Homework problems, days 1-4

1. Complex projective space \mathbb{CP}^n is the set of 1-dimensional vector subspaces of \mathbb{C}^{n+1} . Points in \mathbb{CP}^n are written $[z_0,\ldots,z_n]$ for (z_0,\ldots,z_n) in $\mathbb{C}^{n+1}\setminus\{0\}$, where $[z_0,\ldots,z_n]=\mathbb{C}\cdot(z_0,\ldots,z_n)\subseteq\mathbb{C}^{n+1}$, and $[\lambda z_0,\ldots,\lambda z_n]=[z_0,\ldots,z_n]$ for $\lambda\in\mathbb{C}^*=\mathbb{C}\setminus\{0\}$. Equivalently, $\mathbb{CP}^n=(\mathbb{C}^{n+1}\setminus\{0\})/\mathbb{C}^*$, where \mathbb{C}^* acts by $\lambda:(z_0,\ldots,z_n)\mapsto(\lambda z_0,\ldots,\lambda z_n)$. It has the quotient topology induced from the surjective projection $\pi:\mathbb{C}^{n+1}\setminus\{0\}\to\mathbb{CP}^n$, $\pi:(z_0,\ldots,z_n)\mapsto[z_0,\ldots,z_n]$.

Write down an explicit atlas on \mathbb{CP}^n , compute the transition functions between charts, and prove that it makes \mathbb{CP}^n into a smooth 2n-dimensional manifold. (Hint: use n+1 charts (U_i,ϕ_i) for $i=0,\ldots,n$, such that $\phi_i(U_i)$ is the open subset of $[z_0,\ldots,z_n]\in\mathbb{CP}^n$ with $z_i\neq 0$ —try fixing $z_i=1$.)

- **2.** Let X,Y be manifolds. Show carefully that $X\times Y$ has a unique manifold structure such that if $(U,\phi),(V,\psi)$ are charts on X,Y then $(U\times V,\phi\times\psi)$ is a chart on $X\times Y$, and $\dim(X\times Y)=\dim X+\dim Y$.
- **3(a)** Let X be the sphere $S^n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \dots + x_n^2 = 1\}$. Explain why we may identify

$$T_{(x_0,\dots,x_n)}\mathcal{S}^n \cong \{(y_0,\dots,y_n) \in \mathbb{R}^{n+1} : x_0y_0 + \dots + x_ny_n = 0\}.$$

- (b) By identifying $\mathbb{R}^{2k+2} \cong \mathbb{C}^{k+1}$, show that any odd-dimensional sphere \mathcal{S}^{2k+1} has a nonvanishing vector field $v \in C^{\infty}(T\mathcal{S}^{2k+1})$ (i.e. $v \neq 0$ at every point). **For discussion:** can the same thing hold for even-dimensional spheres \mathcal{S}^{2k} ?
- **4.** Let X be a manifold and $v,w\in C^\infty(TX)$. Suppose (x_1,\ldots,x_n) are local coordinates on an open set $U\subseteq X$, so that we may write $v=v_1\frac{\partial}{\partial x_1}+\cdots+v_n\frac{\partial}{\partial x_n}$ and $w=w_1\frac{\partial}{\partial x_1}+\cdots+w_n\frac{\partial}{\partial x_n}$ on U, for $v_i,w_j:U\to\mathbb{R}$ smooth. Define the Lie bracket $[v,w]\in C^\infty(TX)$ by

$$[v, w] = \sum_{i,j=1}^{n} \left(v_i \frac{\partial w_j}{\partial x_i} \cdot \frac{\partial}{\partial x_j} - w_j \frac{\partial v_i}{\partial x_j} \cdot \frac{\partial}{\partial x_i} \right) \quad \text{on } U.$$
 (1)

Prove that this is independent of choice of local coordinates. That is, if (y_1, \ldots, y_n) is another local coordinate system on $V \subseteq X$, then (1) and its analogue for $(y_1, \ldots, y_n), V$ define the same vector field on $U \cap V$.

- **5.** Take $\alpha \in \Lambda^k V$ where dim V = n and consider the linear map $A_\alpha : \Lambda^{n-k} V \to \Lambda^n V$ defined by $A_\alpha(\beta) = \alpha \wedge \beta$.
- (i) Show that if $\alpha \neq 0$, then $A_{\alpha} \neq 0$.
- (ii) Prove that the map $\alpha \mapsto A_{\alpha}$ is an isomorphism from $\Lambda^{k}V$ to the vector space $\operatorname{Hom}(\Lambda^{n-k}V,\Lambda^{n}V)$ of linear maps from $\Lambda^{n-k}V$ to $\Lambda^{n}V$. Thus if we choose an isomorphism $\Lambda^{n}V \cong \mathbb{R}$ we get isomorphisms $\Lambda^{k}V \cong (\Lambda^{n-k}V)^{*}$.

- **6.** Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by F(x, y, z) = (xy, yz, zx). Calculate $F^*(x \, dy \land dz)$ and $F^*(x \, dy + y \, dz)$.
- **7.(a)** Prove explicitly that the de Rham cohomology groups of \mathbb{R} are $H^0(\mathbb{R}) \cong \mathbb{R}$ and $H^1(\mathbb{R}) = 0$.
- (b) Similarly, for $S^1 = \mathbb{R}/\mathbb{Z}$, prove explicitly that $H^0(S^1) \cong \mathbb{R}$ and $H^1(S^1) \cong \mathbb{R}$. **Hint:** Write $\Omega^0(\mathbb{R}) = \{f(x) \mid f : \mathbb{R} \to \mathbb{R} \text{ is smooth}\}$, and $\Omega^1(\mathbb{R}) = \{g(x)dx \mid g : \mathbb{R} \to \mathbb{R} \text{ is smooth}\}$, so that $d: \Omega^0(\mathbb{R}) \to \Omega^1(\mathbb{R}) \text{ maps } f(x) \longmapsto \frac{df}{dx}(x)dx$. For S^1 , do the same, except that f, g are \mathbb{Z} -periodic, f(x) = f(x+n) for $n \in \mathbb{Z}$.
- **8.** Show that the product $X \times Y$ of two orientable manifolds is orientable.
- **9.** Is $S^2 \times \mathbb{RP}^2$ orientable? What about $\mathbb{RP}^2 \times \mathbb{RP}^2$?
- **10.** A Riemann surface is defined as a 2-dimensional manifold X with an atlas $\{(U_i,\phi_i):i\in I\}$ whose transition maps $\phi_j^{-1}\circ\phi_i$ for $i,j\in I$ are maps from an open set $\phi_i^{-1}(\phi_j(U_j))$ of $\mathbb{C}=\mathbb{R}^2$ to another open set $\phi_j^{-1}(\phi_i(U_j))$ which are holomorphic and invertible. By considering the Jacobian of $\phi_j^{-1}\circ\phi_i$, show that a Riemann surface is orientable.