
Dominic Joyce Differential Geometry Nairobi 2019

Miniprojects

Project 1. Define connections ∇ on a vector bundle E → X, and the
curvature of ∇. Explain why a Riemannian manifold (X, g) has a natural
connection ∇ on TX, the Levi-Civita connection. Discuss Riemann curva-
ture. Give some idea of reasons why it is important, e.g. General Relativity.

Project 2. Give an introduction to the theory of Lie groups and Lie algebras.

One good book (there are several) is R. Carter, G. Segal and I. MacDonald,
Lectures on Lie Groups and Lie algebras, LMS, 1995.

Project 4. Explain the proof of de Rham’s theorem of the isomorphism
between de Rham cohomology of a manifold and sheaf cohomology over R,
using sheaf cohomology and fine sheaves.

Project 5. Discuss Hodge theory for compact, oriented Riemannian mani-
folds; the isomorphism between de Rham cohomology and the vector spaces
of harmonic forms. Include Poincaré duality.

Project 6. Write about spin geometry for Riemannian manifolds: Clifford
algebras and the spin representation, spin structures on a manifold, spin
bundles and spinors, the Dirac operator. Could mention quantum theory,
relevance of spinors to spin 1

2
particles like electrons.

Project 7. Give a broad-brush account (not much detail necessary) of
some milestones in the theory of 3-manifolds: the Poincaré Conjecture and
its proof by Perelman (and hangers-on); perhaps also describe Thurston’s
Geometrization Programme.



Miniproject on de Rham cohomology

Explain the definition of the de Rham cohomology H∗
dR(X,R) of a manifold

X, and review its important properties. Then do either (a) or (b):

(a)(i) De Rham’s Theorem says thatH∗
dR(X,R)∼=H∗

top(X,R), forH∗
top(X,R)

cohomology as defined in Algebraic Topology (there are several possible def-
initions). Give a proof of De Rham’s Theorem, briefly explaining what back-
ground you need.

[You are advised to define H∗
top(X,R) to be either Čech cohomology, or sheaf

cohomology of the constant sheaf R on X. If using Čech cohomology you may
assume there exists an open cover {Ui : i ∈ I} of X in which Ui1 ∩ · · · ∩ Uik

is either empty or diffeomorphic to RdimX for all i1, . . . , ik ∈ I.]

(ii) Suppose we weaken the definition of smooth manifold X by not re-
quiring X to be Hausdorff. Then exterior forms and de Rham cohomology
H∗

dR(X,R), and topological cohomology H∗
top(X,R), still make sense. Is your

proof still valid, and if not, why not? Discuss the example of X the ‘line
with two origins’ R with 0 replaced by two points {0, 0′}, with projection
π : X → R, such that U ⊂ X is open if π(U) ⊂ R is open. In Algebraic
Topology terms, X is homotopic to the circle S1.

(b) Let X be a manifold, and U, V ⊆ X be open subsets with U ∪ V = X.
The Mayer–Vietoris sequence is the long exact sequence of real vector spaces

· · · 󰈣󰈣 Hk
dR(X,R)

ρU
X⊕ρV

X 󰈣󰈣 H
k
dR(U,R)

⊕Hk
dR(V,R)

ρU∩V
U ⊕−ρU∩V

V 󰈣󰈣 Hk
dR(U∩V,R) ∂ 󰈣󰈣 Hk+1

dR (X,R) 󰈣󰈣 · · · ,

where the restriction map ρUX : Hk
dR(X,R) → Hk

dR(U,R) is pullback by the
inclusion U ↩→ X, and ∂ is the continuation map (which needs to be defined).

(i) Working at the level of exterior forms, prove that the Mayer–Vietoris
sequence is exact, defining the continuation map ∂ during your proof.

[You may assume the existence of a partition of unity for the open cover
{U, V } of X.]

(ii) Use the Mayer–Vietoris sequence to compute the de Rham cohomology
H∗

dR(X,R) when X is (A) the annulus A = S1×(0, 1); (B) the 2-sphere
S2; and (C) the genus g surface Σg for g = 1, 2, . . . .

[You may assume the de Rham cohomology of R2.]


