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13. Riemannian holonomy groups
13.1. Parallel transport and holonomy groups

Let ∇E be a connection on a vector bundle E → X . Let
γ : [0, 1] → X be a smooth curve with γ(0) = x and γ(1) = y .
Then γ∗(∇E ) is a connection on γ∗(E ) → [0, 1].
For each e ∈ Ex there is a unique section s of γ∗(E ) with s(0) = e
and γ∗(∇E )s ≡ 0. Define Pγ(e) = s(1). Then Pγ : Ex → Ey is the
parallel transport map.
Think of a connection ∇E on E → X as identifying nearby fibres
Ex , Ex ′ for x , x

′ close together in X .

Parallel transport identifies the fibres of E all along a curve γ, so
we can drag vectors along γ.
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Holonomy groups

Let ∇E be a connection on a vector bundle E → X . Fix x ∈ X .
Let γ : [0, 1] → X be a piecewise-smooth loop based at x , so that
γ(0) = γ(1) = x . Then Pγ is an invertible linear map Ex → Ex .
The holonomy group Holx(∇E ) of ∇E is the set of parallel
transports Pγ for all piecewise-smooth loops γ based at x .
Some properties of Holx(∇E ):

It’s a Lie subgroup of GL(Ex).

Identify Ex
∼= Rn, so Holx(∇E ) ⊆ GL(n,R). Then Holx(∇E )

is independent of basepoint x ∈ X , up to conjugation in
GL(n,R).
If X is simply-connected, then Holx(∇E ) is connected.

Let holx(∇E ) be the Lie algebra of Holx(∇E ). Then
R(∇E )x ∈ holx(∇E )⊗ Λ2T ∗X in End(Ex)⊗ Λ2T ∗X .
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Now let ∇ be a connection on TX . It also acts on󰁑k TX ⊗
󰁑l T ∗X . A constant tensor S satisfies ∇S = 0. If S is

constant then Sx is invariant under the action of Holx(∇) on󰁑k TxX ⊗
󰁑l T ∗

x X . Any Sx in
󰁑k TxX ⊗

󰁑l T ∗
x X invariant

under Holx(∇) extends to a unique constant tensor S on X by
parallel transport. So the constant tensors on X are determined by
Holx(∇).
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13.2. Riemannian holonomy

Let g be a Riemannian metric on X , and x ∈ X . The holonomy
group Holx(g) of g is the holonomy group Holx(∇) of its
Levi-Civita connection. It is a closed Lie subgroup of O(n), which
up to conjugation in O(n) is independent of basepoint x .
Riemannian holonomy groups have stronger properties than the
general case.
Regard the Lie algebra holx(g) as a vector subspace of Λ2T ∗

x X .
Using symmetries of Rabcd , eqns (1)-(3) of 11.1, we find that
Rabcd lies in the vector subspace S2 holx (g) in Λ2T ∗

x X ⊗ Λ2T ∗
x X

at each x ∈ X . Thus, the holonomy group imposes strong
restrictions on the curvature tensor Rabcd of g . These are the basis
of the classification of Riemannian holonomy groups.
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Reducible metrics
Let (X , g) and (Y , h) be Riemannian manifolds with
dimX , dimY > 0. The product metric g × h on X × Y is given
by g × h|(x ,y) = g |x + h|y for x ∈ X and y ∈ Y .

Proposition 13.1

The holonomy groups satisfy Hol(g × h) = Hol(g)×Hol(h).

We call (X , g) irreducible if it is not locally isometric to a
Riemannian product.
Theorem 13.2

Let (X , g) be an irreducible Riemannian n-manifold. Then the
representation of Hol(g) on Rn is irreducible.

Proof.

If Rn = Rk ⊕ Rl for Rk ,Rl subrepresentations of Hol(g), can
define a local isometry X ∼= Y × Z with dimY = k , dimZ = l , so
X is reducible.

7 / 36 Dominic Joyce, Oxford University Lecture 13: Riemannian holonomy groups

Riemannian holonomy groups
The Kähler holonomy groups

Parallel transport and holonomy groups
Riemannian holonomy
Berger’s classification of holonomy groups
Principal bundles and G -structures

Symmetric spaces

Definition

A Riemannian manifold (X , g) is a symmetric space if for each
p ∈ X there is an isometry sp : X → X with s2p = 1 such that p is
an isolated fixed point of sp.

Let G be the group of isometries of (X , g) generated by sq ◦ sr for
all q, r ∈ X . Then G is a connected Lie group and X = G/H for
some closed Lie subgroup H of G .
Symmetric spaces can be classified completely using Lie groups.
Definition

We call (X , g) locally symmetric if it is locally isometric to a
symmetric space, and nonsymmetric otherwise.

Theorem 13.3

Let (X , g) have Levi-Civita connection ∇ and Riemann curvature
R. Then (X , g) is locally symmetric if and only if ∇R = 0.
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13.3. Berger’s classification of holonomy groups

Theorem 13.4 (Berger’s Theorem, 1955)

Let X be a simply-connected n-manifold and g an irreducible,
nonsymmetric Riemannian metric on X . Then either:
(i) Hol(g) = SO(n);
(ii) n = 2m and Hol(g) = U(m);
(iii) n = 2m and Hol(g) = SU(m);
(iv) n = 4m and Hol(g) = Sp(m);
(v) n = 4m and Hol(g) = Sp(m) Sp(1);
(vi) n = 7 and Hol(g) = G2; or (vii) n = 8 and Hol(g) = Spin(7).

There are three assumptions in Berger’s Theorem:
As X is simply-connected, Hol(g) is connected.
As g is irreducible, Hol(g) acts irreducibly on Rn.
As g is nonsymmetric, ∇R ∕≡ 0.

Each excludes some possible holonomy groups. Without them, the
list of holonomy groups would be much longer.
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A sketch proof of Berger’s Theorem

Let X be simply-connected and g irreducible and nonsymmetric,
and let H = Hol(g). Then H is a closed, connected Lie subgroup
of SO(n) acting irreducibly on Rn.
Berger made a list of all such subgroups up to conjugation, and
applied two tests to see if each could be a holonomy group.
Berger’s list are the groups passing both tests.
Berger’s first test
Let Rabcd be the Riemann curvature of g , and h the Lie algebra of
H. Then Rabcd ∈ S2h. Also, as in §11.1 we have

Rabcd + Radbc + Racdb = 0, (13.1)

the first Bianchi identity. Let RH be the subspace of S2h satisfying
(13.1). Now RH must be big enough to generate h. That is, a
generic element of RH cannot lie in S2g for g ⊂ h a proper Lie
subalgebra. If RH is too small, H fails the first test.
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Berger’s second test
Now ∇eRabcd lies in (Rn)∗ ⊗RH , and also as in §11.1 satisfies

∇eRabcd +∇cRabde +∇dRabec = 0, (13.2)

the second Bianchi identity. If these two requirements force
∇R = 0, then g is locally symmetric. This excludes such H, the
second test.
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Inner product algebras

The four inner product algebras are
R — real numbers.
C — complex numbers.
H — quaternions.
O — octonions, or Cayley numbers.

They are real vector spaces with a multiplication ‘·’ and a norm
‘| . |’ with |a · b| = |a||b|.
Here C is not ordered, H is not commutative, and O is not
associative. Also we have C ∼= R2, H ∼= R4 and O ∼= R8, with
ImO ∼= R7.
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Understanding Berger’s list

Group Acts on

SO(m) Rm

O(m) Rm

SU(m) Cm

U(m) Cm

Sp(m) Hm

Sp(m)Sp(1) Hm

G2 ImO ∼= R7

Spin(7) O ∼= R8

Thus there are two holonomy groups for each of R,C,H,O.
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Remarks on Berger’s list

(i) SO(n) is the holonomy group of generic metrics.
(ii) Metrics g with Hol(g) ⊆ U(m) are Kähler metrics.
(iii) Metrics g with Hol(g) ⊆ SU(m) are Calabi–Yau metrics.
They are Ricci-flat and Kähler.
(iv) Metrics g with Hol(g) ⊆ Sp(m) are called hyperkähler
metrics. They are also Ricci-flat and Kähler.
(v) Metrics g with holonomy group Sp(m) Sp(1) for m 󰃍 2 are
called quaternionic Kähler metrics. They are Einstein, but not
Kähler.
(vi) and (vii) G2 and Spin(7) are the exceptional holonomy groups.
Metrics with these holonomy groups are Ricci-flat.
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13.4. Principal bundles and G -structures

Definition

Let X be a manifold and G a Lie group. A principal bundle over X
with fibre G is a manifold P with a free (left) G -action and a
smooth, surjective map π : P → X whose fibres are G -orbits, such
that each x ∈ X has an open neighbourhood U ⊆ X with a
diffeomorphism π−1(U) ∼= U × G identifying π and the G -action
with the projection U × G → U and G and G -action on U × G .

Example 13.5

Let X be a manifold of dimension n. The frame bundle F of X is a
principal bundle over X with fibre GL(n,R). The points of F are
(n + 1)-tuples (x , e1, . . . , en), for x ∈ X and e1, . . . , en a basis for
TxX . We have π : (x , e1, . . . , en) 󰀁→ x , and GL(n,R) fixes x and
acts on e1, . . . , en by change of basis,
A : (x , e1, . . . , en) 󰀁→ (x , ẽ1, . . . , ẽn), where ẽi =

󰁓n
j=1 Aijej .
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Definition

Let X be a manifold, P a principal bundle over X with fibre G and
projection π : P → X , and H a Lie subgroup of G . A principal
subbundle Q of P with fibre H is a submanifold Q of P closed
under the action of H on P , such that the H-action on Q and the
restriction π|Q : Q → X make Q into a principal bundle over X
with fibre H.
Let X be a manifold of dimension n, and G be a Lie subgroup of
GL(n,R). A G -structure on X is a principal subbundle P of the
frame bundle F of X with fibre G .

Example 13.6

Let (X , g) be a Riemannian manifold, and P be the subset of
(x , e1, . . . , en) in F with e1, . . . , en an orthonormal basis for TxX
w.r.t. g |x . All such bases are related by matrices in O(n), so P is
an O(n)-structure.
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G -structures and holonomy groups

Let X be an n-manifold and ∇ a connection on TX . Fix x ∈ X
and a basis (e1, . . . , en) for TxX . This identifies TxX ∼= Rn, so the
holonomy group Holx(∇) lies in GL(TxX ) ∼= GL(n,R). Let G be
a Lie subgroup of GL(n,R) containing Holx(∇). Define Q to be
the set of (y , f1, . . . , fn) in the frame bundle F of X , such that if
γ : [0, 1] → X is a smooth path with γ(0) = x , γ(1) = y , then
there exists g ∈ G with (Pγ ◦ g)ei = fi for i = 1, . . . , n.
As Holx(∇) ⊆ G this is independent of choice of γ, and P is a
G -structure on X . Thus, a connection ∇ on TX with holonomy in
G induces a G -structure on X . Can take G = Holx(∇).
Let (X , g) be a Riemannian manifold with
Hol(g) = H ⊆ O(n) ⊂ GL(n,R). Then X has a natural
H-structure Q, which is a principal subbundle of the
O(n)-structure P constructed before.
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There is a notion of connection on principal bundles. A (vector
bundle) connection on TX is equivalent to a (principal bundle)
connection on the frame bundle F .
A connection ∇ on TX or F has holonomy contained in G iff there
exists a G -structure on X preserved by (closed under) ∇.
A G -structure Q is called torsion-free if there exists a torsion-free
connection ∇ on TX preserving Q. If G ⊆ O(n) this ∇ is unique,
and is the Levi-Civita connection of the Riemannian metric
associated to Q. Studying torsion-free G -structures for G ⊆ O(n)
is equivalent to studying metrics g with Hol(g) ⊆ G .
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14.1. Kähler geometry and Riemannian holonomy

Let (X , g) be a Riemannian n-manifold, and ∇ the Levi-Civita
connection of g . As in §13.1, the holonomy group Hol(g) ⊆ O(n)
measures the constant tensors under ∇. That is, there is a 1-1
correspondence between S ∈ C∞(

󰁑k TX ⊗
󰁑l T ∗X ) with

∇S ≡ 0, and S0 ∈
󰁑k Rn ⊗

󰁑l(Rn)∗ invariant under Hol(g).
Let (X , J, g) be a Kähler manifold, with Kähler form ω, and let ∇
be the Levi-Civita connection of g . Then as in §4.1 we have

∇g = ∇J = ∇ω = 0.

So g , J,ω are constant tensors, and Hol(g) ⊆ O(2n) preserves
tensors g0, J0,ω0 on R2n. Hence Hol(g) ⊆ U(n), the unitary
group, the subgroup of GL(2n,R) preserving g0, J0,ω0. A metric g
on a 2n-manifold X is Kähler w.r.t. some complex structure J on
X iff Hol(g) ⊆ U(n).

21 / 36 Dominic Joyce, Oxford University Lecture 14: The Kähler holonomy groups

Riemannian holonomy groups
The Kähler holonomy groups

Kähler geometry and Riemannian holonomy
Calabi–Yau manifolds
Hyperkähler manifolds
Calabi–Yau 2-folds

In fact, the theory of Riemannian holonomy groups can be seen as
a generalization of the theory of Kähler manifolds. Features such
as decomposition of forms into (p, q)-forms and of de Rham
cohomology groups into subspaces Hp,q(X ) work for other
holonomy groups as well.
The Kähler holonomy groups are U(n) (Kähler metrics), SU(n)
(Calabi–Yau metrics), and Sp(m) (hyperkähler metrics), where

Sp(m) ⊂ SU(2m) ⊂ U(2m) ⊂ O(4m).

They are the groups on Berger’s list that are subgroups of U(n),
and so are holonomy groups of Kähler metrics. Generic Kähler
metrics have holonomy U(n). They occur in infinite-dimensional
families. Kähler metrics with holonomy SU(n), Sp(m) are special:
they have extra constant tensors, and more structure. They occur
in finite-dimensional families on compact manifolds.
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14.2. Calabi–Yau manifolds

Metrics g on a 2n-manifold X with Hol(g) ⊆ SU(n) are called
Calabi–Yau metrics. Here SU(n) is the subgroup of A ∈ U(n) with
detC A = 1. It is the subgroup of GL(2n,R) preserving the
standard metric g0, complex structure J0, Kähler form ω0, and
holomorphic volume form Ω0 = dz1 ∧ · · · ∧ dzn on R2n ∼= Cn.
Thus, we get constant tensors J,ω,Ω on X , where J is a complex
structure and g is Kähler w.r.t. J with Kähler form ω, and a
constant (n, 0)-form Ω.
This Ω is a nonvanishing holomorphic section of the canonical
bundle KX of (X , J), so it induces an isomorphism KX

∼= OX ,
which implies that c1(X ) = 0 in H2(X ;Z). As KX has a constant
section, the connection on KX is flat. So its curvature, the Ricci
form ρ, is zero, and g is Ricci flat. Conversely, if (X , J, g) is Ricci
flat then X has a cover π : X̃ → X (a finite cover if X is compact)
such that g̃ = π∗(g) has Hol(g̃) ⊆ SU(n).
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Definition

A Calabi–Yau manifold, or Calabi–Yau n-fold, is a compact Kähler
manifold (X , J, g) with Hol(g) = SU(n), where n = dimC X .

This is not quite the same as the definition in §11.4: that was
equivalent to Hol(g) ⊆ SU(n), not Hol(g) = SU(n). But this is
better from the point of view of Riemannian holonomy, so we use
it from now on.
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Topological properties of Calabi–Yau manifolds

Lemma 14.1

Let (X , J, g) be a Calabi–Yau n-fold. Then

H0,0(X ) ∼= Hn,0(X ) ∼= H0,n(X ) ∼= Hn,n(X ) ∼= C,
and if p ∕= 0, n then

Hp,0(X ) = H0,p(X ) = Hp,n(X ) = Hn,p(X ) = 0.

Proof.

Suppose α ∈ Hp,0(X ), so that α is a holomorphic (p, 0)-form.
Corollary 12.6 shows that ∇α = 0. But constant tensors are
determined by the holonomy group of g , which is SU(n). The
fixed subspace of SU(n) on Λp,0(Cn)∗ is C if p = 0, n, and 0
otherwise. The rest follows from

Hq,p(X ) ∼= Hp,q(X ) ∼= Hn−p,n−q(X )∗.
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In particular, if (X , J, g) is a Calabi–Yau n-fold for n > 2 then
(X , J) is a compact complex manifold admitting Kähler metrics,
and H2,0(X ) = 0. So Corollary 9.10 (from the Kodaira Embedding
Theorem) gives:

Corollary 14.2

(X , J, g) be a Calabi–Yau n-fold for n > 2. Then (X , J) is
projective.

Therefore we can study Calabi–Yau n-folds for n > 2 using
complex algebraic geometry.
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Let (X , J, g) be a Calabi–Yau n-fold for n > 1. As X is compact
and g is Ricci flat, Theorem 12.3 shows that X has a finite cover
X̃ isometric to T k ×N, where T k has a flat metric and N is simply
connected. But then Hol(g) is a finite extension of Hol(gN). If
k > 0 this contradicts Hol(g) = SU(n). So X̃ = N, giving:

Corollary 14.3

Let (X , J, g) be a Calabi–Yau n-fold for n > 1. Then π1(X ) is
finite.

If n is even we can improve this. Consider the elliptic operator

∂̄ + ∂̄∗ :
󰁐

q even

C∞(Λ0,qX ) →
󰁐

q odd

C∞(Λ0,qX ).

It has kernel
󰁏

q even H
0,q(X ) and cokernel

󰁏
q odd H

0,q(X ).

Lemma 14.1 shows H0,q(X ) is C if q = 0, n and 0 otherwise.
Hence ind(∂̄ + ∂̄∗) = 2 if n is even, and 0 if n is odd.
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Let X̃ be the universal cover of X , with π : X̃ → X . Then X̃ is
also a Calabi–Yau n-fold, and π is a k : 1 cover, where
k = |π1(X )|. By properties of characteristic classes, the index of
∂̄ + ∂̄∗ on X̃ is k times the index of ∂̄ + ∂̄∗ on X , since both are
given by curvature integrals. If n is even, both indices are two,
which forces k = 1. Hence X̃ = X , giving:

Proposition 14.4

Let (X , J, g) be a Calabi–Yau 2n-fold. Then X is
simply-connected.

When n > 2 is odd, Calabi–Yau n-folds can have nontrivial finite
fundamental groups.
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14.3. Hyperkähler manifolds

The quaternions are the R-algebra H = 〈1, i1, i2, i3〉R, where

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1,

i3i1 = −i1i3 = i2, and i21 = i22 = i23 = −1.

If x = x0 + x1i1 + x2i2 + x3i3, define x̄ = x0 − x1i1 − x2i2 − x3i3, and
|x |2 = x20 + x21 + x22 + x23 . Then (pq) = q̄ p̄ and |pq| = |p||q|.

The Lie group Sp(m) is the group of m ×m matrices A over H
satisfying AĀT = I . It acts on Hm = C2m = R4m preserving the
metric g and complex structures J1, J2, J3, induced by right
multiplication of Hm by i1, i2, i3. If a

2
1 + a22 + a23 = 1 then

a1J1 + a2J2 + a3J3 is also a complex structure on R4m preserved by
Sp(m), and g is Hermitian with respect to it.
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If (X , g) is a Riemannian 4m-manifold and Hol(g) ⊆ Sp(m), there
are constant complex structures J1, J2, J3 on X such that
a1J1 + a2J2 + a3J3 is also a complex structure for
a21 + a22 + a23 = 1, and g is Kähler with respect to it. So g is Kähler
in many different ways, and is called hyperkähler. There are also
constant Kähler forms ω1,ω2,ω3 for J1, J2, J3. As
Sp(m) ⊂ SU(2m), hyperkähler metrics are special examples of
Calabi–Yau metrics, and are Ricci flat. We have SU(2) = Sp(1).
Often we pick one complex structure J1, and regard (X , J1, g) as a
Kähler manifold. Then ω2 + iω3 is a (2,0)-form, which is constant,
and so holomorphic. Thus [ω2 + iω3] ∈ H2,0(X ). The top power
(ω2 + iω3)

m is a nonvanishing holomorphic section of KX .
Many examples of noncompact hyperkähler manifolds are known,
constructed explicitly by algebraic methods. But few compact
hyperkähler manifolds are known.
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To obtain (compact) hyperkähler manifolds we can try to construct
the holomorphic data (X , J1) and ω2 + iω3 using complex algebraic
geometry, and then get the metric g using the Calabi Conjecture.
However, different constructions often yield deformation-equivalent
hyperkähler manifolds. In dimension 4m for m 󰃍 2, two families of
compact hyperkähler manifolds are known (Beauville), with b2 = 7
and b2 = 20. O’Grady found examples in dimension 12 with
b2 = 8, and dimension 20 with b2 󰃍 24. This is all the known
examples.
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Topological properties of hyperkähler manifolds

The fixed subspace of Sp(m) on Λp,0(C2m)∗ is C if p = 2j for
j = 0, . . . ,m, spanned by (ω2 + iω3)

j , and is 0 otherwise. So the
method of Lemma 14.1 gives:

Lemma 14.5

Let (X , J, g) be a compact Kähler 2m-manifold, with
Hol(g) = Sp(m). Then

H2j ,0(X ) ∼= H0,2j(X ) ∼= H2j ,2m(X ) ∼= H2m,2j(X ) ∼= C

for j = 0, . . . ,m, and otherwise

Hp,0(X ) = H0,p(X ) = Hp,2m(X ) = H2m,p(X ) = 0.
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In contrast to Corollary 14.2, a compact hyperkähler manifold
(X , J, g) has H2,0(X ) = C, so we can’t use Corollary 9.10 to
deduce (X , J) is projective. For generic a1, a2, a3 ∈ R with
a21 + a22 + a23 = 1, the complex structure a1J1 + a2J2 + a3J3 is not
projective; using lectures 7 and 9, one can show that the projective
complex structures on X are of complex codimension 1 in the
family of all hyperkähler complex structures.

As for Corollary 14.3 and Proposition 14.4, we can prove:

Proposition 14.6

Let (X , J, g) be a compact Kähler 2m-manifold, with
Hol(g) = Sp(m). Then X is simply-connected.
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14.4. Calabi–Yau 2-folds

When n = 1, SU(1) = {1}, and any Calabi–Yau 1-fold is a torus
T 2 with a flat metric g .
Calabi–Yau 2-folds have holonomy SU(2) = Sp(1), so they are
hyperkähler. This gives them special features. They are well
understood, through Kodaira’s classification of complex surfaces.
A K3 surface is a compact, complex surface (X , J) with h1,0 = 0
and KX trivial. All Calabi–Yau 2-folds are K3 surfaces, and vice
versa.
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All K3 surfaces (X , J) are diffeomorphic, with π1(X ) = {1},
b2+(X ) = 3, and b2−(X ) = 19. The moduli space MK3 of K3
surfaces is a 20-dimensional complex space, described by the
‘Torelli Theorems’. Some K3 surfaces are projective, and some are
not. Each K3 surface (X , J) has a 20-dimensional family of
Calabi–Yau metrics, so the family of Calabi–Yau 2-folds (X , J, g) is
60-dimensional.
The holonomy group SU(2) = Sp(1) behaves more like the
holonomy groups Sp(m) for m > 1 than like the groups SU(n) for
n > 2.
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Outlook on Calabi–Yau geometry

The geometry of Calabi–Yau n-folds, especially when n = 3, is a
huge subject. Much of the impetus comes from String Theory in
Theoretical Physics, which uses Calabi-Yau 3-folds as ingredients in
their models of the universe. Mirror Symmetry is a circle of
conjectures coming from String Theory, which relates ‘mirror pairs’
of Calabi–Yau 3-folds X , X̌ in a mysterious way. Broadly, the
complex geometry of X is equivalent to the symplectic geometry of
X̌ , and vice versa.
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