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3. Tensors and exterior forms
3.1. Some linear algebra

We start with a reminder on some basic operations on vector
spaces. For simplicity, all vector spaces will be finite-dimensional
over R. If U is a vector space, the dual vector space is
U∗ = Hom(U,R), with dimU∗ = dimU. If u1, . . . , um is a basis
of U, there is a dual basis u1, . . . , um of U∗, with uj(u

i ) = δij for
i , j = 1, . . . ,m. We can identify U = (U∗)∗.
If U,V are vector spaces, the direct sum is

U ⊕ V = U × V =
{

(u, v) : u ∈ U, v ∈ V
}
.

It is a vector space of dimension dimU + dimV . If u1, . . . , um and
v1, . . . , vn are bases of U,V , then u1, . . . , um, v1, . . . , vn is a basis
of U ⊕ V . So we can add vector spaces. Direct sum is associative
and commutative, U ⊕V = V ⊕U, U ⊕ (V ⊕W ) = (U ⊕V )⊕W .
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We can also multiply vector spaces. For U,V vector spaces, the
tensor product U ⊗ V is a natural vector space with
dim(U ⊗ V ) = dimU · dimV . There is a bilinear operation

⊗ : U × V −→ U ⊗ V , (u, v) 7−→ u ⊗ v .

If u1, . . . , um and v1, . . . , vn are bases of U,V , then
{ui ⊗ v j : i = 1, . . . ,m, j = 1, . . . , n} is a basis of U ⊗ V .
Formally, we may define

U ⊗ V =
{

bilinear maps α : U∗ × V ∗ −→ R
}
,

and for u ∈ U, v ∈ V , define u⊗ v ∈ U ⊗V to be the bilinear map

u ⊗ v : U∗ × V ∗ −→ R, u ⊗ v : (α, β) 7−→ α(u) · β(v).

Tensor products are associative and commutative and distributive
over direct sum, U ⊗ V = V ⊗ U, U ⊗ (V ⊗W ) = (U ⊗ V )⊗W ,
U ⊗ (V ⊕W ) = (U ⊗ V )⊕ (U ⊗W ), just as you would expect.
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Symmetric and exterior (antisymmetric) products

Let V be a vector space. Then we can form the n-fold tensor

product
⊗n V =

p n copies q
V ⊗ · · · ⊗ V . The symmetric group Sn acts on⊗n V by permutations on the n factors, so that σ ∈ Sn acts by

σ : v1 ⊗ · · · ⊗ vn 7−→ vσ(1) ⊗ · · · ⊗ vσ(n)

for v1, . . . , vn ∈ V . The nth symmetric power SnV is the subspace
of
⊗n V invariant under Sn, with dimSnV =

(
dimV+n−1

n

)
SnV =

{
v ∈

⊗n V : σ(v) = v for all σ ∈ Sn
}
.

The nth exterior power ΛnV is the subspace of
⊗n V

anti-invariant under Sn, with dimΛnV =
(
dimV

n

)
ΛnV =

{
v ∈

⊗n V : σ(v) = sign(σ) v for all σ ∈ Sn
}
.

For n = 2 we have
⊗2 V = S2V ⊕ Λ2V .

We can identify
⊗2 Rn with n × n matrices, S2Rn with symmetric

matrices, and Λ2Rn with antisymmetric matrices.
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Symmetric and exterior products

There are projections ΠS :
⊗n V → SnV and ΠΛ :

⊗n V → ΛnV
by symmetrization and antisymmetrization, given by

ΠS(v) =
1

n!

∑
σ∈Sn

σ(v), ΠΛ(v) =
1

n!

∑
σ∈Sn

sign(σ)σ(v).

The symmetric product � is tensor product ⊗ followed by
symmetrization ΠS , so for example
v1 � · · · � vn = ΠS(v1 ⊗ · · · ⊗ vn) for v1, . . . , vn ∈ V .
The exterior product or wedge product ∧ is tensor product ⊗
followed by antisymmetrization ΠΛ, so for example we have
∧ : ΛmV × ΛnV → Λm+nV , α ∧ β = ΠΛ(α⊗ β).
Both �,∧ are associative. We have β � α = α� β and
β ∧ α = (−1)degα deg βα ∧ β.
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3.2. Operations on vector bundles; tensors

Now let X be a smooth manifold, and as in §1.5 consider vector
bundles E → X , F → X , so that for all x ∈ X the fibres Ex ,Fx are
vector spaces. The operations on vector spaces in §3.1 all make
sense for vector bundles. So we can form the dual vector bundle
E ∗ with rankE ∗ = rankE and fibres (E ∗)x = (Ex)∗, the direct
sum vector bundle E ⊕ F → X , with
rank(E ⊕ F ) = rankE + rankF and fibres (E ⊕ F )x = Ex ⊕ Fx ,
the tensor product bundle E ⊗ F → X , with
rank(E ⊗ F ) = rankE · rankF and fibres (E ⊗ F )x = Ex ⊗ Fx .
Given E → X , we can form the n-fold tensor product

⊗n E → X ,
the nth symmetric power SnE → X and the nth exterior power
ΛnE → X , with fibres

⊗n(Ex),Sn(Ex),Λn(Ex).
We can take direct sums and tensor products of sections: if
e ∈ C∞(E ), f ∈ C∞(F ) then e ⊕ f ∈ C∞(E ⊕ F ), and so on.
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Tensor bundles and tensors

As in §2.1, any manifold X has two natural vector bundles, the
tangent bundle TX → X and cotangent bundle T ∗X → X . So we
can make many more bundles by direct sums, tensor products,
symmetric products, and exterior products, of TX ,T ∗X .
The tensor bundles on X are

⊗k TX ⊗
⊗l T ∗X for k , l > 0

(where if k = 0 or l = 0 we omit that term). They are vector
bundles on X , of rank (dimX )k+l .
A tensor T on X is a smooth section of some tensor bundle,
T ∈ C∞(

⊗k TX ⊗
⊗l T ∗X ).

This is very general, and includes many interesting geometric
structures.
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Examples of interesting classes of tensors

Example

A vector field v on X is a section of TX . This is a tensor with
k = 1 and l = 0.

Example

An l-form for l > 0, or exterior form, on X , is a section of ΛlT ∗X .
As rankΛlT ∗X =

(
dimX

l

)
, this is only nonzero for

l = 0, . . . ,dimX . Since ΛlT ∗X is a subbundle of⊗l T ∗X =
⊗0 TX ⊗

⊗l T ∗X , l-forms are tensors with k = 0.

Example

A Riemannian metric g is a smooth section of S2T ∗X such that
g |x ∈ S2T ∗x X is a positive definite quadratic form on TxX for all
x ∈ X . As S2T ∗X ⊂

⊗2 T ∗X , this is a tensor with k = 0, l = 2.
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3.3. Index notation for tensors

Here is some useful notation for tensors, introduced by physicists.
Let X be an n-manifold, and T ∈ C∞(

⊗k TX ⊗
⊗l T ∗X ) a

tensor of type (k , l) on X . Let (x1, . . . , xn) be local coordinates on
an open set U ⊆ X . (For consistent notation, we use superscripts
x i rather than subscripts xi ; x

i means the i th variable, not a power
of x .) Then ∂

∂x1 , . . . ,
∂
∂xn are a basis of sections of TX on U, and

dx1, . . . ,dxn a basis of sections of T ∗X on U. Hence we may write

T |U =
∑

a1,...,ak=1,...,n
b1,...,bl=1,...,n

T a1a2···ak
b1b2···bl

∂

∂xa1
⊗· · ·⊗ ∂

∂xak
⊗dxb1⊗· · ·⊗dxbl . (3.1)

Here T a1a2···ak
b1b2···bl : U → R is a smooth function for all values of

a1, . . . , ak , b1, . . . , bl ∈ {1, . . . , n}.

10 / 34 Dominic Joyce, Oxford University Lecture 3: Tensors



Tensors
Exterior forms

Some linear algebra
Operations on vector bundles; tensors
Index notation for tensors
The Lie bracket of vector fields
Exponentiating vector fields

Thus, on U the tensor T is uniquely determined by the real
functions T a1···ak

b1···bl for all ai , bj , and vice versa. So we can identify T

with such nk+l -tuples of functions
(
T a1···ak
b1···bl

)a1,...,ak=1,...,n
b1,...,bl=1,...,n , which we

can think of as a kind of generalized matrix.
If (x̃1, . . . , x̃n) is another coordinate system on Ũ ⊆ X , and T̃ a1···ak

b1···bl
the corresponding functions from T |Ũ , then using
∂
∂x̃ i

=
∑n

j=1
∂x j

∂x̃ i
· ∂
∂x j

, dx̃ i =
∑n

j=1
∂x̃ i

∂x j
· dx j , on U ∩ Ũ we have

T̃ a1···ak
b1···bl =

∑
c1,...,ck=1,...,n
d1,...,dl=1,...,n

∂x̃a1

∂xc1
· · · ∂x̃

ak

∂xck
· ∂x

d1

∂x̃b1
· · · ∂x

dl

∂x̃bl
· T c1···ck

d1···dl . (3.2)

This tells you how the tuples
(
T a1···ak
b1···bl

)a1,...,ak=1,...,n
b1,...,bl=1,...,n transform

under change of coordinates.
Upper indices T a are called contravariant (vector) indices. Lower
indices Tb are called covariant (1-form) indices.
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In the index notation, we write the tensor T (on all of X , not just
on one coordinate chart U ⊆ X ) as T a1···ak

b1···bl . We could interpret
this in several ways. We could view it just as a formal symbol,
telling us that T is a section of

⊗k TX ⊗
⊗l T ∗X . Or, we could

understand it to mean ‘every time we have coordinates (x1, . . . , xn)
on U ⊆ X , then we get an nk+l -tuple

(
T a1···ak
b1···bl

)a1,...,ak=1,...,n
b1,...,bl=1,...,n of

smooth functions T a1···ak
b1···bl : U → R as in (3.1), and under change of

coordinates, these nk+l -tuples transform as in (3.2)’.
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Examples of tensor notation

Example

A vector field v on X is written va. In coordinates (x1, . . . , xn)
this means functions (v1, . . . , vn) with v = v1 ∂

∂x1 + · · ·+ vn ∂
∂xn .

Example

An l-form on X is a tensor αb1···bl with
αb1···bi−1bjbi+1···bj−1bibj+1···bl = −αb1···bl for all 1 6 i < j 6 l . So a
2-form is αab with αba = −αab.

Example

A Riemannian metric is a tensor gab with gab = gba, with(
gab)a,b=1,...,n a positive definite n×n matrix of functions.

Index notation makes it easy to describe (anti)symmetries of
tensors, by permuting indices.
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The Einstein summation convention

As TX ,T ∗X are dual, there is a dual pairing TX × T ∗X → R.
This induces vector bundle morphisms⊗k+1 TX ⊗

⊗l+1 T ∗X →
⊗k TX ⊗

⊗l T ∗X by contracting
together a TX and a T ∗X factor (need to specify which factors).
In index notation, this is done by the Einstein summation
convention: if an index c occurs twice in a tensor in a formula,
once as an upper and once as a lower index, then (thinking in
terms of tuples of functions) we are to sum the index c from
1, . . . , n = dimX , even though the sum

∑n
c=1 is not written.
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Example

Let v ∈ C∞(TX ) be a vector field, and α ∈ C∞(T ∗X ) a 1-form.
In index notation we write v = va, α = αb.
Then vaαb in index notation means v ⊗α ∈ C∞(TX ⊗T ∗X ). But
vaαa means the smooth function α(v) : X → R. In coordinates,
vaαa means v1α1 + · · ·+ vnαn.

Example

Let v ,w ∈ C∞(TX ) be vector fields, and g ∈ C∞(S2T ∗X ) a
Riemannian metric. Then v = va, w = wb, g = gab in index
notation, and gabv

awb means the function g(v ,w), the inner
product of v ,w using g , and gabv

avb means the function |v |2.
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3.4. The Lie bracket of vector fields

In the next sections we will discuss various ways in which we can
differentiate tensors, or more general sections of vector bundles.
One of the simplest of these is the Lie bracket of vector fields.

Definition

Let X be a manifold, and v ,w ∈ C∞(TX ) be vector fields on X .
We will define a vector field [v ,w ] ∈ C∞(TX ) called the Lie
bracket of v and w . In local coordinates (x1, . . . , xn) on U ⊆ X ,
this is given in index notation by the formula

[v ,w ]a = vb ∂w
a

∂xb
− wb ∂va

∂xb
. (3.3)

That is, if v = v1 ∂
∂x1 + · · ·+ vn ∂

∂xn and w = w1 ∂
∂x1 + · · ·+wn ∂

∂xn ,

then [v ,w ] = u1 ∂
∂x1 + · · ·+ un ∂

∂xn , where

ua =
∑n

b=1 v
b ∂wa

∂xb
− wb ∂va

∂xb
. (3.4)
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Exercise 3.1

Show that the Lie bracket [v ,w ] in (3.3) is well-defined. That is,
as a vector field it is independent of the choice of local coordinates
(x1, . . . , xn) used to define it.

Proposition 3.2

The Lie bracket of vector fields satisfies [u, v ] = −[v , u] and

[u, [v ,w ]] + [v , [w , u]] + [w , [u, v ]] = 0 (3.5)

for all vector fields u, v ,w ∈ C∞(TX ).

Equation (3.5) is called the Jacobi identity. It means that vector
fields C∞(TX ) are an (infinite-dimensional) Lie algebra.
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Lie derivatives of tensors

Definition

Let X be a manifold, v ∈ C∞(TX ) be a vector field, and
T ∈ C∞(

⊗k TX ⊗
⊗l T ∗X ) a tensor. We will define a tensor

LvT ∈ C∞(
⊗k TX ⊗

⊗l T ∗X ) called the Lie derivative of T
along v . In local coordinates (x1, . . . , xn) on U ⊆ X , this is given
in index notation by the formula

(LvT )a1···ak
b1···bl = v c ∂

∂xc T
a1···ak
b1···bl −

∑k
i=1 T

a1···ai−1cai+1···ak
b1···bl

∂vai

∂xc

+
∑l

j=1 T
a1···ak
b1···bj−1cbj+1···bl

∂v c

∂x
bj
.

(3.6)

This is well-defined, i.e. independent of the choice of coordinates
(x1, . . . , xn). If T = w is a vector field then Lvw = [v ,w ].

18 / 34 Dominic Joyce, Oxford University Lecture 3: Tensors



Tensors
Exterior forms

Some linear algebra
Operations on vector bundles; tensors
Index notation for tensors
The Lie bracket of vector fields
Exponentiating vector fields

We can think of LvT as ‘the derivative of T in the direction v ’.
But note that (3.6) involves derivatives of v as well as T , so LvT
is not pointwise linear in v . That is, in general
Lfv+gwT 6= f LvT + gLwT for vector fields v ,w and functions
f , g : X → R.

Example

In coordinates (x1, . . . , xn), take v = ∂
∂x i

, so that v1, . . . , vn are
va = 1 for a = i and va = 0 otherwise. Then (3.6) becomes

(LvT )a1···ak
b1···bl = ∂

∂x i
T a1···ak
b1···bl ,

as you would expect.
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3.5. Exponentiating vector fields

Let X be a compact manifold (for simplicity), and v ∈ C∞(TX ) a
vector field. A flow-line of v is a smooth map γ : R→ X satisfying
the differential equation dγ

dt (t) = v |γ(t) ∈ Tγ(t)V for all t ∈ R.
Results on o.d.e.s imply that for each x ∈ X , there is a unique
flow-line γx with γx(0) = x . Here we need X compact so that
flow-lines cannot ‘fall off the edge of X ’, so that γ could only be
defined on an open interval, not all of R. (Consider X = (0, 1),
noncompact and v = ∂

∂x . Then γ is only defined on (−x , 1− x).)
Define exp(tv) : X → X for t ∈ R by exp(tv) : x 7→ γx(t), for γx
the flow-line of v with γx(0) = x as above. Then exp(tv) is a
diffeomorphism of X depending smoothly on t, with exp(0) = idX
and exp(sv) ◦ exp(tv) = exp((s + t)v) for s, t ∈ R.
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If T ∈ C∞(
⊗k TX ⊗

⊗l T ∗X ) is a tensor on X , then exp(tv)∗(T )
is a tensor depending smoothly on t ∈ R. One can show that

LvT = d
dt

[
exp(tv)∗(T )

]∣∣
t=0

.

That is, LvT measures the infinitesimal change of T under the
flow of v .
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4. Exterior forms
4.1. Exterior forms and the de Rham differential

Let X be a manifold, of dimension n. Then we have vector bundles
ΛkT ∗X for k = 0, 1, . . . , n (note that ΛkT ∗X = 0 for k > n).
Sections α of ΛkT ∗X are called k-forms, and form a (generally
infinite-dimensional) vector space C∞(ΛkT ∗X ). In index notation
α = αa1···ak , and is antisymmetric in the indices a1, . . . , ak (i.e. if
you exchange any two ai , aj , you change the sign).
As in §3.1–§3.2 we have the exterior product (wedge product)

∧ : C∞(ΛkT ∗X )× C∞(ΛlT ∗X ) −→ C∞(Λk+lT ∗X ),

acting in index notation by

(α∧β)a1···ak+l
=

1

(k+l)!

∑
σ∈Sk+l

sign(σ)αaσ(1)···aσ(k)
βaσ(k+1)···aσ(k+l)

. (4.1)
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Pullback of forms by smooth maps

Let f : X → Y be a smooth map of manifolds. As in §2.2 we have
Tf : TX → TY , which can be interpreted as a vector bundle
morphism df : TX → f ∗(TY ) on X , with a dual morphism
(df )∗ : f ∗(T ∗Y )→ T ∗X . Taking exterior powers gives vector
bundle morphisms on X

Λk(df )∗ : f ∗(ΛkT ∗Y ) −→ ΛkT ∗X .

Let α ∈ C∞(ΛkT ∗Y ) be a k-form on Y . Then we have a pullback
f −1(α) ∈ C∞(f ∗(ΛkT ∗Y )) on X . Define the pullback k-form to be

f ∗(α) = Λk(df )∗
[
f −1(α)

]
∈ C∞(ΛkT ∗X ).

Pullback is (contravariantly) functorial, (g ◦ f )∗(β) = f ∗ ◦ g∗(β)
for smooth g : Y → Z and β ∈ C∞(ΛkT ∗Z ).
If X ⊆ Y is a submanifold, we write α|X for i∗(α), with i : X ↪→ Y
the inclusion.
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Definition

The de Rham differential d : C∞(ΛkT ∗X ) −→ C∞(Λk+1T ∗X ) for
k > 0 is defined in local coordinates (x1, . . . , xn) on U ⊆ X , using
index notation, by the formula

(dα)a1···ak+1
=

k+1∑
i=1

(−1)i−1 ∂
∂xai αa1···ai−1ai+1···ak+1

. (4.2)

Exercise 4.1

Show that the de Rham differential is well-defined. That is, as a
k + 1-form, dα is independent of the choice of local coordinates
(x1, . . . , xn) used to define it.
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Properties of the de Rham differential

From equations (4.1) and (4.2) we can prove:

Proposition 4.2

For all forms α, β, γ on X , the de Rham differential satisfies

d ◦ dα = 0, d(β ∧ γ) = (dβ) ∧ γ + (−1)deg ββ ∧ (dγ). (4.3)

Proposition 4.3

Let f : X → Y be smooth map of manifolds and
α ∈ C∞(ΛkT ∗Y ). Then

d(f ∗(α)) = f ∗(dα). (4.4)
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4.2. Homology and cohomology

A reminder of some algebraic topology: let X be a topological
space, and F a field (for simplicity). Then we can define the
homology groups Hk(X ,F) and cohomology groups Hk(X ,F) for
k ∈ N, which are vector spaces over F, with Hk(X ,F) ∼= Hk(X ,F)∗

If f : X → Y is continuous there are functorial pushforward maps
f∗ : Hk(X ,F)→ Hk(Y ,F) on homology, and pullback maps
f ∗ : Hk(Y ,F)→ Hk(X ,F) on cohomology. There are cup
products ∪ : Hk(X ,F)× H l(X ,F)→ Hk+l(X ,F) making
H∗(X ,F) into a supercommutative graded algebra.
If X is a compact, oriented manifold of dimension n, then Poincaré
duality says that Hk(X ,F) ∼= Hn−k(X ,F).
The Betti numbers of X are bk(X ) = dimHk(X ,R).
Homology and cohomology are important topological invariants of
a space, one of the most basic things you can compute.
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De Rham cohomology

Definition

Let X be a smooth manifold. The de Rham cohomology group
Hk
dR(X ,R) of X , for k = 0, . . . ,dimX , is

Hk
dR(X ,R) =

Ker
(
d : C∞(ΛkT ∗X ) −→ C∞(Λk+1T ∗X )

)
Im
(
d : C∞(Λk−1T ∗X ) −→ C∞(ΛkT ∗X )

) .
This makes sense as d ◦ d = 0, by Proposition 4.2. The second
equation of (4.3) implies that we can define a cup product

∪ : Hk
dR(X ,R)× H l

dR(X ,R) −→ Hk+l
dR (X ,R),(

β + Imd
)
∪
(
γ + Imd

)
7−→ β ∧ γ + Imd,

which is associative and supercommutative as ∧ is.
If X is compact then Hk

dR(X ,R) is finite-dimensional.
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If f : X → Y is a smooth map of manifolds then Proposition 4.3
implies that we can define pullback maps

f ∗ : Hk
dR(Y ,R) −→ Hk

dR(X ,R), f ∗(α + Imd) = f ∗(α) + Imd.

These pullback maps are independent of f : X → Y up to smooth
(or continuous) deformation. That is, if g : X × [0, 1]→ Y is
smooth and f0, f1 : X → Y are f0(x) = g(x , 0), f1(x) = g(x , 1)
then f ∗0 = f ∗1 : Hk

dR(Y ,R)→ Hk
dR(X ,R).

Theorem (The de Rham Theorem)

There are natural isomorphisms Hk
dR(X ,R) ∼= Hk(X ,R), where

Hk(X ,R) is the kth real cohomology group of the underlying
topological space X . These isomorphisms are compatible with cup
products and pullbacks on H∗dR(−,R) and H∗(−,R).
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Cohomology of products, the Künneth Theorem

Let X ,Y be topological spaces, and F a field. We have a product
topological space X × Y with projections πX : X × Y → X ,
πY : X × Y → Y .

Theorem (The Künneth Theorem)

For each k > 0 there is an isomorphism⊕
i ,j>0:i+j=k

H i (X ,F)⊗F H
j(Y ,F) −→ Hk(X × Y ,F)

acting by
⊕

i+j=k α
i ⊗ βj 7−→

∑
i+j=k π

∗
X (αi ) ∪ π∗Y (βj), for

αi ∈ H i (X ,F) and βj ∈ H j(Y ,F).

In particular, this applies to de Rham cohomology of products of
manifolds.
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Betti numbers and the Euler characteristic

Let X be a manifold (usually compact). The Betti numbers of X
are bk(X ) = dimHk

dR(X ,R). The Euler characteristic is

χ(X ) =
∑dimX

k=0 (−1)kbk(X ). They are topological invariants of X .
If X is compact then Hk

dR(X ,R) is finite-dimensional, so these are
well defined. If X is compact and odd-dimensional then χ(X ) = 0.
The Künneth Theorem implies that χ(X × Y ) = χ(X )χ(Y ).
The Euler characteristic is very important, and crops up in many
different places. For example, if X is a compact manifold then the
number of zeroes of a generic vector field v on X , counted with
multiplicity, is χ(X ).
The Gauss–Bonnet Theorem says that if (X , g) is a compact
Riemannian 2-manifold with Gaussian curvature κ then∫
X κdVg = 2πχ(X ).
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4.3. Examples

Example

The de Rham cohomology of Rn for n > 0 is

Hk
dR(Rn,R) =

{
R, k = 0,

0, k > 0.

When n = 0, so that R0 = ∗ is a point, this is immediate from the
definitions. To prove it when n > 0, consider the smooth maps
i : ∗ → Rn, i : ∗ 7→ (0, . . . , 0), and π : Rn → ∗,
π : (x1, . . . , xn) 7→ ∗. These induce maps
i∗ : Hk

dR(Rn,R)→ Hk
dR(∗,R) and π∗ : Hk

dR(∗,R)→ Hk
dR(Rn,R).

Since π ◦ i = id : ∗ → ∗ we see that i∗ ◦ π∗ is the identity on
Hk
dR(∗,R). Conversely, although i ◦ π 6= id : Rn → Rn, we can

smoothly deform i ◦ π to id, so π∗ ◦ i∗ is the identity on
Hk
dR(Rn,R). Hence i∗, π∗ are inverse, and Hk

dR(Rn,R)∼=Hk
dR(∗,R).
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Example

The de Rham cohomology of Sn for n > 0 is

Hk
dR(Sn,R) ∼=

{
R, k = 0 or k = n,

0, otherwise.
(4.5)

Example

The de Rham cohomology of T n for n > 0 is

Hk
dR(T n,R) ∼= R(nk).

This follows from (4.5) for H∗dR(S1,R) and the Künneth Theorem.

Considering H1
dR(−,R) we see that:

Corollary

There is no diffeomorphism Sn ∼= T n for n > 2.

De Rham cohomology is useful for distinguishing manifolds.
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