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5. Orientations and integration
5.1. Orientations on real vector spaces

Let V be a real vector space of dimension n, and (v1, . . . , vn),
(v ′1, . . . , v

′
n) be two bases for V . Then v ′i =

∑n
j=1 Aijvj for Aij ∈ R,

and (Aij)
n
i ,j=1 is an invertible real matrix, so it has a determinant

det(Aij) ∈ R \ 0. Define an equivalence relation on such bases by
(v1, . . . , vn) ∼ (v ′1, . . . , v

′
n) if det(Aij) > 0. Write [(v1, . . . , vn)] for

the ∼-equivalence class of (v1, . . . , vn). An orientation O on V is a
choice of ∼-equivalence class [(v1, . . . , vn)]. There are two possible
orientations, [(v1, . . . , vn)] and [(−v1, v2, . . . , vn)]. Given an
orientation O, we call a basis (v1, . . . , vn) for V oriented if
(v1, . . . , vn) ∈ O, and anti-oriented otherwise. Given an orientation
O on V , the opposite orientation −O is the other one.
A basis (v1, . . . , vn) for V corresponds to a dual basis (v1, . . . , vn)
for V ∗, and orientations on V correspond naturally to orientations
on V ∗, such that (v1, . . . , vn) is oriented iff (v1, . . . , vn) is oriented.
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An orientation on R2 corresponds to notions of ‘clockwise’ and
‘anticlockwise’. An orientation on R3 corresponds to notions of
‘left-handed’ and ‘right-handed’.
Reflection in a mirror changes orientation.
We can write orientations in terms of the top exterior power ΛnV .
It has dimension

(
dimV

n

)
= 1, so ΛnV ∼= R. If (v1, . . . , vn) is a

basis for V then v1 ∧ · · · ∧ vn ∈ ΛnV \ {0}. If (v ′1, . . . , v
′
n) is

another basis with v ′i =
∑n

j=1 Aijvj then

v ′1 ∧ · · · ∧ v ′n = det(Aij) · v1 ∧ · · · ∧ vn.

Thus, an orientation on V corresponds to a choice of one of the
two connected components of ΛnV \ {0}, where
ΛnV \ {0} ∼= R \ {0} = (−∞, 0)q (0,∞).
Given an orientation on V , we call α ∈ ΛnV \ {0} positive if
α = C v1 ∧ · · · ∧ vn for C > 0 whenever (v1, . . . , vn) is an oriented
basis, and negative otherwise.
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5.2. Orientations on manifolds and top degree forms

Definition

Let X be a manifold, of dimension n. An orientation on X is an
orientation on TxX for each x ∈ X (or equivalently, on T ∗x X for
each x ∈ X ) which depends continuously on x .
Orientations may not exist. If X admits an orientation, it is called
orientable. If X has a choice of orientation, it is called oriented.

Thus, if X is oriented, we divide bases (v1, . . . , vn) for TxX ,
x ∈ X , into oriented bases and anti-oriented bases, and under
continuous deformations of (x , v1, . . . , vn) the oriented /
anti-oriented remains constant. Define a nonvanishing top degree
form α ∈ C∞(ΛnT ∗X ) to be positive (or negative) if
α|x · (v1 ∧ · · · ∧ vn) > 0 (or α|x · (v1 ∧ · · · ∧ vn) < 0) whenever
x ∈ X and (v1, . . . , vn) is an oriented basis for TxX .
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A nonvanishing top degree form α ∈ C∞(ΛnT ∗X ) determines a
unique orientation on X such that α is positive.
A connected orientable manifold has exactly two orientations.

Example

The Möbius strip (§1.5) is a non-orientable 2-manifold. So is the
projective plane RP2, and the ‘Klein bottle’.
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5.3. Integration on manifolds

We are all familiar with integrals in one or more variables such as∫ 1
0 f (t)dt or

∫
R2 e−x

2−y2
dxdy . These happen in subsets U ⊆ Rn,

and involve a particular choice of coordinates t, (x , y), . . . on U.
But we also know formulae for how integrals behave under change
of coordinates, for instance∫ b

a

[
f (y(x))

dy

dx
(x)
]
dx =

∫ d

c
f (y)dy (5.1)

if y : [a, b]→ [c , d ] is differentiable and increasing with y(a) = c ,
y(b) = d , changes coordinates from x to y = y(x). You may have
been taught that ‘dt’, ‘dxdy ’, . . . are simply notation, and don’t
mean anything.
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In Differential Geometry, choosing coordinates is considered bad
style, especially in theory rather than examples. So we can ask:
How should one interpret integration in Differential Geometry,
without choosing coordinates?
Also, do we integrate functions, or something else?

Principle

In Differential Geometry, one should write integrals as
∫
X α ∈ R,

where X is an oriented n-dimensional manifold (possibly with
boundary or corners), and α is an n-form on X , so
α ∈ C∞(ΛnT ∗X ). We can allow α to be non-smooth, e.g.
α ∈ L1(ΛnT ∗X ).
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Example

Consider the integral
∫ d
c f (y) dy , as in (5.1). This is of the form∫

X α, where X = [c , d ], as a 1-manifold with boundary, oriented

such that ∂
∂y is an oriented basis of TxX for all x ∈ [c, d ], and

α = f (y)dy is a 1-form on X .
Note that dy is not just notation: dy ∈ C∞(Λ1T ∗X ) is now a
1-form on X , as is f (y)dy .
Suppose x : X → [a, b] is another global coordinate on X , so that
y = y(x). Then we have

f (y(x))dydx (x) dx = f (y) dy in C∞(Λ1T ∗X ).

So in (5.1) both sides are
∫
X α, we are just rewriting the integral in

terms of two different bases of sections dx and dy for Λ1T ∗X .
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Example

Let X = [a, b], and f : X → R be smooth. As Λ0T ∗X = R, we
regard f ∈ C∞(Λ0T ∗X ) as a 0-form, so df is a 1-form, as in §4.1.
We write df = df

dx (x) dx , using the coordinate x on X = [a, b]. But
as a 1-form, df is independent of coordinates. As usual we have∫

X
df =

∫
[a,b]

df

dx
(x)dx = f (b)− f (a).

However, if we had chosen y = −x as coordinate on X , identifying
X with [−b,−a], and defined g : [−b,−a]→ R by g(y) = f (−y),
then in 1-forms we have d(g(y)) = d(f (x)), so we expect∫

X
df =

∫
X
dg =

∫
[−b,−a]

dg

dy
(y) dy =g(−a)−g(−b)= f (a)−f (b).

What went wrong? We changed orientations, from ∂
∂x oriented

basis of TpX to ∂
∂y oriented, changing the sign of the integral.
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Stokes’ Theorem

Theorem (Stokes’ Theorem)

Let X be a compact, oriented n-dimensional manifold with
boundary (or with corners). Then the boundary ∂X is a compact
(n − 1)-dimensional manifold (with corners if X has corners), with
a natural orientation induced from the orientation of X .
Let α ∈ C∞(Λn−1T ∗X ) be an (n − 1)-form on X , so that
dα ∈ C∞(ΛnT ∗X ). We may restrict α to the boundary (that is,
pull back i∗(α) by the inclusion i : ∂X ↪→ X) to form
α|∂X ∈ C∞(Λn−1T ∗∂X ). Then∫

X
dα =

∫
∂X
α|∂X . (5.2)
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Example

If f : [a, b]→ R is differentiable then∫
[a,b]

df

dx
(x) dx = f (b)− f (a).

This is an example of Stokes’ Theorem with X = [a, b] and α = f ,
as a 0-form (function). So df

dx (x) dx = df .
We have ∂X = {a} q {b}, as a 0-manifold, where {b} has positive
orientation and {a} negative orientation. So∫
∂X f |∂X = f (b)− f (a).
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Example (Green’s Theorem)

Let C be a simple, smooth, closed curve in R2, oriented
anticlockwise. Then C = ∂D for D ⊆ R2 a (topological) closed
disc. Suppose L,M : D → R are smooth. Then∮

C
Ldx + Mdy =

∫
D

(∂M
∂x
− ∂L

∂y

)
dx dy .

This is an example of Stokes’ Theorem, with X = D, and α the
1-form L(x , y)dx + M(x , y)dy , so that dα =

(
∂M
∂x −

∂L
∂y

)
dx ∧ dy .
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5.4. Applications to de Rham cohomology
Integrating over submanifolds, and homology

Suppose X is a manifold, and Y ↪→ X is a compact, oriented,
k-dimensional submanifold. Define a linear map

[Y ] · : Hk
dR(X ,R) −→ R

by [Y ] · (α + Imd) =
∫
Y (α|Y ) for each α ∈ C∞(ΛkT ∗X ) with

dα = 0. This is well defined since if α + Imd = α′ + Imd then
α = α′ + dβ, and

∫
Y dβ=

∫
∂Y β=0 by Stokes’ Theorem, as ∂Y =∅.

Thus each compact, oriented k-submanifold Y in X defines a class
[Y ] in the dual vector space Hk

dR(X ,R)∗, which is the homology
group Hk(X ,R). In fact we can define [Y ] ∈ Hk(X ,Z) in
homology over Z.

14 / 39 Dominic Joyce, Oxford University Lecture 5: Orientations and integration



Orientations and integration
Connections and curvature

Orientations on real vector spaces
Orientations on manifolds and top degree forms
Integration on manifolds
Applications to de Rham cohomology
The classification of compact 2-manifolds

Poincaré duality

Let X be a compact, oriented n-manifold. Then as above we have
a linear map [X ] · : Hn

dR(X ,R)→ R. For each k = 0, . . . , n, define
a bilinear pairing

( , ) : Hk
dR(X ,R)× Hn−k

dR (X ,R) −→ R

by (α, β) = [X ] · (α ∪ β). Poincaré duality says that this is a
perfect pairing, that is, it induces an isomorphism of dual vector
spaces Hk

dR(X ,R) ∼= Hn−k
dR (X ,R)∗. Hence the Betti numbers

satisfy bk(X ) = bn−k(X ). This can be false if X is not compact,
or not orientable. For example, the Betti numbers of Rn (oriented
but noncompact) are b0 = 1 and bk = 0 for k > 0, and the Betti
numbers of RP2 (compact but not orientable) are b0 = 1 and
b1 = b2 = 0, so Poincaré duality fails in both cases.
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5.5. The classification of compact 2-manifolds

It is an important problem to classify manifolds of a given
dimension up to diffeomorphism. Usually one restricts to compact
manifolds (since noncompact manifolds may be infinitely complex).
As any compact manifold is the disjoint union of finitely many
compact, connected manifolds, we can restrict to connected
manifolds. The difficulty of the classification problem increases
with dimension (well, modulo problems in dimensions 3 and 4).
In 1 dimension, the only compact, connected 1-manifold is S1.
We will explain the classification of compact, connected
2-manifolds. We begin with the notion of connect sum.
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Connect sums

Suppose X and Y are connected, oriented manifolds of dimension
n. We will explain how to define a connected, oriented n-manifold
X#Y called the connect sum of X and Y .
Pick points x0 ∈ X and y0 ∈ Y . Cut out small open balls Bε(x0)
about x0 in X and Bε(y0) about y0 in Y , to give manifolds with
boundary X \ Bε(x0) and Y \ Bε(y0). These have boundaries
Sε(x0), Sε(y0) which are small oriented (n − 1)-spheres Sn−1. Glue
X \ Bε(x0) and Y \ Bε(y0) by an orientation-reversing
diffeomorphism along their common boundary Sn−1 to get a
connected, oriented n-manifold X#Y , which we think of as X and
Y joined by a small neck. Up to oriented diffeomorphism, it
depends only on X ,Y as oriented manifolds.
If X ,Y are compact then X#Y is compact.
Connect sum is a kind of addition operation on (compact) oriented
n-manifolds. It is commutative and associative, with X#Sn ∼= X .
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We can also define X#Y if X ,Y are not oriented, but then we
have to choose an orientation for the gluing map Sε(x0) ∼= Sε(y0).
Additivity properties of Euler characteristics imply that
χ(X#Y ) = χ(X ) + χ(Y )− χ(Sn), where χ(Sn) is 2 for n even
and 0 for n odd.
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Theorem (Classification of compact 2-manifolds)

Let X be a compact, connected 2-manifold. Then either:
(a) X is orientable. Then X is diffeomorphic to the connect sum
T 2#T 2 · · ·#T 2 of g tori T 2 for g = 0, 1, . . . , with X ∼= S2 when
g = 0. We call g the genus of X , and we call X a genus g
surface. We have b0(X ) = 1, b1(X ) = 2g , b2(X ) = 1, and
χ(X ) = 2− 2g.
(b) X is not orientable. Then X is diffeomorphic to the connect
sum RP2#RP2# · · ·#RP2 of h projective planes RP2 for
h = 1, 2, . . . . We have b0(X ) = 1, b1(X ) = h, b2(X ) = 0, and
χ(X ) = 1− h.

Compact 2-manifolds are generated under connect sum # by T 2

and RP2, with the relation T 2#RP2 ∼= RP2#RP2#RP2.
The Klein bottle is K = RP2#RP2.
A compact 2-manifold X can be embedded in R3 iff it is orientable.
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6.1 Differentiation in Differential Geometry

6.2 The definition of connections
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6.4 Flat and locally trivial connections

6.5 Connections on TX and torsion
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6. Connections and curvature
6.1. Differentiation in Differential Geometry

Let X be a manifold. If f : X → R is smooth, the ‘derivative’ of f
is the 1-form df ∈ C∞(T ∗X ) (regarding f as a 0-form).
Now let E → X be a vector bundle (e.g. E =

⊗k TX ⊗
⊗l T ∗X ),

and s ∈ C∞(E ) be a section (e.g. s is a tensor).
What is meant by the ‘derivative’ of s / ‘differentiating s’?

We have defined several operations involving differentiation:

Lie bracket [v ,w ] of vector fields v ,w .

Lie derivative LvT of tensors T , for vector fields v .

de Rham differential dα of k-forms α.

These all make sense on X just as a manifold, without making any
additional choices (e.g. choosing coordinates). But they are not
really derivatives of s.
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It turns out that to differentiate sections s of a nontrivial vector
bundle E → X (even if E is a tensor bundle), you have to make an
arbitrary choice. This choice is called a ‘connection’, written ∇
(pronounced ‘nabla’). The derivative of s is then
∇s ∈ C∞(E ⊗ T ∗X ). Alternatively, if v ∈ C∞(TX ) is a vector
field, we write ∇v s ∈ C∞(E ) for v · ∇s, the derivative of s in
direction v . To see why we need to make an arbitrary choice, note
that heuristically we want

∇v s|x = lim
t→0

s|x+tv − s|x
t

. (6.1)

If s : X → R were smooth, this would make sense (more-or-less).
But as s is a section of a vector bundle E → X , we have
s|x+tv ∈ Ex+tv and s|x ∈ Ex , so s|x+tv and s|x lie in different
vector spaces, and s|x+tv − s|x does not make sense.
Roughly, the job a connection ∇ does is identify fibres Ex

∼= Ey for
x and y (infinitesimally) close in X , so we can make sense of (6.1).
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6.2. The definition of connections

There are several equivalent ways to define connections.

Definition (First definition of connections)

Let X be a manifold and E → X a vector bundle. A connection ∇
on E is an R-linear map ∇ : C∞(E )→ C∞(E ⊗ T ∗X ) satisfying

∇(fs) = f∇s + s ⊗ df (6.2)

for all sections s ∈ C∞(E ) and smooth f : X → R, where
df ∈ C∞(T ∗X ) is the de Rham differential. In local coordinates
(x1, . . . , xn) on X , we have df = ∂f

∂x1 dx
1 + · · ·+ ∂f

∂xn dx
n.

For v ∈ C∞(TX ), s ∈ C∞(E ) we write ∇v s = v · ∇s ∈ C∞(E ).

This definition is based on two ideas:

We know how to differentiate smooth f : X → R, by df .

Differentiation should satisfy the product rule, hence (6.2).

24 / 39 Dominic Joyce, Oxford University Lecture 6: Connections and curvature



Orientations and integration
Connections and curvature

Differentiation in Differential Geometry
The definition of connections
Curvature of connections
Flat and locally trivial connections
Connections on TX and torsion

Nonuniqueness of connections

Suppose ∇,∇′ are both connections on E → X . Then subtracting
(6.2) for ∇′ and ∇ gives

(∇′ −∇)(fs) = f (∇′ −∇)s.

That is, ∇′ −∇ is linear not just over R, but over all smooth
functions f : X → R. So there is a unique C ∈C∞(E⊗E ∗⊗T ∗X )
such that (∇′ −∇)s = C · s, where C · s ∈ C∞(E ⊗ T ∗X ) pairs
the E ∗ factor in E ⊗ E ∗ ⊗ T ∗X 3 C with E 3 s. Thus

∇′s = ∇s + C · s. (6.3)

Conversely, if ∇ is a connection on E and
C ∈ C∞(E ⊗ E ∗ ⊗ T ∗X ) then ∇′ defined by (6.3) is a connection.
It turns out that connections ∇ exist on any E → X . Thus, the
family of all connections ∇′ on X is an affine space modelled on
the (infinite-dimensional) vector space C∞(E ⊗ E ∗ ⊗ T ∗X ).
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Connections in coordinates

Let E → X be a vector bundle of rank r over an n-manifold X .
Choose coordinates (x1, . . . , xn) over an open set U ⊆ X . Making
U smaller, we can suppose E |U is trivial, so we can choose a basis
of sections e1, . . . , er of E |U . Define smooth functions
Γαβc : U → R for α, β = 1, . . . , r and c = 1, . . . , n by

∇eβ|U =
r∑

α=1

n∑
c=1

Γαβc · eα ⊗ dxc .

The Γαβc are called Christoffel symbols. Then (6.2) gives

∇
( r∑
α=1

sαeα
)

=
r∑

α=1

n∑
c=1

(
∂sα

∂xc +
r∑

β=1

Γαβcs
β
)
· eα ⊗ dxc . (6.4)

For any smooth functions Γαβc , equation (6.4) defines a connection on
E |U → U, and any connection on E |U is of this form for unique Γαβc .
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Connections under change of coordinates

Let ∇ be a connection on E → X , and let (x1, . . . , xn) be
coordinates on U ⊆ X , e1, . . . , er a basis of sections of E |U , and
Γαβc the Christoffel symbols. Suppose (x̃1, . . . , x̃n), Ũ ⊆ X ,

ẽ1, . . . , ẽr , Γ̃αβc are alternative choices.

Then on U ∩ Ũ we may write ẽα =
∑r

β=1 A
β
αeβ for

(
Aβα
)
r
α,β=1 an

invertible r × r matrix of smooth functions Aβα : U ∩ Ũ → R. Write(
Bβα
)
r
α,β=1 for the inverse matrix, so that eα =

∑r
β=1 B

β
α ẽβ. Then

calculation using (6.4) shows that

Γ̃αβc =
r∑

γ,δ=1

n∑
d=1

AγβB
α
δ
∂xd

∂x̃c Γδγd +
r∑

γ=1

(
∂
∂x̃c A

γ
β

)
Bαγ . (6.5)

The first term is the transformation rule for a section of
E ⊗ E ∗ ⊗ T ∗X , but the second term is extra.

27 / 39 Dominic Joyce, Oxford University Lecture 6: Connections and curvature

Orientations and integration
Connections and curvature

Differentiation in Differential Geometry
The definition of connections
Curvature of connections
Flat and locally trivial connections
Connections on TX and torsion

This gives us an alternative, coordinate-based definition of
connections:

Definition (Second definition of connections)

A connection ∇ on a vector bundle E → X assigns ‘Christoffel
symbols’, smooth functions Γαβc : U → R for α, β = 1, . . . , r and

c = 1, . . . , n whenever (x1, . . . , xn) are coordinates on open U ⊆ X
and e1, . . . , er a basis of E |U , which must transform according to
(6.5) under change of U, (x1, . . . , xn), e1, . . . , er .
Then ∇s for s ∈ C∞(E ) is defined in coordinates by (6.4).
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Definition (Third definition of connections)

Let π : E → X be a vector bundle over X . Then E is a manifold,
and dπ : TE → π∗(TX ) is a surjective morphism of vector
bundles. Define V = Ker dπ, a vector subbundle of TE isomorphic
to π∗(E ). We call V the ‘vertical subbundle’ of TE .
A connection ∇ on E is a choice of vector subbundle H ⊂ TE
called the ‘horizontal subbundle’, such that TE = V ⊕ H, which
implies that dπ|H : H → π∗(TX ) is an isomorphism, and H
satisfies a compatibility with the vector bundle structure on E .
For s ∈ C∞(E ), we define ∇s ∈ C∞(E ⊗T ∗X ) by the composition

TX
ds // s∗(TE ) s∗(V )⊕s∗(H)

πs∗(V )// s∗(V )
∼= // s∗(π∗(E )) E .

This is related to the other definitions as follows: if s ∈ C∞(E )
then the graph of s, Γs = s(X ), is a submanifold of E
diffeomorphic to X . The subbundle H is characterized by: if
∇s|x = 0 then T (Γs)|s(x) = H|s(x).

29 / 39 Dominic Joyce, Oxford University Lecture 6: Connections and curvature

Orientations and integration
Connections and curvature

Differentiation in Differential Geometry
The definition of connections
Curvature of connections
Flat and locally trivial connections
Connections on TX and torsion

Connections on associated vector bundles

Let ∇E be a connection on E → X . Then there is a unique
connection ∇E∗

on the dual bundle E ∗ → X with the property that

d(σ · s) = σ · ∇E s + (∇E∗
σ) · s ∈ C∞(T ∗X )

for all s ∈ C∞(E ) and σ ∈ C∞(E ∗), as one would expect from the
product rule. If ∇E has Christoffel symbols Γαβc then ∇E∗

has

Christoffel symbols −Γβαc w.r.t. the dual basis of E ∗.
Similarly, if ∇F is a connection on F → X , there is a unique
connection ∇E⊗F on E ⊗ F → X such that

∇E⊗F (s ⊗ t) = (∇E s)⊗ t + s ⊗ (∇F t)

for all s ∈ C∞(E ) and t ∈ C∞(F ), from the product rule.
Thus a connection on E → X induces connections on⊗k E ⊗

⊗l E ∗, SkE , ΛkE , and so on.
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Pullbacks of connections

Let f : X → Y be a smooth map of manifolds, E → Y a vector
bundle, and ∇ a connection on E . Then we have a pullback vector
bundle f ∗(E )→ X . It turns out that there is a unique pullback
connection ∇′ = f ∗(∇) on f ∗(E ), with the property that if
s ∈ C∞(E ) then

∇′
(
f ∗(s)

)
= (df )∗ · f ∗(∇s),

where (df )∗ maps f ∗(T ∗Y )→ T ∗X , so (df )∗· maps
f ∗(E )⊗ f ∗(T ∗Y )→ f ∗(E )⊗ T ∗X .
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6.3. Curvature of connections

If f (x1, . . . , xn) is a smooth function, we know that ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.

That is, the partial derivatives ∂
∂xi

and ∂
∂xj

commute on f .

Should we expect partial derivatives to commute in Differential
Geometry? Thinking of the action of ∂

∂x i
on functions as the Lie

derivative Lv for v = ∂
∂x i

, we have

Lemma 6.1

Let f : X → R be smooth, and v ,w ∈ C∞(TX ). Then

Lv (Lw f )− Lw (Lv f ) = L[v ,w ]f .

Proof. In local coordinates (x1, . . . , xn) on X we have

Lv (Lw f )− Lw (Lv f ) = vb ∂
∂xb

[
wa ∂f

∂xa

]
− wb ∂

∂xb

[
va ∂f∂xa

]
=vawb

[
∂2f

∂xa∂xb
− ∂2f
∂xb∂xa

]
+
(
vb ∂

∂xb
wa−wb ∂

∂xb
va
)
∂f
∂xa =0+L[v ,w ]f .
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The lemma tells us that the Lie bracket [v ,w ] measures the extent
to which derivatives by v ,w on functions commute, and
∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

holds because
[
∂
∂x i
, ∂
∂x j

]
= 0.

Now let E → X be a vector bundle, and ∇ a connection on E .
Then for v ,w ∈ C∞(TX ) we can consider whether ∇v and ∇w

commute on sections s ∈ C∞(E ). Motivated by Lemma 6.1, a
better question is whether

∇v (∇w s)−∇w (∇v s) = ∇[v ,w ]s

for all v ,w ∈ C∞(TX ) and s ∈ C∞(E ).
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Proposition (Definition of curvature)

Let ∇ be a connection on a vector bundle E → X. Then there is a
unique R ∈ C∞(E ⊗ E ∗ ⊗ Λ2T ∗X ) called the curvature with the
property that

∇v (∇w s)−∇w (∇v s)−∇[v ,w ]s =R · (s ⊗ v ⊗ w)∈C∞(E ) (6.6)

for all v ,w ∈ C∞(TX ) and s ∈ C∞(E ). In coordinates
(x1, . . . , xn) on U ⊆ X and a basis e1, . . . , er for E |U and dual
basis e1, . . . , er for E ∗|U we have

R =
∑

α,β=1,...,r

n∑
c,d=1

Rαβcdeα ⊗ eβ ⊗ dxc ⊗ dxd , where

Rαβcd = ∂
∂xc Γαβd −

∂
∂xd

Γαβc +
r∑
ε=1

(
ΓαεcΓεβd − ΓαεdΓεβc

)
,

(6.7)

with Γαβc the Christoffel symbols of ∇.
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Proof (exercise to complete). Check using (6.4) that in
coordinates, the R,Rαβcd defined in (6.7) satisfy (6.6) for all

v = va,w = wb, s = sα.

The curvature is an important differential-geometric invariant of a
connection ∇, that measures the extent to which partial derivatives
using ∇ commute. In particular, if (x1, . . . , xn) are local

coordinates and s ∈ C∞(E ) then the analogue of ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

,

∇ ∂

∂xi

(
∇ ∂

∂xj
s
)

= ∇ ∂

∂xj

(
∇ ∂

∂xi
s
)
,

holds for all i , j = 1, . . . , n and s ∈ C∞(E ) if and only if R = 0.
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6.4. Flat and locally trivial connections

Definition

Let ∇ be a connection on a vector bundle E → X , with curvature
R. We call ∇ flat if R = 0.
We call ∇ locally trivial if every x ∈ X has an open neighbourhood
U ⊆ X such that E |U has a basis of sections e1, . . . , er with
∇ei = 0 for i = 1, . . . , r . That is, over U we can identify E with
the trivial vector bundle U × Rr → U and ∇ with the trivial
connection

∑n
a=1

∂
∂xa ⊗ dxa on U × Rr → U.

Theorem 6.2 (Consequence of the Frobenius Theorem)

A connection ∇ on E → X is flat if and only if it is locally trivial.

This is a theorem about p.d.e.s — it says that if R = 0, we can
find rankE local solutions of the p.d.e. ∇s = 0 for s ∈ C∞(E ).
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6.5. Connections on TX and torsion

An important case is when E is the tangent bundle TX .
Note that a connection ∇ on TX also induces connections on the
tensor bundles

⊗k TX ⊗
⊗l T ∗X , and exterior forms ΛkT ∗X .

Given coordinates (x1, . . . , xn) on U ⊆ X , we have a natural basis
of sections ∂

∂x1 , . . . ,
∂
∂xn of TX |U , and we take this to be e1, . . . , en.

We write Christoffel symbols as Γa
bc rather than Γαβc , defined by

∇ ∂
∂xb

=
n∑

a,c=1
Γa
bc ·

∂
∂xa ⊗ dxc .

Then in index notation, equations (6.4)–(6.5) become

∇cv
a =

∂va

∂xc
+ Γa

bcv
b, (6.8)

Γ̃a
bc =

∂x̃a

∂xd
∂xe

∂x̃b
∂x f

∂x̃c
Γd
ef +

∂2xd

∂x̃b∂x̃c
∂x̃a

∂xd
. (6.9)
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Definition

Let ∇ be a connection on TX → X . Then there is a unique tensor
T = T a

bc ∈ C∞(TX ⊗ Λ2T ∗X ) called the torsion of ∇, with
T a
bc = −T a

cb, with the property that

T · (v ⊗ w) = ∇vw −∇wv − [v ,w ] ∈ C∞(TX ) (6.10)

for all vector fields v ,w ∈ C∞(TX ). If T = 0, then ∇ is called
torsion-free, and ∇vw −∇wv = [v ,w ] for all vector fields v ,w .
In coordinates (x1, . . . , xn) on U ⊆ X , the torsion is given by

T a
bc = Γa

bc − Γa
cb,

where Γa
bc are the Christoffel symbols. Note that (6.9) implies that

T transforms under change of coordinates by

T̃ a
bc =

∂x̃a

∂xd
∂xe

∂x̃b
∂x f

∂x̃c
T d
ef ,

the correct transformation rule for a tensor.
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Torsion-free connections are the ‘best’ kind of connections on TX .
For connections ∇ on TX we have two similar invariants: the
torsion T ∈ C∞(TX ⊗ Λ2T ∗X ), and the curvature
R ∈ C∞(TX ⊗T ∗X ⊗Λ2T ∗X ). They satisfy the Bianchi identities

Ra
bcd + Ra

cdb + Ra
dbc = T a

edT
e
bc + T a

ebT
e
cd + T a

ecT
e
db

+∇bT
a
cd +∇cT

a
db +∇dT

a
bc ,

∇cR
a
bde +∇dR

a
bec +∇eR

a
bcd + T f

cdR
a
bfe + T f

deR
a
bfc + T f

ecR
a
bfd = 0.

Here torsion is a first-order invariant: its definition (6.10) involves
one derivative (and no derivatives of Γa

bc). And curvature is a
second-order invariant: its definition (6.6) involves two derivatives
(and one derivative of Γa

bc).
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