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4 CONTENTS

Introduction

These notes, based on a graduate course I gave at Hamburg University in 2003, are intended to
students having basic knowledges of differential geometry. I assume, in particular, that the reader
is familiar with following topics:

• differential manifolds, tensors, Lie groups;
• principal fibre bundles, vector bundles, connexions, holonomy groups;
• Riemannian metrics, de Rham decomposition theorem, Levi–Civita connexion, Killing

vector fields.

This background material is well covered in the classical literature, and can be found for instance
in [8], Ch. 1-4.

The main purpose of these notes is to provide a quick and accessible introduction to different
aspects of Kähler geometry. They should hopefully be useful for graduate students in mathematics
and theoretical physics. The text is self–contained with a few notable exceptions – the Newlander–
Nirenberg theorem, the Hodge theorem, the Calabi conjecture, the Hirzebruch–Riemann–Roch
formula, the Cheeger–Gromoll theorem and the Kodaira embedding theorem. I considered that
including the proofs of these results would have add too much technicality in the presentation
and would have doubled the volume of the text without bringing essentially new insights to our
objects of interest.

The text is organized as follows. In the first part I quickly introduce complex manifolds, and in
Part 2 I define Kähler manifolds from the point of view of Riemannian geometry. Most of the
remaining material concerns compact manifolds. In Part 3 I review Hodge and Dolbeault theories,
and give a simple way of deriving the famous Kähler identities. Part 4 is devoted to the Calabi
conjecture and in Part 5 I obtain several vanishing results using Weitzenböck techniques. Finally,
in Part 6, different aspects of Calabi–Yau manifolds are studied using techniques from algebraic
geometry.

Most of the sections end up with a series of exercises whose levels of difficulty range from low to
medium.



Part 1

Complex geometry



1. Complex structures and holomorphic maps

1.1. Preliminaries. Kähler manifolds may be considered as special Riemannian manifolds.
Besides the Riemannian structure, they also have compatible symplectic and complex structures.
Here are a few examples of Kähler manifolds:

• (Cm, 〈 , 〉), where 〈 , 〉 denotes the Hermitian metric ds2 = Re(
∑

dzidz̄i);
• any oriented 2–dimensional Riemannian manifold;
• the complex projective space (CPm, FS) endowed with the Fubini-Study metric;
• every projective manifold, that is, submanifold of CPm defined by homogeneous polyno-

mials in Cm+1.

We give here a short definition, which will be detailed later.

Definition 1.1. A Kähler structure on a Riemannian manifold (Mn, g) is given by a 2–form Ω
and a field of endomorphisms of the tangent bundle J satisfying the following

• algebraic conditions
a) J is an almost complex structure: J2 = −Id.
b) g(X, Y ) = g(JX, JY ) ∀ X, Y ∈ TM .
c) Ω(X, Y ) = g(JX, Y ).

• analytic conditions
d) the 2–form Ω is symplectic: dΩ = 0.
e) J is integrable in the sense that its Nijenhuis tensor vanishes (see (4) below).

Condition a) requires the real dimension of M to be even. Obviously, given the metric and one of
the tensors J and Ω, we can immediately recover the other one by the formula c).

Kähler structures were introduced by Erich Kähler in his article [7] with the following motivation.
Given any Hermitian metric h on a complex manifold, we can express the fundamental two–form
Ω in local holomorphic coordinates as follows:

Ω = i
∑

hαβ̄dzα ∧ dz̄β,

where

hαβ̄ := h

(

∂

∂zα
,
∂

∂z̄β

)

.

He then noticed that the condition dΩ = 0 is equivalent to the local existence of some function u
such that

hαβ̄ =
∂2u

∂zα∂z̄β
.

In other words, the whole metric tensor is defined by a unique function! This remarkable (be-
merkenswert) property of the metric allows one to obtain simple explicit expressions for the
Christoffel symbols and the Ricci and curvature tensors, and “a long list of miracles occur then”.
The function u is called Kähler potential.
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There is another remarkable property of Kähler metrics, which, curiously, Kähler himself did not
seem to have noticed. Recall that every point x in a Riemannian manifold has a local coordinate
system xi such that the metric osculates to the Euclidean metric to the order 2 at x. These
special coordinate systems are the normal coordinates around each point. Now, on a complex
manifold with Hermitian metric, the existence of normal holomorphic coordinates around each
point is equivalent to the metric being Kähler!

Kähler manifolds have found many applications in various domains like Differential Geometry,
Complex Analysis, Algebraic Geometry or Theoretical Physics. To illustrate their importance let
us make the following remark. With two exceptions (the so–called Joyce manifolds in dimensions
7 and 8), the only known compact examples of manifolds satisfying Einstein’s equations

Rαβ = 0

(Ricci–flat in modern language) are constructed on Kähler manifolds. Generic Ricci–flat Kähler
manifolds, also called Calabi–Yau manifolds, will be studied later on in these notes.

1.2. Holomorphic functions. A function F = f + ig : U ⊂ C → C is called holomorphic if
it satisfies the Cauchy–Riemann equations:

∂f

∂x
=
∂g

∂y
and

∂f

∂y
+
∂g

∂x
= 0.

Let j denote the endomorphism of R2 corresponding to the multiplication by i on C via the
identification of R2 with C given by z = x+ iy 7→ (x, y). The endomorphism j can be expressed
in the canonical base as

j =

(

0 −1
1 0

)

.

The differential of F (viewed as real function F : U ⊂ R2 → R2) is of course the linear map

F∗ =





∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y



 .

Then it is easy to check that the Cauchy–Riemann relations are equivalent to the commutation
relation jF∗ = F∗j.

Similarly, we identify Cm with R2m via

(z1, . . . , zm) = (x1 + iy1, . . . , xm + iym) 7→ (x1, . . . , xm, y1, . . . , ym),

and denote by jm the endomorphism of R2m corresponding to the multiplication by i on Cm:

jm =

(

0 −Im
Im 0

)

.

A function F : U ⊂ Cn → Cm is then holomorphic if and only if the differential F∗ of F as real
map F : R2n → R2m satisfies jmF∗ = F∗jn.
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1.3. Complex manifolds. A complex manifold of complex dimension m is a topological
space M with an open covering U such that for every point x ∈ M there exists U ∈ U containing
x and a homeomorphism φU : U → Ũ ⊂ Cm, such that for every intersecting U, V ∈ U , the map
between open sets of Cm

φUV := φU ◦ φ−1
V

is holomorphic. A pair (U, φU) is called a chart and the collection of all charts is called a holo-
morphic structure.

Important example. The complex projective space CPm can be defined as the set of complex lines
of Cm+1 (a line is a vector subspace of dimension one). If we define the equivalence relation ∼ on
Cm+1 − {0} by

(z0, . . . , zm) ∼ (αz0, . . . , αzm), ∀ α ∈ C∗,

then CPm = Cm+1−{0}/ ∼ . The equivalence class of (z0, . . . zm) will be denoted by [z0 : . . . : zm].
Consider the open cover Ui, i = 0, . . . , m of CPm defined by

Ui := {[z0 : . . . : zm] | zi 6= 0}
and the maps φi : Ui → Cm,

φi([z0 : . . . : zm]) =

(

z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
. . . ,

zm
zi

)

.

It is then an easy exercise to compute

φi ◦ φ−1
j (w1, . . . , wm) =

(

w1

wi
, . . . ,

wi−1

wi
,
wi+1

wi
, . . . ,

wj
wi
,

1

wi
,
wj+1

wi
, . . . ,

wm
wi

)

,

which is obviously holomorphic on its domain of definition.

A function F : M → C is called holomorphic if F ◦ φ−1
U is holomorphic for every U ∈ U . This

property is local. To check it in the neighborhood of a point x it is enough to check it for a single
U ∈ U containing x.

The most important object on a complex manifold from the differential geometric point of view is
the almost complex structure J , which is a field of endomorphisms of the tangent bundle defined
as follows. For every X ∈ TxM , choose U ∈ U containing x and define

JU(X) = (φU)−1
∗ ◦ jn ◦ (φU)∗(X).

If we take some other V ∈ U containing x, then φV U = φV ◦φ−1
U is holomorphic, and φV = φV U ◦φU ,

so

JV (X) = (φV )−1
∗ ◦ jn ◦ (φV )∗(X) = (φV )−1

∗ ◦ jn ◦ (φV U)∗ ◦ (φU)∗(X)

= (φV )−1
∗ ◦ (φV U)∗ ◦ jn ◦ (φU)∗(X) = (φU)−1

∗ ◦ jn ◦ (φU)∗(X)

= JU(X),

thus showing that JU does not depend on U and their collection is a well–defined tensor J on M .
This tensor clearly satisfies J2 = −Id.
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Definition 1.2. A (1,1)–tensor J on a differential manifold M satisfying J2 = −Id is called an
almost complex structure. The pair (M,J) is then referred to as almost complex manifold.

A complex manifold is thus in a canonical way an almost complex manifold. The converse is only
true under some integrability condition (see Theorem 1.4 below).

1.4. The complexified tangent bundle. Let (M,J) be an almost complex manifold. We
would like to diagonalize the endomorphism J . In order to do so, we have to complexify the
tangent space. Define

TMC := TM ⊗R C.

We extend all real endomorphisms and differential operators from TM to TMC by C–linearity.
Let T 1,0M (resp. T 0,1M) denote the eigenbundle of TMC corresponding to the eigenvalue i (resp.
−i) of J . The following algebraic lemma is an easy exercise.

Lemma 1.3. One has

T 1,0M = {X − iJX | X ∈ TM} , T 0,1M = {X + iJX | X ∈ TM}.
and TMC = T 1,0M ⊕ T 0,1M.

The famous Newlander–Nirenberg theorem can be stated as follows:

Theorem 1.4. Let (M,J) be an almost complex manifold. The almost complex structure J comes
from a holomorphic structure if and only if the distribution T 0,1M is integrable.

Proof. We will only prove here the “only if” part. The interested reader can find the proof
of the hard part for example in [5].

Suppose that J comes from a holomorphic structure on M . Consider a local chart (U, φU) and let
zα = xα + iyα be the α–th component of φU . If {e1, . . . , e2m} denotes the standard basis of R2m,
we have by definition:

∂

∂xα
= (φU)−1

∗ (eα) and
∂

∂yα
= (φU)−1

∗ (em+α).

Moreover, jm(eα) = em+α, so we obtain directly from the definition

(1) J

(

∂

∂xα

)

=
∂

∂yα
.

We now make the following notations

∂

∂zα
:=

1

2

(

∂

∂xα
− i

∂

∂yα

)

,
∂

∂z̄α
:=

1

2

(

∂

∂xα
+ i

∂

∂yα

)

.

From (1) we obtain immediately that ∂
∂zα

and ∂
∂z̄α

are local sections of T 1,0M and T 0,1M respec-
tively. They form moreover a local basis in each point of U . Let now Z and W be two local
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sections of T 0,1M and write Z =
∑

Zα
∂
∂z̄α

, W =
∑

Wα
∂
∂z̄α

. A direct calculation then gives

[Z,W ] =
n

∑

α,β=1

Zα
∂Wβ

∂z̄α

∂

∂z̄β
−

n
∑

α,β=1

Wα

∂Zβ
∂z̄α

∂

∂z̄β
,

which is clearly a local section of T 0,1M . �

An almost complex structure arising from a holomorphic structure is called a complex structure.

Remark. The existence of local coordinates satisfying (1) is actually the key point of the hard
part of the theorem. Once we have such coordinates, it is easy to show that the transition functions
are holomorphic: suppose that uα, vα is another local system of coordinates, satisfying

∂

∂vα
= J

∂

∂uα
.

We then have

(2)
∂

∂xα
=

m
∑

β=1

∂uβ
∂xα

∂

∂uβ
+

m
∑

β=1

∂vβ
∂xα

∂

∂vβ

and

(3)
∂

∂yα
=

m
∑

β=1

∂uβ
∂yα

∂

∂uβ
+

m
∑

β=1

∂vβ
∂yα

∂

∂vβ
.

Applying J to (2) and comparing to (3) yields

∂uβ
∂xα

=
∂vβ
∂yα

and
∂uβ
∂yα

= −∂vβ
∂xα

,

thus showing that the transition functions are holomorphic.

1.5. Exercises.

(1) Prove Lemma 1.3.

(2) Let A+ iB ∈ Glm(C). Compute the product
(

Im 0
−iIm Im

) (

A B
−B A

) (

Im 0
iIm Im

)

and use this computation to prove that for every invertible matrix A+ iB ∈ Glm(C), the
determinant of the real 2m× 2m matrix

(

A B
−B A

)

is strictly positive.

(3) Show that every almost complex manifold is orientable.
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(4) Let α > 1 be some real number. Let Γ be the subgroup of Glm(C) generated by αIm.
Show that Γ acts freely and properly discontinuously on Cm−{0}. Use this to prove that
S1 × S2m−1 carries a complex structure.
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2. Holomorphic forms and vector fields

2.1. Decomposition of the (complexified) exterior bundle. Let (M,J) be an almost
complex manifold. We now turn our attention to exterior forms and introduce the complexified
exterior bundle Λ∗

C
M = Λ∗M ⊗R C. The sections of Λ∗

C
M can be viewed as complex–valued forms

or as formal sums ω + iτ , where ω and τ are usual real forms on M .

We define the following two sub–bundles of Λ1
C
M :

Λ1,0M := {ξ ∈ Λ1
CM | ξ(Z) = 0 ∀ Z ∈ T 0,1M}

and
Λ0,1M := {ξ ∈ Λ1

C
M | ξ(Z) = 0 ∀ Z ∈ T 1,0M}.

The sections of these sub–bundles are called forms of type (1,0) or forms of type (0,1) respectively.
Similarly to Lemma 1.3 we have

Lemma 2.1. One has

Λ1,0M = {ω − iω ◦ J | ω ∈ Λ1M} , Λ0,1M = {ω + iω ◦ J | ω ∈ Λ1M}.
and Λ1

C
M = Λ1,0M ⊕ Λ0,1M.

Let us denote the k–th exterior power of Λ1,0 (resp. Λ0,1) by Λk,0 (resp. Λ0,k) and let Λp,q denote
the tensor product Λp,0⊗Λ0,q. The exterior power of a direct sum of vector spaces can be described
as follows

Λk(E ⊕ F ) ' ⊕k
i=0Λ

iE ⊗ Λk−iF.

Using Lemma 2.1 we then get
Λk

C
M ' ⊕p+q=kΛ

p,qM.

Sections of Λp,qM are called forms of type (p, q). It is easy to check that a complex–valued k–form
ω is a section of Λk,0M if and only if Z yω = 0 for all Z ∈ T 0,1M . More generally, a k–form is
a section of Λp,qM if and only if it vanishes whenever applied to p + 1 vectors from T 1,0M or to
q + 1 vectors from T 0,1M .

If J is a complex structure, we can describe these spaces in terms of a local coordinate system.
Let zα = xα + iyα be the α–th coordinate of some φU . Extending the exterior derivative on
functions by C–linearity we get complex–valued forms dzα = dxα + idyα and dz̄α = dxα − idyα.
Then {dz1, . . . , dzm} and {dz̄1, . . . , dz̄m} are local basis for Λ1,0M and Λ0,1M respectively, and a
local basis for Λp,qM is given by

{dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq , i1 < . . . < ip, j1 < . . . < jq}.

To every almost complex structure J one can associate a (2,1)–tensor NJ called the Nijenhuis
tensor, satisfying

(4) NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ], ∀ X, Y ∈ C∞(TM).

Proposition 2.2. Let J be an almost complex structure on M2m. The following statements are
equivalent:
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(a) J is a complex structure.
(b) T 0,1M is integrable.
(c) dC∞(Λ1,0M) ⊂ C∞(Λ2,0M ⊕ Λ1,1M).
(d) dC∞(Λp,qM) ⊂ C∞(Λp+1,qM ⊕ Λp,q+1M) ∀ 0 ≤ p, q ≤ m.
(e) NJ = 0.

Proof. (a) ⇐⇒ (b) is given by Theorem 1.4.

(b) ⇐⇒ (c) Let ω be a section of Λ1,0M . The Λ0,2M–component of dω vanishes if and only if
dω(Z,W ) = 0 ∀ Z,W ∈ T 0,1M . Extend Z and W to local sections of T 0,1M and write

dω(Z,W ) = Z(ω(W )) −W (ω(Z)) − ω([Z,W ]) = −ω([Z,W ]).

Thus

dω(Z,W ) = 0 ∀ Z,W ∈ T 0,1M, ∀ ω ∈ Λ1,0M

⇐⇒ ω([Z,W ]) = 0 ∀ Z,W ∈ T 0,1M, ∀ ω ∈ Λ1,0M

⇐⇒ [Z,W ] ∈ T 0,1M ∀ Z,W ∈ T 0,1M.

(c) ⇐⇒ (d) One implication is obvious. Suppose now that (c) holds. By conjugation we get
immediately dC∞(Λ0,1M) ⊂ C∞(Λ0,2M ⊕ Λ1,1M). It is then enough to apply Leibniz’ rule to any
section of Λp,qM , locally written as a sum of decomposable elements ω1 ∧ . . . ∧ ωp ∧ τ̄1 ∧ . . . ∧ τ̄q,
where ωi ∈ C∞(Λ1,0M) and τ̄i ∈ C∞(Λ0,1M).

(b) ⇐⇒ (e) Let X, Y ∈ C∞(TM) be local vector fields and let Z denote the bracket Z :=
[X + iJX, Y + iJY ]. An easy calculation gives Z − iJZ = NJ(X, Y ) − iJNJ (X, Y ). Thus
Z ∈ T 0,1M ⇐⇒ NJ(X, Y ) = 0, which proves that T 0,1M is integrable if and only if NJ ≡ 0 �

2.2. Holomorphic objects on complex manifolds. In this section (M,J) will denote
a complex manifold of complex dimension m. We start with the following characterization of
holomorphic functions.

Lemma 2.3. Let f : M → C be a smooth complex–valued function on M . The following assertions
are equivalent:

(1) f is holomorphic.
(2) Z(f) = 0 ∀ Z ∈ T 0,1M .
(3) df is a form of type (1, 0).

Proof. (2) ⇐⇒ (3). df ∈ Λ1,0M ⇐⇒ df(Z) = 0 ∀ Z ∈ T 0,1M ⇐⇒ Z(f) = 0 ∀ Z ∈
T 0,1M .

(1) ⇐⇒ (3). The function f is holomorphic if and only if f ◦ φ−1
U is holomorphic for every

holomorphic chart (U, φU), which is equivalent to f∗ ◦ (φU)−1
∗ ◦ jm = if∗ ◦ (φU)−1

∗ , that is, f∗ ◦
J = if∗. This last equation just means that for every real vector X, df(JX) = idf(X), hence
idf(X + iJX) = 0 ∀ X ∈ TM , which is equivalent to df ∈ Λ1,0M . �
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Using Proposition 2.2, for every fixed (p, q) we define the differential operators ∂ : C∞(Λp,qM) →
C∞(Λp+1,qM) and ∂̄ : C∞(Λp,qM) → C∞(Λp,q+1M) by d = ∂ + ∂̄.

Lemma 2.4. The following identities hold:

∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

Proof. We have 0 = d2 = (∂+ ∂̄)2 = ∂2 + ∂̄2 + (∂∂̄+ ∂̄∂), and the three operators in the last
term take values in different sub–bundles. �

Definition 2.5. A vector field Z in C∞(T 1,0M) is called holomorphic if Z(f) is holomorphic for
every locally defined holomorphic function f . A p–form ω of type (p, 0) is called holomorphic if
∂̄ω = 0.

Definition 2.6. A real vector field X is called real holomorphic if X − iJX is a holomorphic
vector field.

Lemma 2.7. Let X be a real vector field on a complex manifold (M,J). The following assertions
are equivalent:

• X is real holomorphic
• LXJ = 0
• The flow of X consists of holomorphic transformations of M .

Although not explicitly stated, the reader might have guessed that a map f : (M,J1) → (N, J2)
between two complex manifolds is called holomorphic if its differential commutes with the complex
structures at each point: f∗ ◦ J1 = J2 ◦ f∗.

Proof. The equivalence of the last two assertions is tautological. In order to prove the
equivalence of the first two assertions, we first notice that a complex vector field Z is of type
(0,1) if and only if Z(f) = 0 for every locally defined holomorphic function f . Suppose that X is
real holomorphic and let Y be an arbitrary vector field and f a local holomorphic function. As
(X + iJX)f = 0, we have (X − iJX)f = 2X(f). By definition X(f) is then holomorphic so by
Lemma 2.3 we get (Y + iJY )(X(f)) = 0 and (Y + iJY )(f) = 0. This implies [Y + iJY,X](f) = 0.
This holds for every holomorphic f so [Y+iJY,X] has to be of type (0,1), that is [JY,X] = J [Y,X].
Hence LXJ(Y ) = LX(JY )−J(LXY ) = [X, JY ]−J [X, Y ] = 0 for all vector fields Y , i.e. LXJ = 0.
The converse is similar and left to the reader. �

We close this section with the following important result:

Proposition 2.8. (The local i∂∂̄–Lemma). Let ω ∈ Λ1,1M ∩ Λ2M be a real 2–form of type
(1,1) on a complex manifold M . Then ω is closed if and only if every point x ∈ M has an open
neighborhood U such that ω|U = i∂∂̄u for some real function u on U .

Proof. One implication is clear from Lemma 2.4:

d(i∂∂̄) = i(∂ + ∂̄)∂∂̄ = i(∂2∂̄ − ∂∂̄2) = 0.
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The other implication is more delicate and needs the following counterpart of the Poincaré Lemma
(see [2] p. 25 for a proof):

Lemma 2.9. ∂̄–Poincaré Lemma. A ∂̄–closed (0,1)–form is locally ∂̄–exact.

Let ω be a closed real form of type (1,1). From the Poincaré Lemma, there exists locally a 1–form
τ with dτ = ω. Let τ = τ 1,0 + τ 0,1 be the decomposition of τ in forms of type (1,0) and (0,1).
Clearly, τ 1,0 = τ 0,1. Comparing types in the equality

ω = dτ = ∂̄τ 0,1 + (∂τ 0,1 + ∂̄τ 1,0) + ∂τ 1,0,

we get ∂̄τ 0,1 = 0 and ω = (∂τ 0,1+∂̄τ 1,0). The ∂̄–Poincaré Lemma yields a local function f such that
τ 0,1 = ∂̄f . By conjugation we get τ 1,0 = ∂f̄ , hence ω = (∂τ 0,1+∂̄τ 1,0) = ∂∂̄f+∂̄∂f̄ = i∂∂̄(2Im(f)),
and the Proposition follows, with u := 2Im(f). �

2.3. Exercises.

(1) Prove Lemma 2.1.

(2) Prove that the object defined by formula (4) is indeed a tensor.

(3) Show that a almost complex structure on a real 2–dimensional manifold is always inte-
grable.

(4) Show that {dzα} and { ∂
∂zα

} are dual basis of Λ1,0M and T 1,0M at each point of the local
coordinate system.

(5) Show that a 2–form ω is of type (1,1) if and only if ω(X, Y ) = ω(JX, JY ), ∀ X, Y ∈ TM .

(6) Let M be a complex manifold with local holomorphic coordinates {zα}.
• Prove that a local vector field of type (1,0) Z =

∑

Zα
∂
∂zα

is holomorphic if and only
if Zα are holomorphic functions.

• Prove that a local form of type (1,0) ω =
∑

ωαdzα is holomorphic if and only if ωα
are holomorphic functions.

(7) If X is a real holomorphic vector field on a complex manifold, prove that JX has the
same property.

(8) Prove the converse in Lemma 2.7.



16

(9) Show that in every local coordinate system one has

∂f =

n
∑

α=1

∂f

∂zα
dzα and ∂̄f =

n
∑

α=1

∂f

∂z̄α
dz̄α.

(10) Let N be a manifold, and let T be a complex sub–bundle of Λ1
C
N such that T ⊕ Λ1N =

Λ1
C
N . Show that there exists a unique almost complex structure J on N such that

T = Λ1,0N with respect to J .



3. COMPLEX AND HOLOMORPHIC VECTOR BUNDLES 17

3. Complex and holomorphic vector bundles

3.1. Holomorphic vector bundles. Let M be a complex manifold and let π : E → M be
a complex vector bundle over M (i.e. each fiber π−1(x) is a complex vector space). E is called
holomorphic vector bundle if there exists a trivialization with holomorphic transition functions.
More precisely, there exists an open cover U of M and for each U ∈ U a diffeomorphism ψU :
π−1(U) → U × Ck such that

• the following diagram commutes:

π−1U

π

��

ψU
// U × Ck

prU

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

U

• for every intersecting U and V one has ψU ◦ψ−1
V (x, v) = (x, gUV (x)v), where gUV : U∩V →

Glk(C) ⊂ Ck2
are holomorphic functions.

Examples. 1. The tangent bundle of a complex manifold M2m is holomorphic. To see this, take
a holomorphic atlas (U, φU) on M and define ψU : TM |U → U × Cm by ψU (Xx) = (x, (φU)∗(X)).
The transition functions gUV = (φU)∗ ◦ (φV )−1

∗ are then clearly holomorphic.

2. The cotangent bundle, and more generally the bundles Λp,0M are holomorphic. Indeed, using
again a holomorphic atlas of the manifold one can trivialize locally Λp,0M and the chain rule

dzα1 ∧ . . . ∧ dzαp
=

∑

β1,..,βp

∂zα1

∂wβ1

· · · ∂zαp

∂wβp

dwβ1 ∧ . . . ∧ dwβp

shows that the transition functions are holomorphic.

For every holomorphic bundle E one defines the bundles Λp,qE := Λp,qM ⊗ E of E–valued forms
on M of type (p, q) and the ∂̄–operator ∂̄ : C∞(Λp,qE) → C∞(Λp,q+1E) in the following way. If a
section σ of Λp,q(E) is given by σ = (ω1, . . . , ωk) in some local trivialization (where ωi are local
(p, q)–forms), we define ∂̄σ := (∂̄ω1, . . . , ∂̄ωk). Suppose that σ is written σ = (τ1, . . . , τk) in some
other trivialization of E. Then one has τj =

∑

gjkωk for some holomorphic functions gjk, thus
∂̄τj =

∑

gjk∂̄ωk, showing that ∂̄σ does not depend on the chosen trivialization. By construction
one has ∂̄2 = 0 and ∂̄ satisfies the Leibniz rule:

∂̄(ω ∧ σ) = (∂̄ω) ∧ σ + (−1)p+qω ∧ (∂̄σ), ∀ ω ∈ C∞(Λp,qM), σ ∈ C∞(Λr,sE).

Notice that the bundles Λp,qM are not in general holomorphic bundles for q 6= 0.

3.2. Holomorphic structures. An operator ∂̄ : C∞(Λp,qE) → C∞(Λp,q+1E) on a complex
vector bundle E satisfying the Leibniz rule is called a pseudo–holomorphic structure. If, moreover,
∂̄2 = 0, then ∂̄ is called a holomorphic structure.
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A section σ in a pseudo–holomorphic vector bundle (E, ∂̄) is called holomorphic if ∂̄σ = 0.

Lemma 3.1. A pseudo–holomorphic vector bundle (E, ∂̄) of rank k is holomorphic if and only if
each x ∈ M has an open neighborhood U and k holomorphic sections σi of E over U such that
{σi(x)} form a basis of Ex (and hence on some neighborhood of x).

Proof. If E is holomorphic, one can define for every local holomorphic trivialization (U, ψU)
a local basis of holomorphic sections by σi(x) := ψ−1

U (x, ei), ∀ x ∈ U . Conversely, every local
basis of holomorphic sections defines a local trivialization of E, and if {σi} and {σ̃i} are two such
holomorphic basis, we can write σi =

∑

gijσ̃j , which immediately yields (applying ∂̄ and using
Leibniz’ rule) that ∂̄gij = 0, hence the transition functions are holomorphic. �

Theorem 3.2. A complex vector bundle E is holomorphic if and only if it has a holomorphic
structure ∂̄.

Proof. The “only if” part follows directly from the discussion above. Suppose, conversely,
that E is a complex bundle over M of rank k with holomorphic structure ∂̄ satisfying Leibniz’
rule and ∂̄2 = 0. In order to show that E is holomorphic, it is enough to show, using Lemma
3.1, that one can trivialize E around each x ∈ M by holomorphic sections. Let {σ1, . . . , σk} be
local sections of E which form a basis of E over some open set U containing x. We define local
(0,1)–forms τij on U by the formula

∂̄σi =

k
∑

j=1

τij ⊗ σj .

The condition ∂̄2 = 0, together with Leibniz’ rule, yields

0 = ∂̄2σi =
k

∑

j=1

∂̄τij ⊗ σj −
k

∑

j,l=1

τil ∧ τlj ⊗ σj ,

hence

(5) ∂̄τij =
k

∑

l=1

τil ∧ τlj , ∀ 1 ≤ i, j ≤ k.

From now on we will use the summation convention on repeating indexes. Suppose one can find
a map f : U ′ → Glk(C), f = (fij) such that

(6) 0 = ∂̄fij + filτlj, ∀ 1 ≤ i, j ≤ k,

for some open subset U ′ of U containing x. It is then easy to check that the local sections sj of
E over U ′ defined by sj := fjlσl are holomorphic:

∂̄sj = ∂̄fjl ⊗ σl + fjrτrl ⊗ σl = 0.

The theorem thus follows from the next lemma. �
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Lemma 3.3. Suppose that τ := (τij) is a glk(C)–valued (0,1)–form on U satisfying ∂̄τ = τ ∧ τ , or
equivalently (5). Then for every x ∈ U there exists some open subset U ′ of U containing x and a
map f : U ′ → Glk(C), f = (fij) such that ∂̄f + fτ = 0, or equivalently such that (6) holds.

Proof. The main idea is to define an almost complex structure locally on U ×Ck using τ , to
show that its integrability is equivalent to (5), and finally to obtain f as the matrix of some frame
defined by τ in terms of holomorphic coordinates given by the theorem of Newlander–Nirenberg.

We denote by N the product U × Ck. We may suppose that U is an open subset of Cm with
holomorphic coordinates zα and denote by wi the coordinates in Ck.

It is an easy exercise to check that any complement T of Λ1N in the complexified bundle Λ1
C
N of

some manifold N2n, with iT = T , defines an almost complex structure on N , such that T becomes
the space of (1,0)–forms on N .

Consider the sub–bundle T of Λ1N ⊗ C generated by the 1–forms

{dzα, dwi − τilwl | 1 ≤ α ≤ m, 1 ≤ i ≤ k}.

We claim that the almost complex structure induced on N by T is integrable. By Proposition
2.2, we have to show that dC∞(T ) ⊂ C∞(T ∧ Λ1

C
N). It is enough to check this on the local basis

defining T . Clearly d(dzα) = 0 and from (5) we get

d(dwi − τilwl) = −∂τilwl − ∂̄τilwl + τil ∧ dwl
= −∂τilwl − τis ∧ τslwl + τis ∧ dws
= −∂τilwl + τis ∧ (dws − τslwl),

which clearly is a section of C∞(T ∧ Λ1
C
N). We now use the Newlander–Nirenberg theorem and

complete the family {zα} to a local holomorphic coordinate system {zα, ul} on some smaller
neighborhood U ′ of x. Since dul are sections of T , we can find functions Fli and Flα, 1 ≤ i, l ≤ k,
1 ≤ α ≤ m such that

dul = Fli(dwi − τikwk) + Flαdzα.

We apply the exterior derivative to this system and get

0 = dFli ∧ (dwi − τikwk) + Fli(−dτikwk + τik ∧ dwk) + dFlα ∧ dzα.

We evaluate this last equality for wi = 0, and get

(7) 0 = dFlk(z, 0) ∧ dwk + Fli(z, 0)τik ∧ dwk + dFlα ∧ dzα.

If we denote flk(z) := Flk(z, 0), then the Λ0,1U ′–part of dFlk(z, 0) is just ∂̄flk. Therefore, the
vanishing of the Λ0,1U ′ ⊗ Λ1,0Ck–components of (7) just reads

0 = ∂̄flk + fliτik.

�
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3.3. The canonical bundle of CPm. For a complex manifold (M2m, J), the complex line
bundle KM := Λm,0M is called the canonical bundle of M . We already noticed that KM has a
holomorphic structure.

On the complex projective space there is some distinguished holomorphic line bundle called the
tautological line bundle. It is defined as the complex line bundle π : L → CPm whose fiber L[z]

over some point [z] ∈ CPm is the complex line < z > in Cm+1.

We consider the canonical holomorphic charts (Uα, φα) on CPm and the local trivializations ψα :
π−1Uα → Uα × C of L defined by ψα([z], w) = ([z], wα). It is an easy exercise to compute the
transition functions:

ψα ◦ ψ−1
β ([z], λ) = ([z], gαβ([z])λ), where gαβ([z]) =

zα
zβ
,

which are clearly holomorphic. The aim of this subsection is to prove the following

Proposition 3.4. The canonical bundle of CPm is isomorphic to the m + 1st power of the
tautological bundle.

Proof. A trivialization for p : Λm,0CPm → CPm is given by (φ∗
α)

−1 : p−1Uα → Uα × Λm,0Cm,
so the transition functions are hαβ := (φ∗

α)
−1 ◦ (φ∗

β). Let now ω := dw1 ∧ . . . ∧ dwm be the

canonical generator of Λm,0Cm. We introduce holomorphic coordinates on Uα ∩ Uβ: ai := zi

zα
for

i ∈ {0, . . .m} − {α} and bi := zi

zβ
for i ∈ {0, . . .m} − {β}. Then

φ∗
α(ω) = da0 ∧ . . . ∧ daα−1 ∧ daα+1 ∧ . . . ∧ dam

and

φ∗
β(ω) = db0 ∧ . . . ∧ dbβ−1 ∧ dbβ+1 ∧ . . . ∧ dbm.

Therefore we can write

(8) db0 ∧ . . . ∧ dbβ−1 ∧ dbβ+1 ∧ . . . ∧ dbm = hαβda0 ∧ . . . ∧ daα−1 ∧ daα+1 ∧ . . . ∧ dam.
On the other hand, for every i 6= α, β we have ai = biaβ and aβbα = 1. This shows that
dai = aβdbi + bidaβ for i 6= α, β and daβ = − 1

b2α
dbα = −a2

βdbα, and an easy algebraic computation

then yields

da0 ∧ . . . ∧ daα−1 ∧ daα+1 ∧ . . . ∧ dam = (−1)α−βam+1
β db0 ∧ . . . ∧ dbβ−1 ∧ dbβ+1 ∧ . . . ∧ dbm.

Using (8) we thus see that the transition functions are given by

hαβ = (−1)α−βa−m−1
β = (−1)α−β

(

zα
zβ

)m+1

.

Finally, denoting cα := (−1)α we have cαhαβc
−1
β = gm+1

αβ , which proves that

KCPm ' Lm+1.

�
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3.4. Exercises.

(1) Prove that any holomorphic function on a compact manifold f : M → C is constant.
Hint: use the maximum principle.

(2) Let E → M be a rank k complex vector bundle whose transition functions with respect
to some open cover {Uα} of M are gαβ. Show that a section σ : M → E of E can be
identified with a collection {σα} of smooth maps σα : Uα → Ck satisfying σα = gαβσβ on
Uα ∩ Uβ .

(3) Let πE →M be a complex vector bundle over a complex manifold M . Prove that E has
a holomorphic structure if and only if there exists a complex structure on E as manifold,
such that the projection π is a holomorphic map.

(4) The tautological line bundle. Let L be the complex line bundle π : L→ CPm whose fiber
L[z] over some point [z] ∈ CPm is the complex line < z > in Cm+1. Prove that E is a
holomorphic line bundle. Hint: Use the local trivializations ψα : π−1Uα → Uα×C defined
by ψα([z], w) = ([z], wα).

(5) Show that the tautological line bundle L has no non–trivial holomorphic sections.

(6) The hyperplane line bundle. Let H := L∗ be the dual of L. Thus, the fiber of H over
some point [z] ∈ CPm is the set of linear maps < z >→ C. Find local trivializations for
H with holomorphic transition functions. Find the dimension of the space of holomorphic
sections of H .





Part 2

Hermitian and Kähler structures



4. Hermitian bundles

4.1. Connections on complex vector bundles. Let M be a differentiable manifold (not
necessarily complex) and let E →M be a complex vector bundle over M .

Definition 4.1. A (C–linear) connection on a E is a C–linear differential operator ∇ : C∞(E) →
C∞(Λ1(E)) satisfying the Leibniz rule

∇(fσ) = df ⊗ σ + f∇σ, ∀ f ∈ C∞(M).

One can extend any connection to the bundles of E–valued p–forms on M by

∇(ω ⊗ σ) = dω ⊗ σ + (−1)pω ∧∇σ,
where the wedge product has to be understood as

ω ∧ ∇σ :=

n
∑

i=1

ω ∧ e∗i ⊗∇ei
σ

for any local basis {ei} of TM with dual basis {e∗i }.
The curvature of ∇ is the End(E)–valued 2–form R∇ defined by

R∇(σ) := ∇(∇σ)) ∀ σ ∈ C∞(E).

To check that this is indeed tensorial, we can write:

∇2(fσ) = ∇(df ⊗ σ + f∇σ) = d2f ⊗ σ − df ∧ ∇σ + df ∧ ∇σ + f∇2σ = f∇2σ.

More explicitly, if {σ1, . . . , σk} are local sections of E which form a basis of each fiber over some
open set U , we define the connection forms ωij ∈ Λ1(U) (relative to the choice of the base) by

∇σi = ωij ⊗ σj .

We define the two–forms R∇
ij by

R∇(σi) = R∇
ij ⊗ σj ,

and compute

R∇
ij ⊗ σj = R∇(σi) = ∇(ωij ⊗ σj) = (dωij) ⊗ σj − ωik ∧ ωkj ⊗ σj ,

showing that

(9) R∇
ij = dωij − ωik ∧ ωkj.

4.2. Hermitian structures and connections. Let E → M be a complex rank k bundle
over some manifold M . We do not assume for the moment that M has an almost complex
structure.

Definition 4.2. A Hermitian structure H on E is a smooth field of Hermitian products on the
fibers of E, that is, for every x ∈M , H : Ex × Ex → C satisfies

• H(u, v) is C–linear in u for every v ∈ Ex.

• H(u, v) = H(v, u) ∀ u, v ∈ Ex.
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• H(u, u) > 0 ∀ u 6= 0.
• H(u, v) is a smooth function on M for every smooth sections u, v of E.

It is clear from the above conditions that H is C–anti–linear in the second variable. The third
condition shows that H is non–degenerate. In fact, it is quite useful to think to H as to a
C–anti–linear isomorphism H : E → E∗.

Every rank k complex vector bundle E admits Hermitian structures. To see this, just take a
trivialization (Ui, ψi) of E and a partition of the unity fi subordinate to the open cover {Ui}
of M . For every x ∈ Ui, let (Hi)x denote the pull–back of the Hermitian metric on Ck by the
C–linear map ψi|Ex

. Then H :=
∑

fiHi is a well–defined Hermitian structure on E.

Suppose now that M is a complex manifold. Consider the projections π1,0 : Λ1(E) → Λ1,0(E)
and π0,1 : Λ1(E) → Λ0,1(E). For every connection ∇ on E, one can consider its (1,0) and
(0,1)–components ∇1,0 := π1,0 ◦ ∇ and ∇0,1 := π0,1 ◦ ∇. From Proposition 2.2, we can extend
these operators to ∇1,0 : C∞(Λp,q(E)) → C∞(Λp+1,q(E)) and ∇0,1 : C∞(Λp,q(E)) → C∞(Λp,q+1(E))
satisfying the Leibniz rule:

∇1,0(ω ⊗ σ) = ∂ω ⊗ σ + (−1)p+qω ∧∇1,0σ, ∇0,1(ω ⊗ σ) = ∂̄ω ⊗ σ + (−1)p+qω ∧∇0,1σ,

for all ω ∈ C∞(Λp,qM), σ ∈ C∞(E). Of course, ∇0,1 is a pseudo–holomorphic structure on E for
every connection ∇.

For every section σ of E one can write

R∇(σ) = ∇2σ = (∇1,0 + ∇0,1)2(σ) = (∇1,0)2(σ) + (∇0,1)2(σ) + (∇1,0∇0,1 + ∇0,1∇1,0)(σ),

so the Λ0,2 part of the curvature is given by

(R∇)0,2 = (∇0,1)2.

Theorem 3.2 shows that if the Λ0,2–part of the curvature of some connection D on E vanishes,
then E is a holomorphic bundle with holomorphic structure ∂̄ := ∇0,1. The converse is also true:
simply choose an arbitrary Hermitian metric on E and apply Theorem 4.3 below.

We say that ∇ is a H–connection if H , viewed as a field of C–valued real bilinear forms on E, is
parallel with respect to ∇. We can now state the main result of this section:

Theorem 4.3. For every Hermitian structure H in a holomorphic bundle E with holomorphic
structure ∂̄, there exists a unique H–connection ∇ (called the Chern connection) such that ∇0,1 =
∂̄.

Proof. Let us first remark that the dual vector bundle E∗ is also holomorphic, with holomor-
phic structure denoted by ∂̄, and that any connection ∇ on E induces canonically a connection,
also denoted by ∇, on E∗ by the formula

(10) (∇Xσ
∗)(σ) := X(σ∗(σ)) − σ∗(∇Xσ), ∀ X ∈ TM, σ ∈ C∞(E), σ∗ ∈ C∞(E∗).

Note also that ∇0,1 = ∂̄ on E just means that ∇σ ∈ C∞(Λ1,0(E)) for every holomorphic section σ
of E. From (10), if this property holds on E, then it holds on E∗, too.
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After these preliminaries, suppose that ∇ is a H–connection with ∇0,1 = ∂̄. The C–anti–linear
isomorphism H : E → E∗ is then parallel, so for every section σ of E and every real vector X on
M we get

∇X(H(σ)) = ∇X(H)(σ) +H(∇Xσ) = H(∇Xσ).

By the C–anti–linearity of H , for every complex vector Z ∈ TMC we have

∇Z(H(σ)) = H(∇Z̄σ).

For Z ∈ T 1,0M , this shows that

(11) ∇1,0(σ) = H−1 ◦ ∇0,1(H(σ)) = H−1 ◦ ∂̄(H(σ)),

hence ∇ = ∂̄ +H−1 ◦ ∂̄ ◦H , which proves the existence and uniqueness of ∇.

�

Remark. The (0,2)–component of the curvature of the Chern connection vanishes. Indeed,

R0,2(σ) = ∇0,1(∇0,1(σ)) = ∂̄2(σ) = 0.

Its (2,0)–component actually vanishes, too, since by (11),

∇1,0(∇1,0(σ)) = ∇1,0(H−1 ◦ ∂̄(H(σ)) = H−1 ◦ ∂̄2(H(σ)) = 0.

4.3. Exercises.

(1) Let E → M be a complex vector bundle and denote by E∗ and Ē its dual and its
conjugate. (Recall that for every x ∈M , the fibre of E∗ over x is just the dual of Ex and
the fibre Ēx of Ē is equal to Ex as a set, but has the conjugate complex structure, in the
sense that the action of some complex number z on Ēx is the same as the action of z̄ on
Ex). If gαβ denote the transition functions of E with respect to some open cover {Uα} of
M , find the transition functions of E∗ and Ē with respect to the same open cover.

(2) Show that a Hermitian structure on a complex vector bundle E defines an isomorphism
between E∗ and Ē as complex vector bundles.

(3) Let E → M be a rank k complex vector bundle. Viewing local trivializations of E as
local basis of sections of E, show that if the transition functions of E with respect to
some local trivialization take values in the unitary group Uk ⊂ Glk(C) then there exists
a canonically defined Hermitian structure on E.

(4) Prove the naturality of the Chern connection with respect to direct sums and tensor
products of holomorphic vector bundles.
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5. Hermitian and Kähler metrics

5.1. Hermitian metrics. We start with the following

Definition 5.1. A Hermitian metric on an almost complex manifold (M,J) is a Riemannian
metric h such that h(X, Y ) = h(JX, JY ), ∀ X, Y ∈ TM . The fundamental form of a Hermitian
metric is defined by Ω(X, Y ) := h(JX, Y ).

The extension (also denoted by h) of the Hermitian metric to TMC by C–linearity satisfies

(12)











h(Z̄, W̄ ) = h(Z,W ), ∀ Z,W ∈ TMC.

h(Z, Z̄) > 0 ∀ Z ∈ TMC − {0}.
h(Z,W ) = 0, ∀ Z,W ∈ T 1,0M and ∀ Z,W ∈ T 0,1M.

Conversely, each symmetric tensor on TMC with these properties defines a Hermitian metric by
restriction to TM (exercise).

Remark. The tangent bundle of an almost complex manifold is in particular a complex vector
bundle. If h is a Hermitian metric on M , then H(X, Y ) := h(X, Y )− ih(JX, Y ) = (h− iΩ)(X, Y )
defines a Hermitian structure on the complex vector bundle (TM, J), as defined in the previous
section. Conversely, any Hermitian structure H on TM as complex vector bundle defines a
Hermitian metric h on M by h := Re(H).

Remark. Every almost complex manifold admits Hermitian metrics. Simply choose an arbitrary
Riemannian metric g and define h(X, Y ) := g(X, Y ) + g(JX, JY ).

Let zα be holomorphic coordinates on a complex Hermitian manifold (M2m, J, h) and denote by
hαβ̄ the coefficients of the metric tensor in these local coordinates:

hαβ̄ := h

(

∂

∂zα
,
∂

∂z̄β

)

.

Lemma 5.2. The fundamental form is given by

Ω = i

m
∑

α,β=1

hαβ̄dzα ∧ dz̄β .

The proof is left as an exercise.

5.2. Kähler metrics. Suppose that the fundamental form Ω of a complex Hermitian mani-
fold is closed. From the i∂∂̄–Lemma we get locally a real function u such that Ω = i∂∂̄u, which
in local coordinates reads

hαβ̄ =
∂2u

∂zα∂z̄β
.

This particularly simple expression for the metric tensor in terms of one single real function
deserves the following
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Definition 5.3. A Hermitian metric h on an almost complex manifold (M,J) is called a Kähler
metric if J is a complex structure and the fundamental form Ω is closed:

h is Kähler ⇐⇒
{

NJ = 0

dΩ = 0

A local real function u satisfying Ω = i∂∂̄u is called a local Kähler potential of the metric h.

Our aim (as Riemannian geometers) is to express the Kähler condition in terms of the covariant
derivative of the Levi–Civita connection of h. We start with doing so for the Nijenhuis tensor.

Lemma 5.4. Let h be a Hermitian metric on an almost complex manifold (M,J), with Levi–Civita
covariant derivative ∇. Then J is integrable if and only if

(13) (∇JXJ)Y = J(∇XJ)Y, ∀ X, Y ∈ TM.

Proof. Let us fix a point x ∈ M and extend X and Y to vector fields on M parallel with
respect to ∇ at x. Then we can write

NJ (X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ]

= J(∇XJ)Y − J(∇Y J)X − (∇JXJ)Y + (∇JY J)X

= (J(∇XJ)Y − (∇JXJ)Y ) − (J(∇Y J)X − (∇JY J)X),

thus proving that (13) implies NJ = 0. Conversely, suppose that NJ = 0 and denote by
A(X, Y, Z) = h(J(∇XJ)Y − (∇JXJ)Y ), Z). The previous equation just reads A(X, Y, Z) =
A(Y,X, Z). On the other hand, A is skew–symmetric in the last two variables, since J and ∇XJ
are anti–commuting skew–symmetric operators. Thus A(X, Y, Z) = −A(X,Z, Y ), so by circular
permutations we get

A(X, Y, Z) = −A(Y, Z,X) = A(Z,X, Y ) = −A(X, Y, Z),

which implies (13).

�

Theorem 5.5. A Hermitian metric h on an almost complex manifold is Kähler if and only if J
is parallel with respect to the Levi–Civita connection of h.

Proof. One direction is obvious, since if J is parallel, then NJ clearly vanishes, and as
Ω = h(J ·, ·), we also have ∇Ω = 0, so in particular dΩ = 0. Conversely, suppose that h is Kähler
and denote by B the tensor B(X, Y, Z) := h((∇XJ)Y, Z). As J and ∇XJ anti–commute we have

B(X, Y, JZ) = B(X, JY, Z).

From (13) we get
B(X, Y, JZ) +B(JX, Y, Z) = 0.

Combining these two relations also yields

B(X, JY, Z) +B(JX, Y, Z) = 0.
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We now use dΩ = 0 twice, first on X, Y, JZ, then on X, JY, Z and get:

B(X, Y, JZ) +B(Y, JZ,X) +B(JZ,X, Y ) = 0,

B(X, JY, Z) +B(JY, Z,X) +B(Z,X, JY ) = 0.

Adding these two relations and using the previous properties of B yields 2B(X, Y, JZ) = 0, that
is, J is parallel. �

5.3. Characterization of Kähler metrics. We will now prove the analytic characterization
of Kähler metrics described in the first section.

Theorem 5.6. Let h be a Hermitian metric on a complex manifold (M2m, J). Then h is Kähler
if and only if around each point of M there exist holomorphic coordinates in which h osculates to
the standard Hermitian metric up to the order 2.

Proof. Suppose that we can find holomorphic local coordinates zα = xα+ iyα around x ∈ M
such that hαβ̄ = 1

2
δαβ + rαβ, with rαβ(x) = 0

∂rαβ
∂xγ

(x) =
∂rαβ
∂yγ

(x) = 0

at x. Then

dΩ = i

m
∑

α,β,γ=1

(

∂hαβ̄
∂xγ

dxγ +
∂hαβ̄
∂yγ

dyγ

)

∧ dzα ∧ dz̄β

clearly vanishes at x. As x was arbitrary, this means dΩ = 0.

Conversely, if the metric is Kähler, for every x ∈ M we take an orthonormal basis of TxM of the
form {e1, . . . , em, Je1, . . . , Jem} and choose a local holomorphic coordinate system (zα = xα+ iyα)
around x such that

eα =
∂

∂xα
(x) and Jeα =

∂

∂yα
(x).

The fundamental 2–form Ω can be written as

Ω = i
∑

α,β

(

1

2
δαβ +

∑

γ

aαβγzγ +
∑

γ

aαβγ̄ z̄γ + o(|z|)
)

dzα ∧ dz̄β,

where o(|z|) denotes generically a function whose 1–jet vanishes at x. The condition hαβ̄ = hβᾱ
together with Lemma 5.2 implies

(14) aαβγ̄ = αβαγ,

and from dΩ = 0 we find

(15) aαβγ = aγβα.

We now look for a local coordinate change in which the fundamental form has vanishing first order
terms. We put

zα = wα +
1

2

∑

β,γ

bαβγwβwγ,
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where bαβγ are complex numbers satisfying bαβγ = bαγβ . This coordinate change is well–defined
locally thanks to the holomorphic version of the local inversion theorem. We then have

dzα = dwα +
∑

β,γ

bαβγwβdwγ,

whence (using Einstein’s summation convention)

Ω = i

(

1

2
δαβ + aαβγzγ + aαβγ̄ z̄γ + o(|z|)

)

dzα ∧ dz̄β

= i

(

1

2
δαβ + aαβγwγ + aαβγ̄w̄γ + o(|z|)

)

(dwα + bαετwεdwτ ) ∧ (dw̄β + bβετ w̄εdw̄τ)

= i

(

1

2
δαβ + aαβγwγ + aαβγ̄w̄γ + bβγαwγ + bαγβw̄γ + o(|z|)

)

dwα ∧ dw̄β.

If we choose bβγα = −aαβγ , (which is possible because of (15) which ensures that aαβγ is symmetric
in α and γ), then from (14) we get

bαγβ = −aβαγ = −aαβγ̄ ,
showing that

Ω = i

(

1

2
δαβ + o(|z|)

)

dwα ∧ dw̄β.

�

5.4. Comparison of the Levi–Civita and Chern connections. Our next aim is to ex-
press the ∂̄–operator on a Hermitian manifold in terms of the Levi–Civita connection. In order to
do so, we have to remember that TM is identified with a complex vector bundle via the complex
structure J . In other words, a product iX for some X ∈ TM is identified with JX.

Lemma 5.7. For every section Y of the complex vector bundle TM , the ∂̄–operator, as TM–valued
(0,1)–form is given by

∂̄∇Y (X) =
1

2
(∇XY + J∇JXY − J(∇Y J)X),

where ∇ denotes the Levi–Civita connection of any Hermitian metric h on M .

Proof. We first recall that ∂̄f(X) = 1
2
(X + iJX)(f), so

∂̄∇(fY )(X) = f
1

2
(∇XY + J∇JXY − J(∇Y J)X) +

1

2
(X(f)Y + JX(f)JY )

= f∂̄∇Y (X) + ∂̄f(X)Y,

which shows that the above defined operator ∂̄∇ satisfies the Leibniz rule. Moreover, a vector
field Y is a holomorphic section of TM if and only if it is real holomorphic. By Lemma 2.7, this
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is equivalent to LY J = 0, which means that for every vector field X ∈ C∞(TM) one has

0 = (LY J)X = LY (JX) − JLYX = [Y, JX] − J [Y,X]

= ∇Y JX −∇JXY − J∇YX + J∇XY

= (∇Y J)X −∇JXY + J∇XY = J(∇XY + J∇JXY − J(∇Y J)X),

thus showing that ∂̄∇Y vanishes for every holomorphic section Y . This proves that ∂̄∇ = ∂̄. �

A Hermitian manifold (M,h, J) two natural linear connections: the Levi–Civita connection ∇
and the Chern connection ∇̄ on TM as Hermitian vector bundle.

Proposition 5.8. The Chern connection coincides with the Levi–Civita connection if and only if
h is Kähler.

Proof. Let H := h− iΩ denote the Hermitian structure of TM . By definition, J is parallel
with respect to the Chern connection, which is a complex connection. Thus, if ∇ = ∇̄ then J
is ∇–parallel, so h is Kähler by Theorem 5.5. Conversely, suppose that h is Kähler. Then the
Levi–Civita connection is a well–defined complex connection in TM since ∇J = 0, by Theorem
5.5 again. Moreover, it is a H–connection since ∇h = 0 and ∇Ω = 0. Finally, the condition
∇0,1 = ∂̄ follows from Lemma 5.7, as ∇0,1

X = 1
2
(∇X + i∇JX) = 1

2
(∇X + J∇JX).

�

5.5. Exercises.

(1) Prove that every Hermitian metric on a 2–dimensional almost complex manifold is Kähler.

(2) Prove that the fundamental form of a Hermitian metric is a (1,1)–form.

(3) If hαβ̄ denote the coefficients of a Hermitian metric tensor in some local holomorphic

coordinate system, show that hαβ̄ = hβᾱ.

(4) Show that the extension of a Hermitian metric h by C–linearity is a symmetric bilinear
tensor satisfying











h(Z̄, W̄ ) = h(Z,W ), ∀ Z,W ∈ TMC.

h(Z, Z̄) > 0 ∀ Z ∈ TMC − {0}.
h(Z,W ) = 0, ∀ Z,W ∈ T 1,0M and ∀ Z,W ∈ T 0,1M.

and conversely, any symmetric complex bilinear tensor satisfying this system arises from
a Hermitian metric.
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6. The curvature tensor of Kähler manifolds

6.1. The curvature tensor. Let (Mn, g) be a Riemannian manifold with Levi–Civita con-
nection ∇ and denote by R its curvature tensor:

R(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, ∀ X, Y, Z ∈ C∞(TM).

It is sometimes convenient to identify the curvature tensor with the following tensor:

R(X, Y, Z, T ) := h(R(X, Y )Z, T ), ∀ X, Y, Z, T ∈ TM.

The symmetries of the curvature operator then read:

• R(X, Y, Z, T ) = −R(X, Y, T, Z);
• R(X, Y, Z, T ) = R(Z, T,X, Y );
• R(X, Y, Z, T ) +R(Y, Z,X, T ) +R(Z,X, Y, T ) = 0 (first Bianchi identity);
• (∇XR)(Y, Z, T,W )+(∇YR)(Z,X, T,W )+(∇ZR)(X, Y, T,W ) = 0 (second Bianchi iden-

tity).

The Ricci tensor of M is defined by

Ric(X, Y ) := Tr{V 7→ R(V,X)Y },
or equivalently

Ric(X, Y ) =
2m
∑

i=1

R(ei, X, Y, ei),

where ei is a local orthonormal basis of TM . We recall that the Ricci tensor of every Riemannian
manifold is symmetric, as can be easily seen from the symmetries of the curvature. A Riemannian
manifold (Mn, g) is called Einstein if the Ricci tensor Ric is proportional to the metric tensor g
at each point of M

Ric(X, Y ) = λg(X, Y ) ∀ X, Y ∈ TxM.

If n ≥ 3, it is easy to check that λ (which a priori depends on x) has to be constant on M (see
[8]).

Suppose now that (M2m, h, J) is a Kähler manifold. Since J is ∇–parallel, the curvature tensor
has more symmetries:

(16) R(X, Y )JZ = JR(X, Y )Z, ∀ X, Y, Z ∈ C∞(TM).

This immediately implies

R(X, Y, JZ, JT ) = R(X, Y, Z, T ) = R(JX, JY, Z, T ),

hence

Ric(JX, JY ) =
2m
∑

i=1

R(ei, JX, JY, ei) =
2m
∑

i=1

R(Jei, X, Y, Jei) = Ric(X, Y ),

since for every orthonormal basis {ei}, the set {Jei} is also an orthonormal basis.

This last equation justifies the following
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Definition 6.1. The Ricci form ρ of a Kähler manifold is defined by

ρ(X, Y ) := Ric(JX, Y ), ∀ X, Y ∈ TM.

The Ricci form is one of the most important objects on a Kähler manifold. Among its properties
which will be proved in the next few sections we mention:

• the Ricci form ρ is closed;
• the cohomology class of ρ is (up to some real multiple) equal to the Chern class of the

canonical bundle of M ;
• in local coordinates, ρ can be expressed as ρ = −i∂∂̄ log det(hαβ̄), where det(hαβ̄) denotes

the determinant of the matrix (hαβ̄) expressing the Hermitian metric.

For the moment being we use the Bianchi identities for the curvature tensor to prove the following

Proposition 6.2. (i) The Ricci tensor of a Kähler manifold satisfies

Ric(X, Y ) =
1

2
Tr(R(X, JY ) ◦ J).

(ii) The Ricci form is closed.

Proof. Let (ei) be a local orthonormal basis of TM . (i) Using the first Bianchi identity we
get

Ric(X, Y ) =
∑

i

R(ei, X, Y, ei) =
∑

i

R(ei, X, JY, Jei)

=
∑

i

(−R(X, JY, ei, Jei) −R(JY, ei, X, Jei))

=
∑

i

(R(X, JY, Jei, ei) +R(Y, Jei, X, Jei))

= Tr(R(X, JY ) ◦ J) − Ric(X, Y ).

(ii) From (i) we can write 2ρ(X, Y ) = Tr(R(X, Y ) ◦ J). Therefore,

2dρ(X, Y, Z) = 2((∇Xρ)(Y, Z) + (∇Y ρ)(Z,X) + (∇Zρ)(X, Y ))

= Tr((∇XR)(Y, Z) ◦ J + (∇YR)(Z,X) ◦ J + (∇ZR)(X, Y ) ◦ J) = 0

from the second Bianchi identity. �

6.2. Kähler metrics in local coordinates. Let (M2m, h, J) be a Kähler manifold with
Levi–Civita covariant derivative ∇ and let (zα) be a system of local holomorphic coordinates. We
introduce the following local basis of the complexified tangent space:

Zα :=
∂

∂zα
, Zᾱ :=

∂

∂z̄α
, 1 ≤ α ≤ m,
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and we let subscripts A,B,C, . . . run over the set {1, . . . , m, 1̄, . . . , m̄}. We denote the components
of the Kähler metric in these coordinates by

hAB := h(ZA, ZB).

Of course, since the metric is Hermitian we have

(17) hαβ = hᾱβ̄ = 0, hβ̄α = hαβ̄ = hβᾱ.

Let hαβ̄ denote the coefficients of the inverse matrix of (hαβ̄). The Christoffel symbols are defined
by

∇ZA
ZB = ΓCABZC .

Using the convention ¯̄α = α, we get by conjugation

ΓCAB = ΓC̄ĀB̄.

Since ∇ is torsion–free we have

ΓCAB = ΓCBA,

and since T 1,0 is ∇–parallel we must have

Γγ
Aβ̄

= 0.

These relations show that the only non–vanishing Christoffel symbols are

Γγαβ and Γγ̄
ᾱβ̄
.

Now, in order to compute these coefficients we notice that ΓC
αδ̄

= 0 implies

(18) ∇Zα
Zδ̄ = 0,

hence
∂hβδ̄
∂zα

= h(∇Zα
Zβ, Zδ̄) = Γγαβhγδ̄.

This proves the formulas

(19) Γγαβhγδ̄ =
∂hβδ̄
∂zα

and Γγαβ = hγδ̄
∂hβδ̄
∂zα

.

The curvature tensor can be viewed either as (3,1)– or as (4,0)–tensor. The corresponding coeffi-
cients are defined by

R(ZA, ZB)ZC = RD
ABCZD and RABCD = R(ZA, ZB, ZC , ZD) = hDER

E
ABC .

From the fact that T 1,0M is parallel we immediately get Rγ

ABδ̄
= Rγ̄

ABδ = 0, hence RABγδ =
RABγ̄δ̄ = 0. Using the curvature symmetries we finally see that the only non–vanishing components
of R are

Rαβ̄γδ̄, Rαβ̄γ̄δ, Rᾱβγδ̄, Rᾱβγ̄δ

and

Rδ
αβ̄γ, R

δ̄
αβ̄γ̄, R

δ
ᾱβγ , R

δ̄
ᾱβγ̄ .
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From (18) and (19) we obtain

Rδ
αβ̄γ

Zδ = R(Zα, Zβ̄)Zγ = −∇Zβ̄
(∇Zα

Zγ) = −∇Zβ̄
(ΓδαγZδ) = −

∂Γδαγ
∂z̄β

Zδ,

therefore

(20) Rδ
αβ̄γ

= −
∂Γδαγ
∂z̄β

.

Using this formula we can compute the components of the Ricci tensor:

Ricγβ̄ = Ricβ̄γ = RA
Aβ̄γ

= Rα
αβ̄γ

= −
∂Γααγ
∂z̄β

.

Let us denote by d the determinant of the matrix (hαβ̄). Using the Lemma 6.3 below and (19) we
get

Γααγ = Γαγα = hαδ̄
∂hαδ̄
∂zγ

=
1

d

∂d

∂zγ
=
∂ log d

∂zγ
.

This proves the following simple expressions for the Ricci tensor

Ricαβ̄ = −∂
2 log d

∂zα∂z̄β
,

and for the Ricci form

(21) ρ = −i∂∂̄ log d.

Lemma 6.3. Let (hij) = (hij(t)) be the coefficients of a map h : R → Glm(C) with hij := (hij)
−1

and let d(t) denote the determinant of (hij). Then the following formula holds

d′(t) = d

m
∑

i,j=1

h′ij(t)h
ji(t).

Proof. Recall the definition of the determinant

d =
∑

σ∈Sm

ε(σ)h1σ1 . . . hmσm
.

If we denote

h̃ji :=
1

d

∑

σ∈Sm, σi=j

ε(σ)h1σ1 . . . hi−1σi−1
hi+1σi+1

. . . hmσm
,

then we obtain easily
m

∑

j=1

hijh̃
ji =

1

d

m
∑

j=1

∑

σ∈Sm, σi=j

ε(σ)h1σ1 . . . hmσm
=

1

d

∑

σ∈Sm

ε(σ)h1σ1 . . . hmσm
=

1

d
d = 1,

and
m

∑

j=1

hkjh̃
ji =

1

d

m
∑

j=1

∑

σ∈Sm, σi=j

ε(σ)h1σ1 . . . hi−1σi−1
hkσi

hi+1σi+1
. . . hmσm

= 0
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for k 6= i since in the last sum each term corresponding to a permutation σ is the opposite of the
term corresponding to the permutation (ik) ◦ σ, where (ik) denotes the transposition of i and k.

This shows that h̃ji = hji are the coefficients of the inverse matrix of h. We now get

d′(t) =
∑

σ∈Sm

m
∑

i=1

ε(σ)h′iσi
(t)h1σ1 . . . hi−1σi−1

hi+1σi+1
. . . hmσm

=

m
∑

i=1

m
∑

j=1

∑

σ∈Sm, σi=j

ε(σ)h′ij(t)h1σ1 . . . hi−1σi−1
hi+1σi+1

. . . hmσm

= d

m
∑

i,j=1

h′ij(t)h̃
ji = d

m
∑

i,j=1

h′ij(t)h
ji(t).

�

6.3. Exercises.

(1) Let S := Tr(Ric) denote the scalar curvature of a Kähler manifold M with Ricci form ρ.
Using the second Bianchi identity, prove the formula:

δρ = −1

2
JdS.

In particular, the Ricci form of M is harmonic if and only if the scalar curvature S is
constant.

(2) Prove that the curvature of a Kähler manifold, viewed as a symmetric endomorphism
of the space of complex 2–forms, maps Λ0,2 and Λ2,0 to 0. Compute the image of the
fundamental form through this endomorphism.

(3) Let h be a Hermitian metric on some complex manifold M2m and let zα = xα + iyα
be a local system of holomorphic local coordinates on M . Using (17) show that the
determinant of the complex m×m matrix (hαβ̄) is a positive real number whose square
is equal to the determinant of the real 2m× 2m matrix hij representing the metric in the
local coordinate system (xi, yi).

(4) Let h and h′ be two Kähler metrics on some complex manifold (M,J) having the same
(Riemannian) volume form. Prove that the Ricci tensors of h and h′ are equal.
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7. Examples of Kähler metrics

7.1. The flat metric on Cm. Its coefficients in holomorphic coordinates are

hαβ̄ = h

(

∂

∂zα
,
∂

∂z̄β

)

=
1

4
h

(

∂

∂xα
− i

∂

∂yα
,
∂

∂xβ
+ i

∂

∂yβ

)

=
1

2
δαβ ,

so by Lemma 5.2 the fundamental form is

Ω = i
1

2

m
∑

α=1

dzα ∧ dz̄α =
i

2
∂∂̄|z|2.

Thus u(z) = 1
2
|z|2 is a Kähler potential for the canonical Hermitian metric on Cm.

7.2. The Fubini–Study metric on the complex projective space CPm. Consider the
holomorphic atlas (Uj , φj) on CPm described in the first section. Let π : Cm+1 − {0} → CPm be
the canonical projection

π(z0, . . . , zm) = [z0 : . . . : zm].

This map is clearly surjective. It is moreover a principal C∗–fibration, with local trivializations
ψj : π−1Uj → Uj × C∗ given by

ψj(z) = ([z], zj),

and satisfying ψj ◦ ψ−1
k ([z], α) = ([z],

zj

zk
α).

Consider the functions u : Cm → R and v : Cm+1 − {0} → R defined by u(w) = log(1 + |w|2) and
v(z) = log(|z|2). For every j ∈ {0, . . . , m}, we define fj = φj ◦ π.

Cm+1 − {0}

fj

��

π
// Uj ⊂ CPm

φj

||yy
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y

Cm

The map fj is clearly holomorphic and a direct calculation yields u ◦ fj(z) = v(z) − log |zj|2. As
∂∂̄ log |zj|2 = 0, this shows that (fj)

∗(∂∂̄u) = ∂∂̄v for every j. We thus can define a 2–form Ω on
CPm by

Ω|Uj
:= i(φj)

∗(∂∂̄u),

which satisfies

(22) π∗(Ω) = i∂∂̄v.

Clearly Ω is a closed real (1, 1)–form, so the tensor h defined by

h(X, Y ) := Ω(X, JY ), ∀ X, Y ∈ TCPm

is symmetric and Hermitian. The next lemma proves that h defines a Kähler metric on CPm.

Lemma 7.1. The tensor h is positive definite on CPm.
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Proof. Let us fix some local holomorphic chart φj : Uj → Cm. Clearly, h = (φj)
∗(ĥ), where

ĥ is the symmetric tensor on Cm defined by ĥ(X, Y ) := i∂∂̄u(X, JY ), ∀ X, Y ∈ TCm. We have

to prove that ĥ is positive definite. Now, since Um is a group of holomorphic transformations of
Cm preserving u, it also preserves ĥ. Moreover, it is transitive on the unit sphere of Cm, so it is
enough to prove that ĥ is positive definite at a point p = (r, 0, . . . , 0) ∈ Cm for some positive real
number r. We have

∂∂̄ log(1+|z|2) = ∂(
1

1 + |z|2 (

m
∑

i=1

zidz̄i)) =
1

1 + |z|2
m

∑

i=1

dzi∧dz̄i−
1

(1 + |z|2)2
(

m
∑

i=1

z̄idzi)∧(

m
∑

i=1

zidz̄i).

At p this 2–form simplifies to

1

(1 + r2)2

(

dz1 ∧ dz̄1 + (1 + r2)

m
∑

i=2

dzi ∧ dz̄i
)

,

which shows that

ĥp(X, Y ) =
2

(1 + r2)2
Re(X1Ȳ1 + (1 + r2)

m
∑

i=2

XiȲi)

hence ĥ is positive definite. �

The Kähler metric on CPm constructed in this way is called the Fubini–Study metric and is usually
denoted by hFS.

7.3. Geometrical properties of the Fubini–Study metric. The Fubini–Study metric
was defined via its fundamental 2–form, which was expressed by local Kähler potentials. We
provide here a more geometrical description of this metric, showing that it is the projection to
CPm of some symmetric tensor field of Cm+1 − {0}.

Lemma 7.2. For every z ∈ Cm+1 − {0}, the canonical projection π : Cm+1 − {0} → CPm is a
submersion, and the kernel of its differential π∗z : Tz(C

m+1−{0}) → Tπ(z)CPm is the complex line
generated by z.

Proof. Let z ∈ Cm+1 with zj 6= 0. The composition fj := φj ◦ π is given by

fj(z0, . . . , zm) =
1

zj
(z0, . . . , zj−1, zj+1, . . . , zm).

We put j = 0 for simplicity and denote f = f0. Its differential at z applied to some tangent vector
v is

f∗z(v) =
1

z0
(v1, . . . , vm) − v0

z2
0

(z1, . . . , zm).

Thus v ∈ ker(π∗)z ⇐⇒ v ∈ ker(f∗)z ⇐⇒ v = v0
z0
z. This shows that ker((π∗)z) is the complex

line generated by z, and for dimensional reasons (π∗)z has to be surjective. �
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Consider the complex orthogonal z⊥ of z in Cm+1 with respect to the canonical Hermitian metric,
i.e. the set

z⊥ := {y ∈ Cm+1 |
m

∑

j=0

zj ȳj = 0}.

This defines a codimension 1 complex distribution D in Cm+1 −{0} with Dz := z⊥. Let X 7→ X⊥

denote the orthogonal projection onto z⊥ in Tz(C
m+1−{0}) and define a bilinear symmetric tensor

h̃ on Cm+1 − {0} by

h̃(X, Y ) :=
2

|z|2 〈X
⊥, Y ⊥〉,

where 〈·, ·〉 denotes the canonical Hermitian product.

Lemma 7.3. The (1,1)–form ϕ(X, Y ) := h̃(JX, Y ) associated to the tensor h̃ satisfies ϕ =
i∂∂̄ log(|z|2) on Cm+1 − {0}.

Proof. It is enough to prove this relation at a point p = (r, 0, . . . , 0) ∈ Cm+1 − {0} for
some positive real number r because both members are Um+1–invariant and Um+1 is transitive on
spheres. We have

∂∂̄ log(|z|2) = ∂(
1

|z|2 (
m

∑

i=0

zidz̄i)) =
1

|z|2
m

∑

i=0

dzi ∧ dz̄i −
1

|z|4 (
m

∑

i=0

z̄idzi) ∧ (
m

∑

i=0

zidz̄i).

At p this 2–form simplifies to

1

r2

m
∑

i=1

dzi ∧ dz̄i.

On the other hand, we have at p

−iϕ
(

∂

∂zα
,
∂

∂z̄β

)

= −ih̃
(

i
∂

∂zα
,
∂

∂z̄β

)

= h̃

(

∂

∂zα
,
∂

∂z̄β

)

which vanishes if α = 0 or β = 0 and equals 1
r2
δαβ otherwise. Thus

−iϕ =
1

r2

m
∑

i=1

dzi ∧ dz̄i.

�

Using this lemma and (22) we see that π∗h = h̃, showing that the Fubini–Study metric hFS on

CPm is given by the projection of the above defined semi–positive symmetric tensor field h̃.

Proposition 7.4. The group Um+1 acts transitively by holomorphic isometries on (CPm, hFS)

Proof. For every A ∈ Um+1, z ∈ Cm+1 − {0} and α ∈ C∗, we have A(αz) = αA(z), showing
that the canonical action of Um+1 on Cm+1 − {0} descends to an action on CPm. For every

A ∈ Um+1, let Ã be the corresponding transformation of CPm. Looking at its expression in
the canonical holomorphic charts, it is easy to check that every Ã acts holomorphically on CPm.
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In order to check that Ã preserves the Fubini–Study metric, we first use (22) and the relation
v ◦A(z) = log |Az|2 = log |z|2 = v(z) to get

π∗(Ã∗(Ω)) = A∗(i∂∂̄v) = i∂∂̄A∗v = i∂∂̄v = π∗Ω.

Lemma 7.2 shows that π∗ is onto, so π∗ is injective on exterior forms, hence Ã∗(Ω) = Ω. As Ã
also preserves the complex structure, too, this clearly implies that Ã is an isometry. �

We will now use our computations in local coordinates from the previous section in order to show
that the Fubini–Study metric is Einstein. Since there exists a transitive isometric action on CPm,
it is enough to check this at some point, say p := [1 : 0 : . . . : 0] ∈ CPm. From Lemma 7.1 we see
that the fundamental form is given in the local chart φ0 by

Ω =
i

1 + |z|2
m

∑

i=1

dzi ∧ dz̄i −
i

(1 + |z|2)2
(
m

∑

i=1

z̄idzi) ∧ (
m

∑

i=1

zidz̄i).

Lemma 7.5. Let dv denote the volume form on Cm

dv := dx1 ∧ dy1 ∧ . . . ∧ dxm ∧ dym =
i

2
dz1 ∧ dz̄1 ∧ . . . ∧

i

2
dzm ∧ dz̄m.

Then the fundamental 2–form Ω satisfies

Ω ∧ . . . ∧ Ω =
2mm!

(1 + |z|2)m+1
dv.

Proof. Both terms are clearly invariant by the action of Um on Cm, which is transitive on
spheres, so it is enough to prove the equality at points of the form z = (r, 0, . . . , 0), where it is
actually obvious. �

Now, for every Hermitian metric h on Cm with fundamental form ϕ, the determinant d of the
matrix (hαβ̄) satisfies

1

m!
ϕm = d2mdv.

Applying this to our situation and using the lemma above yields

d = det(hαβ̄) =
1

(1 + |z|2)m+1
,

whence log d = −(m+ 1) log(1 + |z|2), so from the local formula (21) for the Ricci form we get

ρ = −i∂∂̄ log d = (m+ 1)i∂∂̄ log(1 + |z|2) = (m+ 1)Ω,

thus proving that the Fubini–Study metric on CPm is an Einstein metric, with Einstein constant
m+ 1.
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7.4. Exercises.

(1) A submersion f : (M, g) → (N, h) between Riemannian manifolds is called Riemannian
submersion if for every x ∈M , the restriction of (f∗)x to the g–orthogonal of the tangent
space to the fiber f−1(f(x)) is an isometry onto Tf(x)N . Prove that the restriction of the
canonical projection π to S2m+1 defines a Riemannian submersion onto (CPm, 1

2
hFS).

(2) Show that (CP1, hFS) is isometric to the round sphere of radius 1/
√

2, S2(1/
√

2) ⊂ R3.
Hint: Use the fact that a simply–connected manifold with constant positive sectional
curvature K is isometric to the sphere of radius 1/

√
K.

(3) Show that for every Hermitian tensor h on Cm with fundamental form ϕ, the determinant
d of the matrix (hαβ̄) satisfies

ϕm = d2mm!dv.





Part 3

The Laplace operator



8. Natural operators on Riemannian and Kähler manifolds

8.1. The formal adjoint of a linear differential operator. Let (Mn, g) be an oriented
Riemannian manifold (not necessarily compact) with volume form dv and let E and F be Her-
mitian vector bundles over M with Hermitian structures denoted by 〈·, ·〉E and 〈·, ·〉F .

Definition 8.1. Let P : C∞(E) → C∞(F ) and Q : C∞(F ) → C∞(E) be linear differential
operators. The operator Q is called a formal adjoint of P if

∫

M

〈Pα, β〉Fdv =

∫

M

〈α,Qβ〉Edv,

for every compactly supported smooth sections α ∈ C∞
0 (E) and β ∈ C∞

0 (F ).

Lemma 8.2. There exists at most one formal adjoint for every linear differential operator.

Proof. Suppose that P : C∞(E) → C∞(F ) has two formal adjoints, denoted Q and Q′. Then
their difference R := Q−Q′ satisfies

∫

M

〈α,Rβ〉Edv = 0 ∀ α ∈ C∞
0 (E), ∀ β ∈ C∞

0 (F ).

Suppose that there exists some σ ∈ C∞(F ) and some x ∈M such that R(σ)x 6= 0. Take a positive
function f on M such that f ≡ 1 on some open set U containing x and f = 0 outside a compact
set. Since R is a differential operator, the value of R(σ) at x only depends on the germ of σ at
x, so in particular R(fσ) has compact support and R(fσ)x = R(σ)x 6= 0. Applying the formula
above to the compactly supported sections α := R(fσ) and β := fσ of E and F we get

0 =

∫

M

〈α,Rβ〉Edv =

∫

M

|R(fσ)|2dv,

thus showing that the smooth positive function |R(fσ)|2 has to vanish identically on M , contra-
dicting the fact that its value at x is non–zero. �

The formal adjoint of an operator P is usually denoted by P ∗. From the above lemma it is
immediate to check that P is the formal adjoint of P ∗ and that Q∗ ◦ P ∗ is the formal adjoint of
P ◦Q. The lemma below gives a useful method to compute the formal adjoint:

Lemma 8.3. Let P : C∞(E) → C∞(F ) and Q : C∞(F ) → C∞(E) be linear differential operators.
If there exists a section ω ∈ C∞(E∗ ⊗ F ∗ ⊗ Λn−1M) such that

(23) (〈Pα, β〉F − 〈α,Qβ〉E)dv = d(ω(α, β)), ∀ α ∈ C∞(E), β ∈ C∞(F ),

then Q is the formal adjoint of P .

Proof. The n− 1–form ω(α, β) has compact support for every compactly supported sections
α and β. By Stokes’ theorem we see that the integral over M of its exterior derivative vanishes. �
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8.2. The Laplace operator on Riemannian manifolds. We start with an oriented Rie-
mannian manifold (Mn, g) with volume form dv. We denote generically by {e1, . . . , en} a local
orthonormal frame on M parallel in a point and identify vectors and 1–forms via the metric g. In
this way we can write for instance dv = e1 ∧ . . . ∧ en.
There is a natural embedding ϕ of ΛkM in TM⊗k given by

ϕ(ω)(X1, . . . , Xk) := ω(X1, . . . , Xk),

which in the above local basis reads

ϕ(e1 ∧ . . . ∧ ek) =
∑

σ∈Sk

ε(σ)eσ1 ⊗ . . .⊗ eσk
.

The Riemannian product g induces a Riemannian product on all tensor bundles. We consider the
following weighted tensor product on ΛkM :

〈ω, τ〉 :=
1

k!
g(ϕ(ω), ϕ(τ)),

which can also be characterized by the fact that the basis

{ei1 ∧ . . . ∧ eik | 1 ≤ i1 < . . . < ik ≤ n}
is orthonormal. With respect to this scalar product, the interior and exterior products are adjoint
operators:

(24) 〈X yω, τ〉 = 〈ω,X ∧ τ〉, ∀ X ∈ TM, ω ∈ ΛkM, τ ∈ Λk−1M.

We define the Hodge *–operator ∗ : ΛkM → Λn−kM by

ω ∧ ∗τ := 〈ω, τ〉dv, ∀ω, τ ∈ ΛkM.

It is well–known and easy to check on the local basis above that the following relations are satisfied:

(25) ∗1 = dv, ∗dv = 1,

(26) 〈∗ω, ∗τ〉 = 〈ω, τ〉,

(27) ∗2 = (−1)k(n−k) on ΛkM.

The exterior derivative d : C∞(ΛkM) → C∞(Λk+1M)

d =
∑

i

ei ∧∇ei

has a formal adjoint δ : C∞(Λk+1M) → C∞(ΛkM) satisfying

δ = −(−1)nk ∗ d∗ = −
∑

i

ei y∇ei
.

To see this, let α ∈ Ωp and β ∈ Ωp+1 be smooth forms. Then we have

〈dα, β〉dv = dα ∧ ∗β = d(α ∧ ∗β) − (−1)pα ∧ d ∗ β
= d(α ∧ ∗β) − (−1)p+p(n−p)α ∧ ∗ ∗ d ∗ β = d(α ∧ ∗β) − (−1)np〈α, ∗d ∗ β〉dv,
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so Lemma 8.3 shows that d∗ = (−1)np+1 ∗ d∗ on p+ 1–forms.

Using the Hodge *–operator we get the following useful reformulation of Lemma 8.3: if there
exists a section τ ∈ C∞(E∗ ⊗ F ∗ ⊗ Λ1M) such that

(28) 〈Pα, β〉F − 〈α,Qβ〉E = δ(τ(α, β)), ∀ α ∈ C∞(E), β ∈ C∞(F ),

then Q is the formal adjoint of P .

The Laplace operator ∆ : C∞(ΛkM) → C∞(ΛkM) is defined by

∆ := dδ + δd,

and is clearly formally self–adjoint.

8.3. The Laplace operator on Kähler manifolds. After these preliminaries, let now
(M2m, h, J) be an almost Hermitian manifold with fundamental form Ω. We define the following
algebraic (real) operators acting on differential forms:

L : ΛkM → Λk+2M, L(ω) := Ω ∧ ω =
1

2

∑

i

ei ∧ Jei ∧ ω,

with adjoint Λ satisfying

Λ : Λk+2M → ΛkM, Λ(ω) :=
1

2

∑

i

Jei y ei yω.

These natural operators can be extended to complex–valued forms by C–linearity.

Lemma 8.4. The following relations hold:

(1) The Hodge *–operator maps (p, q)–forms to (m− q,m− p)–forms.
(2) [X y ,Λ] = 0 and [X y , L] = JX ∧ .

The proof is straightforward.

Let us now assume that M is Kähler. We define the twisted differential dc : C∞(ΛkM) →
C∞(Λk+1M) by

dc(ω) :=
∑

i

Jei ∧ ∇ei
ω

whose formal adjoint is δc : C∞(Λk+1M) → C∞(ΛkM)

δc := − ∗ dc∗ = −
∑

i

Jei y∇ei
.

Lemma 8.5. On a Kähler manifold, the following relations hold:

(29) [L, δ] = dc, [L, d] = 0

and

(30) [Λ, d] = −δc, [Λ, δ] = 0.
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Proof. Using Lemma 8.4 (2) and the fact that J and Ω are parallel we get

[L, δ] = −[L, ei y∇ei
] = −[L, ei y ]∇ei

= Jei ∧∇ei
= dc.

The second relation in (29) just expresses the fact that the Kähler form is closed. The two relations
in (30) follow by the uniqueness of the formal adjoint. �

Corresponding to the decomposition d = ∂ + ∂̄ we have the decomposition δ = ∂∗ + ∂̄∗, where

∂∗ : C∞(Λp,qM) → C∞(Λp−1,qM), ∂∗ := − ∗ ∂̄∗
and

∂̄∗ : C∞(Λp,qM) → C∞(Λp,q−1M), ∂̄∗ := − ∗ ∂ ∗ .
Notice that ∂∗ and ∂̄∗ are formal adjoints of ∂ and ∂̄ with respect to the Hermitian product H on
complex forms given by

(31) H(ω, τ) := 〈ω, τ̄〉.
We define the Laplace operators

∆∂ := ∂∂∗ + ∂∗∂ and ∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄.

One of the most important features of Kähler metrics is that these new Laplace operators are
essentially the same as the usual one:

Theorem 8.6. On any Kähler manifold one has ∆ = 2∆∂ = 2∆∂̄.

Proof. Our identification of TM and T ∗M via the metric maps (1, 0)–vectors to (0, 1)–forms
and vice–versa. From the fact that Λp,qM are preserved by the covariant derivative follows easily

∂ =
∑

j

1

2
(ej + iJej) ∧ ∇ej

and ∂̄ =
∑

j

1

2
(ej − iJej) ∧ ∇ej

.

From the definition of dc we then get

(32) dc = i(∂̄ − ∂),

and by adjunction

(33) δc = i(∂∗ − ∂̄∗).

Applying (29) to a (p, q)–form and projecting onto Λp±1,qM and Λp,q±1M then yields

(34) [L, ∂∗] = i∂̄, [L, ∂̄∗] = −i∂, [L, ∂] = 0, [L, ∂̄] = 0,

and similarly from (30) we obtain

(35) [Λ, ∂] = i∂̄∗, [Λ, ∂̄] = −i∂∗, [Λ, ∂∗] = 0, [Λ, ∂̄∗] = 0.

Now, the relation ∂̄2 = 0 together with (35) gives

−i(∂̄∂∗ + ∂∗∂̄) = ∂̄[Λ, ∂̄] + [Λ, ∂̄]∂̄ = ∂̄Λ∂̄ − ∂̄Λ∂̄ = 0

and similarly
∂∂̄∗ + ∂̄∗∂ = 0.
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Thus,

∆ = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)

= (∂∂∗ + ∂∗∂) + (∂̄∂̄∗ + ∂̄∗∂̄) + (∂̄∂∗ + ∂∗∂̄) + (∂∂̄∗ + ∂̄∗∂)

= ∆∂ + ∆∂̄.

It remains to show the equality ∆∂ = ∆∂̄, which is an easy consequence of (35):

−i∆∂ = −i(∂∂∗ + ∂∗∂) = ∂[Λ, ∂̄] + [Λ, ∂̄]∂ = ∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂

= ∂Λ∂̄ + ∂̄∂Λ − Λ∂∂̄ − ∂̄Λ∂ = [∂,Λ]∂̄ + ∂̄[∂,Λ] = −i∂̄∗∂̄ − i∂̄∂̄∗ = −i∆∂̄ .

�

8.4. Exercises.

(1) Consider the extension of J as derivation

J : ΛkM → ΛkM, J(ω) :=
∑

i

Jei ∧ ei yω.

Show that the following relations hold:
• J is skew–Hermitian.
• J(α ∧ β) = J(α) ∧ β + α ∧ J(β) for all forms α ∈ ΩpM and β ∈ ΩkM .
• The restriction of J to Λp,qM equals to the scalar multiplication by i(q − p).
• [J,Λ] = 0 and [J, L] = 0.

(2) Let ω be a k–form on a n–dimensional Riemannian manifold M . Prove that ei∧(ei yω) =
kω and ei y (ei ∧ ω) = (n− k)ω.

(3) Show that 0 = ddc + dcd = dδc + δcd = δδc + δcδ = δdc + dcδ on every Kähler manifold.

(4) Prove that [J, d] = dc and [J, dc] = −d on Kähler manifolds.

(5) Show that the Laplace operator commutes with L, Λ and J on Kähler manifolds.
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9. Hodge and Dolbeault theory

9.1. Hodge theory. In this section we assume that (Mn, g) is a compact oriented Rie-
mannian manifold. From now on we denote the space of smooth complex–valued k–forms by
ΩkM := C∞(ΛkM ⊗ C) and by Zk(M) the space of closed complex k–forms on M . Since the
exterior derivative satisfies d2 = 0, one clearly has dΩk−1M ⊂ ZkM. We define the De Rham
cohomology groups by

Hk
DR(M,C) :=

ZkM

dΩk−1M
.

The De Rham theorem says that the kth cohomology group of M with complex coefficients is

naturally isomorphic to the kth De Rham cohomology group:

Hk(M,C) ' Hk
DR(M,C).

We now denote by Hk(M,C) the space of complex harmonic k–forms on M , i.e. forms in the
kernel of the Laplace operator:

Hk(M,C) := {ω ∈ ΩkM | ∆ω = 0}.
Lemma 9.1. A form is harmonic if and only if it is closed and δ–closed.

Proof. One direction is clear. Suppose conversely that ω is harmonic. Since M is compact
and d and δ are formally adjoint operators we get

0 =

∫

M

H(∆ω, ω)dv =

∫

M

H(dδω + δdω, ω)dv =

∫

M

|δω|2 + |dω|2dv,

showing that dω = 0 and δω = 0. �

Theorem 9.2. (Hodge decomposition theorem). The space of k–forms decomposes as a direct
sum

ΩkM = Hk(M,C) ⊕ δΩk+1M ⊕ dΩk−1M.

Proof. Using Lemma 9.1 it is immediate to check that the three spaces above are orthogonal
with respect to the global Hermitian product on ΩkM given by

(ω, τ) :=

∫

M

H(ω, τ)dv.

The hard part of the theorem is to show that the direct sum of these three summands is the whole
space ΩkM . A proof can be found in [2], pp. 84–100. �

The Hodge decomposition theorem shows that every k–form ω on M can be uniquely written as

ω = dω′ + δω′′ + ωH,

where ω′ ∈ Ωk−1M , ω′′ ∈ Ωk+1M and ωH ∈ Hk(M,C). If ω is closed, we can write

0 = (dω, ω′′) = (dδω′′, ω′′) =

∫

M

|δω′′|2dv,

showing that the second term in the Hodge decomposition of ω vanishes.
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Proposition 9.3. (Hodge isomorphism). The natural map f : Hk(M,C) → Hk
DR(M,C) given

by ω 7→ [ω] is an isomorphism.

Proof. First, f is well–defined because every harmonic form is closed (Lemma 9.1). The
kernel of f is zero since the spaces of harmonic forms and exact forms are orthogonal, so in
particular their intersection is {0}. Finally, for every De Rham cohomology class c, there exists a
closed form ω such that [ω] = c. We have seen that the Hodge decomposition of ω is ω = dω′+ωH,
showing that

f(ωH) = [ωH ] = [dω′ + ωH] = [ω] = c,

hence f is surjective. �

The complex dimension bk(M) := dimC(Hk
DR(M,C)) is called the kth Betti number of M and is

a topological invariant in view of De Rham’s theorem.

Proposition 9.4. (Poincaré duality). The spaces Hk(M,C) and Hn−k(M,C) are isomorphic. In
particular bk(M) = bn−k(M) for every compact n–dimensional manifold M .

Proof. The isomorphism is simply given by the Hodge *–operator which sends harmonic
k–forms to harmonic n− k–forms. �

We close this section with the following interesting application of Theorem 9.2.

Proposition 9.5. Every Killing vector field on a compact Kähler manifold is real holomorphic.

Proof. Let X be a Killing vector field, that is LXg = 0. We compute the Lie derivative of
the fundamental 2–form with respect to X using Cartan’s formula:

LXΩ = d(X y Ω) +X y dΩ = d(X y Ω),

so LXΩ is exact. On the other hand, since the flow of X is isometric, it commutes with the
Hodge *–operator, thus LX ◦ ∗ = ∗ ◦ LX . As we clearly have d ◦ LX = LX ◦ d, too, we see that
LX ◦ δ = δ ◦ LX , whence

d(LXΩ) = LX(dΩ) = 0

and

δ(LXΩ) = LX(δΩ) = 0,

because Ω is coclosed, being parallel. Thus LXΩ is harmonic and exact, so it has to vanish by the
easy part of Theorem 9.2. This shows that the flow of X preserves the metric and the fundamental
2–form, it thus preserves the complex structure J , hence X is real holomorphic. �
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9.2. Dolbeault theory. Let (M2m, h, J) be a compact Hermitian manifold. We consider the
Dolbeault operator ∂̄ acting on the spaces of (p, q)–forms Ωp,qM := C∞(Λp,qM) ⊂ Ωp+qM . Let
Zp,qM denote the space of ∂̄–closed (p, q)–forms. Since ∂̄2 = 0, we see that ∂̄Ωp,q−1M ⊂ Zp,qM .
We define the Dolbeault cohomology groups

Hp,qM :=
Zp,qM

∂̄Ωp,q−1M
.

In contrast to De Rham cohomology, the Dolbeault cohomology is no longer a topological invariant
of the manifold, since it strongly depends on the complex structure J .

We define the space Hp,qM of ∂̄–harmonic (p, q)–forms on M by

Hp,qM := {ω ∈ Ωp,qM | ∆∂̄ω = 0}.
As before we have

Lemma 9.6. A form ω ∈ Ωp,qM is ∂̄–harmonic if and only if ∂̄ω = 0 and ∂̄∗ω = 0.

The proof is very similar to that of Lemma 9.1 and is left as an exercise.

Theorem 9.7. (Dolbeault decomposition theorem). The space of (p, q)–forms decomposes as a
direct sum

Ωp,qM = Hp,qM ⊕ ∂̄∗Ωp,q+1M ⊕ ∂̄Ωp,q−1M.

Proof. Lemma 9.6 shows that the three spaces above are orthogonal with respect to the
global Hermitian product

(·, ·) :=

∫

M

H(·, ·)dv

on Ωp,qM , and a proof for the hard part, which consists in showing that the direct sum of the
three summands is the whole space Ωp,qM , can be found in [2], pp. 84–100. �

This shows that every (p, q)–form ω on M can be uniquely written as

ω = ∂̄ω′ + ∂̄∗ω′′ + ωH ,

where ω′ ∈ Ωp,q−1M , ω′′ ∈ Ωp,q+1M and ωH ∈ Hp,qM . This is called the Dolbeault decomposition
of ω. As before,the second summand in the Dolbeault decomposition of ω vanishes if and only if
∂̄ω = 0. Specializing for q = 0 yields

Proposition 9.8. A (p, 0)–form on a compact Hermitian manifold is holomorphic if and only if
it is ∂̄–harmonic.

Corollary 9.9. (Dolbeault isomorphism). The map f : Hp,qM → Hp,qM given by ω 7→ [ω] is
an isomorphism.

The proof is completely similar to the proof of the Hodge isomorphism.

We denote by hp,q the complex dimension of Hp,qM . These are the Hodge numbers associated to
the complex structure J of M .
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Proposition 9.10. (Serre duality). The spaces Hp,qM and Hm−p,m−qM are isomorphic. In
particular hp,q = hm−p,m−q.

Proof. Consider the composition of the Hodge *–operator with the complex conjugation

∗̄ : Ωp,qM → Ωm−p,m−qM, ∗̄(ω) := ∗ω̄.
We have

∗̄∆∂̄(ω) = ∗(∂̄∂̄∗ + ∂̄∗∂̄)ω = ∗(∂∂∗ + ∂∗∂)ω̄

= − ∗ (∂ ∗ ∂̄ ∗ + ∗ ∂̄ ∗ ∂)ω̄ = ∂̄∗∂̄(∗̄ω) − ∗2∂̄ ∗ ∂ω̄
= ∂̄∗∂̄(∗̄ω) − ∂̄ ∗ ∂ ∗2 ω̄ = ∂̄∗∂̄(∗̄ω) + ∂̄∂̄∗(∗̄ω) = ∆∂̄(∗̄ω).

This shows that ∗̄ is a (C–anti–linear) isomorphism from Hp,qM to Hm−p,m−qM . �

If M is Kähler much more can be said about Hodge and Betti numbers, due to Theorem 8.6.
Firstly, the fact that ∆ = 2∆∂̄ shows that Hp,qM ⊂ Hp+qM . Secondly, since ∆∂̄ leaves the spaces
Ωp,qM invariant, we deduce that ∆ has the same property, thus proving that the components of
a harmonic form in its type decomposition are all harmonic. This shows that

HkM = ⊕p+q=kHp,qM.

Moreover, as ∆∂̄ is a real operator, it commutes with the complex conjugation (in the general case

we only have that ∆∂̄α = ∆∂ᾱ) so the complex conjugation defines an isomorphism between the
spaces Hp,qM and Hq,pM . Consider now the fundamental form Ω ∈ Ω1,1M . Since Ωm is a non–
zero multiple of the volume form, we deduce that all exterior powers Ωp ∈ Ωp,pM are non–zero.
Moreover, they are all harmonic since Ω is parallel so Ωp is parallel, too, and a parallel form is
automatically harmonic. We thus have proved the

Proposition 9.11. In addition to Poincaré and Serre dualities, the following relations hold be-
tween Betti and Hodge numbers on compact Kähler manifolds:

(36) bk =
∑

p+q=k

hp,q, hp,q = hq,p, hp,p ≥ 1 ∀ 0 ≤ p ≤ m.

In particular (36) shows that all Betti numbers of odd order are even and all Betti numbers of
even order are non–zero.

9.3. Exercises.

(1) Prove that the complex manifold S1 × S2k+1 carries no Kähler metric for k ≥ 1.

(2) Let V be an Euclidean vector space, identified with V ∗ via the metric. Prove that the
Lie algebra extension of an endomorphism A of V to ΛkV is given by the formula

A(ω) := A(ei) ∧ ei yω,
for every orthonormal basis {ei} of V .
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(3) The global i∂∂̄–Lemma. Let ϕ be an exact real (1, 1)–form on a compact Kähler manifold
M . Prove that ϕ is i∂∂̄–exact, in the sense that there exists a real function u such that
ϕ = i∂∂̄u.

(4) Show that there exists no global Kähler potential on a compact Kähler manifold.

(5) Let (M,h) be a compact Kähler manifold whose second Betti number is equal to 1. Show
that if the scalar curvature of M is constant, then the metric h is Einstein.





Part 4

Prescribing the Ricci tensor on Kähler manifolds



10. Chern classes

10.1. Chern-Weil theory. The comprehensive theory of Chern classes can be found in [8],
Ch.12. We will outline here the definition and properties of the first Chern class, which is the
only one needed in the sequel. The following proposition can be taken as a definition

Proposition 10.1. To every complex vector bundle E over a smooth manifold M one can asso-
ciate a cohomology class c1(E) ∈ H2(M,Z) called the first Chern class of E satisfying the following
axioms:

• (naturality) For every smooth map f : M → N and complex vector bundle E over N ,
one has f ∗(c1(E)) = c1(f

∗E), where the left term denotes the pull–back in cohomology
and f ∗E is the pull–back bundle defined by f ∗Ex = Ef(x) ∀ x ∈M .

• (Whitney sum formula) For every bundles E,F over M one has c1(E ⊕ F ) = c1(E) +
c1(F ), where E ⊕ F is the Whitney sum defined as the pull–back of the bundle E × F →
M ×M by the diagonal inclusion of M in M ×M .

• (normalization) The first Chern class of the tautological bundle of CP1 is equal to −1 in
H2(CP1,Z) ' Z, which means that the integral over CP1 of any representative of this
class equals −1.

Let E → M be a complex vector bundle. We will now explain the Chern–Weil theory allows
one to express the images in real cohomology of the Chern classes of E using the curvature of an
arbitrary connection ∇ on E. Recall the formula (9) for the curvature of ∇ in terms of ∇:

(37) R∇(σi) =: R∇
ijσj = (dωij − ωik ∧ ωkj)σj ,

where {σ1, . . . , σk} are local sections of E which form a basis of each fiber over some open set U
and the connection forms ωij ∈ Λ1(U) (relative to the choice of this basis) are defined by

∇σi = ωij ⊗ σj .

Notice that although the coefficients R∇
ij of R∇ depend on the local basis of sections (σi), its

trace is a well–defined (complex–valued) 2–form on M independent of the chosen basis, and can
be computed as Tr(R∇) =

∑

R∇
ii in the local basis (σi). To compute this explicitly we use the

following summation trick:
∑

i,k

ωik ∧ ωki =
∑

k,i

ωki ∧ ωik = −
∑

i,k

ωik ∧ ωki,

where the first equality is given by interchanging the summation indices and the second by the
fact that the wedge product is skew–symmetric on 1–forms. From (37) we thus get

(38) Tr(R∇) = d(
∑

ωii),

where of course the trace of the connection form ω = (ωij) does depend on the local basis (σi).
This shows that Tr(R∇) is closed, being locally exact.
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If ∇ and ∇̃ are connections on E, the Leibniz rule shows that their difference A := ∇̃ − ∇ is
a zero–order operator, more precisely a smooth section in Λ1(M) ⊗ End(E). Thus Tr(A) is a
well–defined 1–form on M and (38) readily implies

(39) Tr(R∇̃) = Tr(R∇) + dTr(A),

We thus have proved the following

Lemma 10.2. The 2–form Tr(R∇) is closed and its cohomology class [Tr(R∇)] ∈ H2(M,C) does
not depend on ∇.

It is actually easy to see that [Tr(R∇)] is a purely imaginary class, in the sense that it has a
representative which is a purely imaginary 2–form. Indeed, let us choose an arbitrary Hermitian
structure h on E and take ∇ such that h is ∇–parallel. If we start with a local basis {σi} adapted
to h, then we have

0 = ∇(δij) = ∇(h(σi, σj)) = h(∇σi, σj) + h(σi,∇σj)
= ωij + ωji.

From (37) we get

R∇
ij = dωij − ωik ∧ ωkj = −ωji − ωki ∧ ωjk

= −ωji + ωjk ∧ ωki = −R∇
ji,

showing that the trace of R∇ is a purely imaginary 2–form.

Theorem 10.3. Let ∇ be a connection on a complex bundle E over M . The real cohomology
class

c1(∇) :=

[

i

2π
Tr(R∇)

]

is equal to the image of c1(E) in H2(M,R).

Proof. We have to check that c1(∇) satisfies the three conditions in Proposition 10.1. The
naturality is straightforward. Recall that if f : M → N is smooth and π : E → N is a rank k
vector bundle, then

f ∗(E) := {(x, v) | x ∈M, v ∈ E, f(x) = π(v)}.
If {σi} is a local basis of sections of E, then

f ∗σi : M → f ∗(E), x 7→ (x, σi(f(x)))

is a basis of local sections of f ∗E. The formula

f ∗∇(f ∗σ) := f ∗(∇σ)

defines a connection on f ∗E (one has to check the classical formulas for basis changes in order to
prove that f ∗∇ is well–defined), and with respect to this basis we obviously have

Rf∗∇
ij = f ∗(R∇

ij ),

whence c1(f
∗∇) = f ∗(c1(∇)).
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The Whitney sum formula is also easy to check. If E and F are complex bundles over M with
connections ∇ and ∇̃ then one can define a connection ∇⊕ ∇̃ on E ⊕ F by

(∇⊕ ∇̃)(σ ⊕ σ̃)(X) := ∇σ(X) ⊕ ∇̃σ̃(X).

If {σi}, {σ̃j} are local basis of sections of E and F then {σi⊕ 0, 0⊕ σ̃j} is a local basis for E ⊕F

and the curvature of ∇ ⊕ ∇̃ in this basis is a block matrix having R∇ and R∇̃ on the principal

diagonal. Its trace is thus the sum of the traces of R∇ and R∇̃.

We finally check the normalization property. Let L → CP1 be the tautological bundle. For any
section σ : CP1 → L of L we denote by σ0 : U0 → C and σ1 : U1 → C the expressions of σ in the
standard local trivializations of L, given by ψi : π−1Ui → Ui × C, ψi(w) = (π(w), wi).

The Hermitian product on C2 induces a Hermitian structure h on L. Let ∇ be the Chern connec-
tion on L associated to h. We choose a local holomorphic section σ and denote its square norm
by u. If ω is the connection form of ∇ with respect to the section σ, ∇σ = ω ⊗ σ, then we can
write:

X(u) = X(h(σ, σ)) = h(∇Xσ, σ) + h(σ,∇Xσ) = ω(X)u+ ω̄(X)u, ∀X ∈ TCP1.

This just means ω + ω̄ = d log u. On the other hand, since σ is holomorphic and ∇0,1 = ∂̄, we see
that ω is a (1, 0)–form. Thus ω = ∂ log u. From (38) we get

(40) R∇ = dω = d∂ log u = ∂̄∂ log u.

We thus have to check the following condition:

i

2π

∫

CP1

∂̄∂ log u = −1.

It is clearly enough to compute this integral over U0 := CP1−{[0 : 1]}. We denote by z := φ0 = z1
z0

the holomorphic coordinate on U0. We now take a particular local holomorphic section σ such
that σ0(z) = 1. From the definition of σ0 (as the image of σ through the trivialization ψ0 of L),
we deduce that σ(z) is the unique vector lying on the complex line generated by (z0, z1) in C2,
whose first coordinate is 1, i.e. σ(z) = (1, z). This shows that u = |(1, z)|2 = 1 + |z|2. In polar
coordinates z = r cos θ + ir sin θ one can readily compute

∂̄∂f =
i

2

(

r
∂2f

∂r2
+

1

r

∂2f

∂θ2
+
∂f

∂r

)

dr ∧ dθ.

Applying this formula to f := log(1 + r2) we finally get

i

2π

∫

CP1

∂̄∂ log u =
i

2π

∫

[0,∞)×[0,2π]

i

2

(

r
∂2f

∂r2
+
∂f

∂r

)

dr ∧ dθ

= −1

2

∫ ∞

0

d

(

r
∂f

∂r

)

=
1

2
lim
r→∞

r
∂f

∂r

= − lim
r→∞

r

2

2r

1 + r2
= −1.

�
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If M is an almost complex manifold, we define the first Chern class of M – denoted by c1(M) –
to be the first Chern class of the tangent bundle TM , viewed as complex vector bundle:

c1(M) := c1(TM).

In the next sections we will see that a representative of the first Chern class of a Kähler manifold
is 1

2π
ρ, where ρ denotes the Ricci form.

10.2. Properties of the first Chern class. Let M be a complex manifold and let E, F be
two complex vector bundles over M .

Proposition 10.4. (i) c1(E) = c1(Λ
kE), where k denotes the rank of E.

(ii) c1(E ⊗ F ) = rk(F )c1(E) + rk(E)c1(F ).

(iii) c1(E
∗) = −c1(E), where E∗ denotes the dual of E.

Proof. (i) Consider any connection ∇ in E, inducing a connection ∇̃ on ΛkE. If σ1, . . . , σk
denotes a local basis of sections of E, then σ := σ1 ∧ . . . ∧ σk is a local non–vanishing section of
ΛkE. Let ω := (ωij) and ω̃ be the connection forms of ∇ and ∇̃ relative to these local basis:

∇σi = ωij ⊗ σj and ∇̃σ = ω̃ ⊗ σ.

We then compute

∇̃σ = ∇̃(σ1 ∧ . . . ∧ σk)
=

∑

i

σ1 ∧ . . . ∧ σi−1 ∧ (
∑

j

ωij ⊗ σj) ∧ σi+1 ∧ . . . ∧ σk

=
∑

i=j

ωij ⊗ σ,

which proves that ω̃ = Tr(ω). From (37) we then get

Tr(R∇̃) = R∇̃ = dω̃ − ω̃ ∧ ω̃ = dω̃

and

Tr(R∇) =
∑

i=j

(dωij − ωik ∧ ωkj) =
∑

i=j

dωij = dTr(ω) = dω̃,

thus proving that c1(E) = c1(Λ
kE).

(ii) Let us denote by e and f the ranks of E and F . Because of the canonical isomorphism
Λef(E ⊗ F ) ∼= (ΛeE)⊗f ⊗ (ΛfF )⊗e, it is enough to check this relation for line bundles E and F .
Any connections ∇E and ∇F on E and F respectively induce a connection ∇ on E ⊗ F defined
by

∇(σE ⊗ σF ) := (∇EσE) ⊗ σF + σE ⊗ (∇FσF ).

The corresponding connection forms are then related by

ω = ωE + ωF
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so clearly

R∇ = dω = d(ωE + ωF ) = R∇E

+R∇F

.

(iii) Again, since (ΛkE)∗ is isomorphic to Λk(E∗), we can suppose that E is a line bundle. But in
this case the canonical isomorphism E ⊗E∗ ' C (where C denotes the trivial line bundle) shows
that 0 = c1(C) = c1(E ⊗ E∗) = c1(E) + c1(E

∗). �

10.3. Exercises.

(1) Consider the change of variables z = r cos θ + ir sin θ. Show that for every function
f : U ⊂ C → C the following formula holds:

∂̄∂f =
i

2

(

r
∂2f

∂r2
+

1

r

∂2f

∂θ2
+
∂f

∂r

)

dr ∧ dθ.

(2) Show that the first Chern class of a trivial bundle vanishes.

(3) Show that if E is a complex line bundle, there is a canonical isomorphism E ⊗ E∗ ' C.

(4) Let ∇ be any connection on a complex bundle E and let ∇∗ be the induced connection
on the dual E∗ of E defined by

(∇∗
Xσ

∗)(σ) := X(σ∗(σ)) − σ∗(∇Xσ).

Show that
R∇∗

(X, Y ) = (R∇(X, Y ))∗,

where A∗ ∈ End(E∗) denotes the adjoint of A, defined by A∗(σ∗)(σ) := −σ∗(A(σ)).
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11. The Ricci form of Kähler manifolds

11.1. Kähler metrics as geometric U(m)–structures. We start by a short review on G–
structures which will help us to characterize Kähler and Ricci–flat Kähler metrics. Let M be an
n–dimensional manifold and let G be any closed subgroup of Gln(R).

Definition 11.1. A topological G–structure on M is a reduction of the principal frame bundle
Gl(M) to G. A geometrical G–structure is given by a topological G–structure G(M) together with
a torsion–free connection on G(M).

Let us give some examples. An orientation on M is a Gl+n (R)–structure. An almost complex
structure is a Glm(C)–structure, for n = 2m. A Riemannian metric is a On–structure. In general,
if the group G can be defined as the group preserving an element of some Gln representation
ρ : Gln(R) → End(V ), then a G–structure is simply a section σ in the associated vector bundle
Gl(M) ×ρ V with the same algebraic properties as v0 in the sense that for every x ∈ M there
exists u ∈ Gl(M) with σ(x) = [u, v0]. To see this, let G be given by

G := {g ∈ Gln(R) | ρ(g)(v0) = v0}.
If G(M) is a G–structure, we define a section in Gl(M) ×ρ V by σ(x) := [u, v0] where u is an
arbitrary element of the fiber G(M)x. This definition clearly does not depend on u. Conversely,
the set {u ∈ Gl(M) | σ = [u, v0]} defines a reduction of the structure group of Gl(M) to G. In
this setting, the G–structure is geometrical if and only if there exists a torsion–free connection on
M with respect to which σ is parallel.

Proposition 11.2. The Um–structure defined by an almost complex structure J together with a
Hermitian metric h on a manifold M is geometrical if and only if the metric is Kähler.

Proof. The point here is that if G is a closed subgroup of On then there exists at most one
torsion–free connection on any G–structure (by the uniqueness of the Levi–Civita connection). As
Um = O2m ∩Glm(C), the Um structure is geometrical if and only if the tensor defining it (namely
J) is parallel with respect to the Levi–Civita connection, which by Theorem 5.5 just means that
h is Kähler. �

11.2. The Ricci form as curvature form on the canonical bundle. We now turn back
to our main objects of interest. Let (M2m, h, J) be a Kähler manifold with Ricci form ρ and
canonical bundle K := Λm,0M . As before, we will interpret the tangent bundle TM as a complex
(actually holomorphic) Hermitian vector bundle over M , where the multiplication by i corresponds
to the tensor J and the Hermitian structure is h − iΩ. From Proposition 5.8 we know that the
Levi–Civita connection ∇ on M coincides with the Chern connection on TM .

Lemma 11.3. The curvature R∇ ∈ C∞(Λ2M ⊗ End(TM)) of the Chern connection and the cur-
vature tensor R of the Levi–Civita connection are related by

R∇(X, Y )ξ = R(X, Y )ξ,

where X, Y are vector fields on M and ξ is a section of TM .
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Proof. The proof is tautological, provided we make explicit the definition of R∇. Let {ei}
denote a local basis of vector fields on M and let {e∗i } denote the dual local basis of Λ1M . Then

R∇ξ = ∇2ξ = ∇(e∗i ⊗∇ei
ξ) = de∗i ⊗∇ei

ξ − e∗i ∧ e∗j ⊗∇ej
∇ei

ξ.

Denoting Xi := e∗i (X) and Yi := e∗i (Y ) we then obtain

R∇(X, Y )ξ = de∗i (X, Y )∇ei
ξ − (e∗i ∧ e∗j )(X, Y )∇ej

∇ei
ξ

= (X(Yi) − Y (Xi) − e∗i ([X, Y ]))∇ei
ξ − (XiYj −XjYi)∇ej

∇ei
ξ

= −∇[X,Y ]ξ + (X(Yi) − Y (Xi))∇ei
ξ −Xi∇Y∇ei

ξ + Yi∇X∇ei
ξ

= −∇[X,Y ]ξ −∇Y∇Xξ + ∇X∇Y ξ = R(X, Y )ξ.

�

We are now ready to prove the following characterization of the Ricci form ρ on Kähler manifolds:

Proposition 11.4. The curvature of the Chern connection of the canonical line bundle K is equal
to iρ acting by scalar multiplication on K.

Proof. We fix some notations: let r and r∗ be the curvatures of the Chern connections of
K := Λm,0M andK∗ := Λ0,mM . They are related by r = −r∗ (exercise). Moreover, the connection
induced on Λm(TM) with the induced Hermitian structure by the Chern connection on TM is
clearly the Chern connection of Λm(TM). It is easy to check that Λm(TM) is isomorphic to K∗,
so from the proof of Proposition 10.4 and from Lemma 11.3 we get

r∗(X, Y ) = Tr(R∇(X, Y )) = Tr(R(X, Y )).

Since we will now use both complex and real traces, we will make this explicit by a superscript.
By Proposition 6.2 we then obtain

iρ(X, Y ) = iRic(JX, Y ) =
i

2
TrR(R(X, Y ) ◦ J)

=
i

2
(2iTrC(R(X, Y )) = −TrC(R(X, Y ))

= −r∗(X, Y ) = r(X, Y ),

where we used the fact that
TrR(AR ◦ J) = 2iTrC(A)

for every skew–hermitian endomorphism A. �

11.3. Ricci–flat Kähler manifolds. Let (M2m, h, J) be a Kähler manifold with canonical
bundle K (endowed with the Hermitian structure induced from the Kähler metric on TM) and
Ricci form ρ. We suppose, for simplicity, that M is simply connected. Then the previous results
can be summarized as follows:

Theorem 11.5. The five statements below are equivalent:

(1) M is Ricci–flat.
(2) The Chern connection of the canonical bundle K is flat.
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(3) There exists a parallel complex volume form, that is, a parallel section of Λm,0M .
(4) M has a geometrical SUm–structure.
(5) The Riemannian holonomy of M is a subgroup of SUm.

In the non–simply connected case, the last 3 statements are only local.

Proof. (1) ⇐⇒ (2) is a direct consequence of Proposition 11.4.

(2) ⇐⇒ (3) follows from the general principle that a connection on a line bundle is flat if and only
if there exists a parallel section (globally defined if π1(M) = 0, and locally defined otherwise).

(3) ⇐⇒ (4) The special unitary group SUm can be defined as the stabilizer of a vector in the
canonical representation of Um onto Λm,0C. Thus, there exists a parallel section in Λm,0M if and
only if the geometrical Um–structure defined by the Kähler metric can be further reduced to a
geometrical SUm–structure.

(4) =⇒ (5) If G(M) is a G–structure, the holonomy of a connection in G(M) is contained in G.
Now, if M has a geometrical SUm–structure, the torsion–free connection defining it is just the
Levi–Civita connection, therefore the Riemannian holonomy group is a subgroup of SUm.

(5) =⇒ (4) The reduction theorem ([8], Ch. 2, Thm. 7.1) shows that for every fixed frame u, the
holonomy bundle (that is, the set of frames obtained from u by parallel transport) is a Holu(M)–
principal bundle, and the Levi–Civita connection can be restricted to it. Thus, if the Riemannian
holonomy Hol(M) of M is a subgroup of SUm, we get a geometrical SUm–structure simply by
extending the holonomy bundle to SUm.

�

Notice that by Theorem 10.3 and Proposition 11.4, for a given Kähler manifold (M,h, J), the
vanishing of the first Chern class of (M,J) is a necessary condition for the existence of a Ricci–
flat Kähler metric on M compatible with J . The converse statement is also true if M is compact,
and will be treated in the next section.

11.4. Exercises.

(1) Let G be a closed subgroup of Gln(R) containing SOn. Show that every G–structure is
geometrical.

(2) Let Mn be a connected differentiable manifold. Prove that M is orientable if and only if
its frame bundle Gln(M) is not connected.

(3) Show that a Um–structure on M defines an almost complex structure together with a
Hermitian metric.

(4) Show that a geometrical Glm(C)–structure is the same as an integrable almost complex
structure. Hint: Start with a torsion free connection ∇ and consider the connection ∇̃
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defined by ∇̃XY := ∇XY −AXY , where AXY = 1
4
(2J(∇XJ)Y +(∇JY J)X+J(∇Y J)X).

Use the proof of Lemma 5.4 to check that A is symmetric if and only if J is integrable.

(5) Let A be a skew–hermitian endomorphism of Cm and let AR be the corresponding real
endomorphism of R2m. Show that

TrR(AR ◦ J) = 2iTrC(A).

(6) The special unitary group SUm is usually defined as the subgroup of Um ⊂ Glm(C)
consisting of complex unitary matrices of determinant 1. Prove that SUm is equal to the
stabilizer in Um of the form dz1 ∧ . . . ∧ dzm.

(7) Let (L, h) be a complex line bundle with Hermitian structure over some smooth manifold
M . Prove that the space of Hermitian connections is an affine space over the real vector
space C∞(Λ1M). Equivalently, there is a free transitive group action of C∞(Λ1M) on the
space of Hermitian connections on L.

(8) If L is a complex line bundle overM , show that every real closed 2–form in the cohomology
class c1(L) ∈ H2(M,R) is i

2π
times the curvature of some connection on L.
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12. The Calabi conjecture

12.1. An overview. We have seen that the first Chern class of any compact Kähler manifold
is represented by 1

2π
ρ. Conversely, we have the following famous result due to Calabi and Yau

Theorem 12.1. Let Mm be a compact Kähler manifold with fundamental form ϕ and Ricci form
ρ. Then for every closed real (1, 1)–form ρ1 in the cohomology class 2πc1(M), there exists a unique
Kähler metric with fundamental form ϕ1 in the same cohomology class as ϕ, whose Ricci form is
exactly ρ1.

Before giving an outline of the proof, we state some corollaries.

Corollary 12.2. If the first Chern class of a compact Kähler manifold vanishes, then M carries
a Ricci–flat Kähler metric.

Corollary 12.3. If the first Chern class of a compact Kähler manifold is positive, then M is
simply connected.

Proof. By the Calabi theorem M has a Kähler metric with positive Ricci curvature, so the
result follows from Theorem 15.6 below. �

The first step in the proof of Theorem 12.1 is to reformulate the problem in order to reduce it
to a so–called Monge–Ampère equation. We denote by H the set of Kähler metrics in the same
cohomology class as ϕ. The global i∂∂̄–Lemma shows that

(41) H =

{

u ∈ C∞(M) | ϕ+ i∂∂̄u > 0,

∫

M

uϕm = 0

}

(this last condition is needed since u is only defined up to a constant).

Now, if g and g1 are Kähler metrics with Kähler forms ϕ and ϕ1 in the same cohomology class,
we denote by dv := 1

m!
ϕm and dv1 := 1

m!
ϕm1 their volume forms and consider the real function f

defined by ef dv = dv1. Since [ϕ] = [ϕ1] we also have [ϕm] = [ϕm1 ], that is

(42)

∫

M

ef dv =

∫

M

dv.

Let ρ and ρ1 denote the corresponding Ricci forms. Since iρ is the curvature of the canonical
bundle KM , for every local holomorphic section ω of KM we have

(43) iρ = ∂̄∂ log g(ω, ω̄) and iρ1 = ∂̄∂ log g1(ω, ω̄).

It is easy to check that the Hodge operator acts on Λm,0 simply by scalar multiplication with

ε := im(−1)
m(m+1)

2 . We thus have

(44) εω ∧ ω̄ = ω ∧ ∗ω̄ = g(ω, ω̄)dv

and similarly

(45) εω ∧ ω̄ = g1(ω, ω̄)dv1 = efg1(ω, ω̄)dv.
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From (43)–(45) we get

(46) iρ1 − iρ = ∂∂̄f.

This shows that the Ricci form of the modified Kähler metric ϕ1 = ϕ+ i∂∂̄u can be computed by
the formula

(47) ρ1 = ρ− i∂∂̄f, where f = log
(ϕ+ i∂∂̄u)m

ϕm
.

Now given closed real (1, 1)–form ρ1 in the cohomology class 2πc1(M), the global i∂∂̄–Lemma
shows that there exists some real function f such that ρ1 = ρ− i∂∂̄f . Moreover, f is unique if we
impose the normalization condition (42). We denote by H′ the space of smooth functions on M
satisfying this condition. The Calabi conjecture is then equivalent to the following

Theorem 12.4. The mapping Cal : H → H′ defined by

Cal(u) = log
(ϕ+ i∂∂̄u)m

ϕm

is a diffeomorphism.

We first show that Cal is injective. It is clearly enough to show that Cal(u) = 0 and u ∈ H
implies u = 0. If Cal(u) = 0 we have ϕm1 = ϕm, and since 2–forms commute we obtain

0 = ϕm1 − ϕm = i∂∂̄u ∧
m−1
∑

k=0

ϕk1 ∧ ϕm−k−1.

Using the formula 2i∂∂̄ = ddc and the fact that ϕ and ϕ1 are closed forms we get after multipli-
cation by u

0 = 2iu∂∂̄u ∧
m−1
∑

k=0

ϕk1 ∧ ϕm−k−1 = uddcu ∧
m−1
∑

k=0

ϕk1 ∧ ϕm−k−1

= d

(

udcu ∧
m−1
∑

k=0

ϕk1 ∧ ϕm−k−1

)

− du ∧ dcu ∧
m−1
∑

k=0

ϕk1 ∧ ϕm−k−1.

Integrating over M and using Stokes’ theorem yields

(48) 0 =

m−1
∑

k=0

∫

M

du ∧ Jdu ∧ ϕk1 ∧ ϕm−k−1.

Now, since ϕ1 defines a Kähler metric, there exists a local basis {e1, Je1, . . . , em, Jem} orthonormal
with respect to g such that

ϕ =
m

∑

j=1

ej ∧ Jej and ϕ1 =
m

∑

j=1

ajej ∧ Jej ,
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where aj are strictly positive local functions. This shows easily that for every k

ϕk1 ∧ ϕm−k−1 = ∗(
m

∑

j=1

bkj ej ∧ Jej), bkj > 0.

In fact one can compute explicitly

bkj = k!(m− k − 1)!
∑

j1 6=j,...,jk 6=j
j1<...<jk

aj1 . . . ajk .

This shows that the integrand in (48) is strictly positive unless du = 0. Thus u is a constant, so
u = 0 because the integral of u dv over M vanishes. Therefore Cal is injective.

To prove that it is a local diffeomorphism, we compute its differential at some u ∈ H. By
changing the reference metric if necessary, we may suppose without loss of generality that u = 0.
For v ∈ T0H we compute

Cal∗(v) =
d

dt
|t=0(Cal(tv)) =

d

dt
|t=0

(

(ϕ+ i∂∂̄tv)m

ϕm

)

= m
i∂∂̄v ∧ ϕm−1

ϕm
= Λ(i∂∂̄v) = −∂̄∗∂̄v = −∆∂̄v.

From the general elliptic theory we know that the Laplace operator is a bijection of the space
of functions with zero integral over M . Thus Cal∗ is bijective, so the Inverse Function Theorem
shows that Cal is a local diffeomorphism.

The surjectivity of Cal, which is the hard part of the theorem, follows from a priori estimates,
which show that Cal is proper. We refer the reader to [6] for details.

12.2. Exercises.

(1) Show that ∗ω = im(m+2)ω for all ω ∈ Λm,0M on a Hermitian manifold M of complex
dimension m.

(2) Prove that the mapping

u 7→ ϕ+ i∂∂̄u

is indeed a bijection from the set defined in (41) to the set of Kähler metrics in the
cohomology class [ϕ].

(3) Prove that the total volume of a Kähler metric on a compact manifold only depends on
the cohomology class of its fundamental form.

(4) Show that ∗(ϕm−1) = (m − 1)!ϕ on every Hermitian manifold M of complex dimension
m. Using this, prove that if (M,ϕ) is Kähler, then ρ∧ϕm−1 = (m−1)!S, where ρ denotes
the Ricci form and S is the scalar curvature of the Kähler metric defined by ϕ.
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(5) Let (Mm, J) be a compact complex manifold. Show that the integral over M of the scalar
curvature of a Kähler metric only depends on the cohomology class of its fundamental
form ϕ. More precisely one has

∫

M

Sdv = 2πmc1(M) ∪ [ϕ]m−1.
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13. Kähler–Einstein metrics

13.1. The Aubin–Yau theorem. We turn our attention to compact Kähler manifolds
(M, g) satisfying the Einstein condition

Ric = λg, λ ∈ R.

We will exclude the case λ = 0 which was treated above. If we rescale the metric by a positive
constant, the curvature tensor does not change, so neither does the Ricci tensor, which was defined
as a trace. This shows that we may suppose that λ = ε = ±1. The Kähler–Einstein condition
reads

ρ = εϕ, ε = ±1.

As the first Chern class of M is represented by ρ

2π
, we see that a necessary condition for the

existence of a Kähler–Einstein manifold on a given compact Kähler manifold is that its first
Chern class is definite (positive or negative). In the negative case, this condition turns out to be
also sufficient:

Theorem 13.1. (Aubin, Yau) A compact Kähler manifold with negative first Chern class admits
a unique Kähler–Einstein metric with Einstein constant ε = −1.

We will treat simultaneously the two cases ε = ±1, in order to emphasize the difficulties that
show up in the case ε = 1.

As before, we first reformulate the problem. Let (M2m, g, J, ϕ, ρ) be a compact Kähler manifold
with definite first Chern class c1(M). By definition, there exists a positive closed (1, 1)–form
representing the cohomology class 2πεc1(M). We can suppose without loss of generality that this
form is equal to ϕ (otherwise we just change the initial Kähler metric). Then [ϕ] = 2πεc1(M) =
[ερ], so the global i∂∂̄–Lemma shows that there exists some function f with

(49) ρ = εϕ+ i∂∂̄f.

We are looking for a new Kähler metric g1 with fundamental form ϕ1 and Ricci form ρ1 such that
ρ1 = εϕ1. Suppose we have such a metric. From our choice for ϕ we have

[2πϕ] = εc1(M) = [2περ1] = [2πϕ1].

From this equation and the global i∂∂̄–Lemma it is clear that there exists a unique function u ∈ H
such that ϕ1 = ϕ+ i∂∂̄u. Now the previously obtained formula (47) for the Ricci form of the new
metric reads

(50) ρ1 = ρ− i∂∂̄ log
(ϕ+ i∂∂̄u)m

ϕm
.

Using (49) and (50), the Kähler–Einstein condition for g1 becomes

(51) εϕ+ i∂∂̄f − i∂∂̄ log
(ϕ+ i∂∂̄u)m

ϕm
= εϕ1,



70

which is equivalent to

(52) log
(ϕ+ i∂∂̄u)m

ϕm
+ εu = f + const.

Conversely, if u ∈ C∞
+ (M) satisfies this equation, then the Kähler metric ϕ1 := ϕ+i∂∂̄u is Kähler–

Einstein (we denote by C∞
+ (M) the space of all smooth functions u on M such that ϕ+ i∂∂̄u > 0).

The Aubin–Yau theorem is therefore equivalent to the fact that the mapping

Calε : C∞
+ (M) → C∞(M) Calε(u) := Cal(u) + εu

is a diffeomorphism.

The injectivity of Cal− can be proved as follows. Suppose that Cal−(u1) = Cal−(u2) and denote
by ϕ1 := ϕ+ i∂∂̄u1 and ϕ2 := ϕ+ i∂∂̄u2. Then

log
ϕm1
ϕm

− u1 = log
ϕm2
ϕm

− u2,

hence, denoting the difference u2 − u1 by u:

(53) log
(ϕ1 + i∂∂̄u)m

ϕm1
= u.

At a point where u attains its maximum, the (1, 1)–form i∂∂̄u is negative semi–definite, since we
can write (for any vector X parallel at that point)

i∂∂̄u(X, JX) =
1

2
(ddcu)(X, JX) =

1

2
(X(dcu(JX)) − JX(dcu(X)))

=
1

2
(Hu(X,X) +Hu(JX, JX)) ≤ 0,

since the Hessian Hu of u is of course negative semi–definite at a point where u reaches its
maximum. Taking into account (53) we see that u ≤ 0 at each of its maximum points, so u ≤ 0
onM . Similarly, u ≥ 0 at each minimum points, so finally u = 0 onM , thus proving the injectivity
of Cal−.

We have already computed the differential of Cal at u = 0 applied to some v ∈ T0C∞
+ (M):

Cal∗(v) = −∆∂̄v.

Consequently

Cal−∗ (v) = −v − ∆∂̄v

is a bijection of C∞(M) since the self–adjoint elliptic operator v 7→ 1
2
∆v + v has obviously no

kernel and its index is zero.

As before, the surjectivity of Cal− is harder to prove and requires non–trivial analysis (see [6]).
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13.2. Holomorphic vector fields on compact Kähler–Einstein manifolds. Let M2m

be a compact Kähler manifold. We start by showing the following

Lemma 13.2. Let ξ be a holomorphic (real) vector field with dual 1–form also denoted by ξ. Then
ξ can be decomposed in a unique manner as

ξ = df + dch+ ξH ,

where f and h are functions with vanishing integral and ξH is the harmonic part of ξ in the usual
Hodge decomposition.

Proof. Since ξ is holomorphic we have LξJ = 0, so [ξ, JX] = J [ξ,X] for every vector field X.
Thus ∇JXξ = J∇Xξ, so taking the scalar product with some JY and skew–symmetrising yields
dξ(JX, JY ) = dξ(X, Y ), i.e. dξ is of type (1, 1). The global ddc–Lemma shows that dξ = ddch
for some function h. The form ξ − dch is closed, so the Hodge decomposition theorem shows that

ξ − dch = df + ξ0

for some function f and some harmonic 1–form ξ0. Comparing this formula with the Hodge decom-
position for ξ and using the fact that harmonic 1–forms are L2–orthogonal to dC∞(M), dcC∞(M)
and δΩ2(M) shows that ξ0 equals ξH, the harmonic part of ξ. Finally, the uniqueness of f and h
follows easily from the normalization condition, together with the fact that dC∞(M) and dcC∞(M)
are L2–orthogonal. �

Next, we have the following characterization of real holomorphic and Killing vector fields on
compact Kähler–Einstein manifolds with positive scalar curvature.

Lemma 13.3. A vector field ξ (resp. ζ) on a compact Kähler–Einstein manifold M2m with positive
scalar curvature S is Killing (resp holomorphic) if and only if ξ = Jdh (resp. ζ = df +dch) where
h (resp. f and h) are eigenfunctions of the Laplace operator corresponding to the eigenvalue S

m
.

Proof. The Ricci tensor of M satisfies Ric(X) = S
2m
X for every vector X. Let ξ be a vector

field on M . If we view as usual TM as a holomorphic vector bundle, then the Weitzenböck formula
(see (65) below) yields

(54) 2∂̄∗∂̄ξ = ∇∗∇ξ + iρξ = ∇∗∇ξ − Ric(ξ) = ∇∗∇ξ − S

2m
ξ.

The Bochner formula (Exercise 3 in the next section) reads

(55) ∆ξ = ∇∗∇ξ + Ric(ξ) = ∇∗∇ξ +
S

2m
ξ.

Since S > 0, this shows that there are no harmonic 1–forms on M .

Suppose that ζ is holomorphic. From Lemma 13.2 we then can write ζ as a sum ζ = df + dch,
where f and h have vanishing integrals over M . Now, subtracting (54) from (55) yields ∆ζ = S

m
ζ ,

so ∆(df + dch) = d( S
m
f) + dc( S

m
h), and since ∆ commutes with d and dc, and the images of d and

dc are L2–orthogonal, this yields ∆f = S
m
f + c1 and ∆h = S

m
h+ c2. Finally the constants have to

vanish because of the normalization condition.
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If ξ is Killing, then ξ is holomorphic by Proposition 9.5. The codifferential of every Killing vector
field vanishes, and moreover δ anti–commutes with dc. Thus 0 = δξ = δdf , showing that df = 0,
so ξ = dch with ∆h = S

m
h.

Conversely, suppose that ξ = df + dch and f and h are eigenfunctions of the Laplace operator
corresponding to the eigenvalue S

m
. Then ∆ξ = S

m
ξ, so from (55) we get

S

m
ξ = ∇∗∇ξ +

S

2m
ξ.

Then (54) shows that ξ is holomorphic.

If moreover df = 0, we have

Lξϕ = d(ξ yϕ) + ξ y dϕ = d(Jξ) = −ddh = 0,

where ϕ is the fundamental form of M . Together with LξJ = 0, this shows that Lξg = 0, so ξ is
Killing. �

We are now ready to prove the following result of Matsushima:

Theorem 13.4. The Lie algebra g(M) of Killing vector fields on a compact Kähler–Einstein man-
ifold M with positive scalar curvature is a real form of the Lie algebra h(M) of (real) holomorphic
vector fields on M . In particular h(M) is reductive, i.e. it is the direct sum of its center and a
semi–simple Lie algebra.

Proof. Let F : g(M) ⊗ C → h(M) be the linear map given by F (ξ + iζ) := ξ + Jζ . Since J
maps holomorphic vector fields to holomorphic vector fields, F is well–defined. The two lemmas
above clearly show that F is a vector space isomorphism. Moreover, F is a Lie algebra morphism
because Killing vector fields are holomorphic, so

F ([ξ + iζ, ξ1 + iζ1]) = [ξ, ξ1] − [ζ, ζ1] + J([ξ, ζ1] + [ζ, ξ1]) = [ξ, ξ1] + J2[ζ, ζ1] + [Jξ, ζ1] + [Jζ, ξ1]

= [ξ, ξ1] + [Jζ, Jζ1] + [Jξ, ζ1] + [Jζ, ξ1] = [F (ξ + iζ), F (ξ1 + iζ1)].

The last statement follows from the fact that the isometry group of M is compact, and every Lie
algebra of compact type, as well as its complexification, is reductive. �

There exist compact Kähler manifolds with positive first Chern class whose Lie algebra of holomor-
phic vector fields is not reductive. Therefore such a manifold carries no Kähler–Einstein metric,
thus showing that Theorem 13.1 cannot hold in the positive case.
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Vanishing results



14. Weitzenböck techniques

14.1. The Weitzenböck formula. The aim of the next 3 sections is to derive vanishing
results under certain positivity assumptions on the curvature using Weitzenböck techniques.

The general principle is the following: let (E, h) → M be some holomorphic Hermitian bundle
over a compact Kähler manifold (M2m, g, J), with holomorphic structure ∂̄ : C∞(Λp,qM ⊗ E) →
C∞(Λp,q+1M⊗E) and Chern connection ∇ : C∞(Λp,qM⊗E) → C∞(Λ1

C
M ⊗Λp,qM ⊗E). If ∂̄∗ and

∇∗ are the formal adjoints of ∂̄ and ∇, it turns out that the difference of the differential operators
of order two ∇∗∇ and 2(∂̄∗∂̄ + ∂̄∂̄∗) is a zero–order operator, depending only on the curvature of
the Chern connection:

(56) 2(∂̄∗∂̄ + ∂̄∂̄∗) = ∇∗∇ + R,
where R is a section in End(Λp,qM ⊗ E). If R is a positive operator on Λp,0M ⊗ E, then every
holomorphic section of Λp,0M ⊗ E is ∇–parallel, and if R is strictly positive on Λp,0M ⊗ E, then
this holomorphic bundle has no holomorphic section. This follows by applying (56) to some
holomorphic section σ of Λp,0M ⊗ E, taking the scalar product with σ and integrating over M ,
using the fact that ∂̄∗ vanishes identically on Λp,0M ⊗E.

We start with the following technical lemma:

Lemma 14.1. If {ej} is a local orthonormal basis in TM (identified via the metric g with an
orthonormal basis of Λ1M), and ∇ denotes the Chern connection of E, as well as its prolongation
to Λp,qM ⊗ E using the Levi–Civita connection on the left–hand side of this tensor product, then
∂̄, ∂̄∗, ∇∗and ∇∗∇ are given locally by

(57) ∂̄ : C∞(Λp,qM ⊗E) → C∞(Λp,q+1M ⊗ E) ∂̄σ =
1

2
(ej − iJej) ∧ ∇ej

(σ),

(58) ∂̄∗ : C∞(Λp,qM ⊗E) → C∞(Λp,q−1M ⊗ E) ∂̄∗σ = −1

2
(ej + iJej) y∇ej

(σ),

(59) ∇∗ : C∞(Λ1
CM ⊗ Λp,qM ⊗E) → C∞(Λp,qM ⊗E) ∇∗(ω ⊗ σ) = (δω)σ −∇ωσ,

(60) ∇∗∇ : C∞(Λp,qM ⊗E) → C∞(Λp,qM ⊗ E) ∇∗∇σ = ∇∇ej
ej
σ −∇ej

∇ej
σ.

Proof. If (E, hE) and (F, hF ) are Hermitian bundles, their tensor product inherits a natural
Hermitian structure given by

hE⊗F (σE ⊗ σF , sE ⊗ sF ) := hE(σE, sE)hF (σF , sF ).

The Hermitian structure, on Λp,qM ⊗ E with respect to which one defines the adjoint operators
above is obtained in this way from the Hermitian structure h of E and the Hermitian structure H
of Λp,qM given by (31). We will use the same symbol H for this Hermitian structure, by a slight
abuse of notation.

The relation (57) is more or less tautological, using the definition of ∂̄ and the fact that ej − iJej
is a (1, 0)–vector, identified via the metric g with a (0, 1)–form. Of course, the wedge product
there only concerns the Λp,qM–part of σ.



14. WEITZENBÖCK TECHNIQUES 75

For σ ∈ C∞(Λp,qM ⊗ E) and s ∈ C∞(Λp,q−1M ⊗ E) we define the 1–form α by

α(X) :=
1

2
H((X + iJX) y σ, s).

By choosing the local basis {ej} parallel in a point for simplicity, then we get at that point:

−δα = ej(α(ej)) =
1

2
H((ej + iJej) y∇ej

σ, s) +
1

2
H((ej + iJej) y σ,∇ej

s)

=
1

2
H((ej + iJej) y∇ej

σ, s) +
1

2
H(σ, (ej − iJej) ∧ ∇ej

s)

=
1

2
H((ej + iJej) y∇ej

σ, s) +H(σ, ∂̄s),

thus showing that the operator −1
2
(ej + iJej) y∇ej

is the formal adjoint of ∂̄.

The proof of (59) is similar: for ω ⊗ σ ∈ C∞(Λ1
C
M ⊗ Λp,qM ⊗ E) and s ∈ C∞(Λp,qM ⊗ E) we

define the 1–form α by

α(X) := H((ω(X))σ, s)

and compute

−δα = ej(α(ej)) = −H((δω)σ, s) +H((ω(ej))∇ej
σ, s) +H((ω(ej))σ,∇ej

s)

= H(∇ωσ − (δω)σ, s) +H(ω ⊗ σ,∇s),

whence ∇∗(ω ⊗ σ) = (δω)σ −∇ωσ.

Finally, we apply (59) to some section ∇σ = ej ⊗∇ej
σ of Λ1

C
M ⊗ Λp,qM ⊗E and get

∇∗∇σ = (δej)∇ej
σ −∇ej

∇ej
σ = −g(ek,∇ek

ej)∇ej
σ −∇ej

∇ej
σ

= g(∇ek
ek, ej)∇ej

σ −∇ej
∇ej

σ = ∇∇ej
ej
σ −∇ej

∇ej
σ.

�

We are now ready for the main result of this section

Theorem 14.2. Let (E, h) → (M2m, g, J) be a holomorphic Hermitian bundle over a Kähler
manifold M . For vectors X, Y ∈ TM , let R̃(X, Y ) ∈ End(Λp,qM ⊗ E) be the curvature operator
of the tensor product connection on Λp,qM ⊗ E induced by the Levi–Civita connection on Λp,qM
and the Chern connection on E. Then the following formula holds

(61) 2(∂̄∗∂̄ + ∂̄∂̄∗) = ∇∗∇ + R,

where R is the section of End(Λp,qM ⊗ E) defined by

(62) R(σ) :=
i

2
R̃(Jej , ej)σ − 1

2
(ej − iJej) ∧ (ek + iJek) y (R̃(ej , ek)σ).
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Proof. The proof is a simple computation in a local orthonormal frame parallel at a point,
using Lemma 14.1, (57),(58) and (60):

2∂̄∗∂̄ = −1

2

(

(ek + iJek) y∇ek
((ej − iJej) ∧ ∇ej

)

)

= −1

2

(

(ek + iJek) y ((ej − iJej) ∧ ∇ek
∇ej

)

)

= −(g(ek, ej) + ig(Jek, ej))∇ek
∇ej

+
1

2

(

(ej − iJej) ∧ (ek + iJek) y∇ek
∇ej

)

= ∇∗∇− ig(Jek, ej)∇ek
∇ej

+
1

2

(

(ej − iJej) ∧ (ek + iJek) y∇ej
∇ek

)

+
1

2

(

(ej − iJej) ∧ (ek + iJek) y R̃(ek, ej)

)

= ∇∗∇− i

2
g(Jek, ej)R̃(ek, ej) +

1

2

(

(ej − iJej) ∧ ∇ej
((ek + iJek) y∇ek

)

)

+
1

2

(

(ej − iJej) ∧ (ek + iJek) y R̃(ek, ej)

)

= ∇∗∇− 2∂̄∂̄∗ + R.
�

14.2. Vanishing results on Kähler manifolds. Most of the applications will concern the
case q = 0. The expression of the curvature term becomes then particularly simple, since the last
term in (62) automatically vanishes. Let ρ(p) denote the action of the Ricci–form of M on Λp,0

given by
ρ(p)ω := ρ(ej) ∧ ej yω.

It is easy to check that this action preserves the space Λp,0.

Proposition 14.3. If q = 0, for every section ω ⊗ ξ of Λp,0M ⊗E we have

(63) 2∂̄∗∂̄(ω ⊗ ξ) = ∇∗∇(ω ⊗ ξ) + i(ρ(p)ω) ⊗ ξ +
i

2
ω ⊗RE(Jej , ej)ξ,

where RE is the curvature of E.

Proof. The curvature R̃ of Λp,0M ⊗E decomposes in a sum

(64) R̃(X, Y )(ω ⊗ ξ) = (R(X, Y )ω) ⊗ ξ + ω ⊗RE(X, Y )(ξ),

where R is the Riemannian curvature. It is an easy exercise to check that the Riemannian
curvature operator acts on forms by R(X, Y )(ω) = R(X, Y )ek ∧ ek yω. From Proposition (6.2) (i)
we have 2ρ = R(Jej , ej) as endomorphisms of the tangent space of M . Therefore Theorem 14.2
and (64) yield the desired result. �

We are now ready to obtain the vanishing results mentioned above.
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Theorem 14.4. Let M be a compact Kähler manifold. If the Ricci curvature of M is negative
definite (i.e. Ric(X,X) < 0 for all non–zero X ∈ TM) then M has no holomorphic vector field.

Proof. Let us take p = 0 and E = T 1,0M in Proposition 14.3. If ξ is a holomorphic vector
field, we have

(65) 0 = 2∂̄∗∂̄ξ = ∇∗∇ξ +
i

2
R(Jej , ej)ξ = ∇∗∇ξ + iρ(ξ).

Taking the (Hermitian) scalar product with ξ in this formula and integrating over M , using the
fact that ρξ = Ric(Jξ) = iRic(ξ) yields

0 =

∫

M

H(∇∗∇ξ − Ric(ξ), ξ)dv =

∫

M

|∇ξ|2 −H(Ricξ, ξ)dv.

Thus, if Ric is negative definite, ξ has to vanish identically. �

Theorem 14.5. Let M be a compact Kähler manifold. If the Ricci curvature of M vanishes, then
every holomorphic form is parallel. If the Ricci curvature of M is positive definite, then there
exist no holomorphic (p, 0)–forms on M for p > 0.

Proof. We take E to be trivial and apply (63) to some holomorphic (p, 0)–form ω. Since
ρ = 0 we get 0 = ∇∗∇ω. Taking the Hermitian product with ω and integrating over M yields the
result.

Suppose now that Ric is positive definite. From (63) applied to some holomorphic (p, 0)–form ω
we get

(66) 0 = ∇∗∇ω + iρ(p)(ω).

The interior product of a (0, 1)–vector and ω vanishes, showing that JX yω = iX yω. We thus
get

iρ(p)(ω) = iρ(ej) ∧ ej yω = iρ(Jej) ∧ Jej yω = −ρ(Jej) ∧ ej yω = Ric(ω).

Since Ric is positive, its extension to (p, 0)–forms is positive, too, hence taking the Hermitian
product with ω in (66) and integrating over M yields

∫

M

|∇ω|2 +H(Ric(ω), ω)dv = 0,

showing that ω has to vanish �

14.3. Exercises.

(1) Show that the extension to ΛpM ⊗ C of a positive definite symmetric endomorphism of
TM is positive definite.

(2) Prove the following real version of the Weitzenböck formula:

∆ω = ∇∗∇ω + Rω, ∀ ω ∈ ΩpM,
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where R is the endomorphism of ΩpM defined by

R(ω) := −ej ∧ ek y (R(ej, ek)(ω)).

(3) Applying the above identity to 1–forms, prove the Bochner formula

∆ω = ∇∗∇ω + Ric(ω), ∀ ω ∈ Ω1M.

(4) Prove that there are no global holomorphic forms on the complex projective space.
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15. The Hirzebruch–Riemann–Roch formula

15.1. Positive line bundles. In order to state another application of the Weitzenböck for-
mula we have to make the following

Definition 15.1. A real (1, 1)–form ϕ on a complex manifold (M, g, J) is called positive (resp.
negative) if the symmetric tensor A satisfying A(JX, Y ) := ϕ(X, Y ) is positive (resp. negative)
definite. A cohomology class in H1,1M ∩ H2(M,R) is called positive (resp. negative) if it can
be represented by a positive (resp. negative) (1, 1)–form. A holomorphic line bundle L over a
compact complex manifold is called positive (resp. negative) if there exists a Hermitian structure
on L with Chern connection ∇ and curvature form R∇ such that iR∇ is a positive (resp. negative)
(1, 1)–form.

The positivity of a holomorphic line bundle is a topological property on Kähler manifolds:

Lemma 15.2. A holomorphic line bundle L over a compact Kähler manifold M is positive if and
only if its first Chern class is positive.

Proof. One direction is clear from the definition. Suppose, conversely, that c1(L) is positive.
That means that there exists a positive (1, 1)–form ω and a Hermitian structure h on L whose
Chern connection ∇ has curvature R∇ such that [iR∇] = [ω] (the factor 2π can obviously be
skipped). From the global i∂∂̄–Lemma, there exists a real function u such that iR∇ = ω + i∂∂̄u.
we now use the formula (40) which gives the curvature of the Chern connection in terms of the
square norm of an arbitrary local holomorphic section σ:

R∇ = −∂∂̄ log h(σ, σ).

It is then clear that the curvature of the Chern connection ∇̃ associated to h̃ := heu satisfies for
every local holomorphic section σ:

iR∇̃ = −i∂∂̄ log h̃(σ, σ) = −i∂∂̄ log h(σ, σ) − i∂∂̄u = iR∇ − i∂∂̄u = ω,

thus showing that L is positive. �

In order to get a feeling for this notion, notice that the fundamental form of a Kähler manifold is
positive, as well as the Ricci form of a Kähler manifold with positive Ricci tensor. From Lemma
11.4 we know that the canonical bundle K of a Kähler manifold has curvature iρ. Thus K is
negative if and only if the Ricci tensor is positive definite.

Theorem 15.3. A negative holomorphic line bundle L over a compact Kähler manifold has no
non–vanishing holomorphic section.

Proof. Taking p = 0 and E = L in (63) shows that every holomorphic section ξ of E satisfies

(67) 0 = 2∂̄∗∂̄ξ = ∇∗∇ξ +
i

2
R∇(Jej , ej)ξ.
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By hypothesis we have iR∇(X, Y ) = A(JX, Y ), with A negative definite. Thus

i

2
R∇(Jej , ej) = −1

2
A(ej , ej) = −1

2
Tr(A)

is a strictly positive function on M . Consequently, taking the Hermitian product with ξ in (67)
and integrating over M shows that ξ has to vanish. �

This result is consistent with our previous calculations on CPm. We have seen that the canonical

bundle K is negative, and that K is isomorphic to the m + 1st tensor power of the tautological
bundle L, which is thus negative, too. On the other hand, we have shown with a direct computation
that this last bundle has no holomorphic section.

15.2. The Hirzebruch–Riemann–Roch formula. Let E → M be a holomorphic vector
bundle over some compact Hermitian manifold M2m. We denote by Ωk(E) := C∞(Λ0,kM ⊗ E)
the space of E–valued (0, k)–forms on M . Consider the following elliptic complex

(68) Ω0(E)
∂̄→ Ω1(E)

∂̄→ . . .
∂̄→ Ωm(E).

We define the cohomology groups

Hq(M,E) :=
Ker(∂̄ : Ωq(E) → Ωq+1E)

∂̄Ωq−1(E)
.

By analogy with the usual (untwisted) case, we denote

Hp,q(M,E) := Hq(M,Λp,0M ⊗E).

For every Hermitian structure on E one can consider the formal adjoint ∂̄∗ of ∂̄, and define the
space of harmonic E–valued (0, q)–forms on M by

Hq(E) := {ω ∈ Ωq(E) | ∂̄ω = 0, ∂̄∗ω = 0}.
The analog of the Dolbeault decomposition theorem holds true in this case and as a corollary we
have

Theorem 15.4. The cohomology groups Hq(M,E) are isomorphic with the spaces of harmonic
E–valued (0, q)–forms:

Hq(M,E) ' Hq(E).

We can view the elliptic complex (68) as an elliptic first order differential operator simply by
considering

∂̄ + ∂̄∗ : Ωeven(E) → Ωodd(E).

The index of the elliptic complex (68) is defined to be the index of this elliptic operator:

Ind(∂̄ + ∂̄∗) := dim(Ker(∂̄ + ∂̄∗)) − dim(Coker(∂̄ + ∂̄∗)).

The holomorphic Euler characteristic Ξ(M,E) is defined by

Ξ(M,E) :=

m
∑

k=0

(−1)k dimHk(M,E)
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and is nothing else but the index of the elliptic complex (68).

Theorem 15.5. (Hirzebruch–Riemann–Roch formula) The holomorphic Euler characteristic of
E can be computed as follows

Ξ(M,E) =

∫

M

Td(M)ch(E),

where Td(M) is the Todd class of the tangent bundle of M and ch(E) is the Chern character of
E.

The Todd class and the Chern character are characteristic classes of the corresponding vector
bundles that we will not define explicitly. The only thing that we will use in the sequel is that
they satisfy the naturality axiom with respect to pull–backs. If E is the trivial line bundle, the
holomorphic Euler characteristic Ξ(M,E) is simply denoted by Ξ(M) :=

∑m
k=0(−1)kh0,k(M).

For a proof of the Hirzebruch–Riemann–Roch formula see [3].

We will give two applications of the Riemann–Roch formula, both concerning the fundamental
group of Kähler manifolds under suitable positivity assumptions of the Ricci tensor. The first one
is a theorem due to Kobayashi:

Theorem 15.6. A compact Kähler manifold with positive definite Ricci tensor is simply connected.

Proof. Theorem 14.5 shows that there is no holomorphic (p, 0)–form on M , so hp,0(M) = 0
for p > 0. Of course, the holomorphic functions are just the constants, so h0,0(M) = 1. Since M
is Kähler we have hp,0(M) = h0,p(M), thus Ξ(M) = 1.

By Myers’ Theorem, the fundamental group of M is finite. Let M̃ be the universal cover of M ,
which is therefore compact, too. Applying the previous argument to M̃ we get Ξ(M̃) = 1. Now,
if π : M̃ → M denotes the covering projection, we have, by naturality, Td(M̃) = π∗Td(M), and
an easy exercise shows that for every top degree form ω on M one has

∫

M̃

π∗ω = k

∫

M

ω,

where k denotes the number of sheets of the covering. This shows that k = 1, so M is simply
connected. �

Our second application concerns Ricci–flat Kähler manifolds. By Theorem 11.5, a compact Kähler
manifold M2m is Ricci–flat if and only if the restricted holonomy group Hol0(M) is a subgroup of
SUm. A compact Kähler manifold M with Hol0(M) = SUm is called Calabi–Yau manifold.

Theorem 15.7. Let M2m be a Calabi–Yau manifold. If m is odd, then Hol(M) = SUm, so there
exists a global holomorphic (m, 0)–form even if M is not simply connected. If m is even, then
either M is simply connected, or π1(M) = Z2 and M carries no global holomorphic (m, 0)–form.

Proof. Let M̃ be the universal covering ofM . The Cheeger–Gromoll theorem (cf. [1], p. 168)
shows that M̃ is compact (having irreducible holonomy). By Theorem 14.5, every holomorphic
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form on M is parallel, and thus corresponds to a fixed point of the holonomy representation. It is
easy to check that SUm has only two invariant one–dimensional complex subspaces on (p, 0)–forms,
one for p = 0 and one for p = m. Thus

Ξ(M̃) =

{

0 for m odd

2 for m even

Moreover, Ξ(M̃) = kΞ(M), where k is the order of the fundamental group of M . This shows that
Ξ(M) = 0 for m odd, hence hm,0M = 1, so M has a global holomorphic (m, 0)–form.

If m is even, then either M is simply connected, or k = 2 and Ξ(M) = 1. In this last case, we
necessarily have hm,0M = 0, so M carries no global holomorphic (m, 0)–form.

�

15.3. Exercises.

(1) Prove the Kodaira–Serre duality:

Hq(M,E) ' Hm−q(M,E∗ ⊗KM)

for every holomorphic vector bundle E over a compact Hermitian manifold M .

(2) Prove that the operator

∂̄ + ∂̄∗ : Ωeven(E) → Ωodd(E)

is elliptic, in the sense that its principal symbol applied to any non–zero real 1–form is
an isomorphism.

(3) Prove that the index of the above defined operator is equal to the holomorphic Euler
characteristic Ξ(M,E).

(4) Let π : M̃ → M be a k–sheet covering projection between compact oriented manifolds.
Prove that for every top degree form ω on M one has

∫

M̃

π∗ω = k

∫

M

ω.

Hint: Start by showing that to any open cover {Ui} of M one can associate a closed cover
{Cj} such that for every j there exists some i with Cj ⊂ Ui and such that the interiors
of Cj and Ck are disjoint for every j 6= k.

(5) Show that the representation of SUm on ΛpCm has no invariant one–dimensional subspace
for 1 ≤ p ≤ m− 1.
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16. Further vanishing results

16.1. The Schrödinger–Lichnerowicz formula for Kähler manifolds. Let L be a holo-
morphic Hermitian line bundle over some Kähler manifold M2m with scalar curvature S. We
would like to compute the curvature term in the Weitzenböck formula on sections of Λ0,kM ⊗ L,
and to show that this term becomes very simple in the case where L is a square root of the canon-
ical bundle. The reader familiar with spin geometry will notice that in this case Λ0,∗M ⊗K

1
2 is

just the spin bundle of M and the operator
√

2(∂ + ∂̄) is just the Dirac operator.

Let us denote by iα the curvature of the Chern connection of L. The first term of the curvature
operator R applied to some section ω ⊗ ξ ∈ Ω0,kM ⊗ E can be computed as follows

R1(ω ⊗ ξ) :=
i

2
R̃(Jej , ej)(ω ⊗ ξ) =

i

2

(

2(ρ(k)ω) ⊗ ξ + iα(Jej , ej)ω ⊗ ξ

)

= i(ρ(k)ω) ⊗ ξ − 1

2
α(Jej , ej)ω ⊗ ξ.

In order to compute the second curvature term we make use of the following algebraic result

Lemma 16.1. The Riemannian curvature operator satisfies

(ej − iJej) ∧ (ek + iJek) yR(ej, ek)ω = 4iρ(k)ω

for every (0, k)–form ω.

Proof. Since the interior product of a (1, 0)–vector and a (0, k)–form vanishes we obtain

(69) X yω = iJX yω ∀ ω ∈ Ω0,kM.

The forms R(ej , ek)ω are still (0, k)–forms, since the connection preserves the type decomposition
of forms. By changing ej to Jej and then ek to Jek we get

ej ∧ (ek + iJek) yR(ej, ek)ω = Jej ∧ (ek + iJek) yR(Jej, ek)ω

= −Jej ∧ (ek + iJek) yR(ej, Jek)ω

= −iJej ∧ (ek + iJek) yR(ej, ek)ω.

Thus

(ej − iJej) ∧ (ek + iJek) yR(ej, ek)ω = 2ej ∧ (ek + iJek) yR(ej, ek)ω = 4ej ∧ ek yR(ej, ek)ω.

Now, using (69) twice we get

R(ej, ek, el, es)ej ∧ ek ∧ es y el yω = −R(ej , ek, Jel, Jes)ej ∧ ek ∧ es y el yω

= −R(ej , ek, el, es)ej ∧ ek ∧ es y el yω,

so this expression vanishes. From the first Bianchi identity we then obtain

R(ej , ek, el, es)ej ∧ es ∧ ek y el yω = R(ej , el, ek, es)ej ∧ es ∧ ek y el yω

+R(ej , es, el, ek)ej ∧ es ∧ ek y el yω

= −R(ej , el, ek, es)ej ∧ es ∧ el y ek yω
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whence

R(ej, el, ek, es)ej ∧ es ∧ ek y el yω = 0.

Finally we get

(ej − iJej) ∧ (ek + iJek) yR(ej, ek)ω = 4ej ∧ ek yR(ej, ek)ω

= 4R(ej, ek, el, es)ej ∧ ek y (es ∧ el yω)

= −4Ric(ej , el)ej ∧ el yω = 4iRic(ej , Jel)ej ∧ el yω
= 4iρ(k)ω.

�

For every (1, 1)–form α and (0, k)–form ω we have as before

(ej − iJej) ∧ (ek + iJek) yα(ej, ek)ω = 2ej ∧ (ek + iJek) yα(ej, ek)ω = 4ej ∧ ek yα(ej, ek)ω

= −4α(k)(ω).

The second term in (62) thus reads

R2(ω ⊗ ξ) := −1

2
(ej − iJej) ∧ (ek + iJek) y (R̃(ej, ek)(ω ⊗ ξ))

= −1

2
(ej − iJej) ∧ (ek + iJek) y ((R(ej, ek)ω) ⊗ ξ + iα(ej, ek)ω ⊗ ξ)

= −2iρ(k)(ω) ⊗ ξ + 2iα(k)(ω) ⊗ ξ.

Suppose that the curvature of the line bundle L satisfies

RL := iα =
1

2
iρ.

The formulas above show that the curvature term in the Weitzenböck formula on Ω0,kM ⊗ L
satisfies

R(ω ⊗ ξ) = (R1 + R2)(ω ⊗ ξ) = iρ(k)(ω) ⊗ ξ − 1

2
α(Jej , ej)ω ⊗ ξ

−2iρ(k)(ω) ⊗ ξ + 2iα(k)(ω) ⊗ ξ

= −1

4
ρ(Jej , ej)ω ⊗ ξ =

S

4
ω ⊗ ξ.

This proves the

Theorem 16.2. (Schrödinger–Lichnerowicz formula). Let L = K
1
2 be a square root of the canon-

ical bundle of a Kähler manifold M , in the sense that L has a Hermitian structure h such that
KM is isomorphic to L⊗ L with the induced tensor product Hermitian structure. Then, if Ψ is a
section of the complex vector bundle

ΣM := (Λ0,0M ⊕ . . .⊕ Λ0,mM) ⊗K
1
2
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and D :=
√

2(∂̄ + ∂̄∗) is the Dirac operator on ΣM , the following formula holds

D2Ψ = ∇∗∇Ψ +
S

4
Ψ.

The Schrödinger–Lichnerowicz formula is valid in a more general setting (on all spin manifolds,
not necessarily Kähler), and it has important applications in geometry and topology (see [4], [9]).

16.2. The Kodaira vanishing theorem. Let M2m be a compact Kähler manifold and let
L be a positive line bundle over M . From the definition, we know that L carries a Hermitian
structure whose Chern connection ∇ has curvature R∇ with iR∇ > 0. We consider the Kähler
metric on M whose fundamental form is just iR∇. By a slight abuse of language, we denote
by ∂ : C∞(Λp,qM ⊗ L) → C∞(Λp+1,qM ⊗ L) the extension of ∇1,0 to forms. Note that, whilst
∂̄ is an intrinsic operator, ∂ depends of course on the Hermitian structure on L. We apply the
Weitzenböck formula to some section ω ⊗ ξ of Λp,qM ⊗ L:

(70) 2(∂̄∗∂̄ + ∂̄∂̄∗)(ω ⊗ ξ) = ∇∗∇(ω ⊗ ξ) + R(ω ⊗ ξ).

The same computation actually yields the dual formula

(71) 2(∂∗∂ + ∂∂∗)(ω ⊗ ξ) = ∇∗∇(ω ⊗ ξ) + R̃(ω ⊗ ξ).

Alternatively, one can apply (70) to a section ω̃ ⊗ ξ∗ of Λq,pM ⊗ L∗ and then take the complex
conjugate. Subtracting these two equations yields

(72) 2(∂̄∗∂̄ + ∂̄∂̄∗)(ω ⊗ ξ) = 2(∂∗∂ + ∂∂∗)(ω ⊗ ξ) + (R− R̃)(ω ⊗ ξ).

We now compute this curvature term.

(R− R̃)(ω ⊗ ξ) = iR̃(Jej , ej)(ω ⊗ ξ) − 1

2
(ej − iJej) ∧ (ek + iJek) y R̃(ej , ek)(ω ⊗ ξ)

+
1

2
(ej + iJej) ∧ (ek − iJek) y R̃(ej, ek)(ω ⊗ ξ)

= iR̃(Jej , ej)(ω ⊗ ξ) + iJej ∧ ek y R̃(ej , ek)(ω ⊗ ξ)

−iej ∧ Jek y R̃(ej, ek)(ω ⊗ ξ)

= iR̃(Jej , ej)(ω ⊗ ξ) + 2iJej ∧ ek y R̃(ej , ek)(ω ⊗ ξ)

= 2iρ(ω) ⊗ ξ + iω ⊗ R∇(Jej , ej)ξ + 2iJej ∧ ek yR(ej, ek)ω ⊗ ξ

+2iJej ∧ ek yω ⊗ R∇(ej , ek)ξ

= 2iρ(ω) ⊗ ξ − 2mω ⊗ ξ + 2iJej ∧ ek yR(ej, ek)ω ⊗ ξ + 2(p+ q)ω ⊗ ξ.

On the other hand, the expression Jej ∧ ek yR(ej, ek)ω can be simplified as follows:

Jej ∧ ek yR(ej, ek)ω = Jej ∧ ek yR(ej, ek)el ∧ el yω
= −Ric(ej, el)Jej ∧ el yω − Jej ∧ R(ej, ek)el ∧ ek y el yω

= −ρ(ω) − R(ej, ek, el, es)Jej ∧ es ∧ ek y el yω,
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and from the Bianchi identity

2R(ej, ek, el, es)Jej ∧ es ∧ ek y el yω = R(ej , ek, el, es)Jej ∧ es ∧ ek y el yω

+R(ej , el, ek, es)Jej ∧ es ∧ el y ek yω

= R(el, ek, ej, es)Jej ∧ es ∧ ek y el yω

= −R(el, ek, Jej , es)ej ∧ es ∧ ek y el yω = 0,

where the last expression vanishes because R(·, ·, J ·, ·) is symmetric in the last two arguments.

This shows that Jej ∧ ek yR(ej, ek)ω = −ρ(ω), so from the previous calculation we get

2(∂̄∗∂̄ + ∂̄∂̄∗)(ω ⊗ ξ) = 2(∂∗∂ + ∂∂∗)(ω ⊗ ξ) + 2(p+ q −m)(ω ⊗ ξ).

After taking the Hermitian product with ω⊗ξ (which we denote by σ for simplicity) and integrating
over M we get

(73)

∫

M

|∂̄σ|2 + |∂̄∗σ|2dv =

∫

M

|∂σ|2 + |∂∗σ|2 + (p+ q −m)|σ|2dv.

If σ is a harmonic L–valued form, the left hand side term in (73) vanishes, thus proving the

Theorem 16.3. (Kodaira vanishing theorem). If L is a positive holomorphic line bundle on a
compact Kähler manifold M , one has Hp,q(M,L) = 0 whenever p+ q > m.



Part 6

Calabi–Yau manifolds



17. Ricci–flat Kähler metrics

17.1. Hyperkähler manifolds. In order to obtain the classification (up to finite coverings)
of compact Ricci–flat Kähler manifolds, we make the following

Definition 17.1. A Riemannian manifold (Mn, g) is called hyperkähler if there exist three com-
plex structures I, J, K on M satisfying K = IJ such that g is a Kähler metric with respect to
each of these complex structures.

It is clear that a metric is hyperkähler if and only if it is Kähler with respect to two anti–commuting
complex structures. In the irreducible case, this can be weakened as follows:

Proposition 17.2. Let (Mn, g) be a locally irreducible Riemannian manifold. If g is Kähler with
respect to two complex structures J and J1, and if J1 is different from J and −J , then (M, g) is
hyperkähler.

Proof. The endomorphism JJ1+J1J is symmetric and parallel onM , so by local irreducibility
it has to be constant:

(74) JJ1 + J1J = αId, α ∈ R.

From the Cauchy–Schwartz inequality we get

α2 = |αId|2 = |JJ1 + J1J |2 ≤ 2(|JJ1|2 + |J1J |2) ≤ 4|J |2|J1|2 = 4,

where the norm considered here is the operator norm. The equality case can only hold if JJ1 =
βJ1J for some real number β. Together with (74) this shows that JJ1 = γId for some real number
γ, so J1 = ±J , which was excluded in the hypothesis. Therefore we have α2 < 4. We then
compute using (74)

(J1 + JJ1J)2 = (α2 − 4)Id,

so the parallel skew–symmetric endomorphism

I :=
1√

4 − α2
(J1 + JJ1J)

defines a complex structure anti–commuting with J , with respect to which g is Kähler. �

Consider the identification of C2k with Hk given by (z1, z2) 7→ z1 + jz2. We denote by I, J
and K the right product on Hk with i, j and k respectively, which correspond to the following
endomorphisms of C2k:

I(z1, z2) = (iz1, iz2) J(z1, z2) = (−z̄2, z̄1) K(z1, z2) = (−iz̄2, iz̄1).
Let us denote by Spk the group of unitary transformations of C2k (that is, preserving the canonical
Hermitian product and commuting with I), which also commute with J (and thus also with K).
Clearly we have

Spk =

{

M =

(

A B
−B̄ Ā

)

∈ M2k(C)

∣

∣

∣

∣

MM̄ t = I2k

}

.

It is tautological that a 4k–dimensional manifold is hyperkähler if and only if the bundle of
orthonormal frames has a reduction to Spk.
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Lemma 17.3. Spk ⊂ SU2k.

Proof. By definition we have Spk ⊂ U2k, so every matrix in Spk is diagonalizable as complex
matrix and its eigenvalues are complex numbers of unit norm. If v is an eigenvector of some
M ∈ Spk with eigenvalue λ ∈ S1 then

MJv = JMv = Jλv = λ̄Jv = λ−1Jv,

showing that the determinant of M equals 1. �

This shows that every hyperkähler manifold is Ricci–flat. A hyperkähler manifold is called strict
if it is locally irreducible.

Let now M be an arbitrary compact Ricci–flat Kähler manifold. The Cheeger–Gromoll theorem
([1], p.168) says that M is isomorphic to a quotient

M ' (M0 × Tl)/Γ,

where M0 is a compact simply connected Kähler manifold, Tl is a complex torus and Γ is a finite
group of holomorphic transformations. Let M0 = M1 × . . .×Ms be the De Rham decomposition
of M0. Then Mj are compact Ricci–flat simply connected Kähler manifolds with irreducible
holonomy for all j. A symmetric space which is Ricci–flat is automatically flat, so the Mj ’s are
not symmetric. The Berger holonomy theorem then shows that Mj is either Calabi–Yau or strict
hyperkähler for every j. We thus have the following

Theorem 17.4. A compact Ricci–flat Kähler manifold M is isomorphic to the quotient

M ' (M1 × . . .×Ms ×Ms+1 . . .×Mr × Tl)/Γ,

where Mj are simply connected compact Calabi–Yau manifolds for j ≤ s, simply connected com-
pact strict hyperkähler manifolds for s + 1 ≤ j ≤ r and Γ is a finite group of holomorphic
transformations.

17.2. Projective manifolds. A compact complex manifold (M2m, J) is called projective if it
can be holomorphically embedded in some complex projective space CPN . A well–known result of
Chow states that a projective manifold is algebraic, that is, defined by a finite set of homogeneous
polynomials in the complex projective space.

Proposition 17.5. Every projective manifold has a positive holomorphic line bundle.

Proof. Let ϕ be the fundamental form of the Fubini–Study metric on CPN . It is easy to
check (e.g. using (22)) that the hyperplane bundle H on CPN has a connection with curvature
−iϕ. The restriction of this line bundle to any complex submanifold of CPN is thus positive. �

Conversely, we have the celebrated

Theorem 17.6. (Kodaira embedding theorem). A compact complex manifold M with a positive
holomorphic line bundle L is projective.
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A proof can be found in [2], p. 176. The main idea is to show that a suitable positive power Lk

of L has a basis of holomorphic sections {σ0, . . . , σN} such that the holomorphic mapping

M → CPN x 7→ [σ0(x) : . . . : σN (x)]

is an embedding.

Corollary 17.7. Every Calabi–Yau manifold of complex dimension m ≥ 3 is projective.

Proof. For every compact manifold M , let A and A∗ be the sheaves of smooth functions on
M with values in C and C∗ respectively. The exact sequence of sheaves

0 → Z → A exp→ A∗ → 0

induces an exact sequence in C̆ech cohomology

→ H1(M,A) → H1(M,A∗)
c1→ H2(M,Z) → H2(M,A) → .

The sheaf A is fine (that is, it admits a partition of unity), so H1(M,A) = 0 and H2(M,A) = 0,
thus proving that

H1(M,A∗) ' H2(M,Z).

Notice that H1(M,A∗) is just the set of equivalence classes of complex line bundles over M , and
the isomorphism above is given by the first Chern class.

The above argument shows that for every integer cohomology class γ ∈ H2(M,Z), there exists a
complex line bundle L with c1(L) = γ. Moreover, if ω is any complex 2–form representing γ in
real cohomology, there exists a connection ∇ on L such that i

2π
R∇ = ω. To see this, take any

connection ∇̃ on L with curvature R∇̃. Then since [ω] = c1(L) we get [2πω] = [iR∇̃], so there

exists some 1–form θ such that 2πω = i(R∇̃ + dθ). Clearly the curvature of ∇ := ∇̃ + iθ satisfies
the desired equation. If the form ω is real and of type (1, 1), then the complex bundle L has a
holomorphic structure, given by the (0, 1)–part of the connection whose curvature is ω.

Let now M2m be a Calabi–Yau manifold, m > 2. Since SUm has no fixed point on Λ2,0Cm, we
deduce that there are no parallel (2, 0)–forms on M , so by Theorem 14.5 we get h2,0(M) = 0. By
the Dolbeault decomposition theorem we obtain that any harmonic 2–form on M is of type (1, 1).
Consider the fundamental form ϕ of M . Since H2(M,Q) is dense in H2(M,R), and the space of
positive harmonic (1, 1)–forms is open in H1,1(M,R) = H2(M,R), we can find a positive harmonic
(1, 1)–form ω such that [ω] ∈ H2(M,Q). By multiplying with the common denominator, we may
suppose that [ω] ∈ H2(M,Z). Then the argument above shows that there exists a holomorphic
line bundle whose first Chern class is ω, thus a positive holomorphic line bundle on M . By the
Kodaira embedding theorem, M is then projective. �



18. CONSTRUCTIONS OF CALABI–YAU MANIFOLDS 91

18. Constructions of Calabi–Yau manifolds

18.1. Divisors. Let M be a complex manifold. An analytic hypersurface of M is a subset
V ∈M such that for every x ∈ V there exists an open set Ux ⊂ M containing x and a holomorphic
function fx defined on Ux such that V ∩Ux is the zero–set of fx. Such an fx is called a local defining
function for V near x. The quotient of any two local defining functions around x is a non–vanishing
holomorphic function around x.

An analytic hypersurface V is called irreducible if it can not be written as the union of two smaller
analytic hypersurfaces. Every analytic hypersurface is a finite union of its irreducible components.

If V is an irreducible analytic hypersurface, with defining function ϕx around some x ∈ V , then
for every holomorphic function f around x, the order of f along V at x is defined to be the largest
positive integer a such that f

ϕa
x

is holomorphic around x. It can be shown that the order of f is a

well–defined positive integer, which does not depend on x, and is denoted by o(f, V ).

Definition 18.1. A divisor D in a compact complex manifold M is a finite formal sum with
integer coefficients of irreducible analytic hypersurfaces of M .

D :=
∑

i

aiVi, ai ∈ Z.

A divisor D is called effective if all ai ≥ 0 for all i.

The set of divisors is clearly a commutative group under formal sums.

A meromorphic function on a complex manifoldM is an equivalence class of collections (Uα, fα, gα)
where {Uα} is an open covering of M , and fα, gα are holomorphic functions defined on Uα such
that fαgβ = fβgα on Uα ∩ Uβ for all α, β. Two such collections (Uα, fα, gα) and (U ′

β, f
′
β, g

′
β) are

equivalent if fαg
′
β = f ′

βgα on Uα∩U ′
β for all α, β. A meromorphic function can be always expressed

locally as f

g
, where f and g are locally defined holomorphic functions.

We define similarly a meromorphic section of a holomorphic line bundle L as an equivalence
class of collections (Uα, σα, gα) where σα is a local holomorphic section of L over Uα and gα is a
holomorphic function on Uα, such that σαgβ = σβgα on Uα ∩ Uβ for all α, β.

A meromorphic function h defines a divisor (h) in a canonical way by

(h) := (h)0 − (h)∞,

where (h)0 and (h)∞ denote the zero–locus (resp. the pole–locus) of h taken with multiplicities.

More precisely, for every x in M , one can write the function h as h = fx

gx
near x. If V is

an irreducible analytic hypersurface containing x, we define the order of h along V at x to be
o(fx, V )− o(gx, V ), and this is a well–defined integer independent on x, denoted by o(h, V ). Then

(h) =
∑

V

o(h, V )V,
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where the above sum is finite since for every open set Ux where h = fx

gx
, there are only finitely

many irreducible analytic hypersurfaces along which fx of gx have non–vanishing order.

Similarly, if σ is a global meromorphic section of a line bundle L, one can define the order o(σ, V )
of σ along any irreducible analytic hypersurface V using local trivializations of L. This clearly
does not depend on the chosen trivialization, since the transition maps do not vanish, so they do
not contribute to the order. As before, one defines a divisor (σ) on M by

(σ) =
∑

V

o(σ, V )V.

If D =
∑

aiVi and fi are local defining functions for Vi near some x ∈ M (of course we can take
fi = 1 if Vi does not contain x), then the meromorphic function

∏

fai

i

is called a local defining function for D around x.

Definition 18.2. Two divisors D and D′ are called linearly equivalent if there exists some mero-
morphic function h such that

D = D′ + (h).

In this case we write D ≡ D′.

Clearly two meromorphic sections σ and σ′ of L define linearly equivalent divisors (σ) = (σ′)+(h),
where h is the meromorphic function defined by σ = σ′h.

18.2. Line bundles and divisors. To any divisor D we will associate a holomorphic line
bundle [D] on M in the following way. Take an open covering Uα of M and local defining
meromorphic functions hα forD defined on Uα. We define [D] to be the holomorphic line bundle on
M with transition functions gαβ := hα

hβ
. It is easy to check that gαβ are non–vanishing holomorphic

functions on Uα ∩ Uβ satisfying the cocycle conditions, and that the equivalence class of [D] does
not depend on the local defining functions hα.

Example. Let H denote the hyperplane {z0 = 0} in CPm and consider the usual open covering
Uα = {zα 6= 0} of CPm. Then 1 is a local defining function for H on U0 and z0

zα
are local defining

functions on Uα. The line bundle [H ] has thus transition functions gαβ =
zβ

zα
, which are exactly

the transition function of the hyperplane line bundle introduced in Section 3, which justifies its
denomination.

If D and D′ are divisors, then clearly [−D] = [D]−1 and [D +D′] = [D] ⊗ [D′]. We call Div(M)
the group of divisors on M , and Pic(M) := H1(M,O) the Picard group of equivalence classes
of holomorphic line bundles (where O denotes the sheaf of holomorphic functions). Then the
arguments above show that there exists a group homomorphism

[ ] : Div(M) → Pic(M) D 7→ [D].

Notice that the line bundle associated to a divisor (h) is trivial for every meromorphic function
h. This follows directly from the definition: for any open cover Uα on M , h|Uα

is a local defining
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function for the divisor (h) on Uα, so the transition functions for the line bundle [(h)] are equal
to 1 on any intersection Uα ∩ Uβ. Thus [ ] descends to a group homomorphism

[ ] : Div(M)/≡−→Pic(M).

Suppose now that [D] = 0 for some divisor D on M . That means that the line bundle [D] is trivial,
so there exists an open cover {Uα} of M and holomorphic non–vanishing functions fα : Uα → C∗

such that
fα
fb

= gαβ =
hα
hb

on Uα ∩ Uβ,

where hα is a local defining meromorphic function for D on Uα. This shows the existence of a
global meromorphic function H on M such that H|Uα

= hα

fα
. Moreover, as fα does not vanish on

Uα, the divisor associated to H is just D. This proves the injectivity of [ ] on isomorphism classes
of divisors.

Every holomorphic line bundle of a projective manifold has a global meromorphic section (see [2]
p.161). If L ∈ Pic(M) is a holomorphic line bundle, we have seen that a global meromorphic
section σ of L defines a divisor (σ) on M . We claim that [(σ)] = L. If gαβ denote the transition
functions of L with respect to some trivialization (Uα, ψα), the meromorphic section σ defines
meromorphic functions σα on Uα such that gαβ = σα

σβ
. From the definition, σα is a defining

meromorphic section for (σ) on Uα, thus L is just the line bundle associated to (σ). We have
proved the

Theorem 18.3. If the manifoldM is projective, the homomorphism [ ] descends to an isomorphism

Div(M)/≡
∼=−→ Pic(M).

18.3. Adjunction formulas. Let V ⊂ M be a smooth complex hypersurface of a compact
complex manifold M . We will show that the normal and co–normal bundles of V in M can be
computed in terms of the divisor V .

Proposition 18.4. (First adjunction formula) The restriction to V of the line bundle [V ] asso-
ciated to the divisor V is isomorphic to the holomorphic normal bundle of V in M :

NV = [V ]|V .

Proof. Let i : V → M be the inclusion of V into M . By definition, the normal bundle NV

is the co–kernel of the inclusion i∗ : T 1,0V → T 1,0M |V and its dual, the co–normal bundle N∗
V , is

defined as the kernel of the projection i∗ : Λ1,0M |V → Λ1,0V . Thus N∗
V is spanned by holomorphic

(1, 0)–forms on M vanishing on V .

Let fα be local defining functions for V on some open covering Uα. By definition, the quotients
gαβ := fα

fβ
are the transition functions of [V ] on Uα ∩ Uβ. Moreover, since fα vanishes along V

which is smooth, we see that dfα|V is a non–vanishing local section of N∗
V . Now, since fα = gαβfβ,

we get

dfα|V = (fβdgαβ + gαβdfβ)|V = gαβ|V dfβ|V .
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Thus the collection (Uα, dfα|V ) defines a global holomorphic section ofN∗
V⊗[V ]|V , showing that this

tensor product bundle is trivial. This proves that N∗
V = [−V ]|V and consequently NV = [V ]|V . �

Consider now the exact fibre bundle sequence

0 → N∗
V → Λ1,0M |V → Λ1,0V → 0.

Taking the maximal exterior power in this exact sequence yields

KM |V ' KV ⊗N∗
V = KV − [V ]|V ,

so

KV ' (KM ⊗ [V ])|V .
This is the second adjunction formula.

We will use the following theorem whose proof, based on the Kodaira vanishing theorem, can be
found in [2], p. 156.

Theorem 18.5. (Lefschetz Hyperplane Theorem). Let V be a smooth analytic hypersurface in
a compact complex manifold M2m such that [V ] is positive. Then the linear maps H i(M,C) →
H i(V,C) induced by the inclusion V → M are isomorphisms for i ≤ m − 2 and injective for
i = m− 1. If m ≥ 3 then π1(M) = π1(V ).

Our main application will be the following result on complete intersections in the complex pro-
jective space.

Theorem 18.6. Let P1, · · ·Pk be homogeneous irreducible relatively prime polynomials in m + 1
variables of degrees d1, . . . dk. Let N denote the subset in CPm defined by these polynomials:

N := {[z0 : . . . : zm] ∈ CPm | Pi(z0, . . . , zm) = 0, ∀1 ≤ i ≤ k}.
Then, if N is smooth, we have KN ' [qH ]|N , where q = (d1 + . . . + dk) − (m + 1) and H is the
hyperplane divisor in CPm.

Proof. Notice first that N is smooth for a generic choice of the polynomials Pi. We denote
by Vi the analytic hypersurface in CPm defined by Pi and claim that

(75) Vi ∼= diH.

This can be seen as follows. While the homogeneous polynomial Pi is not a well–defined function
on CPm, the quotient hi := Pi

z
di
0

is a meromorphic function. More precisely, hi is defined by

the collection (Uα,
Pi

z
di
α

,
z

di
0

z
di
α

). Clearly the zero–locus of hi is (hi)0 = Vi and the pole–locus is

(hi)∞ = diH0, where H0 is just the hyperplane {z0 = 0}. This shows that (hi) = Vi − diH0, thus
proving our claim.

Let now, for i = 1, . . . , k, Ni denote the intersection of V1, . . . , Vi. Since Ni+1 = Ni∩Vi+1, we have

(76) [Ni+1]|Ni
= [di+1H ]|Ni

.
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This follows from the fact that if V is an irreducible hypersurface in a projective manifold M and
N is any analytic submanifold in M then

[V ]|N ' [V ∩N ].

We claim that

(77) KNi
' [niH ]|Ni

,

where ni := (d1 + . . . + di) − (m+ 1). For i = 1 this follows directly from the second adjunction
formula together with (75), using the fact that KCPm = [−(m + 1)H ]. Suppose that the formula
holds for some i ≥ 1. The second adjunction formula applied to the hypersurface Ni+1 of Ni,
together with (76) yields

KNi+1
= ([Ni+1] ⊗KNi

)Ni+1
= ([di+1H ] ⊗ [niH ])|Ni+1

= [ni+1H ]|Ni+1
.

Thus (77) is true for every i, and in particular for i = k. This finishes the proof. �

Corollary 18.7. Let d1, . . . , dk be positive integers and denote their sum by m+1 := d1+. . .+dk.
Suppose that m ≥ k + 3. If P1, · · ·Pk are generic homogeneous irreducible polynomials in m + 1
variables of degrees d1, . . . dk, then the manifold

N := {[z0 : . . . : zm] ∈ CPm | Pi(z0, . . . , zm) = 0, ∀1 ≤ i ≤ k}
carries a unique (up to rescaling) Ricci–flat Kähler metric compatible with the complex structure
induced from CPm. Endowed with this metric, N is Calabi–Yau.

Proof. Theorem 18.6 shows that the first Chern class of N vanishes. The condition m ≥ k+3
together with Lefschetz Hyperplane Theorem applied inductively to the analytic hypersurfaces
Ni ⊂ Ni+1 show that N is simply connected and b2(N) = b2(CPm) = 1, and moreover the
restriction of the Kähler form of CPm to N is a generator of the second cohomology group of N .
The Calabi conjecture shows that there exists a unique Ricci–flat metric on N up to rescaling.
If this metric were reducible, we would have at least two independent elements in the second
cohomology of N , defined by the Kähler forms of the two factors. Since b1(N) = 1 this is
impossible. Thus N is either Calabi–Yau or hyperkähler. The latter case is however impossible,
since every compact hyperkähler manifold has a parallel (2, 0)–form, thus its second Betti number
cannot be equal to 1. �
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