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4 CONTENTS

Introduction

These notes, based on a graduate course I gave at Hamburg University in 2003, are intended to
students having basic knowledges of differential geometry. I assume, in particular, that the reader
is familiar with following topics:

e differential manifolds, tensors, Lie groups;

e principal fibre bundles, vector bundles, connexions, holonomy groups;

e Riemannian metrics, de Rham decomposition theorem, Levi—-Civita connexion, Killing
vector fields.

This background material is well covered in the classical literature, and can be found for instance
in [8], Ch. 1-4.

The main purpose of these notes is to provide a quick and accessible introduction to different
aspects of Kahler geometry. They should hopefully be useful for graduate students in mathematics
and theoretical physics. The text is self-contained with a few notable exceptions — the Newlander—
Nirenberg theorem, the Hodge theorem, the Calabi conjecture, the Hirzebruch-Riemann—Roch
formula, the Cheeger—-Gromoll theorem and the Kodaira embedding theorem. I considered that
including the proofs of these results would have add too much technicality in the presentation
and would have doubled the volume of the text without bringing essentially new insights to our
objects of interest.

The text is organized as follows. In the first part I quickly introduce complex manifolds, and in
Part 2 I define Kahler manifolds from the point of view of Riemannian geometry. Most of the
remaining material concerns compact manifolds. In Part 3 I review Hodge and Dolbeault theories,
and give a simple way of deriving the famous Kahler identities. Part 4 is devoted to the Calabi
conjecture and in Part 5 I obtain several vanishing results using Weitzenbock techniques. Finally,
in Part 6, different aspects of Calabi—Yau manifolds are studied using techniques from algebraic
geometry.

Most of the sections end up with a series of exercises whose levels of difficulty range from low to
medium.



Part 1

Complex geometry



1. Complex structures and holomorphic maps

1.1. Preliminaries. Kéhler manifolds may be considered as special Riemannian manifolds.
Besides the Riemannian structure, they also have compatible symplectic and complex structures.
Here are a few examples of Kahler manifolds:

(C™, (,)), where { , ) denotes the Hermitian metric ds*> = Re(}_ dz;dz;);

any oriented 2-dimensional Riemannian manifold;

the complex projective space (CP™, F'S) endowed with the Fubini-Study metric;

every projective manifold, that is, submanifold of CP™ defined by homogeneous polyno-
mials in C™*!,

We give here a short definition, which will be detailed later.

DEFINITION 1.1. A Kdbhler structure on a Riemannian manifold (M™,g) is given by a 2—form
and a field of endomorphisms of the tangent bundle J satisfying the following

e algebraic conditions
a) J is an almost complex structure: J? = —Id.
b) g(X,Y)=9g(JX,JY) VXY €TM.
c) UX,Y)=g(JX,Y).
e analytic conditions
d) the 2—form Q is symplectic: dS) = 0.
e) J is integrable in the sense that its Nijenhuis tensor vanishes (see (4) below).

Condition a) requires the real dimension of M to be even. Obviously, given the metric and one of
the tensors J and (2, we can immediately recover the other one by the formula c).

Kéhler structures were introduced by Erich Kéhler in his article [7] with the following motivation.
Given any Hermitian metric A on a complex manifold, we can express the fundamental two—form
Q) in local holomorphic coordinates as follows:

Q=i hypdza Adzg,

where

o 0
hCl{B o h(a—zc‘{’ a—%).

He then noticed that the condition d2 = 0 is equivalent to the local existence of some function
such that
0u
hog = —.
020,073

In other words, the whole metric tensor is defined by a unique function! This remarkable (be-
merkenswert) property of the metric allows one to obtain simple explicit expressions for the
Christoffel symbols and the Ricci and curvature tensors, and “a long list of miracles occur then”.
The function w is called Kdhler potential.
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There is another remarkable property of Kahler metrics, which, curiously, Kéhler himself did not
seem to have noticed. Recall that every point x in a Riemannian manifold has a local coordinate
system x; such that the metric osculates to the Euclidean metric to the order 2 at x. These
special coordinate systems are the normal coordinates around each point. Now, on a complex
manifold with Hermitian metric, the existence of normal holomorphic coordinates around each
point is equivalent to the metric being Kéhler!

Kahler manifolds have found many applications in various domains like Differential Geometry,
Complex Analysis, Algebraic Geometry or Theoretical Physics. To illustrate their importance let
us make the following remark. With two exceptions (the so—called Joyce manifolds in dimensions
7 and 8), the only known compact examples of manifolds satisfying Einstein’s equations

Ras =0

(Ricci-flat in modern language) are constructed on Kéahler manifolds. Generic Ricci-flat Kéahler
manifolds, also called Calabi—Yau manifolds, will be studied later on in these notes.

1.2. Holomorphic functions. A function F' = f +1ig: U C C — C is called holomorphic if
it satisfies the Cauchy—Riemann equations:
af 9y _

of Jg
or Oy and oy ax_o'

Let j denote the endomorphism of R? corresponding to the multiplication by i on C via the
identification of R? with C given by z = x + iy + (x,y). The endomorphism j can be expressed
in the canonical base as

. (0 =1

7=\ 0 )

The differential of F' (viewed as real function F : U C R* — R?) is of course the linear map

of  of

or Oy
F, =

99 9y

or Oy

Then it is easy to check that the Cauchy-Riemann relations are equivalent to the commutation
relation jF, = F.,j.

Similarly, we identify C™ with R*™ via
(z1, .oy zm) = (T1 4+ W1, o T+ Ym) — (T Ty Yty -+ -5 Ym) s

and denote by j,, the endomorphism of R?™ corresponding to the multiplication by 7 on C™:

(0 —I,

A function F : U C C" — C™ is then holomorphic if and only if the differential F, of F' as real
map F : R?™ — R?™ satisfies j,, Fy = Fljn.



1.3. Complex manifolds. A complex manifold of complex dimension m is a topological
space M with an open covering U such that for every point x € M there exists U € U containing
2 and a homeomorphism ¢y : U — U C C™, such that for every intersecting U,V € U, the map
between open sets of C™

Puv = du o ¢y
is holomorphic. A pair (U, ¢y) is called a chart and the collection of all charts is called a holo-
morphic structure.

Important example. The complex projective space CP™ can be defined as the set of complex lines
of C™*! (a line is a vector subspace of dimension one). If we define the equivalence relation ~ on
Cm™+t — {0} by

(205« s 2m) ~ (@20, ..., Qz), VaeCr,

then CP™ = C™*! —{0}/ ~ . The equivalence class of (2o, . .. z,,) Will be denoted by [2g : ... : 2,,].
Consider the open cover U;, i = 0, ..., m of CP™ defined by

Ui II{[Z(]Z...IZm] ‘ ZZ%O}
and the maps ¢; : U; — C™,

di(lzo: ... 0 2 ]):(@ U AR Z—m>

It is then an easy exercise to compute

) 3 PRI goee ey

(bio(bjl(wla"'uwm):( PR 9 9 )

w1 Wi—1 Wiyl w; 1 wjp wm)
)

which is obviously holomorphic on its domain of definition.

A function F' : M — C is called holomorphic if F o ¢, is holomorphic for every U € Y. This
property is local. To check it in the neighborhood of a point x it is enough to check it for a single
U € U containing z.

The most important object on a complex manifold from the differential geometric point of view is
the almost complex structure J, which is a field of endomorphisms of the tangent bundle defined
as follows. For every X € T, M, choose U € U containing = and define

Ju(X) = (¢v):" 0 jn © (¢0)(X).

If we take some other V' € U containing z, then ¢y = ¢y oy is holomorphic, and ¢y = dyyogy,
SO

J(X) = (¢v): oo (dv)u(X) = (dv), " 0 n o (pvv)s 0 (du)(X)
= (¢v)*_1 0 (dyy)s 0 jn 0 (dr)«(X) = (¢U)*_1 0 Jn © (¢v)+(X)
Ju(X),

thus showing that J;; does not depend on U and their collection is a well-defined tensor J on M.
This tensor clearly satisfies J? = —Id.
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DEFINITION 1.2. A (1,1)-tensor J on a differential manifold M satisfying J*> = —Id is called an
almost complez structure. The pair (M, J) is then referred to as almost complex manifold.

A complex manifold is thus in a canonical way an almost complex manifold. The converse is only
true under some integrability condition (see Theorem 1.4 below).

1.4. The complexified tangent bundle. Let (M, J) be an almost complex manifold. We
would like to diagonalize the endomorphism J. In order to do so, we have to complexify the
tangent space. Define

TM® .= TM @ C.

We extend all real endomorphisms and differential operators from TM to TM® by C-linearity.
Let TVOM (resp. T%'M) denote the eigenbundle of TMC corresponding to the eigenvalue i (resp.
—i) of J. The following algebraic lemma is an easy exercise.

LEMMA 1.3. One has
TWYM={X-iJX | X e TM}, TY'M ={X +iJX | X € TM}.
and TMC® = TYOM & T M.

The famous Newlander—Nirenberg theorem can be stated as follows:

THEOREM 1.4. Let (M, J) be an almost complex manifold. The almost complex structure J comes
from a holomorphic structure if and only if the distribution T%'M is integrable.

Proor. We will only prove here the “only if” part. The interested reader can find the proof
of the hard part for example in [5].

Suppose that J comes from a holomorphic structure on M. Consider a local chart (U, ¢y) and let
Zo = To + 1Ys be the a—th component of ¢p. If {ey, ..., ea,} denotes the standard basis of R*™,
we have by definition:

0 0

o (¢v), ' (ea)  and e (¢0): " (ema)-
Moreover, j,(€4) = €mia, SO we obtain directly from the definition
0 0
1 Jl =) = ——.
@) <0xa) o

We now make the following notations

o (o 9\ o _1(o .o
020~ 2\ 0za Oy )’ 0%z, = 2\ 0xa Oy )’

From (1) we obtain immediately that a% and a% are local sections of THYM and T%!'M respec-

tively. They form moreover a local basis in each point of U. Let now Z and W be two local
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sections of 7'M and write Z = Y Z, 8, W =W, 8, . A direct calculation then gives
oW 0 0Zg 0
Zg, Wa
Z 0z, 023 Z 9z, 025
a,B=1 a,f=1

which is clearly a local section of T%!1M. O

An almost complex structure arising from a holomorphic structure is called a complex structure.

REMARK. The existence of local coordinates satisfying (1) is actually the key point of the hard
part of the theorem. Once we have such coordinates, it is easy to show that the transition functions
are holomorphic: suppose that u,, v, is another local system of coordinates, satisfying

0 0
—=J—.
Vg Uy
We then have

8u5 61}5
81:(1 Z 01, 8uﬁ Z 01, 81}5

and
0 8uﬁ 8’0@

3 — .
() 8ya aya 8u5 Z 8ya 82}5
Applying J to (2) and comparing to (3) yields

8uﬁ 61}5 aUﬁ 81}5
s _ T8 d o _ U8
0rq  OYq a e or,’

thus showing that the transition functions are holomorphic.

1.5. Exercises.

(1) Prove Lemma 1.3.

(2) Let A+iB € Gl,,(C). Compute the product

I, O A B I, O
—ily, I,) \—B A)\il, I,

and use this computation to prove that for every invertible matrix A+iB € Gl,,(C), the
determinant of the real 2m x 2m matrix

(%5 3)

(3) Show that every almost complex manifold is orientable.

is strictly positive.
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(4) Let a@ > 1 be some real number. Let I' be the subgroup of Gl,,(C) generated by al,,.
Show that I' acts freely and properly discontinuously on C™ —{0}. Use this to prove that
St x §?m=1 carries a complex structure.
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2. Holomorphic forms and vector fields

2.1. Decomposition of the (complexified) exterior bundle. Let (M, J) be an almost
complex manifold. We now turn our attention to exterior forms and introduce the complexified
exterior bundle Az M = A*M ®g C. The sections of Az M can be viewed as complex—valued forms
or as formal sums w + i7, where w and 7 are usual real forms on M.

We define the following two sub-bundles of ALM:

AOM = {6 c A\fM | £(Z) =0V Z € T™' M}
and

AMM :={e e \gM | £(Z) =0V Z € T M},

The sections of these sub—bundles are called forms of type (1,0) or forms of type (0,1) respectively.
Similarly to Lemma 1.3 we have

LEMMA 2.1. One has
AM ={w—iwoJ |we AN M}, A M ={w+tivoJ|we A M}.
and AEM = AYOM @ A M.

Let us denote the k—th exterior power of A0 (resp. A%!) by A*O (resp. A%*) and let AP denote
the tensor product AP°®A%4. The exterior power of a direct sum of vector spaces can be described
as follows

ANMESF)~al NE® ANTF
Using Lemma 2.1 we then get

AEM ~ @, ) APIM.

Sections of AP?M are called forms of type (p, q). It is easy to check that a complex—valued k—form
w is a section of A*OM if and only if Z sw = 0 for all Z € T%'M. More generally, a k—form is
a section of AP9M if and only if it vanishes whenever applied to p + 1 vectors from THM or to
q + 1 vectors from T%' M.

If J is a complex structure, we can describe these spaces in terms of a local coordinate system.
Let z, = x4 + 1y, be the a—th coordinate of some ¢y. Extending the exterior derivative on
functions by C-linearity we get complex—valued forms dz, = dx, + idy, and dz, = dx, — idy,.
Then {dz,...,dz,} and {dz,...,dz,} are local basis for A°M and A%'M respectively, and a
local basis for APYM is given by

{dZil/\.../\dZip/\dfjl/\.../\dzj‘q, 1 <... <ip, jl <... <]q}
To every almost complex structure J one can associate a (2,1)-tensor N7 called the Nijenhuis
tensor, satisfying
(4) N/ (X,)Y)=[X, Y]+ J[JX,Y]+ J[X,JY] - [JX, JY], VXY eC®(TM).

PROPOSITION 2.2. Let J be an almost complex structure on M>™. The following statements are
equivalent:
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(a) J is a complex structure.

(b) T®*M 1is integrable.

(c) dC(AMM) C C®(A*°M @ AVIM).

(d) dC>®(APIM) C C(APTIM @ APITIM) YV 0 < p,q < m.
(e) N7 =0.

PROOF. (a) <= (b) is given by Theorem 1.4.

(b) <= (c) Let w be a section of AY°M. The A%?M-component of dw vanishes if and only if
dw(Z,W)=0V Z,W € T M. Extend Z and W to local sections of T%'M and write

dw(Z,W) = Z(w(W)) — W(w(Z)) — w([Z,W]) = —w([Z, W]).
Thus

dw(Z,W)=0 Y ZW T M, Vwe A"YM
— w(Z,W])=0 VZWecT"M, VweA"'M
— [Z,W])eT"M Y Z,WecT" M.

(¢) <= (d) One implication is obvious. Suppose now that (c) holds. By conjugation we get
immediately dC®(A%'M) C C®(A%?M & A M). Tt is then enough to apply Leibniz’ rule to any
section of AP9M, locally written as a sum of decomposable elements wy A ... Aw, ATy AL AT,
where w; € C®(AYYM) and 7; € C*°(A*'M).

(b) <= (e) Let X,Y € C>(T'M) be local vector fields and let Z denote the bracket Z :=
(X +4iJX,Y +iJY]. An easy calculation gives Z —iJZ = N/(X|Y) — iJN’/(X,Y). Thus
Z €T"'"M <= N7(X,Y) =0, which proves that T%!M is integrable if and only if N =0 O

2.2. Holomorphic objects on complex manifolds. In this section (M, J) will denote
a complex manifold of complex dimension m. We start with the following characterization of
holomorphic functions.

LEMMA 2.3. Let f : M — C be a smooth complez—valued function on M. The following assertions
are equivalent:

(1) f is holomorphic.
(2) Z(f)=0 ¥ Z € TO'M.
(3) df is a form of type (1,0).

PROOF. (2) <= (3). df € "M < df(Z) =0V Z € T"M << Z(f)=0 V Z €
T M.

(1) <= (3). The function f is holomorphic if and only if f o ¢ is holomorphic for every
holomorphic chart (U, ¢y), which is equivalent to f. o (¢y);! 0 jm = if. o (¢r); !, that is, f. o
J = if.. This last equation just means that for every real vector X, df(JX) = idf(X), hence
idf (X +1JX) =0 V X € TM, which is equivalent to df € AYYM. O
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Using Proposition 2.2, for every fixed (p, ¢) we define the differential operators 9 : C*(APIM) —
C®(APTHIN) and O : C®°(APIM) — C(APITIM) by d = 9 + 0.

LEMMA 2.4. The following identities hold:
=0, =0, 90+dd=0.

PROOF. We have 0 = d? = (0 +0)% = 82 + 9>+ (90 + 09), and the three operators in the last
term take values in different sub—bundles. O

DEFINITION 2.5. A wvector field Z in C®(T*°M) is called holomorphic if Z(f) is holomorphic for
every locally defined holomorphic function f. A p-form w of type (p,0) is called holomorphic if
Ow = 0.

DEFINITION 2.6. A real vector field X is called real holomorphic if X —iJX is a holomorphic
vector field.

LEMMA 2.7. Let X be a real vector field on a complex manifold (M, J). The following assertions
are equivalent:

e X 1is real holomorphic
L] ij =0

e The flow of X consists of holomorphic transformations of M.

Although not explicitly stated, the reader might have guessed that a map f : (M, J;) — (N, Js)
between two complex manifolds is called holomorphic if its differential commutes with the complex
structures at each point: f, o J; = Js o f,.

PRrROOF. The equivalence of the last two assertions is tautological. In order to prove the
equivalence of the first two assertions, we first notice that a complex vector field Z is of type
(0,1) if and only if Z(f) = 0 for every locally defined holomorphic function f. Suppose that X is
real holomorphic and let Y be an arbitrary vector field and f a local holomorphic function. As
(X +iJX)f =0, we have (X —iJX)f = 2X(f). By definition X (f) is then holomorphic so by
Lemma 2.3 we get (Y +4JY)(X(f)) = 0and (Y +4JY)(f) = 0. This implies [Y +iJY, X](f) = 0.
This holds for every holomorphic f so [Y+iJY, X]| has to be of type (0,1), that is [JY, X| = J[Y, X].
Hence LxJ(Y) = Lx(JY)—J(LxY) = [X,JY]—J[X,Y] = 0 for all vector fields Y, i.e. LxJ = 0.

The converse is similar and left to the reader. O

We close this section with the following important result:

PROPOSITION 2.8. (The local i90-Lemma). Let w € AY'M N A2M be a real 2-form of type
(1,1) on a complex manifold M. Then w is closed if and only if every point x € M has an open
neighborhood U such that w|y = i00u for some real function u on U.

PROOF. One implication is clear from Lemma 2.4:

d(i00) = i(0 + 0)00 = (0?0 — 00*) = 0.
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The other implication is more delicate and needs the following counterpart of the Poincaré Lemma
(see [2] p. 25 for a proof):

LEMMA 2.9. 9-Poincaré Lemma. A d-closed (0,1)-form is locally O—ezact.

Let w be a closed real form of type (1,1). From the Poincaré Lemma, there exists locally a 1-form
7 with dr = w. Let 7 = 7% 4+ 7%! be the decomposition of 7 in forms of type (1,0) and (0,1).
Clearly, 710 = 701, Comparing types in the equality

w=dr = 0" + (07°! + oY) + ort?,
we get 07! = 0 and w = (97%'+97°). The 0 Poincaré Lemma yields a local function f such that

701 = 9f. By conjugation we get 710 = 9f, hence w = (97" +9710) = 90 f+00f = i00(2Im(f)),
and the Proposition follows, with u := 2Im(f). O

2.3. Exercises.

(1) Prove Lemma 2.1.
(2) Prove that the object defined by formula (4) is indeed a tensor.

(3) Show that a almost complex structure on a real 2—dimensional manifold is always inte-
grable.

(4) Show that {dz,} and {%} are dual basis of A'°M and T'°M at each point of the local
coordinate system.

(5) Show that a 2—form w is of type (1,1) ifand only if w(X,Y) = w(JX,JY), VX,Y € TM.

(6) Let M be a complex manifold with local holomorphic coordinates {z,}.
e Prove that a local vector field of type (1,0) Z = Za% is holomorphic if and only
if Z,, are holomorphic functions.
e Prove that a local form of type (1,0) w = > wadz, is holomorphic if and only if w,
are holomorphic functions.

(7) If X is a real holomorphic vector field on a complex manifold, prove that JX has the
same property.

(8) Prove the converse in Lemma 2.7.
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(9) Show that in every local coordinate system one has
of = Z 8—fdza and of = Z a—;fdéa.

(10) Let N be a manifold, and let 7' be a complex sub-bundle of ALN such that T & A'N =
ALN. Show that there exists a unique almost complex structure J on N such that
T = AYYN with respect to J.
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3. Complex and holomorphic vector bundles

3.1. Holomorphic vector bundles. Let M be a complex manifold and let 7 : E — M be
a complex vector bundle over M (i.e. each fiber 771(z) is a complex vector space). E is called
holomorphic vector bundle if there exists a trivialization with holomorphic transition functions.
More precisely, there exists an open cover U of M and for each U € U a diffeomorphism ¢y :

7 YU) — U x C* such that

e the following diagram commutes:

U —2 7 x CF

e for every intersecting U and V one has ¢y oty (z,v) = (z, guv (x)v), where gyy : UNV —
Gl,(C) ¢ C¥ are holomorphic functions.

EXAMPLES. 1. The tangent bundle of a complex manifold M?™ is holomorphic. To see this, take
a holomorphic atlas (U, ¢yy) on M and define ¢y : TM|y — U x C™ by ¢y(X,) = (z, (¢v)«(X)).
The transition functions gy = (¢r)« © (¢y); ! are then clearly holomorphic.

2. The cotangent bundle, and more generally the bundles A»°M are holomorphic. Indeed, using
again a holomorphic atlas of the manifold one can trivialize locally AP°M and the chain rule

0z 024,
Azay N ... Ndz,, = L —dwg, A... Adwg
’ BIZBP awﬁl awﬁp ’

shows that the transition functions are holomorphic.

For every holomorphic bundle E one defines the bundles AP4E := APIM ® E of E—valued forms
on M of type (p,q) and the d-operator 0 : C*(APIE) — C®(AP9*+!E) in the following way. If a
section o of AP4(FE) is given by 0 = (w1, ...,ws) in some local trivialization (where w; are local
(p, q)—forms), we define do := (Owy, ..., wy). Suppose that o is written o = (7, ..., 7;) in some
other trivialization of E. Then one has 7; = ) gjpwy for some holomorphic functions g, thus
573 => gjkéwk, showing that o does not depend on the chosen trivialization. By construction
one has 9> = 0 and O satisfies the Leibniz rule:

Owho)=(0w) Ao+ (=1)"wA (Do),  VweCl*(AMM), 0 € C(AE).
Notice that the bundles A”?M are not in general holomorphic bundles for ¢ # 0.

3.2. Holomorphic structures. An operator 0 : C*(APYE) — C®(AP**1E) on a complex
vector bundle E satisfying the Leibniz rule is called a pseudo—holomorphic structure. If, moreover,
0? = 0, then 0 is called a holomorphic structure.
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A section ¢ in a pseudo-holomorphic vector bundle (E,d) is called holomorphic if do = 0.

LEMMA 3.1. A pseudo-holomorphic vector bundle (E,0) of rank k is holomorphic if and only if
each x € M has an open neighborhood U and k holomorphic sections o; of E over U such that
{oi(z)} form a basis of E, (and hence on some neighborhood of x).

PROOF. If F is holomorphic, one can define for every local holomorphic trivialization (U, ¥y)
a local basis of holomorphic sections by o;(z) := ;' (z,¢;), V 2 € U. Conversely, every local
basis of holomorphic sections defines a local trivialization of E, and if {o;} and {&;} are two such
holomorphic basis, we can write o; = > g;;6;, which immediately yields (applying d and using
Leibniz’ rule) that dg;; = 0, hence the transition functions are holomorphic. O

THEOREM 3.2. A complex vector bundle E is holomorphic if and only if it has a holomorphic
structure 0.

Proor. The “only if” part follows directly from the discussion above. Suppose, conversely,
that E is a complex bundle over M of rank k with holomorphic structure 0 satisfying Leibniz’
rule and 0> = 0. In order to show that E is holomorphic, it is enough to show, using Lemma
3.1, that one can trivialize £ around each x € M by holomorphic sections. Let {oy,...,0x} be
local sections of E which form a basis of E over some open set U containing x. We define local
(0,1)-forms 7;; on U by the formula

k
80'2‘: E Tij®0j-
Jj=1

The condition 9% = 0, together with Leibniz’ rule, yields

k k
0 = 520'i = Zéﬂ'j@(fj — ZTil/\le®0j7
j=1

=1

hence

k
(5) 57’1']‘:27'2‘1/\7'1]‘, \V/ISZ,]SI{J

=1

From now on we will use the summation convention on repeating indexes. Suppose one can find

amap f: U — Gl(C), f = (fi;) such that
(6) 0=0fy;+ famj, V1<i,j<k,

for some open subset U’ of U containing x. It is then easy to check that the local sections s; of
E over U’ defined by s; := fj0; are holomorphic:

58]‘ = 5fjl & (] + ferrl & o] = 0.

The theorem thus follows from the next lemma. O



3. COMPLEX AND HOLOMORPHIC VECTOR BUNDLES 19

LEMMA 3.3. Suppose that T := (7;;) is a gl,(C)~valued (0,1)—form on U satisfying O =T AT, or
equivalently (5). Then for every x € U there exists some open subset U’ of U containing x and a

map f: U — Gl(C), f = (fi;) such that Of + f1 =0, or equivalently such that (6) holds.
p f j q Y

PROOF. The main idea is to define an almost complex structure locally on U x C* using 7, to
show that its integrability is equivalent to (5), and finally to obtain f as the matrix of some frame
defined by 7 in terms of holomorphic coordinates given by the theorem of Newlander—Nirenberg.

We denote by N the product U x C*. We may suppose that U is an open subset of C™ with
holomorphic coordinates z, and denote by w; the coordinates in CF.

It is an easy exercise to check that any complement 7' of A'N in the complexified bundle ALN of
some manifold N2, with i7" = T, defines an almost complex structure on N, such that T becomes
the space of (1,0)—forms on V.

Consider the sub-bundle T of A'N ® C generated by the 1-forms

{dzo, dw; —myw; | 1 <a<m, 1 <i<k}.

We claim that the almost complex structure induced on N by 7' is integrable. By Proposition
2.2, we have to show that dC>(T) C C>®(T A ALN). Tt is enough to check this on the local basis
defining T'. Clearly d(dz,) = 0 and from (5) we get

d(dwl — mwl) = —Omwl — 57’2‘121]1 + Til A\ dwl
= —0mw; — Tis N\ TqW; + Tis A dwg

= —0myw + Tis A (dws — Tqwy),

which clearly is a section of C*°(T' A ALN). We now use the Newlander-Nirenberg theorem and
complete the family {z,} to a local holomorphic coordinate system {z,,w;} on some smaller
neighborhood U’ of x. Since du; are sections of T', we can find functions Fj; and Fj,, 1 <i,l < k,
1 < «a < m such that

du; = F;(dw; — Tigwy) + Fladz,.
We apply the exterior derivative to this system and get
0 = dF; A (dw; — yowy) + Fi(—drpwy, + Tip A dwy) + dFjo A dzg,.
We evaluate this last equality for w; = 0, and get
(7) 0 =dFy(z,0) A dwg + Fii(2,0)Ti A dwy, + dF o A dzg.

If we denote fi(z) := Fii(z,0), then the A% U'—part of dFj(2,0) is just Ofy,. Therefore, the
vanishing of the A%*U’" @ AL°C*—components of (7) just reads

0=0fu + fuTix-
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3.3. The canonical bundle of CP™. For a complex manifold (M?™,J), the complex line
bundle K,; := A™M is called the canonical bundle of M. We already noticed that K,; has a
holomorphic structure.

On the complex projective space there is some distinguished holomorphic line bundle called the
tautological line bundle. It is defined as the complex line bundle 7 : L — CP™ whose fiber Ly
over some point [z] € CP™ is the complex line < z > in C™*1.

We consider the canonical holomorphic charts (U,, ¢,) on CP™ and the local trivializations 1), :
71U, — U, x C of L defined by ¥,([z],w) = ([2],ws). Tt is an easy exercise to compute the
transition functions:

ZOé

(N owgl([Z],)\) = ([2], gap([2])A), where gos([2]) = %,

which are clearly holomorphic. The aim of this subsection is to prove the following

PROPOSITION 3.4. The canonical bundle of CP™ 1is isomorphic to the m + 15t power of the
tautological bundle.

PROOF. A trivialization for p : A™°CP™ — CP™ is given by (¢%)~' : p~'U, — U, x A™C™,
so the transition functions are hag = (¢})" o (¢5). Let now w = dw;y A ... A dw,, be the
canonical generator of A™C™. We introduce holomorphic coordinates on U, N Up: a; := Zz—a for
i€{0,...m} —{a} and b; := = fori € {0,...m} — {G}. Then

or(w)=dag N ... Ndag—1 Ndags1 N ... \day,

and
gbg(w) =dby A\ ... Ndbg_1 Ndbgy1 A ... A dby,.
Therefore we can write

(8) dbg A ... Ndbg_1 Adbgyr N ... ANdby = hogdag A ... A\ dag—1 Ndagir Ao A day,.

On the other hand, for every ¢ # «,3 we have a; = bjag and agb, = 1. This shows that
da; = apgdb; + b;dag for i # «, f and dag = —b%dba = —a%dba, and an easy algebraic computation
then yields

dag A ... Adag_y Adagir A ... Aday, = (=1)*Paf ™ dbg A ... Adbg_y Adbgiy A ... A dby,.
Using (8) we thus see that the transition functions are given by

P m—+1
baa = (-1t = (1 (22

~B

Finally, denoting ¢, := (—1)® we have cohagc;' = gl ', which proves that

KCPm ~ Lm+1 .
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(1)

(2)
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Exercises.

Prove that any holomorphic function on a compact manifold f : M — C is constant.
Hint: use the maximum principle.

Let E — M be a rank k complex vector bundle whose transition functions with respect
to some open cover {U,} of M are g,3. Show that a section ¢ : M — E of E can be
identified with a collection {0} of smooth maps o, : U, — CF satisfying o, = Jap03 ON

U, N Us.

Let tE — M be a complex vector bundle over a complex manifold M. Prove that E has
a holomorphic structure if and only if there exists a complex structure on £ as manifold,
such that the projection 7 is a holomorphic map.

The tautological line bundle. Let L be the complex line bundle 7 : L. — CP™ whose fiber
Ly,; over some point [z] € CP™ is the complex line < z > in C™*!. Prove that E is a
holomorphic line bundle. Hint: Use the local trivializations 1, : 771U, — U, x C defined

by a([z], w) = ([z], wa).
Show that the tautological line bundle L has no non—trivial holomorphic sections.

The hyperplane line bundle. Let H := L* be the dual of L. Thus, the fiber of H over
some point [z] € CP™ is the set of linear maps < z >— C. Find local trivializations for
H with holomorphic transition functions. Find the dimension of the space of holomorphic
sections of H.






Part 2

Hermitian and Kahler structures



4. Hermitian bundles

4.1. Connections on complex vector bundles. Let M be a differentiable manifold (not
necessarily complex) and let F — M be a complex vector bundle over M.

DEFINITION 4.1. A (C-linear) connection on a E is a C-linear differential operator V : C*(E) —
C>®(AY(E)) satisfying the Leibniz rule

V(fo)=df @ o+ fVo, Y feC>(M).

One can extend any connection to the bundles of EF-valued p—forms on M by
Viw®o) =dw®o+ (—1)’w A Vo,

where the wedge product has to be understood as

wAVo ::Zw/\e’;@)veia
i=1
for any local basis {e;} of T'M with dual basis {e}.
The curvature of V is the End(E)-valued 2—form RV defined by
RY(0) :=V (Vo)) VoecCE).
To check that this is indeed tensorial, we can write:
Vi(fo)=V(df @ c + fVo)=d*f®@c —df NVo+df NV + fVie = V0.
More explicitly, if {01, ...,0x} are local sections of E which form a basis of each fiber over some
open set U, we define the connection forms w;; € A*(U) (relative to the choice of the base) by
VO'Z‘ = Wij & gj.
We define the two—forms Ry by
RV(O'Z') = RZ X 04,
and compute
R @ 0; = RY(0:) = V(wyj ® 0;) = (dwij) ® 0 — wis A wyj @ 05,

showing that
(9) RZ == dwij — Wik A wkj.

4.2. Hermitian structures and connections. Let £ — M be a complex rank £ bundle

over some manifold M. We do not assume for the moment that M has an almost complex
structure.

DEFINITION 4.2. A Hermitian structure H on E is a smooth field of Hermitian products on the
fibers of E, that is, for everyx € M, H : E, x E, — C satisfies

o H(u,v) is C-linear in u for every v € E,.
o H(u,v) = H(v,u) Yu,vée€E,.




4. HERMITIAN BUNDLES 25

o H(u,u) >0 Yu#0.

e H(u,v) is a smooth function on M for every smooth sections u,v of E.

It is clear from the above conditions that H is C—anti-linear in the second variable. The third
condition shows that H is non—degenerate. In fact, it is quite useful to think to H as to a
C—anti-linear isomorphism H : £ — E*.

Every rank k£ complex vector bundle E admits Hermitian structures. To see this, just take a
trivialization (U;,1;) of E and a partition of the unity f; subordinate to the open cover {U;}
of M. For every x € U, let (H;), denote the pull-back of the Hermitian metric on C* by the
C-linear map 9;|g,. Then H := )" f;H; is a well-defined Hermitian structure on F.

Suppose now that M is a complex manifold. Consider the projections 7* : A'(F) — AY(F)
and 7% : AYE) — A®Y(E). For every connection V on E, one can consider its (1,0) and
(0,1)—components V10 := 7100V and V%! := 7% 0 V. From Proposition 2.2, we can extend
these operators to V¥ : C*(AP4(E)) — C*®(APT4(E)) and V%! : C*(AP4(E)) — C®(APIT(E))
satisfying the Leibniz rule:
VH0Wweo)=0w®o+ (=1 AV, Vi w®o)=0w® o+ (=1)w AV,

for all w € C*(AP1M), o € C*(E). Of course, V%! is a pseudo-holomorphic structure on E for
every connection V.

For every section o of E one can write
RV<O') — V2U — (vl,o + V0’1)2(0) — (v1,0>2<0_) + (v0,1>2<0_) + (vl,ovo,l + v0,1v1,0)<0_)7
so the A%2 part of the curvature is given by
(RV)O,2 — (V0’1)2.

Theorem 3.2 shows that if the A%?-part of the curvature of some connection D on E vanishes,
then E is a holomorphic bundle with holomorphic structure 0 := V%!, The converse is also true:
simply choose an arbitrary Hermitian metric on £ and apply Theorem 4.3 below.

We say that V is a H—connection if H, viewed as a field of C—valued real bilinear forms on F, is
parallel with respect to V. We can now state the main result of this section:

THEOREM 4.3. For every Hermitian structure H in a holomorphic bundle E with holomorphic
structure 0, there exists a unique H—-connection V (called the Chern connection) such that V! =

0.

PROOF. Let us first remark that the dual vector bundle £ is also holomorphic, with holomor-
phic structure denoted by 0, and that any connection V on E induces canonically a connection,
also denoted by V, on E* by the formula
(10) (Vxo*)(o) = X(0"(0)) —0"(Vxo), VX eTM, o€ CE), " €C>®E").

Note also that V%! = 9 on E just means that Vo € C®(A(E)) for every holomorphic section o
of E. From (10), if this property holds on E, then it holds on E*, too.
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After these preliminaries, suppose that V is a H-connection with V%! = 0. The C-anti-linear
isomorphism H : E — E* is then parallel, so for every section o of E and every real vector X on
M we get

Vx(H(0))=Vx(H)(o)+ H(Vxo)=H(Vxo).
By the C-anti-linearity of H, for every complex vector Z € TM® we have
Vz(H(o)) = H(V;0).
For Z € T*°M, this shows that
(11) Vo) =H oV (H(0)) = H ' 0 0d(H(0)),

hence V =0+ H~' 0 0 o H, which proves the existence and uniqueness of V.

REMARK. The (0,2)-component of the curvature of the Chern connection vanishes. Indeed,
R%?(0) = VP (V*(0)) = 0*(0) = 0.
Its (2,0)-component actually vanishes, too, since by (11),

VR(VH(0) = VI H 0 0(H(0)) = H ' 0 0*(H(0)) = 0.
4.3. Exercises.

(1) Let E — M be a complex vector bundle and denote by E* and E its dual and its
conjugate. (Recall that for every x € M, the fibre of E* over x is just the dual of E, and
the fibre F, of E is equal to E, as a set, but has the conjugate complex structure, in the
sense that the action of some complex number z on E, is the same as the action of Z on
E,). If gop denote the transition functions of E with respect to some open cover {U,} of
M, find the transition functions of E* and E with respect to the same open cover.

(2) Show that a Hermitian structure on a complex vector bundle E defines an isomorphism
between E* and E as complex vector bundles.

(3) Let E — M be a rank k complex vector bundle. Viewing local trivializations of F as
local basis of sections of E, show that if the transition functions of E with respect to
some local trivialization take values in the unitary group Uy C Gl (C) then there exists
a canonically defined Hermitian structure on E.

(4) Prove the naturality of the Chern connection with respect to direct sums and tensor
products of holomorphic vector bundles.
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5. Hermitian and Kahler metrics

5.1. Hermitian metrics. We start with the following

DEFINITION 5.1. A Hermitian metric on an almost complex manifold (M,J) is a Riemannian
metric h such that h(X,Y) = h(JX,JY), ¥V X,Y € TM. The fundamental form of a Hermitian
metric is defined by QU(X,Y) := h(JX,Y).

The extension (also denoted by h) of the Hermitian metric to TM® by C-linearity satisfies

hZ,W)=h(Z,W), ¥ Z W eTME".
(12) hWZ,Z)>0 Y ZeTM—{0}.
hZ,W)=0, YZWeT"M and V Z,W € T"' M.

Conversely, each symmetric tensor on TM® with these properties defines a Hermitian metric by
restriction to T'M (exercise).

REMARK. The tangent bundle of an almost complex manifold is in particular a complex vector
bundle. If A is a Hermitian metric on M, then H(X,Y) := h(X,Y) —ih(JX,Y) = (h—iQ)(X,Y)
defines a Hermitian structure on the complex vector bundle (7'M, J), as defined in the previous

section. Conversely, any Hermitian structure H on T'M as complex vector bundle defines a
Hermitian metric h on M by h := Re(H).

REMARK. Every almost complex manifold admits Hermitian metrics. Simply choose an arbitrary
Riemannian metric g and define h(X,Y) := g(X,Y) + g(JX, JY).

Let z, be holomorphic coordinates on a complex Hermitian manifold (M?™, J, h) and denote by
h.z the coefficients of the metric tensor in these local coordinates:

o 0

LEMMA 5.2. The fundamental form is given by

Q=1i Y hopdza Adzg.

a,B=1

The proof is left as an exercise.

5.2. Kahler metrics. Suppose that the fundamental form €2 of a complex Hermitian mani-
fold is closed. From the i90-Lemma we get locally a real function u such that € = i90u, which
in local coordinates reads

0u
82@82@ '
This particularly simple expression for the metric tensor in terms of one single real function
deserves the following

haj =
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DEFINITION 5.3. A Hermitian metric h on an almost complex manifold (M, J) is called a Kahler
metric if J is a complex structure and the fundamental form ) is closed:
N7 =0

h is Kahler <—
18 anter {dQ:O

A local real function u satisfying Q = i00u is called a local Kéhler potential of the metric h.

Our aim (as Riemannian geometers) is to express the Kéhler condition in terms of the covariant
derivative of the Levi-Civita connection of h. We start with doing so for the Nijenhuis tensor.

LEMMA 5.4. Let h be a Hermitian metric on an almost complex manifold (M, J), with Levi-Civita
covariant deriwvative V. Then J is integrable if and only if

(13) (VyxJ)Y = J(VyJ)Y, VX, YeTM.

PRrROOF. Let us fix a point z € M and extend X and Y to vector fields on M parallel with
respect to V at . Then we can write

N(X)Y) = [X,Y]+J[JX, Y]+ J[X,JY]—[JX,JY]
= J(Vx )Y = J(Vy )X = (Vyx )Y + (VyyJ)X
= (J(VxJ)Y = (VyxJ)Y) = (J(Vy )X = (Vv J)X),
thus proving that (13) implies N7 = 0. Conversely, suppose that N/ = 0 and denote by
AX)Y,Z) = h(J(VxJ)Y — (V;xJ)Y),Z). The previous equation just reads A(X,Y,Z) =
A(Y, X, Z). On the other hand, A is skew—symmetric in the last two variables, since J and Vx.J

are anti-commuting skew—symmetric operators. Thus A(X,Y,Z) = —A(X, Z,Y), so by circular
permutations we get

AX,Y,Z) = —A(Y, Z.X) = A(Z,X,Y) = —A(X,Y, Z),
which implies (13).
U

THEOREM 5.5. A Hermaitian metric h on an almost complex manifold is Kdhler if and only if J
15 parallel with respect to the Levi—Chivita connection of h.

PROOF. One direction is obvious, since if J is parallel, then N7 clearly vanishes, and as
Q= h(J-,-), we also have VQ = 0, so in particular df2 = 0. Conversely, suppose that h is Kéhler
and denote by B the tensor B(X,Y, Z) := h((VxJ)Y,Z). As J and VxJ anti-commute we have

B(X,Y,JZ) = B(X,JY, 7).
From (13) we get
B(X,Y,JZ)+ B(JX,Y,Z) = 0.
Combining these two relations also yields

B(X,JY,Z)+ B(JX,Y,Z) = 0.
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We now use df) = 0 twice, first on X, Y, JZ, then on X, JY, Z and get:
B(X,Y,JZ)+ B(Y,JZ, X))+ B(JZ,X,Y) =0,
B(X,JY,Z)+ B(JY, Z,X)+ B(Z,X,JY) = 0.

Adding these two relations and using the previous properties of B yields 2B(X,Y, JZ) = 0, that
is, J is parallel. O

5.3. Characterization of Kahler metrics. We will now prove the analytic characterization
of Kahler metrics described in the first section.

THEOREM 5.6. Let h be a Hermitian metric on a complex manifold (M*™,J). Then h is Kdhler
if and only if around each point of M there exist holomorphic coordinates in which h osculates to
the standard Hermitian metric up to the order 2.

PROOF. Suppose that we can find holomorphic local coordinates z, = x, + iy, around z € M
such that h,; = %5(15 + T'ag, With ro5(z) =0

87’043 8Taﬁ
=0
8%( ) = 8%( ) =
at . Then
N (Ohg Ohaj
Q=i Yy (mvd L dyq/)/\dza/\dz[g

a,B,y=1
clearly vanishes at x. As x was arbitrary, this means df) = 0.

Conversely, if the metric is Kahler, for every x € M we take an orthonormal basis of T, M of the

form {ey,...,en, Jey,. .., Je,} and choose a local holomorphic coordinate system (z, = x4 + 1Y)
around x such that
D) amd Je= ()
Co = x an Ca = x).
0z, Yq

The fundamental 2-form €2 can be written as
=1 Z < ap + Z QapyZy + Z AapyZy + 0(\z|))dza N dzg,

where o(]z|) denotes generlcally a function whose 1-jet vanishes at z. The condition h,5 = hga
together with Lemma 5.2 implies

(14> Gapy = Apary,
and from df2 = 0 we find
(15> Aapy = Aypa-

We now look for a local coordinate change in which the fundamental form has vanishing first order
terms. We put

1
Zo = Wo + 5 ﬁz ba,@“/wﬁw’%
7/\/
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where by, are complex numbers satisfying b,s, = bays. This coordinate change is well-defined
locally thanks to the holomorphic version of the local inversion theorem. We then have

dzy = dw,, + Z basywadw.,
By

whence (using Einstein’s summation convention)

1
Q = i<§5a5 + Qapy 2y + QapyZy + 0(|z\)) dze N dZg

1 _
= ¢<§5a5 + Aoy Wy + GopsWy + 0(|z|)) (dwg + baerwedw,) A (dwg + bge, W.dw, )

(1 _ — _
= 4 <§5a5 + Aoy Wy + apsWy + bgyaWy + boygly + 0(|z|)) dw, N dwg.

If we choose bgyo = —aapy, (Which is possible because of (15) which ensures that a,g, is symmetric
in a and ), then from (14) we get

bays = —Apay = —Gaps,

showing that
1
Q= i(ééag + 0(|z|))dwa A dwg.

n

5.4. Comparison of the Levi—Civita and Chern connections. Our next aim is to ex-
press the 0-operator on a Hermitian manifold in terms of the Levi-Civita connection. In order to
do so, we have to remember that T'M is identified with a complex vector bundle via the complex
structure J. In other words, a product X for some X € T'M is identified with JX.

LEMMA 5.7. For every sectionY of the complex vector bundle TM, the O—operator, as T M —valued
(0,1)~form is given by

- 1
VY (X) = 5(VXY + IV ixY — J(VyJ)X),
where V denotes the Levi—Civita connection of any Hermaitian metric h on M.

PROOF. We first recall that Of(X) = (X +iJX)(f), so

FUYNX) = F5(VxY +IVoxY = J(Ty D)X) + S(X()Y + X ()IY)
— JOY(X) 1 Of(X)Y,

which shows that the above defined operator 9V satisfies the Leibniz rule. Moreover, a vector
field Y is a holomorphic section of T'M if and only if it is real holomorphic. By Lemma 2.7, this
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is equivalent to Ly J = 0, which means that for every vector field X € C>(T'M) one has
0 = (Ly)X =Ly(JX)—JLyX =Y, JX]| - J[Y, X]
= VyJX —V,xY - JVy X +JVyY
= (Vy )X =V, xY +JVxY = J(VxY + JV,;xY — J(VyJ)X),
thus showing that OVY vanishes for every holomorphic section Y. This proves that 0V = 0. [

A Hermitian manifold (M, h,.J) two natural linear connections: the Levi-Civita connection V
and the Chern connection V on T'M as Hermitian vector bundle.

PROPOSITION 5.8. The Chern connection coincides with the Levi-Civita connection if and only if
h is Kdhler.

ProoF. Let H := h — if) denote the Hermitian structure of TM. By definition, J is parallel
with respect to the Chern connection, which is a complex connection. Thus, if V = V then J
is V-parallel, so h is Kahler by Theorem 5.5. Conversely, suppose that h is Kahler. Then the
Levi—-Civita connection is a well-defined complex connection in T'M since V.J = 0, by Theorem
5.5 again. Moreover, it is a H—connection since VA = 0 and V{2 = 0. Finally, the condition
V%! = 9 follows from Lemma 5.7, as V' = 1(Vy +iV,x) = 3(Vx + IV, x).

n

5.5. Exercises.

(1) Prove that every Hermitian metric on a 2-dimensional almost complex manifold is Kéhler.
(2) Prove that the fundamental form of a Hermitian metric is a (1,1)—form.

(3) If h,p denote the coefficients of a Hermitian metric tensor in some local holomorphic
coordinate system, show that h,z = hsa-

(4) Show that the extension of a Hermitian metric h by C-linearity is a symmetric bilinear
tensor satisfying

WZ,W)=hZ W), Y ZW eTME.
WMZ,2)>0 ¥ ZeTMC—{0}.
WMZ,W)=0, Y Z,WeT"M and ¥ Z,W € T M.

and conversely, any symmetric complex bilinear tensor satisfying this system arises from
a Hermitian metric.
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6. The curvature tensor of Kahler manifolds

6.1. The curvature tensor. Let (M", g) be a Riemannian manifold with Levi-Civita con-
nection V and denote by R its curvature tensor:

R(X,Y)Z = VXVYZ—V)/VXZ—V[XA/}Z, \V/X,}/,ZGCOO(TM)
It is sometimes convenient to identify the curvature tensor with the following tensor:
RX,Y,Z,T):=h(R(X,Y)Z,T), VX,Y,Z,T€TM.

The symmetries of the curvature operator then read:

e R(X,Y,Z,T)=—-R(X,Y, T, Z),

e R(X,Y,Z,T)=R(Z T, X,Y),

e RX,)Y,Z,T)+ R(Y,Z X, T)+ R(Z,X,Y,T) =0 (first Bianchi identity);

o (VxR)Y,Z, T,W)+(VyR)(Z, X, T,W)+(VzR)(X,Y, T,W) = 0 (second Bianchi iden-

tity).
The Ricci tensor of M is defined by
Ric(X,Y) := Tr{V — R(V, XY},

or equivalently
2m

Ric(X,Y) =) R(e;, X, Y, e),
i=1
where e; is a local orthonormal basis of M. We recall that the Ricci tensor of every Riemannian
manifold is symmetric, as can be easily seen from the symmetries of the curvature. A Riemannian
manifold (M™", g) is called Einstein if the Ricci tensor Ric is proportional to the metric tensor g
at each point of M
Ric(X,Y) = M\g(X,Y) VX, YeTl,M.

If n > 3, it is easy to check that A (which a priori depends on z) has to be constant on M (see
[8]).
Suppose now that (M?™ h,J) is a Kihler manifold. Since J is V-parallel, the curvature tensor
has more symmetries:
(16) R(X,Y)JZ =JR(X,Y)Z, VXY, ZeC®(TM).
This immediately implies

R(X,Y,JZ JT)=R(X,Y,Z,T)=R(JX,JY, ZT),

hence
2m 2m
Ric(JX, JY) =) Rle;, JX,JY,e:) = > R(Je;, X, Y, Je;) = Rie(X,Y),
=1 =1

since for every orthonormal basis {e;}, the set {Je;} is also an orthonormal basis.

This last equation justifies the following
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DEFINITION 6.1. The Ricci form p of a Kdahler manifold is defined by
p(X,Y) :=Ric(JX,Y), VXY eTM.

The Ricci form is one of the most important objects on a Kahler manifold. Among its properties
which will be proved in the next few sections we mention:

e the Ricci form p is closed;

e the cohomology class of p is (up to some real multiple) equal to the Chern class of the
canonical bundle of M;

e in local coordinates, p can be expressed as p = —idd log det(h,;), where det(h,;) denotes
the determinant of the matrix (h,3) expressing the Hermitian metric.

For the moment being we use the Bianchi identities for the curvature tensor to prove the following

PROPOSITION 6.2. (i) The Ricci tensor of a Kdhler manifold satisfies
1
Rie(X,Y) = STr(R(X, JY) 0 J).
(ii) The Ricci form is closed.

PROOF. Let (e;) be a local orthonormal basis of TM. (i) Using the first Bianchi identity we
get

Ric(X,Y) = Y Rle:, X,Y,e:) = > Re;, X, JY, Je;)

= Y (—R(X,JY,e;, Je)) — R(JY, e;, X, Je;))
= D (R(X,JY, Jej, e5) + R(Y, Je;, X, Jey))

= Tr(R(X,JY)oJ)— Ric(X,Y).

(ii) From (i) we can write 2p(X,Y) = Tr(R(X,Y) o J). Therefore,

2dp(X, Y, Z) = 2((Vxp)(Y,Z) + (Vyp)(Z,X) + (Vzp)(X,Y))
= Tr(VxR)(Y,Z)oJ + (VyR)(Z,X)oJ+ (VzR)(X,Y)o J) =0

from the second Bianchi identity. O

6.2. Kahler metrics in local coordinates. Let (M*" h,J) be a Kéhler manifold with
Levi-Civita covariant derivative V and let (z,) be a system of local holomorphic coordinates. We
introduce the following local basis of the complexified tangent space:

0 0

Y/ Ly = 7,
0Z,

= — 1<a<m
0z - =7
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and we let subscripts A, B, C, ... run over the set {1,...,m,1,...,m}. We denote the components
of the Kahler metric in these coordinates by

hAB = h(ZA, ZB)
Of course, since the metric is Hermitian we have
(17) hap = has =0, Pjo = has = hga.

Let h®? denote the coefficients of the inverse matrix of (hyz)- The Christoffel symbols are defined
by
Vz.Zp =T957c.

Using the convention & = «, we get by conjugation

c _ 1C
s =Tas:
Since V is torsion—free we have
c c
i =LBa;
and since T1Y is V-parallel we must have
v
FAB — 0:

These relations show that the only non—vanishing Christoffel symbols are
[y and T,

Now, in order to compute these coefficients we notice that Fgg = 0 implies

(18) V., 25 =0,
hence 9
has
é = h(V2.25,Z5) = T hos.
This proves the formulas

The curvature tensor can be viewed either as (3,1)— or as (4,0)—tensor. The corresponding coeffi-
cients are defined by

R(Z4,Zp)Zc = RYpcZp and Rapep = R(Za, Zp, Zc, Zp) = hppRE e

From the fact that 7"°M is parallel we immediately get R’ s = Ryps = 0, hence Rap,s =

R ,p55 = 0. Using the curvature symmetries we finally see that the only non—vanishing components
of R are

Raﬁfyga RanT/& Raﬁ»ySa Rd,@ﬁé
and ~ _
Rls, Rs, RYsy ., RO

afy’ “tapyr Tla a
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From (18) and (19) we obtain

R) 5. Zs = R(Za, Z5)Zy = =V 2,(V2.2,) = =V 7,(To, Zs) = 82? &
therefore
8F5
20 R5 _ ay
(20) , -0
Using this formula we can compute the components of the Ricci tensor:
. . " . 3F§y
RICVB - RICM o RAB'V - Raﬁ'y - 073 .
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Let us denote by d the determinant of the matrix (h,3). Using the Lemma 6.3 below and (19) we

get
Oh,s 10d  0Ologd

0z, Eﬁ—zq/_ 0z

This proves the following simple expressions for the Ricci tensor

a _ 7o ad
re =12, =h

, 9 logd
Rlcaﬁ B 82@62@ ’
and for the Ricci form
(21) p = —iddlogd.

LEMMA 6.3. Let (hi;) = (hi(t)) be the coefficients of a map h : R — Gl,,(C) with h :=

and let d(t) denote the determinant of (h;;). Then the following formula holds

_th YTt

i,7=1

PROOF. Recall the definition of the determinant
d= > e(0)hig, .- Tung,.-
O'ESm
If we denote )
hlt = E Z A{:‘(O')hlgl Ce hi—lUi—lhi+10i+1 ce hmam7
0ESm, ;=]
then we obtain easily

S =23 S o B = 2 3 oo, = =1,
j=1

j=1 0€Sp, 0i=7 oE€ESm
and

S it = %Z S SO hioy Bt o hision - hine,, = 0
j=1

j=1 0c€Sm, oi=j
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for k # 7 since in the last sum each term corresponding to a permutation o is the opposite of the
term corresponding to the permutation (ik) o o, where (ik) denotes the transposition of 7 and k.
This shows that h?" = k7% are the coefficients of the inverse matrix of h. We now get

d/(t) = Z Z hflol cee hi710i71h’i+10i+1 ce hmam

o€Sy, i=1

= > D o) (Ohio, - hicie, hivion, - P,

=1 j—l oESm, 0i=]

:th tYhit = th It

i,j=1 i,j=1

6.3. Exercises.

(1) Let S := Tr(Ric) denote the scalar curvature of a Kéhler manifold M with Ricci form p.
Using the second Bianchi identity, prove the formula:

1

In particular, the Ricci form of M is harmonic if and only if the scalar curvature S is
constant.

(2) Prove that the curvature of a K&hler manifold, viewed as a symmetric endomorphism
of the space of complex 2—forms, maps A%? and A?° to 0. Compute the image of the
fundamental form through this endomorphism.

(3) Let h be a Hermitian metric on some complex manifold M?™ and let z, = T4 + 1Ya
be a local system of holomorphic local coordinates on M. Using (17) show that the
determinant of the complex m x m matrix (h,z) is a positive real number whose square
is equal to the determinant of the real 2m x 2m matrix h;; representing the metric in the
local coordinate system (z;,y;).

(4) Let h and A’ be two Kéhler metrics on some complex manifold (M, J) having the same
(Riemannian) volume form. Prove that the Ricci tensors of h and A" are equal.
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7. Examples of Kahler metrics

7.1. The flat metric on C™. Its coefficients in holomorphic coordinates are

o 0 1 0 o 0 0 1
hoo=h{-2 2 ) =2 i ) =
o (aza’ 825) 4 (8:@ e’ Oz * Z@yg) 256%

so by Lemma 5.2 the fundamental form is

1 m . B
Q=i ;dza AdZ, = %88|z|2.

Thus u(z) = |z|? is a Kahler potential for the canonical Hermitian metric on C™.

7.2. The Fubini—-Study metric on the complex projective space CP™. Consider the
holomorphic atlas (U;, ¢;) on CP™ described in the first section. Let 7 : C™*! — {0} — CP™ be
the canonical projection

(20, -y 2m) = [20: -+ ¢ Zm]-
This map is clearly surjective. It is moreover a principal C*fibration, with local trivializations
Y; : 7w tU; — U; x C* given by
¥;(2) = ([2], %),
and satisfying 1; o ¥ ' ([2], @) = ([2], Za).

’Zk:

Consider the functions v : C™ — R and v : C™"! — {0} — R defined by u(w) = log(1 + |w|?) and
v(z) = log(|z|*). For every j € {0,...,m}, we define f; = ¢; o .

CmHl — {0} = U; C CP™

f.
J 65
cm

The map f; is clearly holomorphic and a direct calculation yields u o f;(z) = v(z) — log |2z;]?. As
d01log |zj|? = 0, this shows that (f;)*(00u) = ddv for every j. We thus can define a 2—form ) on
CP™ by B

Oy, = i(6;)"(00u),

which satisfies
(22) 7(Q) = id0v.
Clearly € is a closed real (1, 1)-form, so the tensor h defined by
MX,Y):=Q(X,JY), VX YeTCpP™
is symmetric and Hermitian. The next lemma proves that h defines a Kahler metric on CP™.

LEMMA 7.1. The tensor h is positive definite on CP™.



38

~

PROOF. Let us fix some local holomorphic chart ¢; : U; — C™. Clearly, h = (¢;)*(h), where
h is the symmetric tensor on C™ defined by h(X,Y) := iddu(X,JY), ¥V X,Y € TC™. We have
to prove that h is positive definite. Now, since U,, is a group of holomorphic transformations of
C™ preserving u, it also preserves h. Moreover, it is transitive on the unit sphere of C™, so it is
enough to prove that his positive definite at a point p = (r,0,...,0) € C™ for some positive real
number r. We have

m m m

5 SNEPYINE S o SUMENGIS SINE o WO SR o 5
90 log(1+]z| )_a(1+|2|2(;zzd%)) 14 22 izldzz/\dzz 1+ |Z|2)2(izlzzdzz)/\(izlzzdzz)'

At p this 2—form simplifies to

1 m
m (le A le + (1 + 7’2) Z dZZ‘ VAN dgl) ,
=2

which shows that

~

hy(X,Y) = Re(X1Y: + (1+717) ) X;Y)

2)2
(1+7%) =
hence h is positive definite. O

The Kéhler metric on CP™ constructed in this way is called the Fubini—Study metric and is usually
denoted by hpg.

7.3. Geometrical properties of the Fubini—-Study metric. The Fubini-Study metric
was defined via its fundamental 2-form, which was expressed by local Kéhler potentials. We
provide here a more geometrical description of this metric, showing that it is the projection to
CP™ of some symmetric tensor field of C™*! — {0}.

LEMMA 7.2. For every z € C™™ — {0}, the canonical projection = : C™™' — {0} — CP™ is a
submersion, and the kernel of its differential m,, : T,(C™ —{0}) — Ty CP™ is the complex line
generated by z.

PROOF. Let z € C™! with z; # 0. The composition f; := ¢; o 7 is given by

1
fj(Zo, N Zm) = —(Zo, I R TS P Zm)
%
We put j = 0 for simplicity and denote f = fy. Its differential at z applied to some tangent vector
v is
1 Vo

fe,(0) = Z—O(vl, cey Um) — z_§<zl’ ey Zm)-

Thus v € ker(m,). <= v € ker(f,). <= v = 2z This shows that ker((r.).) is the complex
line generated by z, and for dimensional reasons (7). has to be surjective. O
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Consider the complex orthogonal z* of z in C™*! with respect to the canonical Hermitian metric,
i.e. the set

= {yeC™ | > zy =0}
=0

This defines a codimension 1 complex distribution D in C™*! — {0} with D, := z+. Let X — X+
denote the orthogonal projection onto 2+ in T, (C™"! —{0}) and define a bilinear symmetric tensor

h on C™*1 — {0} by

MX,Y):= l<XL,Yi>,

IRER
where (-, -) denotes the canonical Hermitian product.
LEMMA 7.3. The (1,1)-form ¢(X,Y) := WJX,Y) associated to the tensor h satisfies ¢ =
i00log(|z]?) on C™! —{0}.

PROOF. It is enough to prove this relation at a point p = (r,0,...,0) € C™"! — {0} for
some positive real number r because both members are U,,, ;—invariant and U,,; is transitive on
spheres. We have

_ 1 m 1 m 1 m m
80 log(|2]?) = 8<W<Z zdz)) = FE > dz Adz - W<Z Zdz) A () zdz).
z z z
i=0 i=0 i=0 =0
At p this 2—form simplifies to
1 « )
ﬁ Z dZZ' A dZZ‘.
i=1
On the other hand, we have at p

Y R N (P W Y GRS
oz 0z5) 020 075)  \0za 0%

which vanishes if & = 0 or § = 0 and equals r%éaﬁ otherwise. Thus

. 1 « _
—ip = 2 Zdzi A dZz;.
i=1
O

Using this lemma and (22) we see that 7*h = h, showing that the Fubini-Study metric hpg on
CP™ is given by the projection of the above defined semi—positive symmetric tensor field h.

PROPOSITION 7.4. The group U,,+1 acts transitively by holomorphic isometries on (CP™, hpg)

PROOF. For every A € U,,,1, 2 € C"™! — {0} and a € C*, we have A(az) = aA(z), showing
that the canonical action of U,,,; on C™" — {0} descends to an action on CP™. For every
A € U1, let A be the corresponding transformation of CP™. Looking at its expression in
the canonical holomorphic charts, it is easy to check that every A acts holomorphically on CP™.
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In order to check that A preserves the Fubini-Study metric, we first use (22) and the relation
vo A(z) = log|Az|* = log |2]* = v(2) to get

™ (A*(Q)) = A*(i0dv) = i00A v = iddv = T Q.

Lemma 7.2 shows that 7, is onto, so 7* is injective on exterior forms, hence A*(Q) = Q. As A
also preserves the complex structure, too, this clearly implies that A is an isometry. O

We will now use our computations in local coordinates from the previous section in order to show
that the Fubini—Study metric is Einstein. Since there exists a transitive isometric action on CP™,
it is enough to check this at some point, say p:=[1:0:...:0] € CP™. From Lemma 7.1 we see
that the fundamental form is given in the local chart ¢q by

7 e i m m
U= ——0 dz; dz, — —— Z-dz: dz.).
S THVER ) ST

i=1 i=1

LEMMA 7.5. Let dv denote the volume form on C™
dv = dzy Adyy A .. Adap, A dyy, = %dzl/\dil/\.../\%dzm/\dim.

Then the fundamental 2—form §2 satisfies

2™m)
QN NQ = ————dv.
(1+ [z[2)m 1
PROOF. Both terms are clearly invariant by the action of U,, on C™, which is transitive on
spheres, so it is enough to prove the equality at points of the form z = (r,0,...,0), where it is
actually obvious. O

Now, for every Hermitian metric A on C™ with fundamental form ¢, the determinant d of the
matrix (h,z) satisfies

1
— " = d2™dv.
m!
Applying this to our situation and using the lemma above yields
1
d=det(h,3) = ———————
e ( aﬁ) (1 ¥+ ‘Z|2)m+1’

whence logd = —(m + 1) log(1 + |2]?), so from the local formula (21) for the Ricci form we get
p = —i0dlogd = (m + 1)iddlog(1 + |2|*) = (m + 1),

thus proving that the Fubini-Study metric on CP™ is an Einstein metric, with Einstein constant
m+ 1.
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7.4. Exercises.

(1) A submersion f : (M,g) — (N, h) between Riemannian manifolds is called Riemannian
submersion if for every x € M, the restriction of (f.), to the g-orthogonal of the tangent
space to the fiber f~!(f(x)) is an isometry onto Ty, N. Prove that the restriction of the
canonical projection 7 to S?"*! defines a Riemannian submersion onto (CP™, %hps).

(2) Show that (CP!, hpg) is isometric to the round sphere of radius 1/v/2, S?(1/v/2) C R5.
Hint: Use the fact that a simply—connected manifold with constant positive sectional
curvature K is isometric to the sphere of radius 1/v/K.

(3) Show that for every Hermitian tensor A on C™ with fundamental form ¢, the determinant
d of the matrix (h,z) satisfies

@™ =d2™mldv.






Part 3

The Laplace operator



8. Natural operators on Riemannian and Kahler manifolds

8.1. The formal adjoint of a linear differential operator. Let (M™, g) be an oriented
Riemannian manifold (not necessarily compact) with volume form dv and let £ and F' be Her-
mitian vector bundles over M with Hermitian structures denoted by (-,-)g and (-, ) p.

DEFINITION 8.1. Let P : C*(E) — C>®(F) and Q : C®(F) — C*®(FE) be linear differential
operators. The operator @) is called a formal adjoint of P if

/M<Pa,ﬁ)pdv:/M<oz,Qﬁ)Edv,

for every compactly supported smooth sections a € C°(E) and € C°(F).

LEMMA 8.2. There exists at most one formal adjoint for every linear differential operator.

PROOF. Suppose that P : C*(E) — C*(F) has two formal adjoints, denoted @ and ). Then
their difference R := Q — @’ satisfies

/ (0, R wdv =0 ¥ aeCX(E), V8 eCe(F)
M

Suppose that there exists some o € C*°(F') and some x € M such that R(c), # 0. Take a positive
function f on M such that f =1 on some open set U containing x and f = 0 outside a compact
set. Since R is a differential operator, the value of R(o) at x only depends on the germ of o at
x, so in particular R(fo) has compact support and R(fo), = R(0), # 0. Applying the formula
above to the compactly supported sections « := R(fo) and (5 := fo of E and F we get

Oz/M(a,Rﬁ>Edv:/M\R(fa)|2dv,

thus showing that the smooth positive function |R(fo)|? has to vanish identically on M, contra-

dicting the fact that its value at x is non—zero. (

The formal adjoint of an operator P is usually denoted by P*. From the above lemma it is
immediate to check that P is the formal adjoint of P* and that Q* o P* is the formal adjoint of
P o @. The lemma below gives a useful method to compute the formal adjoint:

LEMMA 8.3. Let P : C®(E) — C>®(F) and Q : C>*(F) — C>®(E) be linear differential operators.
If there exists a section w € C*(E* @ F* @ A" M) such that

(23) ((Pa, B)p — {a, QB) p)dv = d(w(e, 8)), YV a €C®(E), p€C™(F),
then Q) s the formal adjoint of P.

PROOF. The n — 1-form w(a, B) has compact support for every compactly supported sections
a and 3. By Stokes’ theorem we see that the integral over M of its exterior derivative vanishes. [J
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8.2. The Laplace operator on Riemannian manifolds. We start with an oriented Rie-
mannian manifold (M", g) with volume form dv. We denote generically by {ey,...,e,} a local
orthonormal frame on M parallel in a point and identify vectors and 1-forms via the metric g. In
this way we can write for instance dv =e; A ... A e,.

There is a natural embedding ¢ of A*M in TM®* given by
o(w)( Xy, ..., Xk) = w(Xy, ..., Xk),
which in the above local basis reads

pler Ao Neg) = Zs(a)em@...@eak.

ocESk

The Riemannian product g induces a Riemannian product on all tensor bundles. We consider the
following weighted tensor product on A*M:

1
<w7 T) = Eg«p(w% @(T))u
which can also be characterized by the fact that the basis
{eil/\.../\eik ‘ 1<y <., <2k§n}

is orthonormal. With respect to this scalar product, the interior and exterior products are adjoint
operators:

(24) (Xow,T)={w,XAT), VXe&TM, weA'M rcA M
We define the Hodge *—operator * : A¥AM — A" "FM by
w A *7 = (W, T)dv, Yw, T € A*M.

It is well-known and easy to check on the local basis above that the following relations are satisfied:

(25) x1 =dv, *dv=1,
(26) (xw, x7) = (W, 7),
(27) 2 = (=1)*=R on AF M.

The exterior derivative d : C®(A¥M) — C= (A1 M)
d= Z e; N\ Vei
has a formal adjoint § : C*°(A*1M) — C>(A*M) satisfying
§=—(—1)"xdsx = — Zeﬂvei.
To see this, let o € QP and 8 € QP! be smooth forms. Then we have

(da, BYdv = daAN*p=daA*p)— (=1)PaANdx*
= d(aNxf) — (—1)p+p(n_p)a Axxdx*f=daNx3)—(—1)"P{a,*d x (3)dv,
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so Lemma 8.3 shows that d* = (—1)"""! % dx on p + 1-forms.

Using the Hodge *—operator we get the following useful reformulation of Lemma 8.3: if there
exists a section 7 € C*®(E* ® F* @ A'M) such that

(28) (Pa, B)r — (o, QB)p = 6((a, B)), Vael?(E), §eC(F),
then @ is the formal adjoint of P.
The Laplace operator A : C*®°(A*M) — C*®(A*M) is defined by
A = d+dd,
and is clearly formally self-adjoint.
8.3. The Laplace operator on Kahler manifolds. After these preliminaries, let now

(M?™ h,J) be an almost Hermitian manifold with fundamental form . We define the following
algebraic (real) operators acting on differential forms:

1
L:AM — AN, Lw) ::Qszaz:eiAJei/\w,

with adjoint A satisfying

1
. Ak+2 k —
A:AYEM — AYM, A(w).—§ E Jei e sw.

These natural operators can be extended to complex—valued forms by C-linearity.
LEMMA 8.4. The following relations hold:

(1) The Hodge *—operator maps (p, q)—forms to (m — q,m — p)—forms.
(2) [X3,A]=0and [X1,L]=JXA.

The proof is straightforward.

Let us now assume that M is Kihler. We define the twisted differential d¢ : C®(A*M) —
C®(A*1M) by

d(w) = Z Jei N Vew
whose formal adjoint is 6¢ : C*°(A*1M) — C>(A*M)
0= —xd* = —ZJ@ZJVQ.

LEMMA 8.5. On a Kdahler manifold, the following relations hold:
(29) [L,0] = d°, [L,d] =0
and

(30) Ad] =6, [Ad]=0.
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PRrROOF. Using Lemma 8.4 (2) and the fact that J and Q are parallel we get

[L,0] = —[L,e; uV,,] = —=[L,e; 1]V, = Je; ANV, = d°.
The second relation in (29) just expresses the fact that the Kéhler form is closed. The two relations
in (30) follow by the uniqueness of the formal adjoint. O

Corresponding to the decomposition d = 0 + 0 we have the decomposition § = 9* + 0%, where
0% : C(APIM) — C®(AP~1 M), 0" = — % 0%
and - _
O : C®(APIM) — C= (AP M), O = —%x0x%.
Notice that 0* and 0* are formal adjoints of & and 0 with respect to the Hermitian product H on
complex forms given by

(31) H(w, ) = (w, 7).
We define the Laplace operators
A= 00"+ 00 and  A?:= 90" + §D.
One of the most important features of Kahler metrics is that these new Laplace operators are
essentially the same as the usual one:

THEOREM 8.6. On any Kdihler manifold one has A = 2A? = 2A9.

PROOF. Our identification of TM and T*M via the metric maps (1, 0)—vectors to (0, 1)—forms
and vice-versa. From the fact that APYM are preserved by the covariant derivative follows easily

1 , - 1 ,
8:Z§(Gj+zJej)/\Vej and 8:Z§(ej—zJej)/\Vej.
J J
From the definition of d° we then get

(32) d°=1i(0 — 0),

and by adjunction

(33) 5¢ =i(0" — 9%).

Applying (29) to a (p, ¢)-form and projecting onto AP*L4M and AP4+1)M then yields
(34) [L,0%] =0, [L,0] = —i0, [L,0] =0, [L,0] =0,

and similarly from (30) we obtain

(35) [A, 0] =0, [A, 0] = —i0", [A,0%] =0, [A,07] = 0.

Now, the relation 9% = 0 together with (35) gives
(00" + 0°0) = A, 9] + [A, 9]0 = DAD — IAD = 0
and similarly

D0* + 99 = 0.
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Thus,
A = (0+09)(0"+ )+ (0" +0)(0+9)
= (00" 4+ 070) + (00" + 0"0) + (00" + 0%0) + (00" + 0 0)
= AP+ A°
It remains to show the equality A? = A9 which is an easy consequence of (35):
—iN? = —i(00" + 0°0) = O[A, 0] + [A, D)0 = OND — DOA + ADD — OND

= OAD + DON — ADD — IND = [0, A + 5[0, A] = —id*D — id* = —iA°.

8.4. Exercises.

(1) Consider the extension of J as derivation

J:AFM — AP M, J(w) Z:ZJGZ‘/\GZ‘J(U.

Show that the following relations hold:
e J is skew—Hermitian.
o J(aApB)=J(a)AB+aAJ(B) for all forms o € QPM and 3 € QFM.
e The restriction of J to APYM equals to the scalar multiplication by i(q — p).
e [J,A]=0and [/, L] =0.

(2) Let w be a k—form on a n-dimensional Riemannian manifold M. Prove that e; A(e; Jw) =
kw and e; 1 (e; Aw) = (n — k)w.

(3) Show that 0 = dd° + d°d = do° + 6°d = §6° + 0°6 = 6d° + d° on every Kéhler manifold.
(4) Prove that [J,d] = d° and [J,d] = —d on K&hler manifolds.

(5) Show that the Laplace operator commutes with L, A and J on Kéhler manifolds.
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9. Hodge and Dolbeault theory

9.1. Hodge theory. In this section we assume that (M"™, g) is a compact oriented Rie-
mannian manifold. From now on we denote the space of smooth complex—valued k—forms by
OFM = C®(A*M @ C) and by Z¥(M) the space of closed complex k—forms on M. Since the
exterior derivative satisfies d> = 0, one clearly has dQ*"'M C Z*¥M. We define the De Rham
cohomology groups by

ZFM
Hf)R(Ma C) = m

The De Rham theorem says that the L th cohomology group of M with complex coefficients is
naturally isomorphic to the kB De Rham cohomology group:

H*(M,C) ~ HY (M, C).

We now denote by H¥(M, C) the space of complex harmonic k—forms on M, i.e. forms in the
kernel of the Laplace operator:

HM(M,C) = {we QM| Aw=0}.
LEMMA 9.1. A form is harmonic if and only if it is closed and d—closed.

PROOF. One direction is clear. Suppose conversely that w is harmonic. Since M is compact
and d and ¢ are formally adjoint operators we get

O:/ H(Aw,w)dv:/ H(d5w+5dw,w)dv:/ |6w|? + |dw|*dv,
M M M

showing that dw = 0 and dw = 0. O

THEOREM 9.2. (Hodge decomposition theorem). The space of k—forms decomposes as a direct
sum

QFM = HM(M, C) @ 6Q" T M @ dO* ' M.

Proor. Using Lemma 9.1 it is immediate to check that the three spaces above are orthogonal
with respect to the global Hermitian product on QM given by

(w,7) = /MH(w,T)dv.

The hard part of the theorem is to show that the direct sum of these three summands is the whole
space QFM. A proof can be found in [2], pp. 84-100. O

The Hodge decomposition theorem shows that every k—form w on M can be uniquely written as
H

w=dw' + " + w",
where w' € QF 1M, " € QM and w € HE(M,C). If w is closed, we can write
0 = (dw,w") = (ddw", ") = / |6w”|?dv,
M

showing that the second term in the Hodge decomposition of w vanishes.
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PROPOSITION 9.3. (Hodge isomorphism). The natural map f : H*(M,C) — HY,(M,C) given
by w +— [w] is an isomorphism.

Proor. First, f is well-defined because every harmonic form is closed (Lemma 9.1). The
kernel of f is zero since the spaces of harmonic forms and exact forms are orthogonal, so in
particular their intersection is {0}. Finally, for every De Rham cohomology class ¢, there exists a
closed form w such that [w] = ¢. We have seen that the Hodge decomposition of w is w = dw’+w?,
showing that

f") =] =ld + ] = [w] =,

hence f is surjective. O

The complex dimension by,(M) := dimc(H%5(M,C)) is called the k™® Betti number of M and is
a topological invariant in view of De Rham’s theorem.

PROPOSITION 9.4. (Poincaré duality). The spaces H*(M,C) and H"*(M, C) are isomorphic. In
particular by (M) = b,_(M) for every compact n—dimensional manifold M.

PRrROOF. The isomorphism is simply given by the Hodge *—operator which sends harmonic

k—forms to harmonic n — k—forms. O

We close this section with the following interesting application of Theorem 9.2.

PROPOSITION 9.5. Every Killing vector field on a compact Kdahler manifold is real holomorphic.

ProoF. Let X be a Killing vector field, that is Lxyg = 0. We compute the Lie derivative of
the fundamental 2—form with respect to X using Cartan’s formula:

LxQ=d(X1Q)+ X 1dQ=d(X 1Q),

so Lx{) is exact. On the other hand, since the flow of X is isometric, it commutes with the
Hodge *—operator, thus Lx o x = x o Lx. As we clearly have d o Lx = Lx o d, too, we see that
Lx 00 =00 Lyx, whence

d(LxQ) = Lx(dQ2) =0
and
0(Lx) = Lx(6Q2) =0,

because 2 is coclosed, being parallel. Thus £ is harmonic and exact, so it has to vanish by the
easy part of Theorem 9.2. This shows that the flow of X preserves the metric and the fundamental
2—form, it thus preserves the complex structure J, hence X is real holomorphic. O
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9.2. Dolbeault theory. Let (M?™ h,J) be a compact Hermitian manifold. We consider the
Dolbeault operator 0 acting on the spaces of (p, ¢)-forms QPIM := C®(APIM) C QPYIM. Let
ZP4M denote the space of O-closed (p, q)-forms. Since 9% = 0, we see that IQP4~1M C ZPIM.
We define the Dolbeault cohomology groups

o = M

o= M

In contrast to De Rham cohomology, the Dolbeault cohomology is no longer a topological invariant
of the manifold, since it strongly depends on the complex structure J.

We define the space HP9M of 0-harmonic (p,q)-forms on M by
HPIM = {w € Q"M | A% = 0}.
As before we have

LEMMA 9.6. A form w € QPIM is O-harmonic if and only if dw = 0 and 0*w = 0.

The proof is very similar to that of Lemma 9.1 and is left as an exercise.

THEOREM 9.7. (Dolbeault decomposition theorem). The space of (p,q)—forms decomposes as a
direct sum

OPIN = HPIM & §*QPTHM @ QP M.

ProOOF. Lemma 9.6 shows that the three spaces above are orthogonal with respect to the
global Hermitian product
(.’ ) ::/ H(’ )d’U
M

on P90, and a proof for the hard part, which consists in showing that the direct sum of the
three summands is the whole space QP?M, can be found in [2], pp. 84-100. U

This shows that every (p, g)—form w on M can be uniquely written as
w=0w + 0" +w,
where w’ € QP9 1M, " € QP9TIM and wf € HPYM. This is called the Dolbeault decomposition

of w. As before,the second summand in the Dolbeault decomposition of w vanishes if and only if
Ow = 0. Specializing for ¢ = 0 yields

PROPOSITION 9.8. A (p,0)-form on a compact Hermitian manifold is holomorphic if and only if
it is 0—harmonic.

COROLLARY 9.9. (Dolbeault isomorphism). The map f : HP*M — HPIM given by w — [w] is
an isomorphism.

The proof is completely similar to the proof of the Hodge isomorphism.

We denote by h?”? the complex dimension of H?9M. These are the Hodge numbers associated to
the complex structure J of M.
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PROPOSITION 9.10. (Serre duality). The spaces HPIM and H™ P 9M are isomorphic. In
particular h?? = pm=—Pm=4,

ProOF. Consider the composition of the Hodge *—operator with the complex conjugation

¥ QPINM — QMTPMTAMN *(w) 1= *w.

We have
FA(w) = #(00" 4+ 0" 0)w = %(80* + 0*0)w
= —%(0%0*+*x0x0)w = 0"0(3w) — %20 x 0w
= J'0Gw) — ) * 0@ = 0 0(3w) + 00" (3w) = A? (Fw).
This shows that % is a (C—anti-linear) isomorphism from H”M to H™ P™ M. t

If M is Kahler much more can be said about Hodge and Betti numbers, due to Theorem 8.6.
Firstly, the fact that A = 2A? shows that H»IM C HPTIM. Secondly, since A? leaves the spaces
QP4 ) invariant, we deduce that A has the same property, thus proving that the components of
a harmonic form in its type decomposition are all harmonic. This shows that

HYM = @)y g HPIM.

Moreover, as A? is a real operator, it commutes with the complex conjugation (in the general case

we only have that A%a = A%a) so the complex conjugation defines an isomorphism between the
spaces HPYM and H9PM. Consider now the fundamental form ©Q € QV'M. Since Q™ is a non—
zero multiple of the volume form, we deduce that all exterior powers ¥ € QPPM are non-—zero.
Moreover, they are all harmonic since €2 is parallel so QP is parallel, too, and a parallel form is
automatically harmonic. We thus have proved the

PROPOSITION 9.11. In addition to Poincaré and Serre dualities, the following relations hold be-
tween Betti and Hodge numbers on compact Kdhler manifolds:

(36) be= Y WP BPY=heT, PP >1 Y0<p<m.
pt+q=k
In particular (36) shows that all Betti numbers of odd order are even and all Betti numbers of

even order are non-zero.
9.3. Exercises.
(1) Prove that the complex manifold S x S%**1 carries no Kéhler metric for k > 1.

(2) Let V' be an Euclidean vector space, identified with V* via the metric. Prove that the
Lie algebra extension of an endomorphism A of V' to A¥V is given by the formula

Aw) :== Ale;) Ne; sw,

for every orthonormal basis {e;} of V.
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(3) The global idd-Lemma. Let ¢ be an exact real (1,1)—form on a compact Kéhler manifold
M. Prove that ¢ is i00-exact, in the sense that there exists a real function u such that
© = 100u.

(4) Show that there exists no global Kéhler potential on a compact Kéhler manifold.

(5) Let (M, h) be a compact Kéhler manifold whose second Betti number is equal to 1. Show
that if the scalar curvature of M is constant, then the metric h is Einstein.






Part 4

Prescribing the Ricci tensor on Kahler manifolds



10. Chern classes

10.1. Chern-Weil theory. The comprehensive theory of Chern classes can be found in [8],
Ch.12. We will outline here the definition and properties of the first Chern class, which is the
only one needed in the sequel. The following proposition can be taken as a definition

ProPOSITION 10.1. To every complex vector bundle E over a smooth manifold M one can asso-
ciate a cohomology class ¢, (E) € H*(M,Z) called the first Chern class of E satisfying the following
azrioms:

e (naturality) For every smooth map f : M — N and complex vector bundle E over N,
one has f*(c1(E)) = c1(f*E), where the left term denotes the pull-back in cohomology
and f*E is the pull-back bundle defined by f*E, = Ey,) V x € M.

e (Whitney sum formula) For every bundles E, F over M one has c;(E @ F) = ¢1(E) +
c1(F), where E ® F is the Whitney sum defined as the pull-back of the bundle E x F —
M x M by the diagonal inclusion of M in M x M.

e (normalization) The first Chern class of the tautological bundle of CP* is equal to —1 in
H?(CP',Z) ~ Z, which means that the integral over CP* of any representative of this
class equals —1.

Let £ — M be a complex vector bundle. We will now explain the Chern—Weil theory allows
one to express the images in real cohomology of the Chern classes of E using the curvature of an
arbitrary connection V on E. Recall the formula (9) for the curvature of V in terms of V:

(37) RV(O'Z') = RZ-O']‘ = (dwij — Wik N wkj)aj,

where {oy,...,0%} are local sections of E which form a basis of each fiber over some open set U
and the connection forms w;; € A'(U) (relative to the choice of this basis) are defined by

VO'Z‘ = Wij & gj.
Notice that although the coefficients RY of RY depend on the local basis of sections (o;), its
trace is a well-defined (complex—valued) 2—form on M independent of the chosen basis, and can

be computed as Tr(RY) = > RY in the local basis (c;). To compute this explicitly we use the
following summation trick:

E Wik N\ Wi = E Wi N\ Wi, = — E Wik N Wi,

where the first equality is given by interchanging the summation indices and the second by the
fact that the wedge product is skew—symmetric on 1-forms. From (37) we thus get

(38) Tr(RY) = d(>_wi),

where of course the trace of the connection form w = (w;;) does depend on the local basis (o).
This shows that Tr(RY) is closed, being locally exact.
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If V and V are connections on E, the Leibniz rule shows that their difference A := V — V is
a zero—order operator, more precisely a smooth section in A'(M) ® End(E). Thus Tr(A) is a
well-defined 1-form on M and (38) readily implies

(39) Tr(RY) = Tr(RY) + dTr(A),

We thus have proved the following

LEMMA 10.2. The 2-form Tr(RY) is closed and its cohomology class [Tr(RY)] € H*(M,C) does
not depend on V.

It is actually easy to see that [Tr(RY)] is a purely imaginary class, in the sense that it has a
representative which is a purely imaginary 2—form. Indeed, let us choose an arbitrary Hermitian
structure h on E and take V such that h is V—parallel. If we start with a local basis {o;} adapted
to h, then we have

0 = V() = V(h(oi,05)) = h(Voy,05) + h(o:, Vo)

wij + w_ﬂ

From (37) we get
Ry, = dwij — Wix AWy = —Wji — Wei A Wjik
= —Wj tWjr \Nwi; = —Rﬁ,
showing that the trace of RV is a purely imaginary 2—form.

THEOREM 10.3. Let V be a connection on a complex bundle E over M. The real cohomology
class

(V) = {LTr(RV)}
27
is equal to the image of ci(E) in H*(M,R).
PROOF. We have to check that ¢;(V) satisfies the three conditions in Proposition 10.1. The

naturality is straightforward. Recall that if f : M — N is smooth and 7 : F — N is a rank k
vector bundle, then

fY(E) ={(z,v) |ze M, ve E, f(x)=m(v)}.
If {o;} is a local basis of sections of E, then
froi: M — f1(E), (2,0 (2)))
is a basis of local sections of f*FE. The formula
N (f*o) := f*(Vo)
defines a connection on f*E (one has to check the classical formulas for basis changes in order to
prove that f*V is well-defined), and with respect to this basis we obviously have

REY = [1(RY),
whence ¢;(f*V) = f*(c1(V)).
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The Whitney sum formula is also easy to check. If F and F are complex bundles over M with
connections V and V then one can define a connection V& V on E @ F by

(Vo V)(odd)(X):=Va(X)d Va(X).
If {0}, {G;} are local basis of sections of E and F' then {o; & 0,0 ;} is a local basis for £ @ F

and the curvature of V @ V in this basis is a block matrix having RY and RY on the principal
diagonal. Its trace is thus the sum of the traces of RY and RV.

We finally check the normalization property. Let L — CP! be the tautological bundle. For any
section o : CP' — L of L we denote by oq : Uy — C and oy : U; — C the expressions of ¢ in the
standard local trivializations of L, given by ¢; : 77 'U; — U; x C, ;(w) = (7(w), w;).

The Hermitian product on C? induces a Hermitian structure h on L. Let V be the Chern connec-
tion on L associated to h. We choose a local holomorphic section ¢ and denote its square norm

by u. If w is the connection form of V with respect to the section o, Vo = w ® o, then we can
write:

X(u) = X(h(0,0)) = h(Vx0,0) + h(o,Vxo) = w(X)u+o(X)u, VX € TCP.

This just means w + @ = dlogu. On the other hand, since ¢ is holomorphic and V%' = 9, we see
that w is a (1,0)—form. Thus w = dlogu. From (38) we get

(40) RY = dw = ddlogu = ddlog u.
We thus have to check the following condition:

- 00logu = —1.

27T CPI
It is clearly enough to compute this integral over U := CP* —{[0 : 1]}. We denote by 2 := ¢y =
the holomorphic coordinate on Uy. We now take a particular local holomorphic section o such
that og(z) = 1. From the definition of oy (as the image of ¢ through the trivialization 1y of L),
we deduce that o(z) is the unique vector lying on the complex line generated by (zg,2;) in C?
whose first coordinate is 1, i.e. o(z) = (1,2). This shows that u = |(1,2)]* = 1 + |2|%. In polar
coordinates z = rcosf + irsin 6 one can readily compute

Pf 10°f Of

88f——< W*F—W‘Fa—)(ﬁ/\de.

Applying this formula to f :=log(1 + r?) we finally get

. . 2
i 00logu = L —( ﬁng)dr/\dG
2m [0,00) % [0,27]

CPI 27T 8T2 a
1 [oe)
= ——/ d rg = 1 lim 6f
2 Jy or 2 r—oo 87“
r 2r
= — lim = = —
r—oo 21+ 1+7r2
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If M is an almost complex manifold, we define the first Chern class of M — denoted by ¢, (M) —
to be the first Chern class of the tangent bundle 7'M, viewed as complex vector bundle:

(M) :=c,(TM).

In the next sections we will see that a representative of the first Chern class of a Kahler manifold
is % p, where p denotes the Ricci form.

10.2. Properties of the first Chern class. Let M be a complex manifold and let F, F' be
two complex vector bundles over M.
PROPOSITION 10.4. (i) ¢1(E) = ¢1(A*E), where k denotes the rank of E.
(il)) i (E® F) =rk(F)c1(E) + rk(E)ey (F).
(iii) &1 (E*) = —c1(F), where E* denotes the dual of E.

PROOF. (i) Consider any connection V in E, inducing a connection V on A*E. If oy, ..., o}
denotes a local basis of sections of E, then o := 0y A ... Aoy is a local non-vanishing section of
AFE. Let w := (w;j) and & be the connection forms of V and V relative to these local basis:

VO'Z':(,L)Z‘J‘(@O']' and VO':(I)®0'.

We then compute

Vo = V(o1 A...Noy)
= ZJlA...AJifl/\(Zwij®0j>/\Ui+1/\.../\0‘k
p -

J
= ) wi®o,
i=j
which proves that @ = Tr(w). From (37) we then get
Tr(RY) =RV =do— o NG = di

and
Tr(RY) = Z(dwij — Wi N\ wij) = Zdwij = dTr(w) = do,

i=j =7
thus proving that ¢;(E) = ¢;(A*E).
(ii) Let us denote by e and f the ranks of F and F. Because of the canonical isomorphism
ANHE®F) = (AE)® @ (M F)®¢, it is enough to check this relation for line bundles E and F.
Any connections V¥ and V¥ on E and F respectively induce a connection V on E ® F defined
by

V(eF @ o) = (VFe") @ of + 0% @ (VIah).

The corresponding connection forms are then related by

w:wE+wF
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so clearly
RY = dw = d(w” +w") = RY" + RV".

(iii) Again, since (A*E)* is isomorphic to A¥(E*), we can suppose that E is a line bundle. But in
this case the canonical isomorphism EF ® E* ~ C (where C denotes the trivial line bundle) shows

that 0 = ¢;(C) = 1 (E® E*) = ¢1(E) + ¢, (E*). O

10.3. Exercises.

(1) Consider the change of variables z = rcosf + irsinf. Show that for every function
f:U C C — C the following formula holds:

e 7 82f 162f of
00f = 5(7”% + ;W + E)d?“/\de.

(2) Show that the first Chern class of a trivial bundle vanishes.
(3) Show that if F is a complex line bundle, there is a canonical isomorphism F ® E* ~ C.

(4) Let V be any connection on a complex bundle E and let V* be the induced connection
on the dual F* of E defined by

(Vxo™)(0) := X(0%(0)) — 0" (Vx0).

Show that
RY(XY) = (RY(X,Y)),
where A* € End(E*) denotes the adjoint of A, defined by A*(c*)(0) := —c*(A(0)).
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11. The Ricci form of Kahler manifolds

11.1. Ké&hler metrics as geometric U(m)—structures. We start by a short review on G—
structures which will help us to characterize Kéhler and Ricci—flat Kahler metrics. Let M be an
n—dimensional manifold and let G be any closed subgroup of Gl,,(R).

DEFINITION 11.1. A topological G—structure on M is a reduction of the principal frame bundle
GI(M) to G. A geometrical G-structure is given by a topological G-structure G(M) together with
a torsion—free connection on G(M).

Let us give some examples. An orientation on M is a GI!(R)-structure. An almost complex
structure is a Gl,,,(C)-structure, for n = 2m. A Riemannian metric is a O, —structure. In general,
if the group G can be defined as the group preserving an element of some Gl,, representation
p: GL,(R) — End(V), then a G-structure is simply a section ¢ in the associated vector bundle
Gl(M) x, V with the same algebraic properties as vy in the sense that for every x € M there
exists u € GI(M) with o(x) = [u, vg]. To see this, let G be given by

G = {g € GL.(R) | p(g)(v0) = w0}

If G(M) is a G-structure, we define a section in GI(M) x, V by o(x) := [u,vs] where u is an
arbitrary element of the fiber G(M),. This definition clearly does not depend on u. Conversely,
the set {u € GI(M) | 0 = [u,vo]} defines a reduction of the structure group of GI(M) to G. In
this setting, the G—structure is geometrical if and only if there exists a torsion—free connection on
M with respect to which o is parallel.

PrROPOSITION 11.2. The U,,—structure defined by an almost complex structure J together with a
Hermitian metric h on a manifold M is geometrical if and only if the metric is Kdhler.

PROOF. The point here is that if G is a closed subgroup of O,, then there exists at most one
torsion—free connection on any G-structure (by the uniqueness of the Levi-Civita connection). As
U, = Os,,, NGl (C), the U, structure is geometrical if and only if the tensor defining it (namely
J) is parallel with respect to the Levi-Civita connection, which by Theorem 5.5 just means that
h is Kéahler. O

11.2. The Ricci form as curvature form on the canonical bundle. We now turn back
to our main objects of interest. Let (M*™ h,J) be a Kihler manifold with Ricci form p and
canonical bundle K := A™%M. As before, we will interpret the tangent bundle T'M as a complex
(actually holomorphic) Hermitian vector bundle over M, where the multiplication by i corresponds
to the tensor J and the Hermitian structure is h — i€2. From Proposition 5.8 we know that the
Levi-Civita connection V on M coincides with the Chern connection on T'M.

LEMMA 11.3. The curvature RY € C®(A*M @ End(T'M)) of the Chern connection and the cur-
vature tensor R of the Levi—-Civita connection are related by

RY(X,Y)¢ = R(X,Y),
where X, Y are vector fields on M and £ is a section of T M.
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PROOF. The proof is tautological, provided we make explicit the definition of RY. Let {e;}
denote a local basis of vector fields on M and let {e}} denote the dual local basis of A'M. Then

RVE=V?¢=V(e; @V, &) =de; @V, —ef Nes @ Ve, Ve,
Denoting X; := € (X) and Y; := € (Y) we then obtain
RY(X,Y)E = dej(X,Y)Ve& — (ef Nef)(X,Y)Ve, Ve €
= (X(V3) =Y(Xi) = e/ ([X, Y])Ve,§ = (X3 = X;Yi) Ve, Ve g
= —Vixy§ + (X)) =Y (Xi)Ve,§ = XiVy Ve £ + ViV Ve £
= =V —VyVx{+VxVy{=R(X,Y).
0

We are now ready to prove the following characterization of the Ricci form p on Kahler manifolds:

PROPOSITION 11.4. The curvature of the Chern connection of the canonical line bundle K is equal
to ip acting by scalar multiplication on K.

PROOF. We fix some notations: let » and r* be the curvatures of the Chern connections of
K := A™%M and K* := A" M. They are related by » = —r* (exercise). Moreover, the connection
induced on A™(T'M) with the induced Hermitian structure by the Chern connection on T'M is
clearly the Chern connection of A™(T'M). It is easy to check that A™(T'M) is isomorphic to K*,
so from the proof of Proposition 10.4 and from Lemma 11.3 we get

(X,Y) = Tr(RY(X,Y)) = Tr(R(X,Y)).

Since we will now use both complex and real traces, we will make this explicit by a superscript.
By Proposition 6.2 we then obtain

ip(X,Y) = iRic(JX,Y):%TrR(R(X,Y)oJ)

= %(QiTrC(R(X, Y)) = -Tr"(R(X,Y))
= —r"(X,Y)=r(X,Y),

where we used the fact that
T (A% o J) = 2iTr"(A)
for every skew—hermitian endomorphism A. O

11.3. Ricci—flat Kihler manifolds. Let (M?™ h,J) be a Kédhler manifold with canonical
bundle K (endowed with the Hermitian structure induced from the Kéhler metric on T'M) and
Ricci form p. We suppose, for simplicity, that M is simply connected. Then the previous results
can be summarized as follows:

THEOREM 11.5. The five statements below are equivalent:

(1) M is Ricci—flat.
(2) The Chern connection of the canonical bundle K is flat.
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(3) There exists a parallel complex volume form, that is, a parallel section of A™°M.
(4) M has a geometrical SU,,-structure.
(5) The Riemannian holonomy of M is a subgroup of SU,,.

In the non—simply connected case, the last 3 statements are only local.

PROOF. (1) <= (2) is a direct consequence of Proposition 11.4.

(2) <= (3) follows from the general principle that a connection on a line bundle is flat if and only
if there exists a parallel section (globally defined if 71 (M) = 0, and locally defined otherwise).

(3) <= (4) The special unitary group SU,, can be defined as the stabilizer of a vector in the
canonical representation of U,, onto A™°C. Thus, there exists a parallel section in A™°M if and
only if the geometrical U,,—structure defined by the Kéhler metric can be further reduced to a
geometrical SU,,—structure.

(4) = (5) If G(M) is a G-structure, the holonomy of a connection in G(M) is contained in G.
Now, if M has a geometrical SU,,—structure, the torsion—free connection defining it is just the
Levi-Civita connection, therefore the Riemannian holonomy group is a subgroup of SU,,.

(5) = (4) The reduction theorem ([8], Ch. 2, Thm. 7.1) shows that for every fixed frame u, the
holonomy bundle (that is, the set of frames obtained from u by parallel transport) is a Hol, (M )—
principal bundle, and the Levi-Civita connection can be restricted to it. Thus, if the Riemannian
holonomy Hol(M) of M is a subgroup of SU,,, we get a geometrical SU,,—structure simply by
extending the holonomy bundle to SU,,.

U

Notice that by Theorem 10.3 and Proposition 11.4, for a given Ké&hler manifold (M, h,J), the
vanishing of the first Chern class of (M, J) is a necessary condition for the existence of a Ricci-
flat Kahler metric on M compatible with J. The converse statement is also true if M is compact,
and will be treated in the next section.

11.4. Exercises.
(1) Let G be a closed subgroup of Gl,,(R) containing SO,,. Show that every G-structure is

geometrical.

(2) Let M™ be a connected differentiable manifold. Prove that M is orientable if and only if
its frame bundle Gl, (M) is not connected.

(3) Show that a U,,—structure on M defines an almost complex structure together with a
Hermitian metric.

(4) Show that a geometrical Gl,,(C)-structure is the same as an integrable almost complex
structure. Hint: Start with a torsion free connection V and consider the connection V
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defined by VxY 1= VxV — AxY, where AxY = L(2J(Vx )Y + (Vi J)X +J(VyJ)X).
Use the proof of Lemma 5.4 to check that A is symmetric if and only if J is integrable.

(5) Let A be a skew—hermitian endomorphism of C™ and let A® be the corresponding real
endomorphism of R?™. Show that

TrR (AR 0 J) = 2iTx©(A).

(6) The special unitary group SU,, is usually defined as the subgroup of U,, C Gl,(C)
consisting of complex unitary matrices of determinant 1. Prove that SU,, is equal to the
stabilizer in U,, of the form dz; A ... A dz,,.

(7) Let (L, h) be a complex line bundle with Hermitian structure over some smooth manifold
M. Prove that the space of Hermitian connections is an affine space over the real vector
space C*(A'M). Equivalently, there is a free transitive group action of C*°(A'M) on the
space of Hermitian connections on L.

(8) If L is a complex line bundle over M, show that every real closed 2-form in the cohomology
class ¢i(L) € H*(M,R) is 5= times the curvature of some connection on L.
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12. The Calabi conjecture

12.1. An overview. We have seen that the first Chern class of any compact Kahler manifold
is represented by i p. Conversely, we have the following famous result due to Calabi and Yau

THEOREM 12.1. Let M™ be a compact Kahler manifold with fundamental form o and Ricci form
p. Then for every closed real (1,1)—form py in the cohomology class 2mwey (M), there ezists a unique
Kahler metric with fundamental form @1 in the same cohomology class as ¢, whose Ricci form is
exactly p;.

Before giving an outline of the proof, we state some corollaries.

COROLLARY 12.2. If the first Chern class of a compact Kahler manifold vanishes, then M carries
a Ricci—flat Kdhler metric.

COROLLARY 12.3. If the first Chern class of a compact Kdhler manifold is positive, then M 1is
simply connected.

ProoF. By the Calabi theorem M has a Kéahler metric with positive Ricci curvature, so the
result follows from Theorem 15.6 below. O

The first step in the proof of Theorem 12.1 is to reformulate the problem in order to reduce it
to a so—called Monge-Ampéere equation. We denote by H the set of Kahler metrics in the same
cohomology class as . The global i00—Lemma shows that

(41) H:{uECOO(M)|g0—|—i88_u>O,/ugpm:()}
M

(this last condition is needed since w is only defined up to a constant).

Now, if g and ¢, are Kahler metrics with Kahler forms ¢ and ¢; in the same cohomology class,
we denote by dv := %gpm and dvy 1= %gp{” their volume forms and consider the real function f

defined by e/ dv = dv,. Since [¢] = [p1] we also have [p™] = [p?], that is

(42) /M ef dv — /M v,

Let p and p; denote the corresponding Ricci forms. Since ip is the curvature of the canonical
bundle K, for every local holomorphic section w of K, we have

(43) ip = 001og g(w, ) and  ip; = 0dlog gi(w,w).

It is easy to check that the Hodge operator acts on A™° simply by scalar multiplication with
€= im(—l)m(rgﬂ). We thus have

(44) Ew AW =wA *w = g(w,w)dv

and similarly

(45) ewA@ = g (w,@)dv; = ef g (w,@)dv.
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From (43)—(45) we get

(46) ipy —ip = D0f.

This shows that the Ricci form of the modified Kéhler metric ¢1 = ¢ 4 i90u can be computed by
the formula

(¢ +i00u)™

m

(47) p1 = p —i00f, where f = log

Now given closed real (1,1)-form p; in the cohomology class 2mc; (M), the global i90-Lemma
shows that there exists some real function f such that p; = p —i90f. Moreover, f is unique if we
impose the normalization condition (42). We denote by H’ the space of smooth functions on M
satisfying this condition. The Calabi conjecture is then equivalent to the following

THEOREM 12.4. The mapping Cal : H — H' defined by

Cal(u) = log (p +i00u)™
(pm

1s a diffeomorphism.

We first show that Cal is injective. It is clearly enough to show that Cal(u) = 0 and u € H

implies u = 0. If Cal(u) = 0 we have p]* = ¢™, and since 2-forms commute we obtain

m—1
0= — " =1i00u A Z O A TR
k=0
Using the formula 2i00 = dd° and the fact that ¢ and ¢, are closed forms we get after multipli-
cation by u

m—1 m—1

0 = 2udou A Z O A ™R = wuddu A Z OF A Rl
k=0 k=0
m—1 m—1
= d(udcu A Z oF A gpm_k_l) —du N du N\ Z OF A TR
k=0 k=0
Integrating over M and using Stokes’ theorem yields
m—1
(48) 0= Z/ du A Jdu A @b A ™R
k=0 Y M
Now, since ¢; defines a Kéhler metric, there exists a local basis {ey, Jey, ..., en, Je,, } orthonormal

with respect to g such that

m m
@zZej/\Jej and <p1:Zajej/\Jej,
j=1 j=1
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where a; are strictly positive local functions. This shows easily that for every &
<pr ARl = *(Z bfej A Je;), b? > 0.
j=1

In fact one can compute explicitly

k
V=km—k-1D! > a;...q.
J1F#Ts - Jk 7T
J1<e<Jk
This shows that the integrand in (48) is strictly positive unless du = 0. Thus u is a constant, so
u = 0 because the integral of u dv over M vanishes. Therefore C'al is injective.

To prove that it is a local diffeomorphism, we compute its differential at some u € H. By
changing the reference metric if necessary, we may suppose without loss of generality that u = 0.
For v € Ty’H we compute
d d (¢ +i00tv)™
C l* = I |t= Cal(t = —|— R ——
d.(0) = Glea(Cal(ee)) = Gleo( EE
85 /\ m—1 _ _ _
WOURE _ A(i9dy) = 5"y = — A%,
(pm

From the general elliptic theory we know that the Laplace operator is a bijection of the space
of functions with zero integral over M. Thus Cal, is bijective, so the Inverse Function Theorem
shows that Clal is a local diffeomorphism.

= m

The surjectivity of Cal, which is the hard part of the theorem, follows from a priori estimates,
which show that Cal is proper. We refer the reader to [6] for details.

12.2. Exercises.

(1) Show that *w = i™(™*2y for all w € A™°M on a Hermitian manifold M of complex
dimension m.

(2) Prove that the mapping
u — @ +i00u
is indeed a bijection from the set defined in (41) to the set of K&hler metrics in the
cohomology class [¢].

(3) Prove that the total volume of a Kéhler metric on a compact manifold only depends on
the cohomology class of its fundamental form.

(4) Show that *(¢™ ') = (m — 1)!¢ on every Hermitian manifold M of complex dimension
m. Using this, prove that if (M, ¢) is Kéhler, then pA¢™™! = (m—1)!S, where p denotes
the Ricci form and S is the scalar curvature of the Kéhler metric defined by ¢.
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(5) Let (M™,J) be a compact complex manifold. Show that the integral over M of the scalar
curvature of a Kahler metric only depends on the cohomology class of its fundamental
form ¢. More precisely one has

/M Sdv = 2rmey (M) U [p]™ 1.
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13. Kahler—Einstein metrics

13.1. The Aubin—Yau theorem. We turn our attention to compact Kéahler manifolds
(M, g) satisfying the Einstein condition

Ric = Ag, AeR.

We will exclude the case A = 0 which was treated above. If we rescale the metric by a positive
constant, the curvature tensor does not change, so neither does the Ricci tensor, which was defined
as a trace. This shows that we may suppose that A = ¢ = 1. The Kahler-Einstein condition
reads

p =€y, e==l1.

As the first Chern class of M is represented by £, we see that a necessary condition for the
existence of a Kéhler-Einstein manifold on a given compact Kéhler manifold is that its first
Chern class is definite (positive or negative). In the negative case, this condition turns out to be
also sufficient:

THEOREM 13.1. (Aubin, Yau) A compact Kihler manifold with negative first Chern class admits
a unique Kahler—FEinstein metric with Einstein constant € = —1.

We will treat simultaneously the two cases ¢ = %1, in order to emphasize the difficulties that
show up in the case ¢ = 1.

As before, we first reformulate the problem. Let (M?™, g, J, ¢, p) be a compact Kihler manifold
with definite first Chern class ¢;(M). By definition, there exists a positive closed (1,1)-form
representing the cohomology class 2mwecy (M). We can suppose without loss of generality that this
form is equal to ¢ (otherwise we just change the initial Kéahler metric). Then [¢]| = 2mec; (M) =
[ep], so the global i90-Lemma shows that there exists some function f with

(49) p=cp+iddf.

We are looking for a new Kahler metric g; with fundamental form ¢, and Ricci form p; such that
p1 = €p1. Suppose we have such a metric. From our choice for ¢ we have

2mp] = ec1(M) = [2mep] = [2mep].

From this equation and the global i00-Lemma it is clear that there exists a unique function u € H
such that ¢1 = ¢ +i00u. Now the previously obtained formula (47) for the Ricci form of the new
metric reads

] 00u)™
(50) p1 = p— id0log PT00W)"

Using (49) and (50), the Ké&hler-Einstein condition for g; becomes

(51) gp 4100 f — 00 log w = ey,
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which is equivalent to

(¢ +i00u)™

+eu = f + const.
(pm

(52) log

Conversely, if u € C3°(M) satisfies this equation, then the Kahler metric ¢ := ¢+i0du is Kéhler—
Einstein (we denote by C°(M) the space of all smooth functions v on M such that ¢ +i00u > 0).
The Aubin—Yau theorem is therefore equivalent to the fact that the mapping

Cal® : CX (M) — C>*(M) Cal®(u) := Cal(u) + cu

is a diffeomorphism.

The injectivity of C'al™ can be proved as follows. Suppose that Cal™(u;) = Cal™ (uz) and denote
by ¢1 := ¢ + 100u; and @, := ¢ + i00uy. Then

logsp—1 — Uy :log(p—2 — Uz,
e P

hence, denoting the difference us — u; by u:

(53) log w
1

=Uu.

At a point where u attains its maximum, the (1,1)-form i00u is negative semi-definite, since we
can write (for any vector X parallel at that point)

i00u(X,JX) = %(ddcu)(X, JX) = %(X(dcu(JX)) — JX (du(X)))
= %(H“(X,X) + HY(JX,JX)) <0,

since the Hessian H" of u is of course negative semi—definite at a point where u reaches its
maximum. Taking into account (53) we see that u < 0 at each of its maximum points, so u < 0
on M. Similarly, u > 0 at each minimum points, so finally u = 0 on M, thus proving the injectivity
of Cal™.

We have already computed the differential of C'al at u = 0 applied to some v € ToC(M):
Cal,(v) = —A%.
Consequently
Cal; (v) = —v — A%

is a bijection of C**(M) since the self-adjoint elliptic operator v — 2Awv + v has obviously no
kernel and its index is zero.

As before, the surjectivity of Cal™ is harder to prove and requires non—trivial analysis (see [6]).
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13.2. Holomorphic vector fields on compact Kéihler—Einstein manifolds. Let M?™
be a compact Kahler manifold. We start by showing the following

LEMMA 13.2. Let & be a holomorphic (real) vector field with dual 1-form also denoted by &. Then
& can be decomposed in a unique manner as

E=df +d°h+ &1,

where f and h are functions with vanishing integral and £ is the harmonic part of £ in the usual
Hodge decomposition.

PROOF. Since ¢ is holomorphic we have L¢J = 0, so [, JX]| = J[¢, X] for every vector field X.
Thus V ;x& = JVx&, so taking the scalar product with some JY and skew—symmetrising yields
d¢(JX,JY) = dé(X,Y), i.e. d€ is of type (1,1). The global dd“~Lemma shows that d§ = ddh
for some function h. The form & — d°h is closed, so the Hodge decomposition theorem shows that

¢ —dh=df +&

for some function f and some harmonic 1-form &,. Comparing this formula with the Hodge decom-
position for £ and using the fact that harmonic 1-forms are L*-orthogonal to dC>(M), d°C>(M)
and 6Q%(M) shows that & equals £, the harmonic part of £&. Finally, the uniqueness of f and h
follows easily from the normalization condition, together with the fact that dC>(M) and d°C*> (M)
are L?-orthogonal. O

Next, we have the following characterization of real holomorphic and Killing vector fields on
compact Kahler—Einstein manifolds with positive scalar curvature.

LEMMA 13.3. A vector field € (resp. ) on a compact Kdihler—Einstein manifold M*™ with positive
scalar curvature S is Killing (resp holomorphic) if and only if ¢ = Jdh (resp. ¢ = df +d°h) where
h (resp. f and h) are eigenfunctions of the Laplace operator corresponding to the eigenvalue

m°

PROOF. The Ricci tensor of M satisfies Ric(X) = 32X for every vector X. Let £ be a vector

field on M. If we view as usual T'M as a holomorphic vector bundle, then the Weitzenbock formula
(see (65) below) yields

(54) 20" 9 = V*VE + ip¢ = V*VE — Ric(€) = V'VE — %g_
The Bochner formula (Exercise 3 in the next section) reads

S
(55) A& = V*VE 4 Ric(§) = V'VE + %ﬁ.

Since S > 0, this shows that there are no harmonic 1-forms on M.

Suppose that ( is holomorphic. From Lemma 13.2 we then can write ( as a sum ¢ = df + d°h,
where f and h have vanishing integrals over M. Now, subtracting (54) from (55) yields A¢ = £¢,
so A(df +d°h) = d(2 f) 4+ d°(2h), and since A commutes with d and d°, and the images of d and
d® are L>-orthogonal, this yields Af = % f+c and Ah = %h + ¢9. Finally the constants have to
vanish because of the normalization condition.
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If ¢ is Killing, then £ is holomorphic by Proposition 9.5. The codifferential of every Killing vector
field vanishes, and moreover § anti-commutes with d°. Thus 0 = §§ = ddf, showing that df = 0,
so & = d°h with Ah = %h.

Conversely, suppose that ¢ = df + d°h and f and h are eigenfunctions of the Laplace operator
corresponding to the eigenvalue % Then A§ = %f , so from (55) we get

S S
—&=V"VE+ —¢.
m 2m
Then (54) shows that £ is holomorphic.
If moreover df = 0, we have

Lep = d(§ap) +§adp = d(J§) = —ddh =0,

where ¢ is the fundamental form of M. Together with £;J = 0, this shows that Lcg = 0, so £ is
Killing. O

We are now ready to prove the following result of Matsushima:

THEOREM 13.4. The Lie algebra g(M) of Killing vector fields on a compact Kdhler—FEinstein man-
ifold M with positive scalar curvature is a real form of the Lie algebra h(M) of (real) holomorphic
vector fields on M. In particular h(M) is reductive, i.e. it is the direct sum of its center and a
semi—simple Lie algebra.

PROOF. Let F': g(M) ® C — h(M) be the linear map given by F'(§ + i¢) := & + J(. Since J
maps holomorphic vector fields to holomorphic vector fields, F' is well-defined. The two lemmas
above clearly show that F'is a vector space isomorphism. Moreover, F'is a Lie algebra morphism
because Killing vector fields are holomorphic, so

Flg+i¢&+ic]) = [&&] = [¢Ga]l+ (&G +[¢a]) = (6 &)+ T2[¢ G + [T, G+ [J¢, &
= &l + ¢ IO+ & Gl + [IG &) = [F(§ +iC), (& +1iG)].

The last statement follows from the fact that the isometry group of M is compact, and every Lie
algebra of compact type, as well as its complexification, is reductive. O

There exist compact Kahler manifolds with positive first Chern class whose Lie algebra of holomor-
phic vector fields is not reductive. Therefore such a manifold carries no Kahler—Einstein metric,
thus showing that Theorem 13.1 cannot hold in the positive case.
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Vanishing results



14. Weitzenbock techniques

14.1. The Weitzenbock formula. The aim of the next 3 sections is to derive vanishing
results under certain positivity assumptions on the curvature using Weitzenbock techniques.

The general principle is the following: let (F,h) — M be some holomorphic Hermitian bundle
over a compact Kéhler manifold (M?™, g, .J), with holomorphic structure 9 : C*(AP'M @ E) —
C®(AP4*1M ® F) and Chern connection V : C*°(APIM @ E) — C®(ALM @ APIM @ E). If 9* and
V* are the formal adjoints of 0 and V, it turns out that the difference of the differential operators
of order two V*V and 2(0*0 + 00*) is a zero—order operator, depending only on the curvature of
the Chern connection:

(56) 2(0*0 + 00*) = V*V + R,

where R is a section in End(AP'M ® E). If R is a positive operator on APYM ® E, then every
holomorphic section of AP°M ® E is V-parallel, and if R is strictly positive on APYM ® E, then
this holomorphic bundle has no holomorphic section. This follows by applying (56) to some

holomorphic section o of APPM @ E, taking the scalar product with ¢ and integrating over M,
using the fact that 0* vanishes identically on AP°M @ E.

We start with the following technical lemma:

LEMMA 14.1. If {e;} is a local orthonormal basis in TM (identified via the metric g with an
orthonormal basis of A*M ), and V denotes the Chern connection of E, as well as its prolongation
to APIM ® E using the Levi—Civita connection on the left-hand side of this tensor product, then
0, 0%, V*and V*V are given locally by

(57) §:C°(APIM @ B) — C(AP M QE)  do = %@j —iJe;) AV, (0),

_ = 1
(58) O CRNIM G E) - CUNTIM B E) 00 = (e +ide;) 1V, (0),

(59) V*:C®(AM @AM @ E) - C°(APM®E) Vi (w®o)=(dw)o — Vo,
(60) V'V C®(AM @ E) — C*(A"M ® E)  V'Vo =Vy, 0 -V,V0

PROOF. If (E, h¥) and (F, h!") are Hermitian bundles, their tensor product inherits a natural
Hermitian structure given by

h,E®F<UE ®UF,8E ® SF) — hE<0E,SE)hF<UF,SF).
The Hermitian structure, on AP?M ® E with respect to which one defines the adjoint operators
above is obtained in this way from the Hermitian structure h of E and the Hermitian structure H

of AP9M given by (31). We will use the same symbol H for this Hermitian structure, by a slight
abuse of notation.

The relation (57) is more or less tautological, using the definition of 9 and the fact that e; — iJe;
is a (1,0)-vector, identified via the metric g with a (0,1)-form. Of course, the wedge product
there only concerns the AP?M—part of o.
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For 0 € C*(APIM ® FE) and s € C*(AP*"'M @ E) we define the 1-form a by
1
a(X) = §H((X +iJX) Lo, s).
By choosing the local basis {e;} parallel in a point for simplicity, then we get at that point:

o = es(ale;)) = %H«ej L iJe;) sV a,s) + %H«ej L iJe;)50,Ve,s)
= %H((ej +iJe;) aVe,0,8) + %H(O’, (ej —iJej) N Ve,s)
= %H((ej +iJe;) 3Ve,0,5) + H(o,0s),
thus showing that the operator —%(ej +iJe;) 1V, is the formal adjoint of 0.

The proof of (59) is similar: for w ® o € C*(AEM @ APIM ® E) and s € C®(APIM @ E) we
define the 1-form a by

a(X) = H((w(X))o, s)
and compute
—da = ej(ale;)) = —H((0w)o, s) + H((w(e;))Ve,0,5) + H((w(e;))o, Ve, s)
= H(V,0— (dw)o,s)+ Hw®ao,Vs),
whence V*(w ® o) = (dw)o — V0.
Finally, we apply (59) to some section Vo = ¢; ® V0 of ALM @ APM ® E and get

V*'Vo = (6¢;)Ve,0 =V, Ve,0=—g(er,Ve,e;)Ve,0 =V, Ve0o
- Q(Vekek, ej>veja - vejveja = Vvejejo' - vejveja-

We are now ready for the main result of this section

THEOREM 14.2. Let (E,h) — (M*",g,J) be a holomorphic Hermitian bundle over a Kihler
manifold M. For vectors X, Y € TM, let R(X,Y) € End(AP'M ® E) be the curvature operator
of the tensor product connection on APIM & E induced by the Levi—Clivita connection on APIM
and the Chern connection on E. Then the following formula holds

(61) 2(0°0 + 00*) = V*V + R,

where R is the section of End(APIM ® E) defined by

(62) R(0) := =R(Jej,e;)0 — %(ej —iJe;) A (ex +iJex) 3 (Rlej, ex)0).

OISy
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ProoOF. The proof is a simple computation in a local orthonormal frame parallel at a point,
using Lemma 14.1, (57),(58) and (60):
- 1
2000 = —5 (<€k —+ zJek) M| Vek((ej — iJej) A Vej)>

_ _% ((ek +iden) s ((e; — ide;) A Vekvej))

1
= —(glex,ej) +ig(Jew,e;))Ve, Ve, + 5 ((ej —iJej) N (e +iJey) JVekVej)

1
= VYV — ig(Jek, ej)VekVej + 5 ((6]' — iJej) A (€k + zJek) i Vejvek)

1 ~
+§ ((ej — iJej) VAN (ek + ZJek) | R(ek, €j)>

) ~ 1
— V'V — %g(Jek, e;)R(ex, e;) + 5 <(ej —iJe;) AN Ve, ((ex +iJeg) o Vek))

1
+§ ((ej —iJej) A (ex +iJer) 2 R(ey, ej))

= V'V —200"+R.
O

14.2. Vanishing results on Kahler manifolds. Most of the applications will concern the
case ¢ = 0. The expression of the curvature term becomes then particularly simple, since the last
term in (62) automatically vanishes. Let p®) denote the action of the Ricci-form of M on AP
given by

pPw = ple;) Nejaw.
It is easy to check that this action preserves the space AP,

PROPOSITION 14.3. If ¢ = 0, for every section w ® & of AP°M ® E we have
o , i

(63) 2000(w ® §) = V'V(w @) +i(pPw) @ £ + Sw @ RE(Jej, ¢))¢,

where RY is the curvature of E.

PROOF. The curvature R of AP°M @ E decomposes in a sum
(64) R(X,Y)(w®¢§) = (R(X,Y)w) @& +w e RP(X,Y)(6),

where R is the Riemannian curvature. It is an easy exercise to check that the Riemannian
curvature operator acts on forms by R(X,Y)(w) = R(X,Y)er Aer sw. From Proposition (6.2) (i)
we have 2p = R(Jej, e;) as endomorphisms of the tangent space of M. Therefore Theorem 14.2
and (64) yield the desired result. O

We are now ready to obtain the vanishing results mentioned above.
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THEOREM 14.4. Let M be a compact Kahler manifold. If the Ricci curvature of M 1is negative
definite (i.e. Ric(X,X) <0 for all non—zero X € TM ) then M has no holomorphic vector field.

PROOF. Let us take p = 0 and £ = TY9M in Proposition 14.3. If £ is a holomorphic vector
field, we have

(65) 0 =20"0¢ = V*VE + %R(Jej, ;)¢ = V*VE+ip(§).

Taking the (Hermitian) scalar product with £ in this formula and integrating over M, using the
fact that p§ = Ric(JE) = iRic(&) yields

0= / H(V*V¢ — Ric(€), &) dv = / |VE)? — H(RicE, €)dv.
M M
Thus, if Ric is negative definite, £ has to vanish identically. O

THEOREM 14.5. Let M be a compact Kahler manifold. If the Ricci curvature of M vanishes, then
every holomorphic form is parallel. If the Ricci curvature of M is positive definite, then there
exist no holomorphic (p,0)—forms on M for p > 0.

PRrOOF. We take E to be trivial and apply (63) to some holomorphic (p,0)—form w. Since
p =0 we get 0 = V*Vw. Taking the Hermitian product with w and integrating over M yields the
result.

Suppose now that Ric is positive definite. From (63) applied to some holomorphic (p, 0)—form w
we get

(66) 0= V*Vw +ip® (w).

The interior product of a (0,1)-vector and w vanishes, showing that JX jw = iX Jw. We thus
get

ip® (w) =ip(e;) Aejaw =ip(Je;) A Jej sw = —p(Je;) Aejsw = Ric(w).
Since Ric is positive, its extension to (p,0)—forms is positive, too, hence taking the Hermitian
product with w in (66) and integrating over M yields

/ |Vw|? + H(Ric(w),w)dv = 0,
M
showing that w has to vanish O

14.3. Exercises.
(1) Show that the extension to AP M ® C of a positive definite symmetric endomorphism of
T'M is positive definite.

(2) Prove the following real version of the Weitzenbock formula:

Aw =V*Vw + Ruw, YweQPM,
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where R is the endomorphism of (2’ M defined by
R(w) == —e; Nep 1 (R(ej, ex)(w)).
(3) Applying the above identity to 1-forms, prove the Bochner formula
Aw = V*Vw + Ric(w), Vwe QM.

(4) Prove that there are no global holomorphic forms on the complex projective space.
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15. The Hirzebruch—Riemann—Roch formula

15.1. Positive line bundles. In order to state another application of the Weitzenbock for-
mula we have to make the following

DEFINITION 15.1. A real (1,1)~form ¢ on a complex manifold (M, g, J) is called positive (resp.
negative) if the symmetric tensor A satisfying A(JX,Y) := o(X,Y) is positive (resp. negative)
definite. A cohomology class in HY*M N H*(M,R) is called positive (resp. negative) if it can
be represented by a positive (resp. negative) (1,1)—form. A holomorphic line bundle L over a
compact complex manifold is called positive (resp. negative) if there exists a Hermitian structure

on L with Chern connection NV and curvature form RY such that iRV is a positive (resp. negative)
(1,1)—form.

The positivity of a holomorphic line bundle is a topological property on Kahler manifolds:

LEMMA 15.2. A holomorphic line bundle L over a compact Kdihler manifold M is positive if and
only if its first Chern class is positive.

PROOF. One direction is clear from the definition. Suppose, conversely, that ¢;(L) is positive.
That means that there exists a positive (1,1)—form w and a Hermitian structure h on L whose
Chern connection V has curvature RV such that [iRYV] = [w] (the factor 27 can obviously be
skipped). From the global i90-Lemma, there exists a real function u such that iRV = w + i00u.
we now use the formula (40) which gives the curvature of the Chern connection in terms of the
square norm of an arbitrary local holomorphic section o:

RY = —00logh(o,0).

It is then clear that the curvature of the Chern connection V associated to h := he® satisfies for
every local holomorphic section o

iRY = —i0d log h(o,0) = —iddlog h(o, o) — i00u = iRY — id0u = w,
thus showing that L is positive. U

In order to get a feeling for this notion, notice that the fundamental form of a Kahler manifold is
positive, as well as the Ricci form of a Kahler manifold with positive Ricci tensor. From Lemma
11.4 we know that the canonical bundle K of a Kéhler manifold has curvature ip. Thus K is
negative if and only if the Ricci tensor is positive definite.

THEOREM 15.3. A negative holomorphic line bundle L over a compact Kdahler manifold has no
non-vanishing holomorphic section.

ProoF. Taking p =0 and F = L in (63) shows that every holomorphic section & of E satisfies

(67) 0 =20"0¢ = V'VE + %RV(Jej, e;)€.
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By hypothesis we have iRV (X,Y) = A(JX,Y), with A negative definite. Thus
1 1 1
SR (Jej ;) = =5 Alej,¢5) = =5 Tr(4)

is a strictly positive function on M. Consequently, taking the Hermitian product with & in (67)
and integrating over M shows that £ has to vanish. O

This result is consistent with our previous calculations on CP™. We have seen that the canonical
bundle K is negative, and that K is isomorphic to the m + 18U tensor power of the tautological
bundle L, which is thus negative, too. On the other hand, we have shown with a direct computation
that this last bundle has no holomorphic section.

15.2. The Hirzebruch—Riemann—Roch formula. Let £ — M be a holomorphic vector
bundle over some compact Hermitian manifold M?™. We denote by QF(E) := C*(A**M @ E)
the space of E—valued (0, k)—forms on M. Consider the following elliptic complex
(68) OB %oy E) L 2 amE).

We define the cohomology groups
Ker(d : QI(E) — QIH1E)

001~1(FE) '
By analogy with the usual (untwisted) case, we denote

HPI(M,E) := HY(M,A\"°M ® E).
For every Hermitian structure on E one can consider the formal adjoint 0* of 0, and define the
space of harmonic E—valued (0, ¢)—forms on M by
HUE) = {w € Q(E) | dw =0, 0w = 0}.

The analog of the Dolbeault decomposition theorem holds true in this case and as a corollary we
have

HY (M, E) =

THEOREM 15.4. The cohomology groups HY(M, E) are isomorphic with the spaces of harmonic
E-valued (0, q)—forms:
HY M, E) ~HYE).

We can view the elliptic complex (68) as an elliptic first order differential operator simply by
considering

0+ : VN (E) — odd(E),
The index of the elliptic complex (68) is defined to be the index of this elliptic operator:
Ind(0 + 9*) := dim(Ker(d + 9*)) — dim(Coker(d + 9%)).
The holomorphic Euler characteristic =Z(M, E) is defined by

=(M,E) = i(—1)kdimHk(M, E)
k=0
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and is nothing else but the index of the elliptic complex (68).

THEOREM 15.5. (Hirzebruch-Riemann-Roch formula) The holomorphic Euler characteristic of
E can be computed as follows

=(M,E) = /M Td(M)ch(E),

where Td(M) is the Todd class of the tangent bundle of M and ch(E) is the Chern character of
E.

The Todd class and the Chern character are characteristic classes of the corresponding vector
bundles that we will not define explicitly. The only thing that we will use in the sequel is that
they satisfy the naturality axiom with respect to pull-backs. If E is the trivial line bundle, the
holomorphic Euler characteristic Z(M, F) is simply denoted by Z(M) := > " (—1)*h%*(M).

For a proof of the Hirzebruch-Riemann—Roch formula see [3].

We will give two applications of the Riemann-Roch formula, both concerning the fundamental
group of Kahler manifolds under suitable positivity assumptions of the Ricci tensor. The first one
is a theorem due to Kobayashi:

THEOREM 15.6. A compact Kdhler manifold with positive definite Ricci tensor is simply connected.

PROOF. Theorem 14.5 shows that there is no holomorphic (p,0)-form on M, so h?*°(M) = (
for p > 0. Of course, the holomorphic functions are just the constants, so h%°(M) = 1. Since M
is Kéhler we have h??(M) = h%P(M), thus Z(M) = 1.

By Myers’ Theorem, the fundamental group of M is finite. Let M be the universal cover of M,
which is therefore compact, too. Applying the previous argument to M we get E(M ) = 1. Now,
if 7 : M — M denotes the covering projection, we have, by naturality, Td(M) = 7#*Td(M), and
an easy exercise shows that for every top degree form w on M one has

/W*w:k/ w,
M M

where k denotes the number of sheets of the covering. This shows that £ = 1, so M is simply
connected. 0

Our second application concerns Ricci—flat Kahler manifolds. By Theorem 11.5; a compact Kahler
manifold M?™ is Ricci-flat if and only if the restricted holonomy group Holy(M) is a subgroup of
SU,,. A compact Kéhler manifold M with Holy(M) = SU,, is called Calabi—Yau manifold.

THEOREM 15.7. Let M?™ be a Calabi—Yau manifold. If m is odd, then Hol(M) = SU,,, so there
exists a global holomorphic (m,0)—form even if M is not simply connected. If m is even, then
either M is simply connected, or m (M) = Zy and M carries no global holomorphic (m,0)—form.

PROOF. Let M be the universal covering of M. The Cheeger-Gromoll theorem (cf. [1], p. 168)
shows that M is compact (having irreducible holonomy). By Theorem 14.5, every holomorphic
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form on M is parallel, and thus corresponds to a fixed point of the holonomy representation. It is
easy to check that SU,, has only two invariant one-dimensional complex subspaces on (p, 0)—forms,
one for p = 0 and one for p = m. Thus

7 {O for m odd

2 for m even

Moreover, Z(M) = k=(M), where k is the order of the fundamental group of M. This shows that
Z(M) = 0 for m odd, hence h™°M =1, so M has a global holomorphic (m, 0)-form.

If m is even, then either M is simply connected, or k = 2 and Z(M) = 1. In this last case, we
necessarily have h™°M = 0, so M carries no global holomorphic (m, 0)—form.

n

15.3. Exercises.
(1) Prove the Kodaira—Serre duality:
HYM,E)~H™ Y M, E*® Ky)

for every holomorphic vector bundle E over a compact Hermitian manifold M.

(2) Prove that the operator
5+ 8 QeVen(p) Qodd<E)

is elliptic, in the sense that its principal symbol applied to any non—zero real 1-form is
an isomorphism.

(3) Prove that the index of the above defined operator is equal to the holomorphic Euler
characteristic Z(M, E).

(4) Let m : M — M be a k-sheet covering projection between compact oriented manifolds.
Prove that for every top degree form w on M one has

/W*w:k/ w.
M M

Hint: Start by showing that to any open cover {U;} of M one can associate a closed cover
{C;} such that for every j there exists some ¢ with C; C U; and such that the interiors
of C; and C}, are disjoint for every j # k.

(5) Show that the representation of SU,, on APC™ has no invariant one-dimensional subspace
forl1<p<m-—1.
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16. Further vanishing results

16.1. The Schrodinger—Lichnerowicz formula for Kahler manifolds. Let L be a holo-
morphic Hermitian line bundle over some Kihler manifold M?™ with scalar curvature S. We
would like to compute the curvature term in the Weitzenbock formula on sections of A% M ® L,
and to show that this term becomes very simple in the case where L is a square root of the canon-
ical bundle. The reader familiar with spin geometry will notice that in this case A>*M @ K 2 is
just the spin bundle of M and the operator v/2(9 + ) is just the Dirac operator.

Let us denote by i« the curvature of the Chern connection of L. The first term of the curvature
operator R applied to some section w ® & € Q¥*M ® E can be computed as follows

Riw®E) = 2R(Jee)w®E) = = (2(p(’“’w) ® € +ia(Jej, e))w ® 5)

2

DN | =

= i(pWPw)®¢ - %a(Jej, ej)w®E.
In order to compute the second curvature term we make use of the following algebraic result
LEMMA 16.1. The Riemannian curvature operator satisfies
(e; —iJe;) A (e +iJex) 2 R(ej, er)w = 4ipFw
for every (0, k)—form w.

PROOF. Since the interior product of a (1,0)-vector and a (0, k)-form vanishes we obtain
(69) Xow=iJX.1w YweQMm.

The forms R(e;, e, )w are still (0, k)-forms, since the connection preserves the type decomposition
of forms. By changing e; to Je; and then e to Je;, we get

e; N (e +1iJey) s R(ej,ep)w = Jej A (ep+iJey) 2 R(Jej, ep)w

= —Je; A (ex +iJex) s R(ej, Jey)w
= —iJe; A (e +iJex) o R(ej, ep)w.

Thus

(e; —iJej) A (ex +iJey) 2 R(ej, en)w = 2e; A (e, +iJey) 1 R(ej, ex)w = dej A ey 1 R(ej, ep)w.
Now, using (69) twice we get
R(ej, e, e, es)ej Nep Nes e aw = —Rl(ej,ex, Je, Jeg)ej Nep Nesaesw

= —R(ej,ex, e es)e; Nep Nes 1e Jw,

so this expression vanishes. From the first Bianchi identity we then obtain

R(ej, ep e, es)ej Nes Negaegsw = R(ej, e e es)ej NesAegie tw
+R(ej, es,€1,€er)e; Nes Neg JeJw

= —R(ej, e e es)ejNes Neje, iw



84

whence
R(ej, e, e, es)ej Nes Aeg e sw=0.
Finally we get
(e; —iJe;) A (ex +iJe) s R(ej en)w = 4dej ANey1R(ej, ep)w
= 4R(ej, ek, e, e5)ej Negu(es Nejsw)
= —4Ric(ej, e)e; A e sw = 4iRic(ej, Je)e; N e aw

= 4ip®y.

For every (1,1)-form a and (0, k)-form w we have as before

(ej —ide;) N (ex +idex) salejep)w = 2e; A (ep +iJey) sale), ep)w = 4de; A e safej, ex)w
—4a® (w).
The second term in (62) thus reads
1 : : ~
Ro(w®€) = —5(6]' —iJe;) A (ex +idex) 2 (R(ej, er)(w®E))
1

= —§(e]~ —iJe;) N (ex +ider) 2 ((R(ej, en)w) @ &+ iale), ep)w ® &)
= —2ip" (W)@ ¢+ 2iaP(w) @ ¢

Suppose that the curvature of the line bundle L satisfies

1
RY = ia = ip.
1 2Zp

The formulas above show that the curvature term in the Weitzenbock formula on QY*M @ L
satisfies

1
Rw®€) = (Ri+Ra)w®8) =ip™(w) @€ —callee)wat
—2ip™(w) ® £ + 2ia® (W) ® ¢
1 S
= —Zp(Jej, ej)w® & = Vi ®E.
This proves the

THEOREM 16.2. (Schrodinger—Lichnerowicz formula). Let L = K 2 be a square root of the canon-
ical bundle of a Kdhler manifold M, in the sense that L has a Hermitian structure h such that
Ky is isomorphic to L @ L with the induced tensor product Hermitian structure. Then, if ¥V is a
section of the complex vector bundle

SM =AM & ...e A" M) K2
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and D := +/2(0 + ") is the Dirac operator on XM, the following formula holds

D>V = V*VVU + %11.

The Schrédinger—Lichnerowicz formula is valid in a more general setting (on all spin manifolds,
not necessarily Kahler), and it has important applications in geometry and topology (see [4], [9]).

16.2. The Kodaira vanishing theorem. Let M?™ be a compact Kéhler manifold and let
L be a positive line bundle over M. From the definition, we know that L carries a Hermitian
structure whose Chern connection V has curvature RV with iRV > 0. We consider the Kéhler
metric on M whose fundamental form is just iRY. By a slight abuse of language, we denote
by 0 : C®(APIM ® L) — C®(AP*HM ® L) the extension of V0 to forms. Note that, whilst
0 is an intrinsic operator, @ depends of course on the Hermitian structure on L. We apply the
Weitzenbock formula to some section w ® & of APIM ® L:

(70) 20000+ 00" ) (w®&) =V V(w®E) + Rw§).
The same computation actually yields the dual formula
(71) 20704+ 00" (w @ &) = V'V(w @ €) + R(w®E).

Alternatively, one can apply (70) to a section @ ® £* of A?PM ® L* and then take the complex
conjugate. Subtracting these two equations yields

(72) 2(0°0 + 00" ) (w ® &) = 2(8"0 + D)) (w @ &) + (R — R)(w @ ).

We now compute this curvature term.

(R-R)(w®§) = iR(Jej, e5)(w®E) — 5 (e —iJej) A (e +idex) s Rleg, ex)(w @ €)

+%(e]~ +iJe;) A (ex —iJex) 3 R(ej, e)(w @ €)
= iR(Jej,e;)(w®E) +iJej AexaR(ej, ex)(w @)
—ie; A Jep 1 R(ej, e)(w @ €)
= iR(Jej,e;)(w®E) + 2ide; A e o R(ej, ex)(w @ €)
= 2ip(w) ® & +iw @ RY (Jej,e;)€ + 2idej A ey 1 Rlej, ep)w ® &
+2iJej Aepaw @ RY (e, ex)é
= 2ip(w) ®E—2mw®E+2iJej Ney s R(ej,ep)w@E+2(p+ qw ® E.
On the other hand, the expression Je; A e, 1 R(e;, ey )w can be simplified as follows:

Je;j Ner s R(ej en)w = Jej NegaR(ejep)er Nepaw

—Ric(ej, ;) Je; Nepaw — Je; AN R(ej, ep)e; Nepaesw

= —p(w) — R(ej, ek, e,e5)Jej Nes Neg e Jw,
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and from the Bianchi identity
2R(ej, ep,er,e5)Jej Nes Negseaw = Rlej, e, e, es)Je; Nes Aepiesw
+R(ej, e, e, es)de; Nes Nepsep aw
= Rle e ej,e5)Jej NesNeg e sw
= —R(e ex, Jej es)ej Nes ANepaepsw =0,
where the last expression vanishes because R(:,-, J-,-) is symmetric in the last two arguments.
This shows that Je; A e 1 R(ej, ex)w = —p(w), so from the previous calculation we get
2(0°0 +00") (w® &) =200 + 00" ) (w® &) +2(p+q—m)(wE).
After taking the Hermitian product with w®¢ (which we denote by o for simplicity) and integrating
over M we get
(73) / Bof? + |50 Pdv = / 002 + 070 + (p + g — m)|o]?dv.
M M
If o is a harmonic L—valued form, the left hand side term in (73) vanishes, thus proving the

THEOREM 16.3. (Kodaira vanishing theorem). If L is a positive holomorphic line bundle on a
compact Kdhler manifold M, one has HP(M, L) = 0 whenever p+ q > m.



Part 6

Calabi—Yau manifolds



17. Ricci—flat Kahler metrics

17.1. Hyperkahler manifolds. In order to obtain the classification (up to finite coverings)
of compact Ricci—flat Kahler manifolds, we make the following

DEFINITION 17.1. A Riemannian manifold (M", g) is called hyperkahler if there ezist three com-
plex structures I, J, K on M satisfying K = IJ such that g is a Kahler metric with respect to
each of these complex structures.

It is clear that a metric is hyperkéhler if and only if it is Kahler with respect to two anti—-commuting
complex structures. In the irreducible case, this can be weakened as follows:

PROPOSITION 17.2. Let (M™, g) be a locally irreducible Riemannian manifold. If g is Kahler with
respect to two complex structures J and Jy, and if Jy is different from J and —J, then (M, g) is
hyperkdahler.

ProoOF. The endomorphism JJ;+J;J is symmetric and parallel on M, so by local irreducibility
it has to be constant:

(74) JJ + J1J = ald, aeR.
From the Cauchy—Schwartz inequality we get
o = |add? = |JJy + L) <2(|JL)? + | L)) < 4lJP4L) =4,

where the norm considered here is the operator norm. The equality case can only hold if JJ; =
BJ1J for some real number 3. Together with (74) this shows that J.J; = Id for some real number
v, so J; = £J, which was excluded in the hypothesis. Therefore we have o? < 4. We then
compute using (74)

(J1 + JIJ)? = (o® — 4)1d,
so the parallel skew—symmetric endomorphism

1
[ = \/ﬁ<t}l _'_ JJlJ)
defines a complex structure anti-commuting with J, with respect to which g is Kahler. U

Consider the identification of C* with H* given by (21,22) — 21 + jz. We denote by I, J
and K the right product on H* with 7, j and k respectively, which correspond to the following
endomorphisms of C?*:

1(21,22) = ('l.21,'l.22) J(Zl,ZQ) = (—22,21) K(Zl,ZQ) = (_'l.ZQ,'l.Zl).
Let us denote by Sp, the group of unitary transformations of C?* (that is, preserving the canonical

Hermitian product and commuting with ), which also commute with J (and thus also with K).
Clearly we have

Spy — {M - (_AB g) € Mo (C)

It is tautological that a 4k—dimensional manifold is hyperkahler if and only if the bundle of
orthonormal frames has a reduction to Sp,.

MMt - [2k}
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LEMMA 17.3. Sp;, C SUg.

PROOF. By definition we have Sp, C Uy, so every matrix in Sp,, is diagonalizable as complex
matrix and its eigenvalues are complex numbers of unit norm. If v is an eigenvector of some
M € Sp,, with eigenvalue A € S! then

MJv=JMv = J v = \Jv=\"1Ju,
showing that the determinant of M equals 1. O

This shows that every hyperkahler manifold is Ricci-flat. A hyperkéhler manifold is called strict
if it is locally irreducible.

Let now M be an arbitrary compact Ricci-flat Kahler manifold. The Cheeger-Gromoll theorem
([1], p.168) says that M is isomorphic to a quotient

M ~ (My x TY/T,

where M, is a compact simply connected Kihler manifold, T' is a complex torus and I is a finite
group of holomorphic transformations. Let My = M; x ... x M be the De Rham decomposition
of My. Then M; are compact Ricci-flat simply connected Kahler manifolds with irreducible
holonomy for all j. A symmetric space which is Ricci-flat is automatically flat, so the M;’s are
not symmetric. The Berger holonomy theorem then shows that M is either Calabi-Yau or strict
hyperkéhler for every j. We thus have the following

THEOREM 17.4. A compact Ricci—flat Kdhler manifold M is isomorphic to the quotient
M~ (M; X ... x Mg x Mgy...x M, x T/T,

where M; are simply connected compact Calabi—Yau manifolds for j < s, simply connected com-
pact strict hyperkdhler manifolds for s +1 < j < r and ' is a finite group of holomorphic
transformations.

17.2. Projective manifolds. A compact complex manifold (M?™, J) is called projective if it
can be holomorphically embedded in some complex projective space CPY. A well -known result of
Chow states that a projective manifold is algebraic, that is, defined by a finite set of homogeneous
polynomials in the complex projective space.

PROPOSITION 17.5. Ewvery projective manifold has a positive holomorphic line bundle.

PROOF. Let ¢ be the fundamental form of the Fubini-Study metric on CPY. It is easy to
check (e.g. using (22)) that the hyperplane bundle H on CP”" has a connection with curvature
—iy. The restriction of this line bundle to any complex submanifold of CP¥ is thus positive. [

Conversely, we have the celebrated

THEOREM 17.6. (Kodaira embedding theorem). A compact complex manifold M with a positive
holomorphic line bundle L s projective.
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A proof can be found in [2], p. 176. The main idea is to show that a suitable positive power L*
of L has a basis of holomorphic sections {oy, ...,on} such that the holomorphic mapping

M — CPY x> [og(x) ... on(2)]
is an embedding.

COROLLARY 17.7. Every Calabi—Yau manifold of complex dimension m > 3 is projective.

PROOF. For every compact manifold M, let A and A* be the sheaves of smooth functions on
M with values in C and C* respectively. The exact sequence of sheaves
0-Z—-AZ2 A =0
induces an exact sequence in Cech cohomology
— HY(M, A) — H' (M, A*) 2 H*(M,Z) — H*(M, A) — .

The sheaf A is fine (that is, it admits a partition of unity), so H'(M,.A) = 0 and H*(M, A) = 0,
thus proving that

HY (M, A*) ~ H*(M,Z).
Notice that H'(M, A*) is just the set of equivalence classes of complex line bundles over M, and
the isomorphism above is given by the first Chern class.

The above argument shows that for every integer cohomology class v € H*(M,Z), there exists a
complex line bundle L with ¢;(L) = . Moreover, if w is any complex 2-form representing v in
real cohomology, there exists a connection V on L such that iRV = w. To see this, take any

connection V on L with curvature RYV. Then since [w] = ¢;(L) we get [27w] = [iRY], so there
exists some 1-form 6 such that 27w = i(RY 4 df). Clearly the curvature of V := V + if satisfies
the desired equation. If the form w is real and of type (1,1), then the complex bundle L has a
holomorphic structure, given by the (0, 1)—part of the connection whose curvature is w.

Let now M?™ be a Calabi-Yau manifold, m > 2. Since SU,, has no fixed point on A2°C™, we
deduce that there are no parallel (2,0)—forms on M, so by Theorem 14.5 we get h*°(M) = 0. By
the Dolbeault decomposition theorem we obtain that any harmonic 2-form on M is of type (1,1).
Consider the fundamental form ¢ of M. Since H?(M, Q) is dense in H?(M,R), and the space of
positive harmonic (1, 1)—forms is open in H'' (M, R) = H?*(M, R), we can find a positive harmonic
(1,1)-form w such that [w] € H*(M, Q). By multiplying with the common denominator, we may
suppose that [w] € H*(M,Z). Then the argument above shows that there exists a holomorphic
line bundle whose first Chern class is w, thus a positive holomorphic line bundle on M. By the
Kodaira embedding theorem, M is then projective. 0
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18. Constructions of Calabi—Yau manifolds

18.1. Divisors. Let M be a complex manifold. An analytic hypersurface of M is a subset
V' € M such that for every x € V there exists an open set U, C M containing x and a holomorphic
function f, defined on U, such that V NU, is the zero-set of f,.. Such an f, is called a local defining
function for V near x. The quotient of any two local defining functions around x is a non—vanishing
holomorphic function around =x.

An analytic hypersurface V' is called irreducible if it can not be written as the union of two smaller
analytic hypersurfaces. Every analytic hypersurface is a finite union of its irreducible components.

If V is an irreducible analytic hypersurface, with defining function ¢, around some x € V', then
for every holomorphic function f around z, the order of f along V' at x is defined to be the largest
positive integer a such that % is holomorphic around z. It can be shown that the order of f is a

well-defined positive integer, which does not depend on z, and is denoted by o(f, V).

DEFINITION 18.1. A divisor D in a compact complex manifold M is a finite formal sum with
integer coefficients of irreducible analytic hypersurfaces of M.

D:=>aV,, €Ll

A divisor D is called effective if all a; > 0 for all i.

The set of divisors is clearly a commutative group under formal sums.

A meromorphic function on a complex manifold M is an equivalence class of collections (U, fa, ga)
where {U,} is an open covering of M, and f,, g, are holomorphic functions defined on U, such
that fogs = fsga on U, N Us for all a, B. Two such collections (Us, fa, ga) and (Us, f5, gj5) are
equivalent if f,g5 = f3g. on U,NUj for all a, 8. A meromorphic function can be always expressed

locally as 5, where f and g are locally defined holomorphic functions.
We define similarly a meromorphic section of a holomorphic line bundle L as an equivalence

class of collections (U,, 04, go) Where o, is a local holomorphic section of L over U, and g, is a
holomorphic function on U, such that 0,93 = 039, on U, NUg for all o, 3.

A meromorphic function h defines a divisor (h) in a canonical way by
(h) == (h)o = (h)ec,

where (h)y and (h)s denote the zero-locus (resp. the pole-locus) of h taken with multiplicities.

More precisely, for every x in M, one can write the function h as h = Lr pear . IV is

an irreducible analytic hypersurface containing x, we define the order of h z;long V at x to be
o(fz, V) —0(gs, V), and this is a well-defined integer independent on z, denoted by o(h, V). Then

(h) => o(h, V)V,

1%
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where the above sum is finite since for every open set U, where h = g—z, there are only finitely
many irreducible analytic hypersurfaces along which f, of g, have non—vanishing order.

Similarly, if o is a global meromorphic section of a line bundle L, one can define the order o(o, V')
of o along any irreducible analytic hypersurface V' using local trivializations of L. This clearly
does not depend on the chosen trivialization, since the transition maps do not vanish, so they do
not contribute to the order. As before, one defines a divisor (o) on M by

(o) = Z o(a, V)V.

\%4

If D=>a;V; and f; are local defining functions for V; near some = € M (of course we can take
fi = 1if V; does not contain z), then the meromorphic function

117

is called a local defining function for D around .

DEFINITION 18.2. Two divisors D and D' are called linearly equivalent if there exists some mero-
morphic function h such that

D = D"+ (h).
In this case we write D = D'.

Clearly two meromorphic sections o and ¢’ of L define linearly equivalent divisors (o) = (¢/)+(h),
where h is the meromorphic function defined by o = o¢’h.

18.2. Line bundles and divisors. To any divisor D we will associate a holomorphic line
bundle [D] on M in the following way. Take an open covering U, of M and local defining
meromorphic functions h,, for D defined on U,. We define [D] to be the holomorphic line bundle on
M with transition functions g.g := Z—;. It is easy to check that g,s are non-vanishing holomorphic

functions on U, N Uy satistying the cocycle conditions, and that the equivalence class of [D] does
not depend on the local defining functions h,,.

ExAMPLE. Let H denote the hyperplane {z; = 0} in CP™ and consider the usual open covering
Uy = {2za # 0} of CP™. Then 1 is a local defining function for H on Uy and j—g are local defining
functions on U,. The line bundle [H] has thus transition functions g.s = =2, which are exactly
the transition function of the hyperplane line bundle introduced in Section %, which justifies its
denomination.

If D and D' are divisors, then clearly [-D] = [D]™! and [D + D’| = [D] ® [D’]. We call Div(M)
the group of divisors on M, and Pic(M) := HY(M,O) the Picard group of equivalence classes
of holomorphic line bundles (where O denotes the sheaf of holomorphic functions). Then the
arguments above show that there exists a group homomorphism

[]:Div(M) — Pic(M) D — [D].

Notice that the line bundle associated to a divisor (h) is trivial for every meromorphic function
h. This follows directly from the definition: for any open cover U, on M, h|y, is a local defining
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function for the divisor (h) on U,, so the transition functions for the line bundle [(h)] are equal
to 1 on any intersection U, N Ug. Thus [ ] descends to a group homomorphism

[]:Div(M)/=—Pic(M).

Suppose now that [D] = 0 for some divisor D on M. That means that the line bundle [D] is trivial,
so there exists an open cover {U,} of M and holomorphic non-vanishing functions f, : U, — C*

such that

fCl{ hCM

= 0ug = — on U, NUg,

o T hy ’
where h, is a local defining meromorphic function for D on U,. This shows the existence of a
global meromorphic function H on M such that H|y, = Sﬁ—;‘ Moreover, as f, does not vanish on

U,, the divisor associated to H is just D. This proves the injectivity of [ | on isomorphism classes
of divisors.

Every holomorphic line bundle of a projective manifold has a global meromorphic section (see [2]
p.161). If L € Pic(M) is a holomorphic line bundle, we have seen that a global meromorphic
section o of L defines a divisor (o) on M. We claim that [(¢)] = L. If g,s denote the transition
functions of L with respect to some trivialization (U,,1,), the meromorphic section o defines
meromorphic functions o, on U, such that g,z = g—g. From the definition, o, is a defining

meromorphic section for (o) on U,, thus L is just the line bundle associated to (o). We have
proved the

THEOREM 18.3. If the manifold M is projective, the homomorphism || descends to an isomorphism
Div(M)/= — Pic(M).

18.3. Adjunction formulas. Let V' C M be a smooth complex hypersurface of a compact
complex manifold M. We will show that the normal and co-normal bundles of V' in M can be
computed in terms of the divisor V.

PROPOSITION 18.4. (First adjunction formula) The restriction to V' of the line bundle [V] asso-
ciated to the divisor V is isomorphic to the holomorphic normal bundle of V in M :

NV = [V”V

PROOF. Let i : V.— M be the inclusion of V into M. By definition, the normal bundle Ny
is the co—kernel of the inclusion i, : 'V — T1OM|y, and its dual, the co-normal bundle Ny, is
defined as the kernel of the projection i* : A M|y, — A0V, Thus Ny, is spanned by holomorphic
(1,0)—forms on M vanishing on V.

Let f, be local defining functions for V' on some open covering U,. By definition, the quotients
Jap = }c—; are the transition functions of [V] on U, N Ug. Moreover, since f, vanishes along V'
which is smooth, we see that df,|y is a non—vanishing local section of Ny;. Now, since fo = gasf3,
we get

dfalv = (f3d9as + gapdfs)lv = gaplvdfs|v.
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Thus the collection (Uy, df,|y) defines a global holomorphic section of Nj,®[V]|y, showing that this
tensor product bundle is trivial. This proves that Ny, = [-V]|y and consequently Ny = [V]|y. O

Consider now the exact fibre bundle sequence

0 — Ny — AYM|y — AV — 0.
Taking the maximal exterior power in this exact sequence yields

Kuly = Ky ® Ny, = Ky = [V]|v,
SO

Ky ~ (Ky @ [V])|v.

This is the second adjunction formula.
We will use the following theorem whose proof, based on the Kodaira vanishing theorem, can be

found in [2], p. 156.

THEOREM 18.5. (Lefschetz Hyperplane Theorem). Let V' be a smooth analytic hypersurface in
a compact complex manifold M>™ such that [V] is positive. Then the linear maps H'(M,C) —
H{(V,C) induced by the inclusion V. — M are isomorphisms for i < m — 2 and injective for
i=m—1. If m >3 then m (M) = m (V).

Our main application will be the following result on complete intersections in the complex pro-

jective space.

THEOREM 18.6. Let Py, - -- P, be homogeneous irreducible relatively prime polynomials in m + 1
variables of degrees dy,...d. Let N denote the subset in CP™ defined by these polynomials:

N:={[z0:...:2m) €CP™ | Pi(20,...,2m) =0, V1 <i <k}
Then, if N is smooth, we have Ky ~ [¢H]||y, where ¢ = (d1 + ...+ d) — (m + 1) and H is the
hyperplane divisor in CP™.

ProoF. Notice first that N is smooth for a generic choice of the polynomials P;. We denote
by V; the analytic hypersurface in CP™ defined by P; and claim that

(75) Vi~ d,H.
This can be seen as follows. While the homogeneous polynomial P; is not a well-defined function
on CP™, the quotient h; := PTii is a meromorphic function. More precisely, h; is defined by
20
d;
the collection (Uy, £, %-). Clearly the zero-locus of h; is (h;)o = V; and the pole-locus is

(hi)eo = d;iHy, where Hy is just the hyperplane {zy = 0}. This shows that (h;) = V; — d;Hy, thus
proving our claim.

Let now, for ¢ = 1,...,k, N; denote the intersection of Vi, ..., V;. Since N, 1 = N; NV, 1, we have
(76) [Nivalln; = [div1 H]|n,
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This follows from the fact that if V' is an irreducible hypersurface in a projective manifold M and
N is any analytic submanifold in M then

[V]|y = [V NN
We claim that
(77) Ky, ~ [nH]|n,
where n; := (dy + ...+ d;) — (m+1). For ¢ = 1 this follows directly from the second adjunction
formula together with (75), using the fact that Kcpm = [—(m + 1) H]. Suppose that the formula

holds for some 7 > 1. The second adjunction formula applied to the hypersurface N;,; of N;,
together with (76) yields

Ky = (Niga] © Kny)nyy = ([din H] @ [0 H)) vy, = [ H] vy, -
Thus (77) is true for every ¢, and in particular for ¢ = k. This finishes the proof. O

COROLLARY 18.7. Let dy, ..., d; be positive integers and denote their sum by m+1 := d;+. .. +d.
Suppose that m > k + 3. If Py, --- P, are generic homogeneous irreducible polynomials in m + 1
variables of degrees dy, . ..dy, then the manifold

N:={[z0:...:2n) € CP™ | Pi(20,...,2m) =0, V1 <i <k}

carries a unique (up to rescaling) Ricci—flat Kdhler metric compatible with the complex structure
induced from CP™. Endowed with this metric, N is Calabi—Yau.

PROOF. Theorem 18.6 shows that the first Chern class of NV vanishes. The condition m > k+3
together with Lefschetz Hyperplane Theorem applied inductively to the analytic hypersurfaces
N; C N;i1 show that N is simply connected and by(N) = by(CP™) = 1, and moreover the
restriction of the Kéhler form of CP™ to N is a generator of the second cohomology group of N.
The Calabi conjecture shows that there exists a unique Ricci-flat metric on N up to rescaling.
If this metric were reducible, we would have at least two independent elements in the second
cohomology of N, defined by the Kéhler forms of the two factors. Since b;(N) = 1 this is
impossible. Thus N is either Calabi—Yau or hyperkahler. The latter case is however impossible,
since every compact hyperkéhler manifold has a parallel (2, 0)—form, thus its second Betti number
cannot be equal to 1. O
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