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3. Tensors and exterior forms
3.1. Some linear algebra

We start with a reminder on some basic operations on vector

spaces. For simplicity, all vector spaces will be finite-dimensional

over R. If U is a vector space, the dual vector space is

U* = Hom(U, R), with dim U* = dim U. If u!,... u™ is a basis

of U, there is a dual basis u1, ..., u, of U*, with uj(ui) = ¢;; for

i,j=1,...,m. We can identify U = (U*)*.

If U, V are vector spaces, the direct sum is
UpV=UxV={(uv):uel, veV}.

It is a vector space of dimension dim U + dim V. If u!,..., u™ and

vl ..., v" are bases of U, V, then u,..., u™ vl ..., v"is a basis

of U® V. So we can add vector spaces. Direct sum is associative

and commutative, UV =V o U, U (Ve W)= (U V) W.
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We can also multiply vector spaces. For U, V' vector spaces, the
tensor product U ® V is a natural vector space with
dim(U ® V) =dim U - dim V. There is a bilinear operation
R:UxV-—UV, (uv)r—u®v.
If ul,...,u™ and v1,..., v" are bases of U, V, then
{vvev:i=1,....m j=1,...,n}is a basisof U® V.
Formally, we may define
UV = {bilinear maps o : U* x V¥ — ]R},
and forue U, ve V, define u®@v € UR V to be the bilinear map
uRv:U"x V" —R, u®v:(a,pf)r— a(u)-B(v).
Tensor products are associative and commutative and distributive

over direct sum, U@ V=V U, U (VeaW)=(Ua V) W,
U (Ve W)=(U® V)ad (U® W), just as you would expect.
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Symmetric and exterior (antisymmetric) products

Let V be a vector space. Then we can form the n-fold tensor

" n copies
product ®"V =V ®---® V. The symmetric group S, acts on
X" V by permutations on the n factors, so that o € S, acts by

O ViR - QVy+—— V0(1)®"'®Va(n)
for vi,...,v, € V. The n" symmetric power S"V is the subspace
of ®" V invariant under S,,, with dim S"V = (dlm V+"_1)

n
S"V={ve®"V:o(v)=vforall o€ S,}.
The n'™ exterior power A"V is the subspace of @" V
anti-invariant under S,,, with dim A"V = (dlm V)

n

NV ={ve@®"V:o(v)=sign(o)v foralloc € S,}.

For n =2 we have ®*V = S2V @ A2V.
We can identify (Q?R" with n x n matrices, S2R" with symmetric
matrices, and A?R” with antisymmetric matrices.
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Symmetric and exterior products

There are projections M° : ®"V — S"Vand N : Q" V — A"V
by symmetrization and antisymmetrization, given by

1 1 .
N°(v) = - > o(v), M(v)= - > sign(o) o(v).
O'ESn O'ESn
The symmetric product © is tensor product ® followed by

symmetrization M°,. so for example
v1®---®vn:ﬂ5(v1®---®vn) for vi,...,v, € V.

The exterior product or wedge product A is tensor product ®
followed by antisymmetrization M", so for example we have
ANV XAV 5 ATV a A B = TN a® B).

Both ®, A are associative. We have 8O a = a ® 8 and
BAa=(—1)dexdely A 3.

Dominic Joyce, Oxford University Lecture 3: Tensors



Some linear algebra

Operations on vector bundles; tensors
Index notation for tensors

The Lie bracket of vector fields

Tensors

Exponentiating vector fields

3.2. Operations on vector bundles; tensors

Now let X be a smooth manifold, and as in §1.5 consider vector
bundles E — X, F — X, so that for all x € X the fibres E,, F, are
vector spaces. The operations on vector spaces in §3.1 all make
sense for vector bundles. So we can form the dual vector bundle
E* with rank E* = rank E and fibres (E*), = (Ex)*, the direct
sum vector bundle E ® F — X, with

rank(E & F) = rank E + rank F and fibres (E & F)x = Ex & F,
the tensor product bundle E ® F — X, with

rank(E ® F) = rank E - rank F and fibres (E ® F)x = Ex ® Fx.
Given E — X, we can form the n-fold tensor product Q" E — X,
the nt" symmetric power S"E — X and the nt"" exterior power
A"E — X, with fibres ®"(Ex), S"(Ex), N"(Ex).

We can take direct sums and tensor products of sections: if

ec C®(E), f € C®(F) thene® f € C*°(E® F), and so on.
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Tensor bundles and tensors

As in §2.1, any manifold X has two natural vector bundles, the
tangent bundle TX — X and cotangent bundle T*X — X. So we
can make many more bundles by direct sums, tensor products,
symmetric products, and exterior products, of TX, T*X.

The tensor bundles on X are @* TX @ Q' T*X for k,1 >0
(where if k =0 or | =0 we omit that term). They are vector
bundles on X, of rank (dim X)**/.

A tensor T on X is a smooth section of some tensor bundle,
TeC®(RTXeR TX).

This is very general, and includes many interesting geometric
structures.
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A vector field v on X is a section of TX. This is a tensor with
k=1and /| =0.

Example

An I-form for | > 0, or exterior form, on X, is a section of A/ T*X.
As rank N T*X = (dir?x), this is only nonzero for

| =0,...,dim X. Since A'T*X is a subbundle of

R T*X =R° TX ® ®' T*X, I-forms are tensors with k = 0.

A Riemannian metric g is a smooth section of S?T*X such that
glx € S?T} X is a positive definite quadratic form on T, X for all
x € X. As S2T*X C ®? T*X, this is a tensor with k = 0, / = 2.
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3.3. Index notation for tensors

Here is some useful notation for tensors, introduced by physicists.
Let X be an n-manifold, and T € C¥(R* TX @ Q' T*X) a
tensor of type (k,/) on X. Let (x!,...,x") be local coordinates on
an open set U C X. (For consistent notation, we use superscripts
x' rather than subscripts x;; x' means the i*® variable, not a power

of x.) Then %, - % are a basis of sections of TX on U, and
dx!,...,dx" a basis of sections of T*X on U. Hence we may write

o, O o
Tlu= Y TPE P o @ od®e - -od®. (3.1)

b1br---by Ox a1 Ox 3k
ai,...,ax=1,...,n
b1,..‘,b/:1,...,n

Here Tgllgzzzl" : U — R is a smooth function for all values of
ai,...,ag,b1,...,b € {1,...,[‘)}.
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Thus, on U the tensor T is uniquely determined by the real
functions Tgll"",'gl" for all a;, b;, and vice versa. So we can identify T

ai,...,ak=1,...,n .
)bl, by=1,...n" which we

with such nf*/-tuples of functions (T
can think of as a kind of generalized matrlx
If (x!,...,X") is another coordinate system on U C X, and Tb by

the corresponding funct|ons from T\u, then using

o _ n ox 9 _ n
57 = Djm1 gxr agr WX =D a = -dx/, on UN U we have
odal1 cak di d,
=g ay Z 15)' 19)'% . Ox Ox L Ta% . (3.2)
bi---by Oxct  OxS% Qfbr  gxb dvedt AT

c1,...,ck=1,...,n
1, ..,d,:l,...,n

This tells you how the tuples (T, %)\ Z’I‘jllg transform

under change of coordinates.
Upper indices T2 are called contravariant (vector) indices. Lower
indices T}, are called covariant (1-form) indices.
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In the index notation, we write the tensor T (on all of X, not just
on one coordinate chart U C X) as Tlfll".'_'[;’lk. We could interpret
this in several ways. We could view it just as a formal symboal,
telling us that T is a section of ®* TX @ ®' T*X. Or, we could

understand it to mean ‘every time we have coordinates (xt,...,x")
on U C X, then we get an n**l-tuple (T2 B Zf;l: of
smooth functions T,* " : U — R as in (3.1), and under change of

k+l

coordinates, these n —tuples transform as in (3.2)".
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Examples of tensor notation

Example
A vector field v on X is written v2. In coordinates (x!,..., x")
this means functions (v1,...,v") with v = vl% + -+ v”%.

Example

|

An [-form on X is a tensor ayp,...p, With

Opyy.oby_y bbjy--bj_1 bibjyy by = —Clby..by forall1<i<j </ Soa
2-form is azp With apy; = —agp.

Example

|

A Riemannian metric is a tensor g,p With g5 = gpa, With
(gab)a,b:17_,_,,, a positive definite nx n matrix of functions.

\

Index notation makes it easy to describe (anti)symmetries of
tensors, by permuting indices.
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As TX, T*X are dual, there is a dual pairing TX x T*X — R.
This induces vector bundle morphisms

R TX R T*X - ®* TX ® ®' T*X by contracting
together a TX and a T*X factor (need to specify which factors).
In index notation, this is done by the Einstein summation
convention: if an index ¢ occurs twice in a tensor in a formula,
once as an upper and once as a lower index, then (thinking in
terms of tuples of functions) we are to sum the index ¢ from
1,...,n=dim X, even though the sum > "_; is not written.
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Example

Let v € C*°(TX) be a vector field, and o € C*°(T*X) a 1-form.
In index notation we write v = v?, o = ap.

Then v@qy, in index notation means v®@ o € C*°(TX ® T*X). But
v@a, means the smooth function a(v) : X — R. In coordinates,
Lo+ -+ v,

v@a; means v

|

Example

Let v, w € C*°(TX) be vector fields, and g € C®°(S2T*X) a
Riemannian metric. Then v = v3, w = w?, g = gap In index
notation, and g.,v?w?” means the function g(v, w), the inner
product of v, w using g, and g.,,v?v® means the function |v|?.

Dominic Joyce, Oxford University Lecture 3: Tensors

Some linear algebra

Operations on vector bundles; tensors
Index notation for tensors

The Lie bracket of vector fields
Exponentiating vector fields

3.4. The Lie bracket of vector fields

Tensors

In the next sections we will discuss various ways in which we can
differentiate tensors, or more general sections of vector bundles.
One of the simplest of these is the Lie bracket of vector fields.

Definition
Let X be a manifold, and v, w € C*°(TX) be vector fields on X.
We will define a vector field [v, w] € C*°(TX) called the Lie

bracket of v and w. In local coordinates (x!,...,x") on U C X,
this is given in index notation by the formula

[v,w]? = vb% — ngiz. (3.3)
That is, if v = v1%+---+v”£n and w = W1%+---+W”%,
then [v, w] = u1% + -4+ u”a?(,,, where

vl =>"7_4 vbg;": — ngrz. (3.4)
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Show that the Lie bracket [v, w] in (3.3) is well-defined. That is,
as a vector field it is independent of the choice of local coordinates
(x1,...,x") used to define it.

Proposition 3.2

The Lie bracket of vector fields satisfies [u, v] = —[v, u] and

Lu, [v, w]] + [v, [w, u]] + [w, [u, v]] = O (3.5)

for all vector fields u,v,w € C*(TX).

Equation (3.5) is called the Jacobi identity. It means that vector
fields C°°(TX) are an (infinite-dimensional) Lie algebra.
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Lie derivatives of tensors

Definition

Let X be a manifold, v € C*°(TX) be a vector field, and

T e C®(RF TX ® ®' T*X) a tensor. We will define a tensor
L,T e C(R"TX @ ®' T*X) called the Lie derivative of T
along v. In local coordinates (x1,...,x") on U C X, this is given
in index notation by the formula

ai--ag __ ..c O ar-ak k ai---aj—1€ajt+1°"ak Qvai
(EV T)bl---b/ =V WTbl---b, Zizl Tbl---b, Ox¢

/ al...ak aVC
Y, T

‘bj_1¢bj1br gybj

(3.6)

This is well-defined, i.e. independent of the choice of coordinates
(x1,...,x"). If T = w is a vector field then £, w = [v, w].
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We can think of £, T as ‘the derivative of T in the direction v'.
But note that (3.6) involves derivatives of v as well as T, so £, T
Is not pointwise linear in v. That is, in general

Loyygw T #FL, T+ gLy, T for vector fields v, w and functions

f.g: X =R,
In coordinates (x1,...,x"), take v = %, so that vi,..., v" are
X

v@ =1 for a =i and v? = 0 otherwise. Then (3.6) becomes

ap---ag _ i ai---ag
(ﬁv T)bl---b/ = 5 Tbl---b, )

as you would expect.
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3.5. Exponentiating vector fields

Tensors

Let X be a compact manifold (for simplicity), and v € C*°(TX) a
vector field. A flow-line of v is a smooth map v : R — X satisfying
the differential equation %(t) = Vv|y) € TypV forall t € R.
Results on o.d.e.s imply that for each x € X, there is a unique
flow-line 75 with 7,(0) = x. Here we need X compact so that
flow-lines cannot ‘fall off the edge of X', so that v could only be
defined on an open interval, not all of R. (Consider X = (0, 1),
noncompact and v = a%. Then ~ is only defined on (—x,1 — x).)
Define exp(tv) : X — X for t € R by exp(tv) : x — x(t), for v«
the flow-line of v with 7,(0) = x as above. Then exp(tv) is a
diffeomorphism of X depending smoothly on t, with exp(0) = idx
and exp(sv) o exp(tv) = exp((s + t)v) for s, t € R.
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If T € C®(R* TX ® ®' T*X) is a tensor on X, then exp(tv)*(T)
is a tensor depending smoothly on t € R. One can show that

L, T = % lexp(tv)*(T)] ‘t:O'
That is, L, T measures the infinitesimal change of T under the
flow of v.
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4. Exterior forms
4.1. Exterior forms and the de Rham differential

Let X be a manifold, of dimension n. Then we have vector bundles
AKT*X for k =0,1,...,n (note that AKT*X = 0 for k > n).
Sections a of AKT*X are called k-forms, and form a (generally
infinite-dimensional) vector space C*°(AKT*X). In index notation
Q= Qtz...a,, and is antisymmetric in the indices ay, ..., ax (i.e. if
you exchange any two aj, a;, you change the sign).
As in §3.1-63.2 we have the exterior product (wedge product)

A CONST*X) x C(NT*X) — CO(NTTT*X),
acting in index notation by

1

(@AB)ay - = (k) Z Sign(0)a, 1)ay (0 Bawrn) - 2orn - (4:1)

UESk_H

Dominic Joyce, Oxford University Lecture 4: Exterior forms



Exterior forms and the de Rham differential
Homology and cohomology

Exterior forms
Examples

Pullback of forms by smooth maps

Let f : X — Y be a smooth map of manifolds. As in §2.2 we have
Tf : TX — TY, which can be interpreted as a vector bundle
morphism df : TX — f*(TY) on X, with a dual morphism
(df)* : f*(T*Y) — T*X. Taking exterior powers gives vector
bundle morphisms on X

AK(AF)* - FH(NCT*Y) — AR T*X.
Let o € C®(AKT*Y) be a k-form on Y. Then we have a pullback
f~1(a) € C®(F*(A*T*Y)) on X. Define the pullback k-form to be

F*(a) = N(dF)*[f 1 (a)] € CP(A*T*X).
Pullback is (contravariantly) functorial, (g o f)*(8) = f* o g*(5)
for smooth g : Y — Z and B € C®(AKT*2).
If X C Y is a submanifold, we write a|x for i*(a), with i : X — Y
the inclusion.

Dominic Joyce, Oxford University Lecture 4: Exterior forms

Exterior forms and the de Rham differential
Homology and cohomology

Exterior forms
Examples

The de Rham differential d : C®(AKT*X) — C®(AKTLT*X) for

k > 0 is defined in local coordinates (xl, ..., x") on U C X, using
index notation, by the formula
k+1 _

(da)ay.apy = ;(—1)’_1833, Qlap.a;_18i41 341" (4.2)

v

Show that the de Rham differential is well-defined. That is, as a
k + 1-form, da is independent of the choice of local coordinates
(x1,...,x") used to define it.
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Properties of the de Rham differential

From equations (4.1) and (4.2) we can prove:

Proposition 4.2

For all forms «, 3,~v on X, the de Rham differential satisfies

doda=0, d(BAY)=(dB)A~y+ (~1)%EBA(dy). (4.3)

Proposition 4.3

Let f : X — Y be smooth map of manifolds and
a € CP(NKT*Y). Then
d(f*(«)) = f*(da). (4.4)
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4.2. Homology and cohomology

A reminder of some algebraic topology: let X be a topological
space, and I a field (for simplicity). Then we can define the
homology groups Hi(X,F) and cohomology groups H*(X,TF) for
k € N, which are vector spaces over F, with HX(X,F) = H,(X,F)*
If f: X — Y is continuous there are functorial pushforward maps
fi + H(X,F) — Hi(Y,F) on homology, and pullback maps

f*: HK(Y,F) — H*(X,F) on cohomology. There are cup
products U : HX(X,F) x H'(X,F) — H**/(X,F) making
H*(X,F) into a supercommutative graded algebra.

If X is a compact, oriented manifold of dimension n, then Poincaré
duality says that HX(X,F) = H,_x(X,F).

The Betti numbers of X are bX(X) = dim HX(X,R).

Homology and cohomology are important topological invariants of
a space, one of the most basic things you can compute.
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De Rham cohomology

Let X be a smooth manifold. The de Rham cohomology group
H'%: (X, R) of X, for k=0,...,dim X, is

Ker(d : C®(AKT*X) — C®(A*T1T*X))
Im(d : C®(AKIT*X) — C®(AAT*X))

H(fl(R(Xa R) -

This makes sense as d o d = 0, by Proposition 4.2. The second
equation of (4.3) implies that we can define a cup product

U HiR(X,R) x Higp(X,R) — HSZ(X,R),
(84 Imd) U (y+Imd) — B A~y +Imd,

which is associative and supercommutative as A is.
If X is compact then H(fl‘R(X,R) is finite-dimensional.
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If f: X — Y is a smooth map of manifolds then Proposition 4.3
implies that we can define pullback maps

f*: HR (Y, R) — HR(X,R), f*(a+Imd) = f*(a) + Imd.

These pullback maps are independent of f : X — Y up to smooth
(or continuous) deformation. That is, if g: X x [0,1] — Y is
smooth and fy, f; : X — Y are fo(x) = g(x,0), i(x) = g(x,1)
then f = f* : H'z (Y, R) = HR (X, R).

Theorem (The de Rham Theorem)

There are natural isomorphisms H': (X, R) = H*(X,R), where
HX(X,R) is the k'™ real cohomology group of the underlying
topological space X. These isomorphisms are compatible with cup
products and pullbacks on Hjg(—,R) and H*(—,R).
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Cohomology of products, the Kiinneth Theorem

Let X, Y be topological spaces, and [F a field. We have a product
topological space X x Y with projections mx : X x Y — X,
Ty X XY =Y.

Theorem (The Kiinneth Theorem)

For each k > Q there is an isomorphism

D H(XF)er H(Y,F) — HX x Y,F)
>0 +j=k

acting by GB,-H:,( o' @B — Zi_H':k 7T3’<<(C‘fi) U fo(ﬁj)r for
o' € H(X,F) and 3/ € Hi(Y,T).

In particular, this applies to de Rham cohomology of products of
manifolds.
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Betti numbers and the Euler characteristic

Let X be a manifold (usually compact). The Betti numbers of X
are bX(X) = dim H*; (X, R). The Euler characteristic is

xX(X) = fﬁ%x(—l)kbk(X). They are topological invariants of X.
If X is compact then H%; (X,R) is finite-dimensional, so these are
well defined. If X is compact and odd-dimensional then x(X) = 0.
The Kiinneth Theorem implies that x(X x Y) = x(X)x(Y).

The Euler characteristic is very important, and crops up in many
different places. For example, if X is a compact manifold then the
number of zeroes of a generic vector field v on X, counted with
multiplicity, is x(X).

The Gauss—Bonnet Theorem says that if (X, g) is a compact
Riemannian 2-manifold with Gaussian curvature k then

Jx kdVg = 2mx(X).
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4.3. Examples

The de Rham cohomology of R"” for n > 0 is

) R, k=0,
I_Icli<R(]R 7R) — {0 k>0

When n =0, so that R% = x is a point, this is immediate from the
definitions. To prove it when n > 0, consider the smooth maps
iix—=R" j:%+—(0,...,0), and 7 : R" — x,

7 :(x1,...,%Xp) — *. These induce maps

i*: H (R™,R) — HR (x,R) and 7% 0 HiG (%, R) — HSG (R™,R).
Since mo i =1id : *x — % we see that /* o 7" is the identity on
H(fl‘R(*,R). Conversely, although io7m #id : R” — R", we can
smoothly deform /o 7 to id, so @* o i* is the identity on

H%: (R",R). Hence i*,7* are inverse, and H’; (R", R) = HA; (*, R)

v

Dominic Joyce, Oxford University Lecture 4: Exterior forms

Exterior forms and the de Rham differential
Homology and cohomology

Exterior forms
Examples

Example

The de Rham cohomology of S"” for n > 0 is

R. k=0 k = n,
HgR(S",R)g{ ) orc=n (4.5)

0, otherwise.

|

Example

The de Rham cohomology of 7" for n > 0 is
HA (T R) = R()
dR ) — :

This follows from (4.5) for Hiz(S*,R) and the Kiinneth Theorem.

v

Considering Hiz (—, R) we see that:

There is no diffeomorphism 8" = T" for n > 2.

De Rham cohomology is useful for distinguishing manifolds.
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