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13. Riemannian holonomy groups
13.1. Parallel transport and holonomy groups

Let VE be a connection on a vector bundle E — X. Let

v :[0,1] = X be a smooth curve with v(0) = x and (1) = y.
Then v*(VE) is a connection on v*(E) — [0, 1].

For each e € E, there is a unique section s of v*(E) with s(0) = e
and v*(VE)s = 0. Define P,(e) = s(1). Then P, : E, — E, is the
parallel transport map.

Think of a connection VE on E — X as identifying nearby fibres
E., E, for x,x" close together in X.

Parallel transport identifies the fibres of E all along a curve v, so
we can drag vectors along 7.
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Holonomy groups

Let V£ be a connection on a vector bundle E — X. Fix x € X.
Let v : [0,1] — X be a piecewise-smooth loop based at x, so that
7(0) = (1) = x. Then P, is an invertible linear map E, — E.
The holonomy group Hol,(VE) of VE is the set of parallel
transports P, for all piecewise-smooth loops «y based at x.

Some properties of Hol,(VE):

o It's a Lie subgroup of GL(Ey).

o Identify E, = R", so Hol,(VE) € GL(n,R). Then Hol,(V¥£)
is independent of basepoint x € X, up to conjugation in
GL(n,R).

o If X is simply-connected, then Hol,(V£) is connected.

o Let hol (VE) be the Lie algebra of Hol,(VE). Then
R(VE). € hol (VE)@ A2T*X in End(E,) @ N2 T*X.
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Now let V be a connection on TX. It also acts on

R* TX ® Q' T*X. A constant tensor S satisfies VS = 0. If S is
constant then S is invariant under the action of Hol,(V) on

R X ® T:X. Any S in @ T, X ® ®' TX invariant
under Hol, (V) extends to a unique constant tensor S on X by
parallel transport. So the constant tensors on X are determined by
Hol, (V).
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13.2. Riemannian holonomy

Let g be a Riemannian metric on X, and x € X. The holonomy
group Hol,(g) of g is the holonomy group Hol, (V) of its
Levi-Civita connection. It is a closed Lie subgroup of O(n), which
up to conjugation in O(n) is independent of basepoint x.
Riemannian holonomy groups have stronger properties than the
general case.

Regard the Lie algebra hol,(g) as a vector subspace of A>T} X.
Using symmetries of Raped, eqns (1)-(3) of 11.1, we find that
Rabeq lies in the vector subspace S? hol, (g) in AT} X @ AT} X
at each x € X. Thus, the holonomy group imposes strong
restrictions on the curvature tensor R,pcg Of g. These are the basis
of the classification of Riemannian holonomy groups.
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Reducible metrics

Let (X, g) and (Y, h) be Riemannian manifolds with
dim X,dim Y > 0. The product metric g X hon X X Y is given
by g X hl(x,y) = &g|x + hl|y for x € X 'and y € Y.

Proposition 13.1

The holonomy groups satisfy Hol(g x h) = Hol(g) x Hol(h).

We call (X, g) irreducible if it is not locally isometric to a
Riemannian product.
Theorem 13.2

Let (X, g) be an irreducible Riemannian n-manifold. Then the
representation of Hol(g) on R" is irreducible.

Proof.

If R” = RF @ R/ for R¥, R! subrepresentations of Hol(g), can
define a local isometry X = Y X Z with dimY = k, dimZ =/, so
X is reducible. []
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Symmetric spaces

Definition

A Riemannian manifold (X, g) is a symmetric space if for each

p € X there is an isometry s, : X — X with 53 = 1 such that p is
an isolated fixed point of sp.

Let G be the group of isometries of (X, g) generated by s, o s, for
all g,r € X. Then G is a connected Lie group and X = G/H for
some closed Lie subgroup H of G.

Symmetric spaces can be classified completely using Lie groups.

Definition

We call (X, g) locally symmetric if it is locally isometric to a
symmetric space, and nonsymmetric otherwise.

Theorem 13.3

Let (X, g) have Levi-Civita connection V and Riemann curvature
R. Then (X, g) is locally symmetric if and only if VR = 0.
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13.3. Berger's classification of holonomy groups

Theorem 13.4 (Berger's Theorem, 1955)

Let X be a simply-connected n-manifold and g an irreducible,
nonsymmetric Riemannian metric on X. Then either:
(i) Hol(g) =SO(n),
) n=2m and Hol(g) =
i) n=2m and Hol(g) = SU( )
) () =
) () =

n =4m and Hol
(v) n=4m and Hol(g
(vi) n=7 and Hol(g) = Gy, or (vu) n= 8 and Hol(g) = Spin(7).

.

There are three assumptions in Berger's Theorem:

@ As X is simply-connected, Hol(g) is connected.

@ As g is irreducible, Hol(g) acts irreducibly on R".

@ As g is nonsymmetric, VR # 0.
Each excludes some possible holonomy groups. Without them, the
list of holonomy groups would be much longer.
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A sketch proof of Berger's Theorem

Let X be simply-connected and g irreducible and nonsymmetric,
and let H=Hol(g). Then H is a closed, connected Lie subgroup
of SO(n) acting irreducibly on R".

Berger made a list of all such subgroups up to conjugation, and
applied two tests to see if each could be a holonomy group.
Berger's list are the groups passing both tests.

Berger’s first test

Let R,pcq be the Riemann curvature of g, and b the Lie algebra of
H. Then R.peq € S%h. Also, as in §11.1 we have

Rabcd + Radbc + Racdb — 07 (131)

the first Bianchi identity. Let SR be the subspace of 52} satisfying
(13.1). Now RHM must be big enough to generate . That is, a
generic element of Y cannot lie in S%g for g C b a proper Lie
subalgebra. If MH is too small, H fails the first test.
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Berger’s second test
Now VeRabeq lies in (R™)* ® RH | and also as in §11.1 satisfies

ve'l:\)abcd + vC'L-\)abde + vdRabec — 07 (132)

the second Bianchi identity. If these two requirements force
VR =0, then g is locally symmetric. This excludes such H, the
second test.
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Inner product algebras

The four inner product algebras are

R — real numbers.

C — complex numbers.

H — quaternions.

O — octonions, or Cayley numbers.
They are real vector spaces with a multiplication *-' and a norm
‘| .]" with |a- b| = |al|b|.
Here C is not ordered, H is not commutative, and O is not
associative. Also we have C =2 R? H = R* and O = R8, with
ImOQ = R’.
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Understanding Berger's list

Group Acts on
SO(m) R™
O(m) R™
SU(m) cm
U(m) cm
Sp(m) H™
5p(m)Sp(1) H™
G2 ImO = R7
Spin(7) 0=~ R8

Thus there are two holonomy groups for each of R, C, H, Q.
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Remarks on Berger's list

(i) SO(n) is the holonomy group of generic metrics.

(ii) Metrics g with Hol(g) C U(m) are Kahler metrics.

(iii) Metrics g with Hol(g) C SU(m) are Calabi—Yau metrics.
They are Ricci-flat and Kahler.

(iv) Metrics g with Hol(g) C Sp(m) are called hyperkahler
metrics. They are also Ricci-flat and Kahler.

(v) Metrics g with holonomy group Sp(m) Sp(1) for m > 2 are
called quaternionic Kahler metrics. They are Einstein, but not
Kahler.

(vi) and (vii) Gy and Spin(7) are the exceptional holonomy groups.
Metrics with these holonomy groups are Ricci-flat.
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13.4. Principal bundles and G-structures

Let X be a manifold and G a Lie group. A principal bundle over X
with fibre G is a manifold P with a free (left) G-action and a
smooth, surjective map 7 : P — X whose fibres are G-orbits, such
that each x € X has an open neighbourhood U C X with a
diffeomorphism 7=1(U) = U x G identifying 7 and the G-action
with the projection U x G — U and G and G-action on U x G. J

Example 13.5

Let X be a manifold of dimension n. The frame bundle F of X is a
principal bundle over X with fibre GL(n,R). The points of F are
(n+ 1)-tuples (x,e1,...,€e,), for x € X and ey, ..., e, a basis for
T, X. We have 7 : (x,e1,...,€e) — x, and GL(n,R) fixes x and
acts on ey, ..., e, by change of basis,

A: (X, €l1,..., e,,) —> (X, €1,..., én), where & = 27:1 A,-J-ej.
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Let X be a manifold, P a principal bundle over X with fibre G and
projection 7 : P — X, and H a Lie subgroup of G. A principal
subbundle @ of P with fibre H is a submanifold @ of P closed
under the action of H on P, such that the H-action on @ and the
restriction m|g : @ — X make Q into a principal bundle over X
with fibre H.

Let X be a manifold of dimension n, and G be a Lie subgroup of
GL(n,R). A G-structure on X is a principal subbundle P of the
frame bundle F of X with fibre G. )

Example 13.6

Let (X, g) be a Riemannian manifold, and P be the subset of
(x,e1,...,€en) in F with eq,..., e, an orthonormal basis for T, X
w.r.t. g|x. All such bases are related by matrices in O(n), so P is
an O(n)-structure.
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G-structures and holonomy groups

Let X be an n-manifold and V a connection on TX. Fix x € X
and a basis (eq,...,e,) for T, X. This identifies T, X = R", so the
holonomy group Hol, (V) lies in GL(TX) = GL(n,R). Let G be
a Lie subgroup of GL(n,R) containing Hol,(V). Define Q to be
the set of (y, f1,...,f,) in the frame bundle F of X, such that if
v :[0,1] — X is a smooth path with v(0) = x, v(1) = y, then
there exists g € G with (Pyog)ej =fifori=1,...,n.

As Hol, (V) C G this is independent of choice of v, and P is a
G-structure on X. Thus, a connection V on TX with holonomy in
G induces a G-structure on X. Can take G = Hol,(V).

Let (X, g) be a Riemannian manifold with

Hol(g) = H C O(n) C GL(n,R). Then X has a natural
H-structure Q, which is a principal subbundle of the
O(n)-structure P constructed before.
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There is a notion of connection on principal bundles. A (vector
bundle) connection on TX is equivalent to a (principal bundle)
connection on the frame bundle F.

A connection V on TX or F has holonomy contained in G iff there
exists a G-structure on X preserved by (closed under) V.

A G-structure @ is called torsion-free if there exists a torsion-free
connection V on TX preserving Q. If G C O(n) this V is unique,
and is the Levi-Civita connection of the Riemannian metric
associated to Q. Studying torsion-free G-structures for G C O(n)
is equivalent to studying metrics g with Hol(g) C G.
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14.1. Kahler geometry and Riemannian holonomy

Let (X, g) be a Riemannian n-manifold, and V the Levi-Civita
connection of g. As in §13.1, the holonomy group Hol(g) C O(n)
measures the constant tensors under V. That is, there is a 1-1
correspondence between S € C®(R* TX ® ®' T*X) with
VS=0 and S € ®“R" @ ®'(R")* invariant under Hol(g).

Let (X, J,g) be a Kahler manifold, with Kahler form w, and let V
be the Levi-Civita connection of g. Then as in §4.1 we have

Vg=VJ=Vw=0.

So g, J,w are constant tensors, and Hol(g) C O(2n) preserves
tensors gg, Jo,wo on R?™. Hence Hol(g) C U(n), the unitary
group, the subgroup of GL(2n,R) preserving go, Jo, wo. A metric g
on a 2n-manifold X is Kahler w.r.t. some complex structure J on
X iff Hol(g) C U(n).
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In fact, the theory of Riemannian holonomy groups can be seen as
a generalization of the theory of Kahler manifolds. Features such
as decomposition of forms into (p, g)-forms and of de Rham
cohomology groups into subspaces HP9(X) work for other
holonomy groups as well.

The Kahler holonomy groups are U(n) (Kahler metrics), SU(n)
(Calabi—Yau metrics), and Sp(m) (hyperkahler metrics), where

Sp(m) € SU(2m) C U(2m) C O(4m).

They are the groups on Berger's list that are subgroups of U(n),
and so are holonomy groups of Kahler metrics. Generic Kahler
metrics have holonomy U(n). They occur in infinite-dimensional
families. Kahler metrics with holonomy SU(n), Sp(m) are special:
they have extra constant tensors, and more structure. They occur
in finite-dimensional families on compact manifolds.
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14.2. Calabi—Yau manifolds

Metrics g on a 2n-manifold X with Hol(g) C SU(n) are called
Calabi-Yau metrics. Here SU(n) is the subgroup of A € U(n) with
detc A = 1. It is the subgroup of GL(2n,R) preserving the
standard metric gp, complex structure Jy, Kahler form wgp, and
holomorphic volume form Qg = dz; A - -+ A dz, on R>" = C".
Thus, we get constant tensors J,w, 2 on X, where J is a complex
structure and g is Kahler w.r.t. J with Kahler form w, and a
constant (n,0)-form Q.

This € is a nonvanishing holomorphic section of the canonical
bundle Kx of (X, J), so it induces an isomorphism Kx = Ox,
which implies that c1(X) = 0 in H?(X;Z). As Kx has a constant
section, the connection on Kx is flat. So its curvature, the Ricci
form p, is zero, and g is Ricci flat. Conversely, if (X, J, g) is Ricci
flat then X has a cover m: X — X (a finite cover if X is compact)
such that § = 7*(g) has Hol(g) C SU(n).
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Definition
A Calabi-Yau manifold, or Calabi—Yau n-fold, is a compact Kahler
manifold (X, J, g) with Hol(g) = SU(n), where n = dim¢ X.

This is not quite the same as the definition in §11.4: that was
equivalent to Hol(g) C SU(n), not Hol(g) = SU(n). But this is
better from the point of view of Riemannian holonomy, so we use
it from now on.
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Topological properties of Calabi—Yau manifolds

Lemma 14.1

Let (X,J,g) be a Calabi-Yau n-fold. Then

HOO(X) = H™O(X) =2 H%"(X) = H™"(X) = C,
and if p# 0, n then

HPO(X) = HYP(X) = HP"(X) = H™P(X) = 0.

Suppose o € HP?(X), so that « is a holomorphic (p, 0)-form.
Corollary 12.6 shows that Va = 0. But constant tensors are
determined by the holonomy group of g, which is SU(n). The
fixed subspace of SU(n) on APO(C")* is C if p=0,n, and 0
otherwise. The rest follows from

HaP(X) = HPA(X) = HMP1=4(X)*.
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In particular, if (X, J, g) is a Calabi-Yau n-fold for n > 2 then

(X, J) is a compact complex manifold admitting Kahler metrics,
and H2%(X) = 0. So Corollary 9.10 (from the Kodaira Embedding
Theorem) gives:

Corollary 14.2

(X, J,g) be a Calabi-Yau n-fold for n > 2. Then (X,J) is
projective.

Therefore we can study Calabi—Yau n-folds for n > 2 using
complex algebraic geometry.
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Let (X, J, g) be a Calabi—Yau n-fold for n > 1. As X is compact
and g is Ricci flat, Theorem 12.3 shows that X has a finite cover
X isometric to TX x N, where T has a flat metric and N is simply
connected. But then Hol(g) is a finite extension of Hol(gy). If

k > 0 this contradicts Hol(g) = SU(n). So X = N, giving:

Corollary 14.3

Let (X, J,g) be a Calabi-Yau n-fold for n > 1. Then m1(X) is
finite.

If nis even we can improve this. Consider the elliptic operator

0+ : @ C*(A"X) — @ C*(A\*9X).

g even q odd

It has kernel D, c\en H%9(X) and cokernel Dy odd H%9(X).

Lemma 14.1 shows H%9(X) is C if g = 0, n and 0 otherwise.
Hence ind(0 + 0*) = 2 if nis even, and 0 if n is odd.
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Let X be the universal cover of X, with 7 : X — X. Then X is
also a Calabi—Yau n-fold, and 7 is a k : 1 cover, where

k = |m1(X)|. By properties of characteristic classes, the index of
d + &* on X is k times the index of d + &* on X, since both are
given by curvature integrals. If n is even, both indices are two,
which forces k = 1. Hence X = X, giving:

Proposition 14.4

Let (X, J,g) be a Calabi-Yau 2n-fold. Then X is
simply-connected.

When n > 2 is odd, Calabi—Yau n-folds can have nontrivial finite
fundamental groups.
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14.3. Hyperkahler manifolds

The quaternions are the R-algebra H = (1, i1, ip, i3)r, Where

i = —hii = I3, i3 = —i3lp = Iy,
iy = —iii3 =k,  and 2 =iy =i=—1.

If x = xg + x1/1 + x2i> + X313, define X = xg — x1/1 — X2/» — Xx3/3, and
x> = x5 +x§ +x5 +x3. Then (pq) = G5 and |pq| = |pl|ql.

The Lie group Sp(m) is the group of m x m matrices A over H
satisfying AAT = /. It acts on H™ = C?™ = R*™ preserving the
metric g and complex structures J;, J», J3, induced by right
multiplication of H™ by i1, ip, i3. If a% + ag -+ a% = 1 then

a1J1 + axJo + azJ3 is also a complex structure on R4m preserved by
Sp(m), and g is Hermitian with respect to it.
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If (X, g) is a Riemannian 4m-manifold and Hol(g) C Sp(m), there
are constant complex structures Ji, J», J3 on X such that

a1J1 + ax b + a3tz is also a complex structure for

a? + a5+ a3 = 1, and g is Kahler with respect to it. So g is Kahler
in many different ways, and is called hyperkahler. There are also
constant Kahler forms wi,ws, w3 for Ji, b, J3. As

Sp(m) C SU(2m), hyperkahler metrics are special examples of
Calabi—Yau metrics, and are Ricci flat. We have SU(2) = Sp(1).
Often we pick one complex structure Ji, and regard (X, J1,g) as a
Kahler manifold. Then wy + iws is a (2,0)-form, which is constant,
and so holomorphic. Thus [wy + iws] € H*P(X). The top power
(w2 + iw3)™ is a nonvanishing holomorphic section of K.

Many examples of noncompact hyperkahler manifolds are known,
constructed explicitly by algebraic methods. But few compact
hyperkahler manifolds are known.
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To obtain (compact) hyperkahler manifolds we can try to construct
the holomorphic data (X, J1) and wy + iws using complex algebraic
geometry, and then get the metric g using the Calabi Conjecture.
However, different constructions often yield deformation-equivalent
hyperkahler manifolds. In dimension 4m for m > 2, two families of
compact hyperkihler manifolds are known (Beauville), with b? =7
and b? = 20. O'Grady found examples in dimension 12 with

b? = 8, and dimension 20 with b2 > 24. This is all the known
examples.
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Topological properties of hyperkahler manifolds

The fixed subspace of Sp(m) on AP2(C*™)* is C if p = 2j for
Jj=0,...,m, spanned by (wy + iw3}, and is 0 otherwise. So the
method of Lemma 14.1 gives:

Lemma 14.5

Let (X, J,g) be a compact Kahler 2m-manifold, with
Hol(g) = Sp(m). Then

H2j,O(X) ~ HO,2j(X) ~ H2j,2m(X) ~ H2m,2j(X) ~
for j =0,...,m, and otherwise

HPO(X) = H¥P(X) = HP2™(X) = H*™P(X) = 0.
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In contrast to Corollary 14.2, a compact hyperkahler manifold

(X, J,g) has H?>9(X) = C, so we can't use Corollary 9.10 to
deduce (X, J) is projective. For generic a1, a, a3 € R with

a% + a% + a% = 1, the complex structure a;J; + a»J> + azJs3 is not
projective; using lectures 7 and 9, one can show that the projective
complex structures on X are of complex codimension 1 in the
family of all hyperkahler complex structures.

As for Corollary 14.3 and Proposition 14.4, we can prove:

Proposition 14.6

Let (X, J,g) be a compact Kdhler 2m-manifold, with
Hol(g) = Sp(m). Then X is simply-connected.
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14.4. Calabi—Yau 2-folds

When n =1, SU(1) = {1}, and any Calabi-Yau 1-fold is a torus
T2 with a flat metric g.

Calabi—Yau 2-folds have holonomy SU(2) = Sp(1), so they are
hyperkahler. This gives them special features. They are well
understood, through Kodaira's classification of complex surfaces.
A K3 surface is a compact, complex surface (X, J) with h1:0 =0
and Kx trivial. All Calabi-Yau 2-folds are K3 surfaces, and vice
versa.
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All K3 surfaces (X, J) are diffeomorphic, with m1(X) = {1},

b3 (X) =3, and b2 (X) = 19. The moduli space M3 of K3
surfaces is a 20-dimensional complex space, described by the
‘Torelli Theorems’. Some K3 surfaces are projective, and some are
not. Each K3 surface (X, J) has a 20-dimensional family of
Calabi—Yau metrics, so the family of Calabi—Yau 2-folds (X, J, g) is
60-dimensional.

The holonomy group SU(2) = Sp(1) behaves more like the
holonomy groups Sp(m) for m > 1 than like the groups SU(n) for
n> 2.
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Outlook on Calabi—Yau geometry

The geometry of Calabi—Yau n-folds, especially when n =3, is a
huge subject. Much of the impetus comes from String Theory in
Theoretical Physics, which uses Calabi-Yau 3-folds as ingredients in
their models of the universe. Mirror Symmetry is a circle of
conjectures coming from String Theory, which relates ‘mirror pairs’
of Calabi-Yau 3-folds X, X in a mysterious way. Broadly, the
complex geometry of X is equivalent to the symplectic geometry of
X, and vice versa.
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