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7. Riemannian manifolds
7.1. Riemannian metrics

In Euclidean geometry on Rn, by Pythagoras’ Theorem the distance
between two points x = (x1, . . . , xn) and y = (y1, . . . , yn) is

dRn(x , y) =
[
(x1 − y1)2 + · · ·+ (xn − yn)2

]
1/2.

Note that squares of distances, rather than distances, behave
nicely, algebraically. If γ = (γ1, . . . , γn) : [0, 1]→ Rn is a smooth
path in Rn, then the length of γ is

l(γ) =

∫ 1

0

[(dγ1
dt

)2
+ · · ·+

(dγn
dt

)2]1/2
dt.

Note that this is unchanged under reparametrizations of [0, 1]:

replacing t by an alternative coordinate t̃ multiplies dγ i

dt by dt
dt̃

and

dt by dt̃
dt , which cancel.
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Regarding γ : [0, 1]→ Rn as a smooth map of manifolds, we have

l(γ) =

∫ 1

0
gRn |γ(t)

(dγ
dt

(t),
dγ

dt
(t)
)1/2

dt,

where dγ
dt (t) ∈ Tγ(t)Rn ∼= Rn, and gRn |x = (dx1)2 + · · ·+ (dxn)2 in

S2T ∗xRn ∼= S2(Rn)∗ for x ∈ Rn, so that gRn ∈ C∞(S2T ∗Rn). This
is a simple example of a Riemannian metric on a manifold, being
used to define lengths of curves.
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Definition

Let X be a manifold. A Riemannian metric g (or just metric) is a
smooth section of S2T ∗X such that g |x ∈ S2T ∗x X is a positive
definite quadratic form on TxX for all x ∈ X . In index notation we
write g = gab, with gab = gba. We call (X , g) a Riemannian
manifold. Let γ : [0, 1]→ X be a smooth map, considered as a
curve in X . The length of γ is

l(γ) =

∫ 1

0
g |γ(t)

(dγ
dt

(t),
dγ

dt
(t)
)1/2

dt.

If X is (path-)connected, we can define a metric dg on X , in the
sense of metric spaces, by

dg (x , y) = inf
γ:[0,1]→X C∞:
γ(0)=x , γ(1)=y

l(γ).

Roughly, dg (x , y) is the length of the shortest curve γ from x to y .
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Restricting metrics to submanifolds

Let i : X → Y be an immersion or an embedding, so that X is a
submanifold of Y , and g ∈ C∞(S2T ∗Y ) ⊆ C∞(

⊗2 T ∗Y ) be a
Riemannian metric on Y . Pulling back gives
i ](g) ∈ C∞(S2i∗(T ∗Y )). We have a vector bundle morphism
di : TX → i∗(TY ) on X , which is injective as i is an immersion,
and a dual surjective morphism (di)∗ : i∗(T ∗Y )→ T ∗X .
Symmetrizing gives S2(di)∗ : S2i∗(T ∗Y )→ S2T ∗X .
Define i∗(g) = (S2(di)∗)(i ](g)) ∈ C∞(S2T ∗X ). This is defined
for any smooth map i : X → Y . But if i is an immersion, so that
di : TX → i∗(TY ) is injective, then g positive definite implies
i∗(g) positive definite, so i∗(g) is a Riemannian metric on X . We
call it the pullback or restriction of g to X , and write it as g |X .
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Submanifolds of Euclidean space

Example

Define gRn = (dx1)2 + · · ·+ (dxn)2 in C∞(S2(Rn)∗). This is a
Riemannian metric on Rn, which induces the usual notions of
lengths of curves and distance in Euclidean geometry. We call gRn

the Euclidean metric on Rn.

Example

Let X be any submanifold of Rn. Then gRn |X is a Riemannian
metric on X .

Since any manifold X can be embedded in Rn for n� 0 (Whitney
Embedding Theorem), this implies

Corollary

Any manifold X admits a Riemannian metric.
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These ideas are important even in really basic applied
mathematics, physics, geography, etc:

Example

Model the surface of the earth as a sphere S2R of radius
R = 6, 371km about 0 in R3. Then the Riemannian metric
gE = gR3 |S2R determines lengths of paths on the earth. Define

spherical polar coordinates (θ, ϕ) (latitude and longitude) on
S2R \{N,S} by x(θ, ϕ)=(R sin θ cosϕ,R sin θ sinϕ,R cos θ). Then

gE =
(
(dx1)2 + (dx2)2 + (dx3)2

)
|S2

= (d(R sin θ cosϕ))2 + (d(R sin θ sinϕ))2 + (d(R cos θ))2

= R2
[
(cos θ cosϕdθ − sin θ sinϕdϕ)2

+ (cos θ sinϕdθ + sin θ cosϕdϕ)2 + (− sin θ dθ)2
]

= R2[dθ2 + sin2 θ dϕ2].
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7.2. The Levi-Civita connection

Any Riemannian manifold (X , g) has a natural connection ∇ on
TX , called the Levi-Civita connection. This is known as the
‘Fundamental Theorem of Riemannian Geometry’.

Theorem (The Fundamental Theorem of Riemannian Geometry)

Let (X , g) be a Riemannian manifold. Then there exists a unique
connection ∇ on TX , such that ∇ is torsion-free, and the induced
connection ∇′ on

⊗2 T ∗X satisfies ∇′g = 0. We call ∇ the
Levi-Civita connection of g.

Usually we write ∇ for all the induced connections on⊗k TX ⊗
⊗l T ∗X , without comment. So ∇ allows us to

differentiate all tensors T on a Riemannian manifold (X , g),
without making any arbitrary choices.
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Proof of the Fundamental Theorem

The theorem is local in X , so it is enough to prove it in coordinates
(x1, . . . , xn) defined on open U ⊆ X . Let ∇ be a connection on
TX , with Christoffel symbols Γa

bc : U → R, as in §6.5, so
g =

∑n
a,b=1 gab dx

a ⊗ dxb with gab = gba. Then
(
gab
)
n
a,b=1 is a

symmetric, positive-definite, invertible matrix of functions on U.
Write

(
gab
)
n
a,b=1 for the inverse matrix of functions.

Then ∇ torsion-free is equivalent to

Γa
bc = Γa

cb, (7.1)

and ∇′cgab = 0 is equivalent to
∂
∂xc

gab − Γd
acgdb − Γd

bcgad = 0. (7.2)

Calculation shows that (7.1)–(7.2) have a unique solution for Γa
bc :

Γa
bc = 1

2g
ad
(
∂
∂xc

gdb + ∂
∂xb

gdc − ∂
∂xd

gbc
)
. (7.3)

This gives the unique connection ∇ we want.
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7.3. The Riemann curvature tensor

Let (X , g) be a Riemannian manifold. Then by the FTRG we have
a natural connection ∇ on TX . As in §6.3, the curvature of ∇ is
R ∈ C∞(TX ⊗ T ∗X ⊗ Λ2T ∗X ), which is called the Riemann
curvature tensor of g . In index notation R = Ra

bcd , and it is
characterized by the formula for all vector fields u, v ,w ∈ C∞(TX )

Ra
bcdu

bv cwd

= v c∇c(wd∇du
a)−w c∇c(vd∇cu

a)−(v c∇cw
d−w c∇cv

d)∇du
a

= v cwd(∇c∇du
a −∇d∇cu

a), (7.4)

using [v ,w ]d = v c∇cw
d − w c∇cv

d as ∇ is torsion-free. Thus

Ra
bcdu

b = (∇c∇d −∇d∇c)ua. (7.5)

11 / 36 Dominic Joyce, Oxford University Lecture 7: Riemannian manifolds

Riemannian manifolds
More about Riemannian manifolds

Riemannian metrics
The Levi-Civita connection
The Riemann curvature tensor
Volume forms and integrating functions

Riemann curvature in coordinates

Let (X , g) be a Riemannian manifold with Riemann curvature R,
and (x1, . . . , xn) be coordinates on U ⊆ X . From (6.7) we have

Ra
bcd = ∂

∂xc Γa
bd −

∂
∂xd

Γa
bc + Γa

ecΓe
bd − Γa

edΓe
bc .

Substituting in (7.3) gives an expression for R in coordinates. This
is rather long, but we expand the first part:

Ra
bcd = 1

2g
ae
( ∂2ged
∂xb∂xc

+ ∂2gbc
∂xe∂xd

− ∂2gec
∂xb∂xd

− ∂2gbd
∂xe∂xc

)
+ Γa

ecΓe
bd −Γa

edΓe
bc .

As Γa
bc involves gab, g

ab and ∂
∂xc

gab, we see that Ra
bcd depends on

gab, its first and second derivatives, and its inverse gab.
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Flat and locally Euclidean metrics

A Riemannian metric g is called flat if it has Riemann curvature
Ra
bcd = 0. In a similar way to Theorem 6.2, one can prove:

Theorem

Let (X , g) be a flat Riemannian manifold. Then for each x ∈ X ,
there exist coordinates (x1, . . . , xn) on an open neighbourhood U
of x in X with g |U = (dx1)2 + · · ·+ (dxn)2.

That is, a flat Riemannian manifold (X , g) is locally isometric to
Euclidean space (Rn, gRn). Here an isometry of Riemannian
manifolds (X , g), (Y , h) is a diffeomorphism f : X → Y with
f ∗(h) = g . (‘Iso-metry’ from Greek ‘same distance’.)
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Symmetries of Riemann curvature

It is often more convenient to work with Rabcd = gaeR
e
bcd (also

called the Riemann curvature) rather than Ra
bcd . Since

Ra
bcd = gaeRabcd , the two are equivalent.

Theorem

Let (X , g) be a Riemannian manifold, with Riemann curvature
Rabcd . Then Rabcd and ∇eRabcd satisfy the equations

Rabcd = −Rabdc = −Rbacd = Rcdab, (7.6)

Rabcd + Radbc + Racdb = 0, (7.7)

and ∇eRabcd +∇cRabde +∇dRabec = 0. (7.8)

This can be proved using the coordinate expressions for
Rabcd ,∇eRabcd . Here (7.7) and (7.8) are the first and second
Bianchi identities, as in §6.5 with torsion T a

bc = 0.
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Ricci curvature and scalar curvature

Let (X , g) be a Riemannian manifold. The Riemann curvature
tensor Ra

bcd of g is a complicated object. Often it is helpful to
work with components of Ra

bcd which are simpler.

Definition

The Ricci curvature of g is Rab = Rc
acb = g cdRcadb. By (7.6) it

satisfies Rab = Rba, so Rab ∈ C∞(S2T ∗X ). The scalar curvature
of g is s = gabRab = gabRc

acb, so that s : X → R is smooth.

Here Rab is the trace of Ra
bcd , and s the trace of Rab.

We say that g is Einstein if Rab = λgab for λ ∈ R, and Ricci-flat if
Rab = 0. Einstein and Ricci-flat metrics are important for many
reasons; they arise in Einstein’s General Relativity.
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7.4. Volume forms and integrating functions

Let (X , g) be a Riemannian manifold, of dimension n. Then g
induces norms | . |g on the bundles of k-forms ΛkT ∗X , and in
particular on ΛnT ∗X .
If X is also oriented (§5.2) then ΛnT ∗X \ 0 is divided into positive
forms and negative forms, where positive forms are all proportional
by positive constants.
Therefore there is a unique positive n-form dVg ∈ C∞(ΛnT ∗X )
with |dVg |g = 1. We call dVg the volume form of g .
It can be characterized as follows: if x ∈ X and (v1, . . . , vn) is an
oriented basis of TxX which is orthonormal w.r.t. g |x , then
dVg · (v1 ∧ · · · ∧ vn) = 1. In local coordinates (x1, . . . , xn) we have

dVg = ±
[
det
(
gab
)
n
a,b=1

]1/2
dx1 ∧ · · · ∧ dxn,

where the sign depends on whether ∂
∂x1

, . . . , ∂
∂xn is an oriented or

anti-oriented basis of TxX .
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Let (X , g) be an oriented Riemannian manifold (say compact, for
simplicity), and f : X → R a smooth function. Then f dVg is an
n-form on X , with X oriented, so as in §5.3 we have the integral∫

X
f dVg .

Remark

Changing the orientation of X changes the sign of both the
operator

∫
X , and of the n-form dVg , so

∫
X f dVg is unchanged.

Thus the orientation on X is not really important. We ignore the
orientation issue from now on.

Thus, we can integrate functions on Riemannian manifolds.
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We can use these ideas to define Lebesgue spaces and Sobolev
spaces, Banach spaces of functions (or tensors, etc.) on
Riemannian manifolds, which are important in many p.d.e.
problems. Let (X , g) be a Riemannian manifold, not necessarily
compact. We say a smooth function f : X → R is
compactly-supported if supp f =

{
x ∈ X : f (x) 6= 0

}
is contained

in a compact subset of X . Write C∞cs (X ) for the vector space of
compactly supported functions f : X → R.
For real p > 1 and integer k > 0, define the Lebesgue norm ‖ . ‖Lp
and Sobolev norm ‖ . ‖Lpk on C∞cs (X ) by

‖f ‖Lp =
(∫

X
|f |pdVg

)1/p
, ‖f ‖Lpk =

(∑k

j=0

∫
X

∣∣∇j f
∣∣pdVg

)1/p
.

Then define the Banach spaces Lp(X ) and Lpk(X ) to be the
completions of C∞cs (X ) w.r.t. the norms ‖ . ‖Lp and ‖ . ‖Lpk . Note

that Lp(X ) = Lp0(X ). L2(X ) and L2k(X ) are Hilbert spaces.
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We define Banach spaces of tensors such as
Lpk(
⊗l TX ⊗

⊗m T ∗X ) by completion of

C∞cs (
⊗l TX ⊗

⊗m T ∗X ) in the same way.

Example

Let (X , g) be a compact, connected Riemannian manifold. The
Laplacian ∆ : C∞(X )→ C∞(X ) may be defined by
∆f = −gab∇a∇bf . Then ∆ extends uniquely to a bounded linear
operator on Banach spaces ∆ : Lpk+2(X )→ Lpk(X ).
It is known that if p > 1 and k > 0 then

∆ :
{
f ∈ Lpk+2(X ) :

∫
X f dVg = 0

}
→
{
h ∈ Lpk(X ) :

∫
X h dVg = 0

}
is an isomorphism of topological vector spaces. That is, if
h ∈ Lpk(X ) then the linear elliptic p.d.e. ∆f = h has a solution f in
Lpk+2(X ) iff

∫
X h dVg = 0, and if

∫
X f dVg = 0 then the solution f

is unique.
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8. More about Riemannian manifolds
8.1. Examples: spheres and hyperbolic spaces

Let g , h be Riemannian metrics on a manifold X . We call g , h
conformally equivalent if g = f · h for smooth f : X → (0,∞).
Then g , h define the same notion of angles between vectors in
TxX , since angles depend only on ratios between distances.
We will show that the complement of a point in the sphere
(SnR , gR) of radius R in Rn+1 is conformally equivalent to
Euclidean space (Rn, hEuc). Define a bijection between points
(y0, y1, . . . , yn) in SnR \ (R, 0, . . . , 0) and (x1, . . . , xn) in Rn such
that (R, 0, . . . , 0), (y0, y1, . . . , yn) and (0, x1, . . . , xn) are collinear
in Rn+1. An easy calculation shows that

(y0, y1, . . . , yn) =
( R3

R2 + r2
,

R2x1
R2 + r2

, . . . ,
R2xn

R2 + r2

)
,

where r2 = x21 + · · ·+ x2n .
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Regarding (x1, . . . , xn) as coordinates on SnR \ (R, 0, . . . , 0), this
enables us to compute gR in the coordinates (x1, . . . , xn): we have

gR = dy20 + dy21 + · · ·+ dy2n

=
( R3 · 2rdr

(R2 + r2)2

)2
+

n∑
i=1

( R2dxi
R2 + r2

− R2xi · 2rdr
(R2 + r2)2

)2
(8.1)

=
R4

(R2 + r2)2
(
dx21 + · · ·+ dx2n

)
=

R4

(R2 + x21 + · · ·+ x2n )2
· hEuc.

Hence (SnR , gR) (take away a point) is conformally equivalent to
(Rn, hEuc). Observe that translations in Rn preserve hEuc, and so
preserve the conformal structure of SnR , but are not isometries of
SnR . The group of isometries of (SnR , gR) is O(n + 1), a compact
Lie group of dimension 1

2n(n + 1) (next time). But the group of
conformal transformations (angle-preserving maps) of (SnR , gR) is
larger, it is O+(n + 1, 1), a noncompact Lie group of dimension
1
2(n + 1)(n + 2).
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Hyperbolic space Hn

Equation (8.1) has an interesting feature: we can replace R by an
imaginary number iR, and get a new Euclidean metric on Rn:

R4

(R2 − x21 − · · · − x2n )2
· hEuc

which is defined except on the sphere of radius R in Rn. Taking
R = 1, define n-dimensional hyperbolic space (Hn, gHn) by

Hn =
{

(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n < 1
}
,

gHn =
1

(1− x21 − · · · − x2n )2
· (dx21 + · · ·+ dx2n ).

Morally this is a ‘sphere of radius
√
−1’. It has a large isometry

group O+(n, 1), of dimension 1
2n(n + 1). Whereas spheres SnR are

Einstein with positive scalar curvature, hyperbolic spaces are
Einstein with negative scalar curvature. Hyperbolic spaces were
historically important in the development of non-Euclidean geometry.
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8.2. Riemannian 2-manifolds and surfaces in R3

For a Riemannian 2-manifold (X , g), the Ricci curvature Rab and
Riemann curvature Ra

bcd are determined by the scalar curvature s
and g by Rab = 1

2sgab and Ra
bcd = 1

2s(δacgbd − δadgbc). The scalar
curvature s is often called the Gaussian curvature, and written κ.
Suppose X is a 2-submanifold of R3, (s, t) are coordinates on X ,
and the embedding X ↪→ R3 is r(s, t) =

(
x(s, t), y(s, t), z(s, t)

)
.

Then the Riemann metric g = gR3 |X on X (often called the first
fundamental form) is

g = Eds2 + F (dsdt + dtds) + Gdt2, with

E =
∣∣∂r
∂s

∣∣2, F =
〈
∂r
∂s ,

∂r
∂t

〉
, G =

∣∣∂r
∂t

∣∣2.
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Define n to be the unit normal vector to X in R3, that is,

n =
∂r
∂s ×

∂r
∂t∣∣∂r

∂s ×
∂r
∂t

∣∣ .
Then the second fundamental form is

I = Lds2 + M(dsdt + dtds) + Ndt2, with

L = n · ∂2r
∂s2
, M = n · ∂2r∂s∂t , N = n · ∂2r

∂t2
.

The principal curvatures κ1, κ2 are the solutions λ of

det
[
λ

(
E F
F G

)
−
(
L M
M N

)]
= 0.

The Gaussian curvature (= scalar curvature) is

κ = κ1κ2 = (LN −M2)/(EG − F 2).

Although L,M,N, κ1, κ2 depend on the embedding of X in R3, the
Gaussian curvature κ = κ1κ2 depends only on (X , g).
A sphere S2R of radius R in R3 has principal curvatures
κ1 = κ2 = R−1 everywhere, so κ = R−2.
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The Gauss–Bonnet Theorem
Recall that if X is a compact n-manifold it has finite-dimensional
de Rham cohomology groups Hk

dR(X ,R) for k = 0, . . . , n. The

Betti numbers are bk(X ) = dimHk
dR(X ,R), and the Euler

characteristic is χ(X ) =
∑n

k=0(−1)kbk(X ). If n = 2 and X is a
surface of genus g then χ(X ) = 2− 2g .

Theorem (Gauss–Bonnet)

Let (X , g) be a compact Riemannian 2-manifold, with Gauss
curvature κ. Then

∫
X
κdVg = 2πχ(X ).

This is an avatar of a lot of important geometry in higher
dimensions – index theorems, characteristic classes.
For a simpler analogy, let γ : S1 → R2 be an immersed curve, and
κ : S1 → R be the curvature (rate of change of angle of tangent
direction). Then

∫
S1 κds = 2πW (γ), where

∫
· · · ds is integration

w.r.t arc-length, and W (γ) is the winding number of γ.
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Minimal surfaces in R3

Let X ↪→ R3 be an (oriented) embedded surface in R3. The mean
curvature H : X → R3 is H = 1

2(κ1 + κ2), the average of the
principal curvatures of X . The mean curvature vector is Hn. (The
sign of H depends on the orientation of X , but Hn is independent
of orientation.) We call X a minimal surface if H = 0. It turns out
that X is minimal if and only if X is locally volume-minimizing in
R3 (the equation H = 0 is the Euler–Lagrange equation for the
volume functional on surfaces in R3).
Minimal surfaces are important in physical problems – if you dip a
twisted loop of wire in the washing up and it is spanned by a
bubble, this will be a minimal surface (to first approximation), as
the surface tension in the bubble tries to minimize its area. Finding
a minimal surface with given boundary is called Plateau’s problem.
More generally, a bubble separating two regions in R3 with different
air pressures should satisfy the p.d.e. H = constant (e.g. a sphere).
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Isothermal coordinates

Let (X , g) be a Riemannian 2-manifold. Then near each point
x ∈ X there exists a local coordinate system (x1, x2) such that

g = f (x1, x2) · (dx21 + dx22 ).

for f (x1, x2) a smooth positive function. That is, in 2 dimensions
any Riemannian metric is locally conformally equivalent to the
Euclidean plane (R2, gEuc). Such coordinates (x1, x2) are called
isothermal coordinates. This is false in dimension > 2.
If also X is oriented, and we take (x1, x2) to be oriented
coordinates, we can take x1 + ix2 to be a complex local coordinate
on X . Such complex coordinates have holomorphic transition
functions, and make X into a Riemann surface.
Basically, a conformal structure (Riemannian metric mod-
ulo conformal equivalence) on an oriented 2-manifold is equivalent to
the data of how to rotate vectors 90◦ in each tangent space TxX (i.e.
multiply by i in C), and this is equivalent to a complex structure.
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8.3. Geodesics

Let (X , g) be a Riemannian manifold. Consider a smooth
immersed curve γ : [a, b]→ X . The length of γ is

l(γ) =

∫ b

a
g(γ̇(t), γ̇(t))1/2 dt.

To a first approximation, a geodesic is a locally length-minimizing
curve γ, that is, it satisfies the Euler–Lagrange equations for the
length functional l on curves γ. Actually, this turns out not to be
well behaved. If F : [a′, b′]→ [a, b] is any diffeomorphism then γ is
locally length-minimizing iff γ ◦ F is locally length-minimizing, as
length is independent of parametrization. Thus, geodesics defined
this way would come in infinite-dimensional families.
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Instead, we define the energy of a curve γ in (X , g) by

E (γ) =

∫ b

a
g(γ̇(t), γ̇(t))dt.

We define a geodesic γ : [a, b]→ X or γ : R→ X to satisfy the
Euler–Lagrange equations for the energy functional E on curves γ.
Then γ is a geodesic iff:

γ is locally length-minimizing, i.e. γ satisfies the
Euler–Lagrange equation for the length functional l ; and
γ is parametrized with constant speed, that is, g(γ̇(t), γ̇(t)) is
(locally) constant along γ.

Example

Take (X , g) to be Euclidean n-space (Rn, hEuc). Then
γ = (γ1, . . . , γn) : [a, b]→ Rn satisfies the geodesic equations iff
d2γi
dt2

= 0 for i = 1, . . . , n. Hence geodesics are of the form
γ(t) = at + b for a,b ∈ Rn. That is, they are straight lines in Rn

traversed with constant speed.
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The geodesic equations in local coordinates

Let (x1, . . . , xn) be local coordinates on X . Write
g = gij(x1, . . . , xn), and let g ij be the inverse matrix of functions.
Write a smooth map γ : [a, b]→ X as γ =

(
x1(t), . . . , xn(t)

)
in

coordinates. Then γ satisfies the geodesic equations iff we can
extend γ to a 2n-tuple

(
x1(t), . . . , xn(t), y1(t), . . . , yn(t)

)
satisfying the o.d.e.s

dxj
dt

=
n∑

i=1

g ij(x1(t), . . . , xn(t)) · yi (t),

dyk
dt

= −1
2

n∑
i ,j=1

∂g ij

∂xk
(x1(t), . . . , xn(t)) · yi (t)yj(t).

(8.2)

Here Dγ =
(
x1(t), . . . , xn(t), y1(t), . . . , yn(t)

)
is naturally a curve

in the cotangent bundle T ∗X , and γ =
(
x1(t), . . . , xn(t)

)
is its

projection to X . We can think of Dγ as a flowline of a fixed vector
field v on T ∗X depending on g , called the geodesic flow.
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From the geodesic equations (8.2) and standard results about
o.d.e.s we see that for any x ∈ X and any vector v ∈ TxX , there
exists a unique solution γ : I → X to the geodesic equations with
γ(0) = x and γ̇(0) = v , where 0 ∈ I ⊆ R is an open interval,
which we can take to be maximal.
A Riemannian manifold (X , g) is called complete if we can take
I = R for all such x , v . If X is compact then any g is complete,
but many noncompact Riemannian manifolds such as (Rn, gEuc)
and (Hn, hHn) are complete. Roughly, to be complete means that
the boundary/edge of (X , g) is at infinite distance from the
interior of X .
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Example

In the 2-sphere S2R of radius R in R3, the geodesics are the great
circles, that is, intersections of S2R with a plane R2 in R3 passing
through the centre (0, 0, 0) of S2R . So for example on the earth,
the equator is a closed geodesic.
Note that geodesics need not globally be a shortest path: you can
make the equator shorter by deforming it through lines of latitude.
But geodesics have stationary length, and a geodesic γ gives the
shortest path between points x , y on γ if x , y are sufficiently close.

Example

Take (H2, gH2) to be the hyperbolic plane{
(x , y) ∈ R2 : x2 + y2 < 1

}
with

gH2 = (1− x2 − y2)−1(dx2 + dy2). Then geodesics in H2 are the
intersection of H2 with circles and straight lines in R2 which
intersect the unit circle x2 + y2 = 1 at right angles.
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Geodesic triangles in a Riemannian 2-manifold

Let (X , g) be a Riemannian 2-manifold. Suppose we are given
points A,B,C ∈ X , and geodesic segments AB, BC , CA in X with
endpoints A,B,C , which enclose a triangle ABC homeomorphic to
a disc D2. Let α, β, γ be the internal angles of the triangle at
A,B,C computed using g . (That is, α is the angle in (TAX , g |A)
between the tangent vectors to AB, AC at A, etc.)
Then one can show that

α + β + γ − π =

∫
ABC

κdVg , (8.3)

where κ : X → R is the Gaussian curvature of g .
If (X , g) is (R2, gEuc) then κ = 0 and (8.3) becomes
α + β + γ = π, that is, the angles in a triangle in R2 add up to π.
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If (X , g) is the unit sphere S2 then κ = 1, so (8.3) becomes
α + β + γ = π + area(ABC ). Thus, the angles in a triangle on S2
add up to more than π.
If (X , g) is the hyperbolic plane (H2, gH2) then κ = −1, so (8.3)
becomes α + β + γ = π − area(ABC ). Thus, the angles in a
triangle on S2 add up to less than π. Also, all triangles have area
less than π, however long their sides.
We can use (8.3) to prove the Gauss–Bonnet Theorem. Suppose
(X , g) is a compact Riemannian 2-manifold. Choose a division of
X into small triangles ∆1, . . . ,∆N with geodesic sides, and sum
(8.3) over 1, . . . ,N. We get

2π(#vertices)− π(#triangles) =

∫
X
κdVg .

Since 2#edges = 3#triangles we have

#triangles = 2
(
#edges−#triangles

)
.

Then using χ(X ) = #vertices−#edges + #triangles proves G–B.
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