exercises. 1) Find other representations of Grassmannians as homoge-
neous spaces, Gr(p,q) = G/K, and discuss which of the corresponding pairs
(G, K) are Riemannian symmetric pairs.

2) Replacing orthogonal groups by special orthogonal groups, we obtain
the Grassmann manifold G%(p, q) of oriented p-planes in RP? as homogeneous
space G/ K, where G = SO(p+¢q) and K = SO(p) xSO(g). The same involution
o as above, namely conjugation with the reflection S, leaves GG invariant; with
respect to it € and p remain the same as before. Keeping the formula for the
inner product on p, the formula for the curvature tensor remains the same.
The natural “forget the orientation” map G%(p,q) — Gr(p,q) is a twofold
Riemannian covering. If p+ ¢ > 3, then G%(p, q) is simply connected.

3) A complex subspace of dimension p in C™ is also a real subspace of
R?" = C" of dimension 2p, and similarly with H”. Discuss the corresponding
inclusions of Grassmann manifolds.

B.53 Example. Let V' be a vector space over a field F. A symplectic form on
V is an alternating two-form w on V' such that for all non-zero v € V' there is
a vector w € V with w(v,w) # 0. A symplectic vector space is a vector space
together with a symplectic form. The standard example is F2" with the form

w((m, y)v (uv U)) = Z(JZH’U# - yuu,u)'

As in this example, the dimension of a finite-dimensional symplectic vector
space V is even, dimV = 2n, and V has a basis (e1,...,en, f1,..., fn) such
that
wlep,ev) =w(fu, fvr) =0 and  w(ey, fv) = Sy,

a symplectic basis of V. The choice of a symplectic basis identifies V' with the
standard symplectic vector space F?".

Let V be a symplectic vector space over a field F with symplectic form
w. An endomorphism A: V — V is called symplectic if the pull back A*w =
w. Since w is non-degenerate, symplectic endomorphisms are invertible, hence
automorphisms. Under composition, the set of all symplectic automorphisms
of V is a group, denoted Sp(V) and, respectively, Sp(n, F') if V = F2". Let

J= (_01 é) € Gl(2n, F) (B.54)
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be the fundamental matrix of the standard symplectic form w in F2", where
here and below scalars represent the corresponding multiple of the unit matrix
or block. Then a linear map g € Gl(2n, F') is in Sp(n, F') if and only if g* Jg = J.
Writing g as a matrix of (n x n)-blocks,

g= <g zB)> : (B.55)

the condition g*Jg = J is equivalent to the conditions
A'C=C'A, B'D=D'B, and A'D-C'B=1. (B.56)

It follows that the group of g € Sp(n, F) with B = C = 0 is an embedded
general linear group,

A 0
Gl(n,F) — Sp(n, F), Aw (O (At)_l) . (B.57)
This induces the diagonal embedding of O(n, F') into O(2n, F).

A subspace L of V is isotropic if w(v,w) = 0 for all v,w € L. A subspace
of V is called a Lagrangian subspace if it is a maximal isotropic subspace. If
the dimension of V' is 2n, then Lagrangian subspaces of V' have dimension n. If
(e1,.--en, f1,---, fn) is a symplectic basis of V', then the subspace Ly spanned
by e1,...,e, is Lagrangian. We denote by G(L,V) and Gr(L,n) the space of
Lagrangian subspaces of V' and F?", respectively.

Let F = R and identify R?" = C" by writing (z,y) = = + iy = z. We have

(v,w) = Re(v,w) + iw(v,w),

where the left hand side is the standard Hermitian form on C" and where
Re(v,w) and w(v,w) are the Euclidean inner product and the standard sym-
plectic form on R2", respectively. The real subspace Ly spanned by the unit
vectors ey, ...,e, in C™ is Lagrangian. If L is any other Lagrangian subspace
of V and (by,...,by,) is an orthonormal basis of L, then (b1, ...,by,) is a unitary
basis of C™ with its standard Hermitian form (,w). Therefore the natural
action of U(n) on C" induces a transitive action on Gr(L,n) with stabilizer
O(n) of Lo, hence

Gr(L,n) =U(n)/ O(n). (B.58)

Let S: C* — C™ be the real automorphism S(z) = Zz corresponding to the
reflection S(z,y) = (x, —y) of R?™. Then we have o(A) := SAS™! = A for any
A € U(n). Hence the involution ¢ on U(n) has O(n) as its set of fixed points,
turning (U(n),O(n)) into a Riemannian symmetric pair. Thus Gr(L,n) is a
symmetric space of dimension n(n 4+ 1)/2 and a totally geodesic submanifold
of the Grassmannian Gg(n,n).
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B.59 Exercise. We say that a Lagrangian subspace L of V = C" (as above)
is special if the n-form dz' A --- A dz™ is real valued on L. Show that the
above Lagrangian subspace L is special, that the space Ggr(SL,n) of all spe-
cial Lagrangian subspaces of V is given by the submanifold SU(n)/SO(n) of
Gr(L,n) = U(n)/ O(n), and that Gr(SL,n) is totally geodesic in Gg(L,n).

Under the above identification R*® = C", A € O(2n) is complex linear iff
the pull back A*w = w. In other words,

U(n) = 0(2n) N Sp(n,R). (B.60)

Write g € U(n) as ¢ = A + iB with real (n x n)-matrices A and B. Then this
identification reads

A -B

U(n)BA-i-iB%(B A

> € O(2n) N Sp(n,R), (B.61)
where A'B = B*A and A*A + B!*B = 1. In particular, O(n) = O(n,R) C U(n)
is diagonally embedded in O(2n) N Sp(n,R), compare with (B.57) above.

The symmetric space Gl(n,R)/O(n) is dual to U(n)/ O(n) = Gr(L,n) in
the sense of Exercise B.37. Motivated by the example of the Grassmannians,
we would like to see if we can view Gl(n,R)/ O(n) as the open set Gy (L,n) C
Gr(L,n) of Lagrangian subspaces on which the symmetric form @, , from
(B.49) is negative definite.

To that end, let O(n,n) be the orthogonal group of @, . Clearly g €
Gl1(2n,R) belongs to O(n,n) iff

A'B=C'D, A'A-C'C=1, and D'D—-B'B=1, (B.62)

where we write g as a matrix of blocks as in (B.55). Let g € O(n,n)NSp(n, R).
By (B.56) and (B.62),

B=(AY"'C'D=CA'D. (B.63)
Writing D = AX, we compute
1+C'C)X =A'AX =A'D=1+C'B=1+C'CX. (B.64)

Hence X =1, and hence D = A and B = C. We conclude that the intersection
O(n,n) N Sp(n,R) consists of the matrices

(g ﬁ) (B.65)

with A'B = B'A and A'A — B'B = 1. We also see that the subgroup of
matrices in O(n,n) N Sp(n,R) with B = 0 is a diagonally embedded O(n).
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Let Lo € Gg (L,n) be the Lagrangian subspace spanned by the first n unit
vectors. Let L € G (L,n) be another Lagrangian subspace. Let (bi,...,by)

be an orthogonal basis of L, that is, Qn n(b;,bx) = —0;5. Let A and B be
the (n x n)-matrices with columns the first n and the last n coordinates of the
vectors bj, respectively. Since L is Lagrangian and (b1, ..., b,) is an orthogonal

basis of L, the corresponding matrix g as in (B.65) belongs to O(n,n)NSp(n, R).
Since g maps Lo to L, we conclude that O(n,n) N Sp(n,R) is transitive on
Gg (L,n). The stabilizer of Ly is the subgroup of matrices in O(n,n)NSp(n, R)
with B = 0, hence

Gg (L,n) = (O(n,n) N Sp(n,R))/ O(n). (B.66)
Let )
1 1
k:= 7 <_1 1) € O(2n) N Sp(n,R). (B.67)
We have

kGl(n,R)k~! = O(n,n) N Sp(n, R),

B (B.68)
kO(n)k™ = 0O(n),

where we consider O(n) and Gl(n,R) as embedded subgroups in Sp(n,R) as

above. We conclude that conjugation with k identifies Gl(n,R)/ O(n) with

(O(n,n) NSp(n,R))/ O(n) = Gg (L, n). (B.69)

Let F = C and identify C?* = H" by writing z € H" as z = = + jy with
x,y € C?", where we multiply with scalars from the right. We have z = = — jy
and jx = Zxj. For z =z + jy and w = u + jv in H", we get

<27w> <f—jy,u+]1}>
(Z,u) + (7,v) +i((z,v) — (y,u))
((z,9), (u,v)) + jw((z,y), (u,v)),

where the first term on the right corresponds to the standard Hermitian form
and w to the standard symplectic form on C?". The group of quaternionic
(n xn)-matrices preserving the form (Z, w) on H" is called the symplectic group,
denoted Sp(n). Considered as linear maps on C?", elements of Sp(n) preserve
the Hermitian form and the symplectic form on C?”. For any unit quaternion
a,

T,u

(az,aw) = (za, aw) = (Z,w),

so that left multiplication by a defines an element of Sp(n).
The complex subspace spanned by the unit vectors ey, ..., e, in H* = C?"
is Lagrangian. If L C C?" is any Lagrangian subspace of C?* and (b1, ...,b,)
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is a unitary basis of L, then @H, by,) = 0. Hence mapping the standard basis
(e1,...,en) of H™ to (by,...,b,) defines an element of Sp(n). It follows that

Ge(L,n) = Sp(n)/ U(n). (B.70)

The automorphism s(x + jy) = x — jy of H induces a complex automorphism
S: H" — H", defined by the analogous formula S(z + jy) = =z — jy. We
see that S corresponds to the reflection S(z,y) = (z, —y) of C**. Since s is
an automorphism of H, we have SAS™! = o(A), where o(A) is the matrix
obtained by applying s to the entries of A. Clearly o is an involution of Sp(n)
with U(n) as its set of fixed points, turning (Sp(n), U(n)) into a Riemannian
symmetric pair. Thus G¢(L,n) is a symmetric space of dimension n(n + 1)
and a totally geodesic submanifold of G¢(n,n). Since the center of U(n) is not
discrete, Gc (L, n) is a Hermitian symmetric space, see Proposition B.86.

Under the identification C?* = H", A € U(2n) is quaternion linear if and
only if the pull back A*w = w. In other words,

Sp(n) = U(2n) N Sp(n, C). (B.71)

Write g € Sp(n) as g = A+ jB with complex (n x n)-matrices A and B. Then
this identification reads
) A -B
Sp(n) > A+ jB «— B A € U(2n) N Sp(n, C), (B.72)

where A'B = B'A and A'A + B'B = 1. In particular, U(n) C Sp(n) is
diagonally embedded in U(2n) with blocks A and A on the diagonal.

Again we want to identify the dual symmetric space Sp(n,R)/U(n) with
the open subset G (L,n) C Ge¢(L,n) of Lagrangian subspaces on which the
Hermitian form @, , from (B.49) is negative definite, where U(n) = O(2n) N
Sp(n,R) as in (B.60).

We proceed as in the real case. First of all we note that g € Gl(2n,C)
belongs to the unitary group U(n,n) of Q, , iff

A'B=C'D, A'A-C'C=1, and D'D-B'B=1, (B.73)

where we write g as a matrix of blocks as in (B.55). Let g € U(n,n)NSp(n, C).
By (B.56) and (B.73),

B=(AY"'C'D=CA'D. (B.74)
Writing D = AX, we compute

(1+C'C)X = A'AX = A'D =1+ C'CX, (B.75)
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hence X =1, and hence D = A and C' = B. We conclude that the intersection
U(n,n) N Sp(n,C) consists of the matrices

(g g) (B.76)

with A*B = B*A and A*A — B'B = 1. The subgroup of g € U(n,n) N Sp(n, C)
with B = 0 is a diagonally embedded U(n) as above. As in the real case, we
get

G (L,n) = (U(n,n) N Sp(n,C))/ U(n). (B.77)
Let L
k:= 7 (Z 1) € U(2n) N Sp(n, C). (B.78)
We have &~ = k and hence
kk~t =k = ((Z) S) : (B.79)

Let g € Sp(n,C). Then k~'gk € Sp(n,R) iff k~'gk = k~'gk, that is, iff
kk—'g = gkk~'. The latter holds iff D = A and C = B, that is, iff g €
U(n,n) N Sp(n,C). We conclude that

kSp(n,R)k~ = U(n,n) N Sp(n, C). (B.80)

We also have
k(O(2n) N Sp(n,R))k™ = U(n), (B.81)

where we consider U(n) on the right as an embedded subgroup in Sp(n,C) as
above. We finally conclude that conjugation with k identifies Sp(n,R)/ U(n)
with

(U(n,n) N Sp(n,C))/ U(n) = G¢ (L, n). (B.82)

Since the center of U(n) is not discrete, G (L,n) is a Hermitian symmetric
space, see Remark B.87. Moreover, G (L,n) is biholomorphic to the Siegel
upper half plane. For more on this, see e.g. [Bu, Section 31] or [Hel, Exercise
VIILB].

B.3 Hermitian Symmetric Spaces. A Hermitian symmetric space is a
symmetric space M together with a parallel almost complex structure on M
which is compatible with the Riemannian metric on M in the sense of (2.33).
Since parallel almost complex structures are complex structures, any such struc-
ture turns M into a Kéhler manifold.

Symmetric spaces of non-compact type are simply connected (Corollary B.14),
but there are symmetric spaces of compact type with non-trivial fundamental
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group. However, Hermitian symmetric spaces of compact type are Fano mani-
folds and therefore simply connected, by Theorem 6.122.

Let (G, K) be a Riemannian symmetric pair. Then by Theorem B.24.3,
compatible parallel complex structures on M = G/K correspond to complex
structures on p which preserve the inner product on p and are invariant under
the adjoint action of K on p.

B.83 Examples. 1) Complex Grassmannians. We follow the notation in Ex-
ample B.42 and consider

Ge(p,q) = U(p+¢q)/ Up) x U(g) = G/K,

the Grassmannian of complex p-planes in CPT4, endowed with the Riemannian
metric introduced in (B.46). We define a complex structure on p by

JP(X) = P(iX),

where X € C?P and P(X) € p is defined as in (B.45). For D(A,B) € K
we have Adpa,p) P(X) = P(BXA?), hence J commutes with Adg, turning
Gc(p, q) into a Hermitian symmetric space.

The curvature tensor of Ge(p, q) is given in (B.48). For p = 1, that is, in
the case of complex projective space, we get

R(X,Y)Y = (Y,Y)X — (X, Y)Y + 3(X, JY)JY.

Thus the holomorphic sectional curvature of complex projective space is con-
stant equal to 4 and the range of its sectional curvature is [1,4]. We recommend
Karcher’s article [Kar] for a nice exposition of the elementary geometry of com-
plex projective spaces.

To compare the Riemannian metric on G¢(p, ¢) here with the one introduced
in Example 4.10, we note that both are invariant under the action of U(p + q).
Thus it suffices to compare them at the plane spanned by the first p unit vectors.

FOI’ X S p, we ha.\/e
etX (t X ] > C(t)

Comparing with (4.14), we get that the Riemannian metric there is twice the
Riemannian metric discussed here.

The discussion in the case of the dual Grassmannians G (p,q) is similar.
The case p = 1 is of particular importance, U(1,m)/ U(1) x U(m) =: CH™ is
called complex hyperbolic space. 1t is dual to complex projective space. With
respect to the given normalization of the Riemannian metric, the range of its
sectional curvature is [—4, —1].

27There are more direct proofs for the latter assertion which do not rely on Kobayashi’s
theorem, see e.g. [Hel, Theorem VIII.4.6].
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2) Complex quadric. Consider the Grassmannian manifold G3(2,n — 2) of
oriented real 2-planes in R™ as in Exercise B.52.2,

G9(2,n — 2) = SO(n)/SO(2) x SO(n — 2).

There is a complex structure J on p which is invariant under the adjoint repre-
sentation of SO(2) x SO(n —2): Identify R("~2)x2 = C"~2  that is, think of the
two columns of X € R("=2*2 a5 real and imaginary part of a vector in C"*~2,
and multiply this vector by ¢. Thus G%(2,n — 2) together with the Riemannian
metric induced by the inner product on p and the parallel complex structure
induced by J is a Kahler manifold.

We can think of G%(2,n — 2) as the complex quadric

Q={[z]eCP" |22+ - +22=0}. (B.84)
To that end, extend the action of SO(n) on R™ complex linearly to C™ to
realize SO(n) as a subgroup of U(n). Let pg = [1,4,0,...,0] € Q. The orbit of
po under the induced action of SO(n) on CP"~! is equal to Q. The stabilizer
of po is SO(2) x SO(n —2), thus @ = SO(n)/SO(2) x SO(n —2) = G{(2,n—2).

To compare the metric chosen above with the one on CP"~ !, we let

(A . 11 g
A-( 1o s > with AQ_E(i 1),

where 1, denotes the unit matrix of size r x r. Since A is unitary, A induces
an isometry of CP"~1. Moreover, A maps p; = [1,0,...,0] to pg. For X € p,
we get

eXpy =X Apy = A(A7 e X A)py.

At Yt
A—letXA: < 12 —tAQX ) —|—O(t)

We have

tXAg 1,92

Since the speed of the curve e!*py at t = 0 is equal to the speed of the curve
(A~ 1e!X A)py at t = 0, we get that the Riemannian metric induced from CP" 1,
normalized as in Example 1 above, is equal to the chosen metric on G}(2,n—2).

Intersecting two-planes with the unit sphere S"~!, we identify G%(2,n — 2)
with the space of oriented great circles on S"~!. In particular, G§(2,1) is a
two-sphere or, what amounts to the same, a complex projective line. Thus the
quadric Q C CP? in (B.84) is a complex projective line.

B.85 Remark. Let M be a simply connected Hermitian symmetric space with
complex structure .J, and let p be a point in M. Then J, is the differential of an
isometry j, of M fixing p, by Corollary B.6 and (4.43). By Exercise B.2, j, is in
the center of the group of holomorphic isometries of M fixing p. Moreover, since
Jp is skew-symmetric and orthogonal, the endomorphisms cosz - id 4 sinx - J,
of T, M preserve metric and curvature tensor. Hence, by Corollary B.6, j,
belongs to the component of the identity of the stabilizer of p in the group of
holomorphic isometries of M.
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Recall the definition of infinitesimally effective from Remark B.27.

B.86 Proposition. Let (G, K) be an infinitesimally effective Riemannian sym-
metric pair with G and K compact and connected. Assume that G is semi-
simple and that the adjoint representation of K on p is irreducible. Then
M = G/K admits a G-invariant complex structure compatible with the Rie-
mannian metric on M if and only if the center of K is not discrete, that is, if
and only if K is not semi-simple. If the latter holds, then M is a Hermitian
symmetric space of compact type, hence simply connected. If, moreover, (G, K)
is effective, then the center Zi of K is a circle and J is (any) one of the two
elements of order 4 in Zk.

Proof. Since G is compact and semi-simple, M is a symmetric space of compact
type. Furthermore, 7 (G) is finite and 72(G) = 0. The final part of the long
exact homotopy sequence associated to the fiber bundle G — G/K = M is

0=m(G) = m(M) - m(K) — m(G) —» m (M) — 0.

It follows that 71 (M) is finite. Furthermore, mo(M) is infinite if and only
if m(K) is infinite. Since M is compact with finite fundamental group, the
universal covering space of M is compact. Hence 7o (M) is finitely generated,
and hence H2(M,R) # 0 if and only if mo(M) is infinite.

If M is a compact Hermitian symmetric space, then M is K&hlerian and
hence H2(M,R) # 0. By what we just said, this implies that 71 (K) is infinite.
Since K is compact and connected, this happens precisely if the center of K is
infinite or, equivalently, if the center of K is not discrete.

Vice versa, assume that the center of K is infinite. Since (G, K) is infinites-
imally effective and K is compact, the normal subgroup N as in Remark B.27
is finite. Therefore the center of K/N is infinite as well. Hence we may pass to
the quotient pair (G/N, K/N), which is also a Riemannian symmetric pair. In
conclusion, we may assume that the adjoint representation of K on p is faithful.

Let Z C End(p) be the space of all endomorphisms of p commuting with all
Adg, k € K. Since the adjoint representation of K on p is irreducible, Z is an
associative division algebra over R, hence Z = R, C, or H.

Since the adjoint representation of K on p is faithful, K C End(p). Hence
the center Zg of K is a subgroup of Z*. Since K is compact, Zx is a compact
subgroup of Z*. Hence if Z is not finite, Z = C or Z = H. Since maximal
Abelian subgroups of H* are isomorphic to C*, it follows that Zx is a circle.

If J € Zg is one of the two elements of order 4, then J2 = —1 and J is an
Adg-invariant complex structure on p, compatible with the inner product on p
since Zx C K. Thus J turns M = G/K into a Hermitian symmetric space of
compact type. In particular, M is simply connected. By Remark B.85, there
are no other but the above two choices for an invariant complex structure on
M. O
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B.87 Remark. Let (G, K) and (G, K') be dual symmetric pairs as in Exer-
cise B.37 with K = K’. Then a complex structure J on p is invariant under
the adjoint representation of K and compatible with the inner product on p if
and only if the corresponding complex structure J’ on p’ is invariant under the
adjoint representation of K’ and compatible with the inner product on p’.

For example, let M be a symmetric space of non-compact type, G be the
component of the identity in the group of isometries of M and K be the stabi-
lizer of a point in M. Then M is simply connected and given by the symmetric
pair (G, K). Let M’ be the simply connected dual symmetric space of M, G’
be the group of isometries of M’ and K’ be the stabilizer of a point in M’.
Then M’ is of compact type and G’ is compact and semi-simple. Up to iso-
morphism, p’ = ip and hence K = K’ by Theorem B.5 and Theorem B.24.4.
Hence M is Hermitian iff M’ is Hermitian iff K = K’ is not semi-simple. In
other words, the criterion of Proposition B.86 also applies to symmetric spaces
of non-compact type.

B.88 Exercises. 1) Interpret O(2n)/ U(n) as space of complex structures on
R?" which preserve the Euclidean norm and discuss (O(2n),U(n)) as a Rie-
mannian symmetric pair.

2) Determine the space of all complex structures on R?" as a homogeneous
space G/K. Interpret Sp(n,R)/U(n) as a space of complex structures on R?".

Let D C C™ be a bounded domain. We say that D is symmetric if, for all
p € M, there is a biholomorphic transformation s,: D — D such that s,(p) = p
and dsp(p) = —id. Recall that the Bergmann metric of D is invariant under
all biholomorphic transformations of D, see Example 4.10.7. In particular,
transformations s, as above are geodesic reflections. It follows that symmetric
bounded domains with the Bergmann metric are Hermitian symmetric spaces.
It then also follows that they are Einstein spaces with Einstein constant —1,
see Example 4.10.7, and, hence, that they are of non-compact type.

Vice versa, for any Hermitian symmetric space M of non-compact type,
there is a symmetric bounded domain D and a biholomorphic map M — D
which is, up to rescaling, an isometry between M and D, equipped with the
Bergmann metric, see Theorem VIII.7.1 in [Hel]. We have seen this explicitly?®
in the case of the dual complex Grassmannians G, ,,, see Example 4.10.6.

We say that D C C™ is a tube domain if D = R™ +i€), where Q2 C R™ is an
open and convex subset such that, for all y € Q and ¢ > 0, ty € Q and such that
Q) does not contain complete lines. For example, the upper half plane is a tube
domain. Each tube domain in C™ is biholomorphic to a bounded domain in
C™, but the converse does not hold. The article [Ma2] by Matsushima contains
a nice introduction into tube domains.

28We did not identify the Bergmann metric there. The irreducibility of the isotropy repre-
sentation for the two metrics under consideration shows, however, that they must be multiples
of each other.
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We say that a Hermitian symmetric space is of tube type if it is biholomorphic
to a tube domain. The hyperbolic plane is of tube type. The dual Lagrangian
Grassmannians G¢ (L,n) = Sp(n,R)/ U(n) (as in Example B.53) are of tube
type, see Exercise VIIL.B in [Hel]. See [BIW], [KW], [Wi] for more information
on Hermitian symmetric spaces of tube type.



Appendix C Remarks on Differential Operators

Let M be a Riemannian manifold. For a vector bundle £ — M, we denote by
E(M,E) and E.(M, E) the space of smooth sections of E and smooth sections
of F with compact support, respectively. We also use the shorthand £(FE) and
E.(E) for these spaces. If E is Hermitian, we denote by L*(E) = L*(M, E) the
Hilbert space of square integrable measurable sections o of E, endowed with
the L%-inner product from (1.2) and corresponding L?-norm ||o||2.

Let E, FF — M be Hermitian vector bundles and D be a differential operator
of order m > 0 from (smooth sections of) E to (smooth sections of) F,

D: &(M,E) — E(M, F). (C.1)

We also view D as an unbounded operator on L?(M, E) with domain &.(M, E).
The formal adjoint D* of D is a differential operator of order m from F to E
and satisfies, by definition,

(Do, 7)2 = (0,D*7)q (C.2)

forall o € E.(M,E) and 7 € E.(M, F). We say that D is formally self-adjoint
or formally symmetricif E = F and D = D*.

By the divergence formula 1.9, an equivalent characterization of D* is that,
for all smooth sections o of E and 7 of F, there is a complex vector field
Z =X +1iY on M with

(Do, 7) = (0,D*7) + div Z, (C.3)

where the divergence div Z := div X + idivY. This is the way we will deter-
mine adjoint operators. The discussion in the case of real vector bundles and
Riemannian metrics is similar.

C.4 Example. Let E be a Hermitian vector bundle over M and suppose that
FE is endowed with a Hermitian connection D. We view D as a differential
operator,

D:E(E)— EIEM Q E). (C.5)
Note that F' = T¢M ® E inherits a Hermitian metric from the Hermitian
metrics on T M and E and, by the product rule (1.20), a metric connection D
from V and D. Let o be a section of E and 7 be a section of T4 M @ E, that
is, a 1-form with values in E. Let p € M and (X1,...,X,,) be an orthonormal
frame of M about p with VX ;(p) = 0. Using the latter and that D is metric,
we have at p

(Do, ) =Y (Dx,0,7(X;) (C.6)
= " (Xj(0.7(X;)) = (0, (Dx, 7)(X;)))

== (0,(Dx,7)(X;)) + div Z,

)
)
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where Z is the complex vector field defined by the property (Z, W) = (o, 7(W)).
We conclude that

D*r =— Z([)XjT)(Xj) = —trDr. (C.7)

The same formula holds in the Riemannian context. In both cases, Riemannian
or Hermitian,

D*Do =-Y D’0(X;,X;) = —tr D% (C.8)

The principal symbol Sp of a differential operator D as above associates to
each £ € T*M a homomorphism Sp(§): E, — F,, where p is the foot point of
&. By definition,

Sp(dgls = = Y17 (") Dl ) (©9)
)

for all smooth functions ¢ on M and sections o of E. The principal symbol is
homogeneous of order m in &, Sp(t€) = t"™Sp(€). For example, if D has order
one, then Sp is tensorial in £ = dp and

Sp(dp)o = D(po) — ¢D(0). (C.10)

If E = F, then the right hand side of (C.9) can be written as an m-fold
commutator,

So(de)o = ... [D, ), el o), oo, (1)

where ¢ is viewed as the operator which multiplies sections with ¢. Recall also
that D is elliptic if Sp(§) is invertible for all non-zero £ € T*M.

C.12 Exercises. 1) Compute Sp in terms of local trivializations of E.

2) Show that Sp-(&) = (—=1)™Sp(&)* for all £ € T*M.

3) Let D be a connection on F, viewed as a differential operator as in (C.5).
Show that Sp(dy)oc =dp @ 0.

The mazimal extension Dyax of D is the adjoint operator of D* in the
sense of Hilbert spaces?®. By definition, o € L?(M, E) belongs to the domain
dom Doy of Dyay iff there is a section o’ € L?(M, E) such that

(0',7)2 = (0,D*1)y for all T € (M, F), (C.13)

and then Dy..0 := o’. The operator Dy, is closed and extends D. In
particular, D is closable. Furthermore,

L*(M, E) = ker Dpay + im D*, (C.14)

an L2-orthogonal decomposition of L?(M, E), where we note that ker Dyay is
a closed subspace of L?(M, E).

298ection II1.5 in [Kat] is a good reference for the functional analysis we need.
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C.15 Exercise. Let 0 € £(M, E). Then if 0 and Do are square integrable,
then o € dom D.x and Dy a0 = Do.

The smallest closed extension Dy of D is called the minimal extension of
D. The domain dom Dy, of Dy, consists of all o € L2(M, E) such that there
is a sequence (0,,) in dom D = E.(M, E) such that o, — o in L?(M, E) and
the sequence (Do) is convergent in L2(M, F), and then Dp,0 := lim Do,,.
By definition, the graph of Dy, is the closure of the graph of D and

D C Dpin C Diax. (C.16)
The left inclusion is always strict. By definition, im Dy,;, C im D, hence
im Dpin = im D. (C.17)

The minimal extension Dy,;, can also be characterized as the Hilbert space
adjoint of the maximal extension (D*)pax.

C.18 Exercises. 1) Show that dom D,,;, endowed with the graph norm of D,
lo]p = (|of3 + [Dminc]3)"/?,

is a Hilbert space, the Sobolev space associated to D.
2) Assuming D = D*, show that

D* :Dmaxa D :Dmin7 Dee :Dmaxa
where the superscript a denotes the Hilbert space adjoint.

We say that a differential operator D is essentially self-adjoint if it is for-
mally self-adjoint and Dpin = Dmax-

C.19 Theorem (Chernoff [Chf]). Let D be elliptic, formally self-adjoint, and
of order one with Sp uniformly bounded. If M is complete and connected, then
any power D¥, k> 1, of D is essentially self-adjoint.

The elegant proof of Theorem C.19 in [Chf] uses an existence and uniqueness
result for the associated wave equation. In [LM, Theorem I1.5.7], the case k = 1
is treated by a cut-off argument and by using an appropriate parametrix for D.

C.20 Exercise. Let M be complete and connected and D be elliptic of order
one with Sp uniformly bounded. By passing to the elliptic and formally self-

adjoint operator
0 D*
D 0 )’

conclude that Apin = Amax, where A is any product with alternating factors
D and D*.
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C.21 Proposition. Let D be elliptic of order one with Sp uniformly bounded.
If M is complete and connected and o € dom(D*D)pax, then o € dom Dyyax

and
(D" Do,0)> = | Dof3.

Proof. By Exercise C.20, Dimax = Dmin and (D*D)max = (D*D)min. Let (o)
be a sequence of smooth sections of E with compact support such that (o;)
and ((D*D)o;) are Cauchy sequences in L?*(M, E). We have
|Daj — Dokl; = (D*D)(0; — a3), (0 — a%))2
< |(D*D)(o; = ok)l2l(05 — on)l2;

hence (Do) is a Cauchy sequence as well, and hence dom(D* D)pin C dom Dipiy.
Clearly the asserted formula holds for any o, hence also in the limit. 0

C.22 Corollary. Let D be elliptic of order one with Sp uniformly bounded,
and let o € E(M, E) be square integrable. If M is complete and connected, then

D*Do =0 < Do =0.

C.1 Dirac Operators. Among the elliptic differential operators of order one,
Dirac operators in the sense of Gromov and Lawson [GL], [LM] play a central
role. We say that a Hermitian vector bundle E over a Riemannian manifold M
with Hermitian connection V is a Dirac bundle if it is endowed with a field of

morphisms
TMRFE—FE, X®o— Xo=X-o0,

called Clifford multiplication, such that
XYo=-YXo—-2(X,Y)o,
(XU? T) = _(Ua XT)a (023)
Vx(Yo)=(VxY)o+Y(Vxo).
The associated Dirac operator D: E(F) — E(F) is then defined by
Do =Y X;Vx,o, (C.24)

where (X;) is a local orthonormal frame of M. We leave it as an exercise to
show that D is formally self-adjoint with principal symbol

Sp(dp)o = gradp - o. (C.25)

We see that Sp is uniformly bounded. Hence if M is complete and connected,
then any power D*, k > 1, of D is essentially self-adjoint, by Theorem C.19.
We also note that

X (X -0)=—|X0,

hence D is elliptic.
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C.26 Exercise. Let E be a Dirac bundle over M. Let F' be a Hermitian vector
bundle over M, endowed with a Hermitian connection, also denoted V. Then
E ® F with the induced connection and Clifford multiplication X - (¢ ® 7) :=
(X -0)®7 is also a Dirac bundle, the twist of E by F. Compare the associated
Dirac operators of E' and F' with the twist construction in (8.12).

Let E be a Dirac bundle and p: £ — FE be a parallel unitary involution
anticommuting with Clifford multiplication, u(Xo) = —X u(c). Then the asso-
ciated eigenbundles E* for the eigenvalues £1 of y are parallel and turn E into
a graded Dirac bundle, E = ET @ E~. Furthermore, D restricts to operators
D*: £(E*) — E(ET). We leave it as an exercise to show that (D+)* = D™,

C.27 Examples. 1) The morphism TM ® A*(M, E) — A*(M, E),
X-a::Xb/\a—Xl_a,

satisfies the axioms for Clifford multiplication in (C.23), see (1.10) and (1.11),
and d+d* is the associated Dirac operator, see (1.21) and Proposition 1.27. We
note that, as a Dirac bundle, A*(M, F) is the twist of A*(M,C) with F in the
sense of Exercise C.26. The splitting A*(M, E) = A®¥**(M, E) & A°Y(M, E)
turns A*(M, E) into a graded Dirac bundle.

2) Let M be a complex manifold with complex structure J, endowed with a
compatible Riemannian metric g. Let £ — M be a holomorphic vector bundle
with Hermitian metric A and associated Chern connection D. For X € T M,
let

1
Zx = 5(X —iJX) and Z% = (Zx, ) € A% (M,C),
compare Subsection 3.3. Then the morphism T'M ® AP*(M, E) — AP*(M, E),
X a:=V2Z% Na—V2ZxLa (C.28)

satisfies the axioms for Clifford multiplication in (C.23).
Let (X1,Y1,...,Xm, Yy) be alocal orthonormal frame of M with JX; =Y.
By (3.32) and (3.33),

o* = —Z (ZXJ.LZA)XJ. + ZYjI—[)Yj)a

where we use that iZg( = ZB-X and iZx = —Zsx. It follows that \/5(5—1— 5*)
is the Dirac operator associated to the Clifford multiplication in (C.28).

We note that, as a Dirac bundle, AP*(M, E) is the twist of A%*(M,C)
with APO(M,E) = AP°(M,C) @ E in the sense of Exercise C.26. As in the
previous example, the splitting AP*(M, E) = APV*"(M, E) & AP°Y(M, E)
turns AP*(M, E) into a graded Dirac bundle.



APPENDIX C REMARKS ON DIFFERENTIAL OPERATORS 167

C.2 L?-de Rham Cohomology. Let E — M be a Hermitian vector bundle
with a flat Hermitian connection D. The exterior differential d = dP is a dif-
ferential operator of order one on A*(M, E). By (C.14), we have L?-orthogonal
decompositions

L*(A*(M, E)) = ker dyay +imd* = kerd},, +imd, (C.29)
where d, .. stands for (d*)max. Since E is flat, d*> = 0 and hence

imd C imdpax C kerdpyax, imd" Cimd},, Ckerd .. (C.30)

max

It follows that ker d,.x contains the closure of im dyax, where we recall that
ker dyay and ker d? . are closed subspaces of L?(A*(M, E)).

We let H5(M, E) = ker dmax N kerd}, .. be the space of square integrable
harmonic forms (with values in E). If « is a harmonic form, then « satisfies
(d 4+ d*)a = 0 weakly. Since d 4 d* is an elliptic differential operator, see e.g.
Exercise C.27.1, it follows that « is smooth and satisfies (d + d*)a = 0 in the
classical sense.

C.31 Theorem (Hodge Decomposition). We have L2-orthogonal decomposi-
tions

ker dmax = H5(M, E) +imd, kerdy .. = H5(M,E) + imd*.

Proof. Let o € H5(M,E) and g € A%(M, E). Then (o, dB)s = (d} e, B)2 =
0, hence « is perpendicular to im d. Vice versa, if & € ker dyay is L2-perpendicular
to imd, then d% .o = 0, and hence o € H3(M, E). The proof of the second
equality is similar. O

By the first inclusion in (C.30), there is a cochain complex

dmax Ck—l dmax Ok dmax Ok—'rl dmax . (032)
with C! := dom dyax N L2(AY(M, E)). We let
ZH(M, E) = ker{dmax: C* — L*(A*1(M, E))},

C.33
B*(M, E) = im{dpax: C* ' — L?(A*(M, E))}. (C:33)

The L2-de Rham cohomology®® of M consists of the quotients
HY(M,E) = Z¥(M, E)/B*(M, E). (C.34)

The image B*(M, E) need not be closed, but its closure B*(M, E) is contained
in ker dyax since the latter is closed in L*(A*(M, E)). We define the reduced
L2-de Rham cohomology of M by

H} ea(M,E) := Z*(M,E)/B*(M, E). (C.35)

We note the following consequences of Exercise C.20 and Corollary C.22.

30[Car] and [Lot] contain discussions of L?-de Rham cohomology.
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C.36 Proposition. If M is complete and connected, then the natural projec-
tion H3(M, E) — Hj .4(M, E) is an isomorphism. O

C.37 Proposition. Let a € A*(M, E) be square integrable. If M is complete
and connected and Aga = 0, then da = d*a = 0. g

Suppose now that M is oriented. Since * ® h commutes with the Laplace
operator Ay, it induces conjugate linear isomorphisms

Hy(M, E) — H2~" (M, E¥), (C.38)

compare (1.56). In particular, Poincaré duality holds for reduced L?-cohomology
if M is oriented, complete, and connected.

C.3 L2-Dolbeault Cohomology. Let M be a complex manifold with com-
plex structure J, endowed with a compatible Riemannian metric g. Let E — M
be a holomorphic vector bundle with Hermitian metric A and associated Chern
connection D. By (C.14), we have L?-orthogonal decompositions

L*(A**(M, E)) = ket Omax + im 0* = ker 9}, + im 0. (C.39)
As in the case of the exterior differential d,
im0 C im Opax C ker Opay, 1mO* C im 07, C kerd;,... (C.40)

We let Hy (M, E) := ker Omax N ker 97, be the space of square integrable -
harmonic forms (with values in E). If v is a d-harmonic form, then o satisfies
(0 + 0%)a = 0 weakly. Since 0 4 0* is an elliptic differential operator, see e.g.
Exercise C.27.2, it follows that o is smooth and satisfies (9 + 0*)a = 0 in the
classical sense.

C.41 Theorem (Hodge Decomposition). We have L?-orthogonal decomposi-
tions

ker Opax = HY" (M, E) + imd, kerd;

max

= Hy* (M, E) + im 0*. O

By the first inclusion in (C.40), there are cochain complexes

Omax , op,g=1 Omax, op,g Omax, opgtl Omax, (C.42)

with C™* := dom Opax N L2(A™* (M, E)). We let

ZP UM, E) = ker{Omax: CP? — L*(AP9T (M, E))},

_ (C.43)
BPY(M, E) = im{0nax: CP9" ! — L*(AP9(M, E))}.
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The L%-Dolbeault cohomology of M consists of the quotients

HYY(M,E) = Z"9(M,E)/B" (M, E). (C.44)
The reduced L?-Dolbeault cohomology of M is given by

Hg,’rqed(M, E) := ZP%(M,E)/B"Y(M, E). (C.45)
We again note consequences of Exercise C.20 and Corollary C.22.

C.46 Proposition. If M is complete and connected, then the natural projec-
tion Hy™ (M, E) — Hy 4(M, E) is an isomorphism. O

C.47 Proposition. Let o € A**(M, E) be square integrable. If M is complete
and connected and Aga =0, then Oa = 0*ar = 0. O

Since * ® h commutes with the Laplace operator Ag, it induces conjugate
linear isomorphisms

HYY(M,E) — Hy' P M, E*), (C.48)

compare (3.11). In particular, Serre duality holds for reduced L2-Dolbeault
cohomology if M is complete and connected.

Suppose now in addition that M is a Kéhler manifold and that F is flat.
Then Ay = 2A5. Moreover, the Lefschetz map L commutes with Aé.

C.49 Theorem. Suppose that M is a complete and connected Kihler manifold
and that E is flat. Then the Lefschetz map L®: H5(M, E) — H5T* (M, E) is
injective for 0 < s < m — k and surjective for s > m — k > 0. Furthermore,

Hy(M, E) = @prg=rHy (M, E),  Hy"(M, E) = @50 L"H 5" (M, E),

the Hodge and Lefschetz decompositions of H5(M, E) and HY (M, E). O
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