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15. Introduction to moduli spaces

Suppose we want to understand some class C of geometric objects
X up to isomorphism (or some weaker kind of equivalence) — for
instance, compact complex manifolds diffeomorphic to some fixed
real manifold, holomorphic vector bundles on a fixed complex
manifold, etc. A common approach is to try and define a moduli
space M of such objects X . As a set M =

{
[X ] : X ∈ C

}
is just

the set of isomorphism classes [X ] of objects X that we want to
classify.
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However, usually we want M to have more geometric structure
than this. For example, M could be a topological space, or a
manifold (real or complex), or some kind of singular complex
manifold in algebraic geometry – a variety or scheme – or
something worse, e.g. an Artin stack. The rule is that the
geometric structure on M must reflect the behaviour of families of
the objects X under study.
For example, suppose we have a notion of limits in C, that is, when
a sequence (Xi )

∞
i=1 has Xi → X∞ in C as i →∞. Then we would

require the topology T on M to satisfy [Xi ]→ [X∞] in M
whenever Xi → X∞ in C, and we could define T to be the
strongest topology on M such that this is always true.
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15.1. Moduli spaces in Differential Geometry

Moduli spaces in differential geometry usually involve a quotient of
an infinite-dimensional (often singular) “manifold” by an
infinite-dimensional group. Here are two examples from complex
geometry.

Example 15.1

Let (X , J) be a compact complex manifold, and E → X a complex
vector bundle. We wish to study the moduli space ME of
holomorphic vector bundles (F , ∂̄F ) on X whose underlying
complex vector bundle is isomorphic to E .
Choose a fixed ∂̄-operator ∂̄0 on E , with (0,2)-curvature
F 0,2

0 = ∂̄2
0 . Given a holomorphic vector bundle (F , ∂̄F ), we can

choose an isomorphism ι : E → F , and this identifies ∂̄F with
∂̄0 + A for some A in C∞

(
End(E )⊗ Λ0,1X

)
.
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Example (Continued)

As (F , ∂̄F ) is holomorphic we have

F 0,2

∂̄0+A
= F 0,2

0 + ∂̄0A + A ∧ A = 0.

Different choices ι, ι′ of ι yield A,A′ in the same orbit of the
infinite-dimensional gauge group G := C∞(Aut(E )). It follows
that

ME
∼=
{
A ∈ C∞

(
End(E )⊗ Λ0,1X

)
:

F 0,2
0 + ∂̄0A + A ∧ A = 0

}
/G.

(15.1)

From (15.1) we can define a topology on ME , and some kind of
singular manifold structure.
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Example 15.2

Let X be a fixed compact 2n-manifold. We wish to study the
moduli space MX of complex manifolds (Y , J) such that Y is
diffeomorphic to X . For such (Y , J), we can choose a
diffeomorphism ι : X → Y , and then I = ι∗(J) is a complex
structure on X , that is, I ∈ C∞(TX ⊗ T ∗X ) with I 2 = − id and
Nijenhuis tensor NI ≡ 0.
Different choices ι, ι′ of ι yield I , I ′ in the same orbit of the
infinite-dimensional diffeomorphism group Diff(X ). Hence

MX
∼=
{
I ∈ C∞

(
TX ⊗ T ∗X

)
: I 2 = − id, NI = 0

}
/Diff(X ).

For example, if X is an oriented 2-manifold of genus g > 1 then
MX is Riemann’s moduli space Rg . It is a manifold of dimension
3g − 3, with mild singularities (in fact, it is a nonsingular orbifold).
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15.2. Moduli spaces in Algebraic Geometry

In algebraic geometry, one takes a different approach. Here, we
study a moduli space M of algebraic objects, such as complex
projective manifolds, and the goal is to give M an algebraic
geometric structure – most often that of a scheme. I’m not going
to define schemes. Loosely, a C-scheme is a geometric space locally
modelled on the zeroes of finitely many polynomials in Cn. They
form a category SchC. Smooth C-schemes are complex manifolds.
It is usually not feasible to write algebro-geometric moduli spaces
as quotients by infinite-dimensional gauge groups (though often, in
a more complicated way, they are written as quotients by
finite-dimensional algebraic groups). Instead, moduli spaces are
defined to satisfy a universal property expressed in terms of the
category of C-schemes SchC.
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Let C be a category of algebraic objects E we want to form a
moduli space for. Then we must define a notion of family of
objects ES in C over a base scheme S , thought of as Es ∈ C for
points s ∈ S , varying algebraically with s. For example, if C is
holomorphic vector bundles over a fixed complex projective
manifold X , then a family of objects in C over S is a vector bundle
over X × S . Such families form a category CS .
If φ : S → T is a morphism of schemes, then we should have a
pullback functor φ∗ : CT → CS .
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The nicest kind of moduli space, a fine moduli scheme for C, is a
scheme M such that for any C-scheme S , there is a 1-1
correspondence between isomorphism classes [ES ] of objects in CS
and morphisms ψ[ES ] : S →M in SchC, such that if φ : S → T is
a morphism in SchC and ET ∈ CT then ψ[φ∗(ET )] = ψ[ET ] ◦ φ. In
this case, id :M→M corresponds to a universal family UM in
CM, a family of objects Um in C for m ∈M, such that every E in
C is isomorphic to Um for unique m ∈M.
Coarse moduli schemes satisfy a weaker universal property.
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15.3. General questions in moduli space theory

In any moduli problem, one can ask a number of general questions:
(A) Existence. Does a moduli space exist in some class of spaces,
e.g. is there a fine moduli scheme?
(B) Local properties. Fix an object E in C. What does M look
like in a small neighbourhood of [E ], e.g. is it a manifold of some
dimension? The study of (B) is called deformation theory.
(C) Global properties. Is the moduli space M compact,
Hausdorff, etc.?
(D) Compactification. If M is not compact, is there a natural
compactification M? If so, what do points of M\M parametrize?
(E) Explicit description. Can we describe M completely, as a
topological space/scheme/manifold?
In a few very nice cases – moduli spaces of Riemann surfaces or
K3 surfaces, for instance – we can answer all these questions.
More usually we can only answer (A)–(C) or (A)–(D).
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Often if an object E in C has a nontrivial automorphism group,
this makes the moduli space M singular at [E ], or causes other
problems. For example, fine moduli schemes usually do not exist
when objects have automorphisms.
Stacks (Deligne–Mumford or Artin) are geometric spaces which
include an automorphism group at each point. In moduli problems
with automorphisms, it may be best to make the moduli space a
stack.
Orbifolds are basically smooth Deligne–Mumford stacks.
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Murphy’s Law

Even if the objects E you are studying are as nice (smooth,
nonsingular) as possible, their moduli spaces M can be very
singular. In particular, in some problems (e.g. moduli spaces of
smooth surfaces), one can prove that all possible singularities of
schemes over Z occur as singularities of moduli schemes. This is
known as Murphy’s Law. It is one reason why we have to work
with schemes rather than manifolds.
There are exceptions, e.g. moduli spaces of Riemann surfaces and
Calabi–Yau m-folds are smooth. But unless you have a geometrical
reason for your moduli space to be nice, you should expect the
worst.
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Counting invariants

One very important use of moduli spaces is in defining invariants.
The basic idea is this: start with some geometric object X (e.g. a
compact complex manifold). Form a moduli space Mα of auxiliary
geometric objects on X with topological invariants α (e.g.
holomorphic vector bundles on X with Chern character α).
Define a number I (α) which ‘counts’ the points in Mα. If you do
this just right, the number I (α) turns out to be unchanged under
deformations of X (it is ‘invariant’), and may have other exciting
properties as well.
Examples include Donaldson, Seiberg–Witten, Gromov–Witten and
Donaldson–Thomas invariants. They are important in 4-manifold
theory, Symplectic Geometry, String Theory and Mirror Symmetry.
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15.4. Deformations of compact complex manifolds

We now discuss moduli spaces of compact complex manifolds. Our
approach will be differential-geometric. As in Example 15.2, if X is
a compact 2n-manifold, then the moduli space of complex
structures on X is

MX
∼=
{
J ∈ C∞

(
TX ⊗ T ∗X

)
:

J2 = − id, NJ = 0
}
/Diff(X ).

(15.2)

Write [J] for J Diff(X ) in MX . From (15.2) we can define a
topology on MX , and a singular smooth structure.
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We will study deformation theory for compact complex manifolds.
That is, if J is a complex structure on X , we wish to describe the
topological space MX near [J]. We will see that modulo
automorphisms of (X , J), MX near [J] looks like Φ−1(0), where
Φ : U → H2(TX ) is holomorphic with Φ(0) = 0, for U an open
neighbourhood of 0 in H1(TX ), where Hq(TX ) are the
cohomology groups of the holomorphic vector bundle TX on X , as
in §8. A book is K. Kodaira, ‘Complex manifolds and deformation
of complex structures’.
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Infinitesimal deformations

Suppose {Jt : t ∈ (−ε, ε)} is a family of complex structures on X
depending smoothly on t ∈ (−ε, ε), with J0 = J. Set
K =

(
d
dt Jt

)
|t=0, so that K a

b ∈ C∞(TX ⊗ T ∗X ). Then K is an
infinitesimal deformation of J as a complex structure.
By Taylor’s Theorem Jt = J + tK + O(t2). As Jt is an almost
complex structure J2

t = − id. Thus

−δca =
(
Jba + tKb

a + O(t2)
)(
Jcb + tK c

b + O(t2)
)

= Jba J
c
b + t

(
JbaK

c
b + Kb

a J
c
b

)
+ O(t2),

so JbaK
c
b + Kb

a J
c
b ≡ 0.
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In the notation of §11.2 for tensors on complex manifolds we have

Jba = iδβα − iδβ̄ᾱ. Thus

JbaK
c
b = iKγ

α + iK γ̄
α − iK γ̄

ᾱ − iKγ
ᾱ ,

Kb
a J

c
b = iKγ

α − iK γ̄
α − iK γ̄

ᾱ + iKγ
ᾱ ,

so JbaK
c
b + Kb

a J
c
b ≡ 0 gives Kβ

α = K β̄
ᾱ = 0, and Kb

a = K β̄
α + Kβ

ᾱ .

Regard Kβ
ᾱ as an element κ of C∞(TX ⊗C Λ0,1X ), where

TX = TX 1,0 is considered as a holomorphic vector bundle.
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The Nijenhuis tensor of Jt is (NJt )
c
ab ≡ 0. One can show that

(NJt )
γ

ᾱβ̄
= 2it(∇ᾱKγ

β̄
−∇β̄K

γ
ᾱ) + O(t2)

= 2it(∂̄TXκ)γ
ᾱβ̄

+ O(t2),
(15.3)

where ∂̄TX : C∞(TX ⊗C Λ0,1X )→ C∞(TX ⊗C Λ0,2X ) is as in §8
for the holomorphic vector bundle TX . Hence ∂̄TXκ = 0. Thus κ
defines a cohomology class [κ] ∈ H1(TX ).
Suppose [κ] = 0 in H1(TX ). Then κ = ∂̄TX v for some
v ∈ C∞(TX ). This implies that K = LvJ, where Lv is the Lie
derivative. As C∞(TX ) is the Lie algebra of Diff(X ), Jt lies in the
orbit of J to first order in t, so [Jt ] = [J] to first order in t.
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Conclusion

The Zariski tangent space to MX at [J] is the finite-dimensional
complex vector space H1(TX )J , the cohomology group of the
holomorphic vector bundle TX on (X , J). Here Zariski tangent
spaces are defined for schemes and for manifolds (the usual
tangent spaces). In this case the Zariski tangent space of MX at
[J] is first-order deformations of J modulo first-order
diffeomorphisms of X .
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Second order obstructions

Let (X , J) be a compact complex manifold, and η ∈ H1(TX )J .
What are the conditions on η for there to exist a family of complex
structures {Jt : t ∈ (−ε, ε)} with J0 = J,

(
d
dt Jt

)
|t=0 = K , and

[Kβ
ᾱ ] = η?

Write
(

d2

dt2 Jt
)
|t=0 = 2L, so

Jt = J + tK + t2L + O(t3),

and regard Lβᾱ as an element λ of C∞(TX ⊗C Λ0,1X ).
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As for (15.3), we find that

(NJt )
γ

ᾱβ̄
= −t2(K δ

ᾱ∇δK
γ

β̄
− K δ

β̄
∇δKγ

ᾱ)

+ 2it2(∇ᾱLγβ̄ −∇β̄L
γ
ᾱ) + O(t3)

= −t2[κ, κ]γ
ᾱβ̄

+ 2it2(∂̄TXλ)γ
ᾱβ̄

+ O(t3),

(15.4)

where

[ , ] : C∞(TX ⊗C Λ0,kX )× C∞(TX ⊗C Λ0,lX )

−→ C∞(TX ⊗C Λ0,k+lX )

is defined by

[A,B] =
∑
σ∈Sk+l

sign(σ)

(k + l)!

(
Aδᾱσ(1)···ᾱσ(k)

∇δBγᾱσ(k+1)···ᾱσ(k+l)

−Bδᾱσ(1)···ᾱσ(l)
∇δAγᾱσ(l+1)···ᾱσ(k+l)

)
.

The case k = l = 0 is the usual Lie bracket on vector fields.
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Then ∂̄TX [A,B] = [∂̄TXA,B]± [A, ∂̄TXB], so ∂̄TX [κ, κ] = 0 as

∂̄TXκ = 0, and [κ, κ] defines a class
[
[κ, κ]

]
in H2(TX )J . In fact

[, ] extends to [ , ] : Hk(TX )J × H l(TX )J → Hk+l(TX )J , and[
[κ, κ]

]
= [η, η] as [κ] = η. Now (15.4) implies that

[κ, κ] = 2i ∂̄TXλ. Hence
[
[κ, κ]

]
= [η, η] = 0 in H2(TX )J .

That is, [η, η] = 0 is a necessary condition for there to exist L such

that Jt = J + tK + t2L + O(t3) is a family of complex structures

on X up to second order.
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Conclusion

Deformations of J as a complex structure up to diffeomorphism to

first order are given by elements η ∈ H1(TX )J , that is, H1(TX )J is

the Zariski tangent space of MX at [J]. There is a symmetric

bilinear product [ , ] : H1(TX )J × H1(TX )J → H2(TX )J . A

necessary (and in fact sufficient) condition for η ∈ H1(TX )J to

extend to a deformation of J to second order is [η, η] = 0 in

H2(TX )J . We call H2(TX )J the obstruction space of MX at [J].
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16. Deformation theory for compact complex manifolds

Let X be a compact 2n-manifold. As in §15.4, the moduli space of
complex structures on X is

MX
∼=
{
J ∈ C∞

(
TX ⊗ T ∗X

)
:

J2 = − id, NJ = 0
}
/Diff(X ).

Write [J] for J Diff(X ) in MX . We seek to describe MX near [J],
as a topological space, or C-scheme, or complex manifold.
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In §15 we showed that if {Jt : t ∈ (−ε, ε)} is a smooth family of
complex structures on X with J0 = J and K =

(
d
dt Jt

)
|t=0 then

η = [Kβ
ᾱ ] lies in the cohomology group H1(TX )J , which

parametrizes infinitesimal (first-order) deformations of J as a
complex structure up to infinitesimal diffeomorphisms. We call
H1(TX )J the Zariski tangent space to MX at [J].

We also explained that there is a symmetric bilinear product
[ , ] : H1(TX )J × H1(TX )J → H2(TX )J , a generalization of the
usual Lie bracket H0(TX )J × H0(TX )J → H0(TX )J on
holomorphic vector fields. A necessary and sufficient condition for
η ∈ H1(TX )J to extend to a deformation of J up to second order
is that [η, η] = 0 in H2(TX )J . We call H2(TX )J the obstruction
space of MX at [J].

28 / 44 Dominic Joyce, Oxford University Lecture 16: Deformation theory for compact complex manifolds



Introduction to moduli spaces
Deformation theory for compact complex manifolds

The unobstructed case
The obstructed case
Moduli spaces of Riemann surfaces
Moduli of higher-dimensional complex manifolds

16.1. The unobstructed case

Suppose first that H2(TX )J = 0. Then Kodaira, Nirenberg and
Spencer (1958) prove:

Theorem 16.1 (Existence.)

Suppose (X , J) is a compact complex manifold and H2(TX )J = 0.
Then there exists an open neighbourhood U of 0 in H1(TX )J ,
and a smooth family {Jt : t ∈ U} of complex structures on X with
J0 = J, such that the map T0U → H1(TX )J taking

v 7→
[(

(∂vJt)|t=0

)β
ᾱ

]
is the identity map on H1(TX )J .

Furthermore, the Jt depend holomorphically on t, in the sense that
there exists a complex manifold X and a holomorphic submersion
π : X � U with π−1(t) ∼= (X , Jt) for all t ∈ U.
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Thus, if H2(TX )J = 0 then every η ∈ H1(TX )J is the first
derivative of some actual smooth family {Jt : t ∈ (−ε, ε)} of
complex structures on X with J0 = J.
Theorem 16.1 is proved by constructing a power series in t for Jt
formally solving the equation NJt ≡ 0, and showing it converges
near t = 0 in H1(TX )J .
Next, we want to say that the family of Jt in Theorem 16.1
represents all complex structures close to J; that is, that the image
of the map U →MX taking t 7→ [Jt ] contains an open
neighbourhood of [J] in MX .
This property is called completeness of the family; also, the family
is called semiuniversal.
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Kodaira and Spencer (1958) prove:

Theorem 16.2 (Completeness.)

In the situation of Theorem 16.1, suppose u ∈ U, and
{It : t ∈ (−ε, ε)} is a smooth family of complex structures on X
with I0 = Ju. Then there exist 0 < δ 6 ε and a smooth map
φ : (−δ, δ)→ U with φ(0) = u, such that the complex structures It
and Jφ(t) are identified by a diffeomorphism of X , for all t∈(−δ, δ).
Also φ is unique if H0(TX )J = 0 (that is, the family is universal).

The complex structures Jt for t ∈ U may not all be distinct up to
isomorphism. The holomorphic automorphism group Aut(X , J),
which has Lie algebra H0(TX )J , acts on H1(TX )J . We can take U
to be invariant under Aut(X , J). Then we expect Js , Jt to be
equivalent under diffeomorphisms of X iff s, t are in the same orbit
of Aut(X , J). Hence we expect MX near [J] to be identified with
U/Aut(X , J).
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16.2. The obstructed case

Theorems 16.1 and 16.2 were generalized to H2(TX )J 6= 0 by
Kuranishi (1965).

Theorem 16.3

Let (X , J) be a compact complex manifold. Then there exists an
open neighbourhood U of 0 in H1(TX )J and a holomorphic map
Φ : U → H2(TX )J with Φ(t) = [t, t] + O(|t|3) for small t ∈ U, so
that Φ−1(0) is a closed subset of U containing 0. There exists a
family of complex structures {Jt : t ∈ Φ−1(0)} with J0 = J,
depending continuously on t.
Actually, Φ−1(0) has the structure of a complex analytic space,
and Jt depends holomorphically on t in the sense of complex
analytic spaces. That is, there exists a complex analytic space X
and a holomorphic submersion π : X � Φ−1(0) with
π−1(t) ∼= (X , Jt) for all t ∈ Φ−1(0).
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Theorem (Continued)

Versions of Theorem 16.1 and 16.2 apply: the natural map
T0Φ−1(0)→ H1(TX )J is the identity, and the family
{Jt : t ∈ Φ−1(0)} is complete.

Notice how Φ generalizes our second-order obstruction [η, η] = 0
to deforming complex structures.
Again, the Jt for t ∈ Φ−1(0) may not all be distinct up to
isomorphism. We expect to be able to take U to be invariant
under Aut(X , J) and Φ to be equivariant under Aut(X , J), so that
Φ−1(0) is invariant, and then we expect MX near [J] to be
identified with Φ−1(0)/Aut(X , J). Really Φ−1(0) should be a
complex analytic space or a scheme, and Φ−1(0)/Aut(X , J)
should be a stack.
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16.3. Moduli spaces of Riemann surfaces

Let (X , J) be a compact Riemann surface of genus g . Then
dimC X = 1, so H2(TX )J = 0 for dimensional reasons. We can
also compute the dimension of H1(TX )J using §8 and §9.
When g = 0, so X = CP1, we have H0(TX )J = C3 and
H1(TX )J = 0. The complex structure on CP1 has no
deformations, it is rigid .
When g = 1, so X = T 2, we find that H0(TX )J = H1(TX )J = C.
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Let g > 1. By Serre duality

H1(TX )J ∼= H0(T ∗X ⊗ KX )∗J = H0(K 2
X )∗.

KX is positive as c1(KX ) = 2g − 2 > 0, so H1(T ∗X ⊗ KX )∗J = 0
by the Kodaira Vanishing Theorem in §9.2. Thus the
Hirzebruch–Riemann–Roch Theorem in §8.2 gives

dimH1(TX )J = χ(K 2
X )

= degK 2
X + (1− g) rankK 2

X

= 4g − 4 + 1− g = 3g − 3.

Hence

dimH1(TX )J =


0, g = 0,

1, g = 1,

3g − 3, g > 1.

(16.1)
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Let X be a fixed compact, oriented 2-manifold of genus g . There
are two sensible ways to form a moduli space MX of complex
structures on X : up to oriented diffeomorphisms Diff+(X ), or up
to diffeomorphisms isotopic to the identity Diff0(X ). Here
Diff0(X ) is a normal subgroup in Diff+(X ), with discrete quotient

Γ+
g = Diff+(X )/Diff0(X ),

the mapping class group. This gives two different moduli spaces

Rg
∼=
{
J oriented complex structure on X

}
/Diff+(X ),

Tg ∼=
{
J oriented complex structure on X

}
/Diff0(X ),

with Rg
∼= Tg/Γ+

g .
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Here Tg is Teichmüller space. It is a complex manifold of
dimension (16.1), as you expect from Theorems 16.1-16.2.
Elements of Tg are called ‘marked Riemann surfaces’, as an
element of the moduli space Tg is an isomorphism class of genus g
Riemann surfaces (Y , J) ‘marked’ with an isotopy class of
diffeomorphisms X → Y for fixed X . Rg is Riemann’s moduli
space. It is a complex orbifold, with quotient singularities at [J]
representing (X , J) with extra finite symmetry groups.
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16.4. Moduli of higher-dimensional complex manifolds
Moduli of del Pezzo surfaces

A del Pezzo surface is a Fano 2-manifold, that is, a compact
complex 2-manifold (X , J) with KX negative. Such X have Kähler
metrics with positive Ricci curvature. They are well understood.
If X is a surface then contracting vectors TX with 2-forms
Λ2T ∗X = KX gives an isomorphism of holomorphic vector bundles
TX ⊗ KX

∼= T ∗X , so that TX ∼= T ∗X ⊗ K−1
X . Hence

H2(TX )J ∼= H2(T ∗X ⊗ K−1
X )J .

If X is del Pezzo then K−1
X is positive, so H2(T ∗X ⊗K−1

X )J = 0 by
the Kodaira Vanishing Theorem in §9.2, and H2(TX )J = 0. Thus,
deformations of del Pezzo surfaces are unobstructed, and
Theorems 16.1-16.2 apply.
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Moduli of Calabi–Yau manifolds

Now suppose (X , J) is a compact complex manifold, admitting
Kähler metrics, with dimC X = m, and with trivial canonical
bundle KX . Then X has Calabi–Yau metrics g by the Calabi
Conjecture. Choose a nonzero holomorphic section Ω of KX . Then
v 7→ v · Ω defines an isomorphism of holomorphic vector bundles
TX → Λm−1T ∗X . So

Hq(TX ) ∼= Hq(Λm−1T ∗X ) ∼= Hm−1,q(X ).

Thus the Zariski tangent space for deformations of J is
Hm−1,1(X ), and obstruction space Hm−1,2(X ).
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The obstruction space Hm−1,2(X ) may be nonzero – always when
m = 3. But, the (Bogomolov–)Tian–Todorov Theorem says that in
Theorem 16.3, the Kuranishi map Φ is identically zero, so that the
moduli space of deformations of J is locally a complex manifold
isomorphic to Hm−1,1(X ).

Theorem 16.4 (Bogomolov–Tian–Todorov)

Let (X , J) be a compact Kähler m-fold with KX
∼= OX . Then the

universal family of deformations of J is smooth of dimension
hm−1,1(X ).
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Sketch proof of the Bogomolov–Tian–Todorov Theorem

As in §15.4, the second order obstruction to deforming J in
direction η ∈ H1(TX )J is [η, η] = 0 in H2(TX )J , where
[ , ] : H1(TX )J × H1(TX )J → H2(TX )J is a symmetric bilinear
product. We will show that for X Calabi–Yau, [ , ] ≡ 0, so that the
second order obstructions to deforming J vanish, and Φ(t) = O(t3)
in Theorem 16.3. The full proof shows that nth derivatives of Φ
vanish for n = 2, 3, . . . , so that Φ ≡ 0 as Φ is holomorphic.
Let κ, λ ∈ C∞(TX ⊗C Λ0,1X ). Then we defined [κ, λ] in §15.4.
Contracting the TX factor with Ω gives κ · Ω ∈ C∞(Λm−1,1X ),
and similarly for λ, [κ, λ]. A computation by Tian shows that

([κ, λ]) · Ω =

∂
(
κ · (λ · Ω)

)
− ∂(κ · Ω)

Ω
∧ (λ · Ω) + (κ · Ω) ∧ ∂(λ · Ω)

Ω
.

(16.2)

Here κ ·Ω is an (m− 1, 1)-form, so ∂(κ ·Ω) is an (m, 1)-form, and(
∂(κ · Ω)

)
/Ω is a (0, 1)-form.
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Sketch proof of the Bogomolov–Tian–Todorov Theorem

Let η, ζ ∈ H1(TX )J ∼= Hm−1,1(X ). As any class in Hm−1,1(X ) can
be represented by an (m − 1, 1)-form α with ∂α = ∂̄α = 0, we can
choose representatives κ, λ for η, ζ with ∂̄TXκ = ∂̄TXλ = 0 and
∂(κ · Ω) = ∂(λ · Ω) = 0. So (16.2) shows that
([κ, λ]) ·Ω = ∂

(
κ · (λ ·Ω)

)
is ∂-exact, and thus [κ, λ] is ∂̄TX -exact.

Hence [η, ζ] =
[
[κ, λ]

]
= 0 in H2(TX )J . So

[ , ] : H1(TX )J × H1(TX )J → H2(TX )J is zero.
An explanation for the B–T–T theorem is that singularities of
moduli spaces are not actually caused by obstructions per se, but
by the Zariski tangent spaces jumping in dimension from point to
point. In the Calabi–Yau case the Zariski tangent space is
Hm−1,1(X ), which is a chunk of de Rham cohomology, and its
dimension is fixed topologically (e.g. when m = 2 it is b2(X )− 2,
and when m = 3 it is 1

2b
3(X )− 1). So the tangent spaces cannot

jump in dimension, and the moduli spaces are smooth.
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The period map

Let X be a Calabi–Yau m-fold. Define the moduli space of
complex structures on X by

MX
∼=
{
J oriented C–Y complex structure on X

}
/Diff0(X ).

The B–T–T Theorem essentially says MX is a complex manifold
of dimension hm−1,1(X ), though it may not be Hausdorff.
Define the period map

Π :MX → P
(
Hm(X ;C)

)
by Π : [J] 7→ Hm,0(X )J . One can show that Π is a holomorphic
immersion, that is, locally it identifies MX with a complex
submanifold of P

(
Hm(X ;C)

)
. Our isomorphism

T[J]MX
∼= Hm−1,1(X )J depended on a choice of [Ω] in Hm,0(X )J ;

without this choice T[J]MX
∼= Hm−1,1(X )J ⊗ Hm,0(X )∗J , which is

a vector subspace of THm,0(X )JP
(
Hm(X ;C)

)
.
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In good cases one can describe the image of Π explicitly, and so
understand MX . For example, when m = 2 (the moduli space of
K3 surfaces), classes 〈θ〉 ∈ Π(MX ) must satisfy θ ∪ θ = 0 and
θ ∪ θ̄ > 0 in H4(X ;C), and Π(MX ) is the complement of certain
hyperplanes in the set of such 〈θ〉.
When m = 3, the intersection form ∪ makes H3(X ;C) into a
complex symplectic vector space, and P

(
H3(X ;C)

)
into a complex

contact manifold. The image Π(MX ) is a complex Legendrian
submanifold (the projectivization of a complex Lagrangian cone in
H3(X ;C)).
Mirror Symmetry gives a conjectural power series expansion for
Π(MX ) near a singular point in the moduli space in terms of the
Gromov–Witten invariants of a ‘mirror’ Calabi–Yau 3-fold X̌ .
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