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1. Introduction

An enumerative invariant theory in Algebraic or Differential
Geometry is the study of invariants Iα(τ) which ‘count’
τ -semistable objects E with fixed topological invariants JEK = α in
some geometric problem, usually by means of a virtual class
[Mss

α (τ)]virt for the moduli space Mss
α (τ) of τ -semistable objects

in some homology theory, with Iα(τ) =
∫
[Mss

α (τ)]virt
µα for some

natural cohomology class µα. We call the theory C-linear if the
objects E live in a C-linear additive category A. For example:

Invariants counting semistable vector bundles on curves.

Mochizuki-style invariants counting coherent sheaves on
surfaces. (Think of as algebraic Donaldson invariants.)

Donaldson–Thomas invariants of Calabi–Yau or Fano 3-folds.

Donaldson–Thomas type invariants of Calabi–Yau 4-folds.

Invariants counting representations of quivers Q.

U(m) Donaldson invariants of 4-manifolds.
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I have proved that many such theories in Algebraic Geometry, in
which either the moduli spaces are automatically smooth (e.g.
coherent sheaves on curves, quiver representations), or the
invariants are defined using Behrend–Fantechi obstruction theories
and virtual classes, share a common universal structure.
I expect this universal structure also to extend to Calabi–Yau
4-fold invariants defined using Borisov–Joyce / Oh–Thomas virtual
classes, and to Donaldson invariants in Differential Geometry.
Here is an outline of this structure:
(a) We form two moduli stacks M,Mpl of all objects E in A,

where M is the usual moduli stack, and Mpl the ‘projective
linear’ moduli stack of objects E modulo ‘projective
isomorphisms’, i.e. quotient by λ idE for λ ∈ Gm.

(b) We are given a quotient K0(A)� K (A), where K (A) is the
lattice of topological invariants JEK of E (e.g. fixed Chern
classes). We split M =

∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α .

(c) There is a symmetric biadditive Euler form
χ : K (A)× K (A)→ Z.
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(d) We can form the homology H∗(M),H∗(Mpl) over Q, with
H∗(M) =

⊕
α∈K(A)H∗(Mα), H∗(Mpl) =

⊕
α∈K(A)H∗(M

pl
α ).

Define shifted versions Ĥ∗(M), Ȟ∗(Mpl) by

Ĥn(Mα) = Hn−χ(α,α)(Mα), Ȟn(Mpl
α ) = Hn+2−χ(α,α)(Mpl

α ).

Then previous work by me (later) makes Ĥ∗(M) into a graded
vertex algebra, and Ȟ∗(Mpl) into a graded Lie algebra.

(e) There is a notion of stability condition τ on A. When
A = coh(X ), this can be Gieseker stability for a polarization
on X . For each α ∈ K (A) we can form moduli spaces
Mst

α (τ) ⊆Mss
α (τ) of τ -(semi)stable objects in class α. Here

Mst
α (τ) is a substack of Mpl

α , and is a C-scheme with perfect
obstruction theory. Also Mss

α (τ) is proper. Thus, if
Mst

α (τ) =Mss
α (τ) we have a virtual class [Mss

α (τ)]virt, which
we regard as an element of H∗(Mpl

α ). The virtual dimension is
vdimR[Mss

α (τ)]virt = 2− χ(α, α), so [Mss
α (τ)]virt lies in

Ȟ0(Mpl
α ) ⊂ Ȟ0(Mpl), which is a Lie algebra by (d).
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(f) For many theories, there is a problem defining the invariants
[Mss

α (τ)]virt when Mst
α (τ) 6=Mss

α (τ), i.e. when the moduli
spaces Mss

α (τ) contain strictly τ -semistable points.
I give a systematic way to define [Mss

α (τ)]virt in homology
over Q (not Z) in these cases, using auxiliary pair invariants.
(This method is well known, e.g. in Joyce–Song D–T theory.)
I prove the [Mss

α (τ)]virt are independent of the choices used in
the pair invariant method.

(g) If τ, τ̃ are stability conditions and α ∈ K (A), I prove a wall
crossing formula

[Mss
α (τ̃)]virt =

∑
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .
[
[Mss

α1
(τ)]virt,

[Mss
α2

(τ)]virt
]
, . . .

]
, [Mss

αn
(τ)]virt

]
, (1)

where Ũ(−) are combinatorial coefficients defined in my
previous work on wall-crossing formulae for motivic invariants,
and [ , ] is the Lie bracket on Ȟ0(Mpl) from (d).
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(h) In some theories the natural obstruction theory on
Mst

α (τ) =Mss
α (τ) has a trivial summand Coα in its

obstruction sheaf for oα > 0, and so the virtual class
[Mss

α (τ)]virt is zero. In these cases one defines a reduced
obstruction theory on Mst

α (τ) by deleting the Coα factor, and
obtains reduced virtual classes [Mss

α (τ)]red. For example, this
holds for coherent sheaves on surfaces X with geometric
genus pg > 0, with oα = pg when rankα > 0.
My theory extends to ‘reduced’ invariants, allowing oα to
depend on α ∈ K (A) with oα + oβ > oα+β, giving invariants
[Mss

α (τ)]red in Ȟ2oα(Mpl
α ). Generalizing (1), they satisfy the

wall crossing formula

[Mss
α (τ̃)]red =

∑
α1+···+αn=α:
oα1+···+oαn=oα

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .
[
[Mss

α1
(τ)]red,

[Mss
α2

(τ)]red
]
, . . .

]
, [Mss

αn
(τ)]red

]
. (2)

If oα=o>0 for all α this reduces to [Mss
α (τ̃)]red =[Mss

α (τ)]red,
that is, the invariants are independent of stability condition.
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(i) The next part is not written up in detail yet.
When A = coh(X ) or Db coh(X ) for X a Calabi–Yau 3-fold,
the natural obstruction theory on Mss

α (τ) has terms in degree
−2 from Ext3(E ,E ). We can remove these by taking
trace-free Ext to define Donaldson–Thomas invariants,
changing the real virtual dimension by 2.
To include these in the theory, for A odd Calabi–Yau we can
modify (d) above to make Ĥ∗(M) into a graded vertex Lie
algebra (with grading changed by 2) and Ȟ∗(Mpl) into a
graded Lie algebra (with grading changed by 2), as before.
So we can include Donaldson–Thomas theory in our picture.
For ordinary D–T invariants this does not add much to the
Joyce–Song / Kontsevich–Soibelman picture. However, for a
local Calabi–Yau 3-fold with an action of a group G (e.g. Gm

acting on KX for X a surface) we can do Donaldson–Thomas
theory in G -equivariant homology, giving non-motivic invariants,
with applications to Thomas’ equivariant Vafa–Witten theory.
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2. Vertex and Lie algebras on homology of moduli stacks
2.1. Vertex algebras (don’t try to understand this slide.)

Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D(n) : V → V for
n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ Z, with vn R-linear in v , and a distinguished element 1 ∈ V
called the identity or vacuum vector, satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n� 0.
(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.
(iii) If v ∈V then vn(1)=D(−n−1)(v) for n<0 and vn(1)=0 for n>0.
(iv) un(v) =

∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and

n ∈ Z, where the sum makes sense by (i), as it has only finitely
many nonzero terms.
(v) (ul(v))m(w)=

∑
n>0

(−1)n
( l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for all u, v ,w ∈ V and l ,m ∈ Z, where the sum makes sense by (i).
We can also define graded vertex algebras and vertex superalgebras.
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It is usual to encode the maps un : V → V for n ∈ Z in generating
function form as R-linear maps for each u ∈ V

Y (u, z) : V −→ V [[z , z−1]], Y (u, z) : v 7−→
∑

n∈Z un(v)z−n−1,

where z is a formal variable. The Y (u, z) are called fields, and
have a meaning in Physics. Parts (i)–(v) may be rewritten as
properties of the Y (u, z). One interesting property is this: for all
u, v ,w ∈ V there exist N � 0 depending on u, v such that

(y − z)NY (u, y)Y (v , z)w = (y − z)NY (v , z)Y (u, y)w . (2)

There may be a V -valued rational function R(y , z) with poles
when y = 0, z = 0 and y = z , such that the l.h.s. of (2) is a
formal Laurent series convergent to R(y , z) when 0 < |y | < |z |,
and the r.h.s. converges to R(y , z) when 0 < |z | < |y |.
Think of u ∗z v = Y (u, z)v as a multiplication on V depending on
a complex variable z , with poles at z = 0. Very roughly, V is a
commutative associative algebra under ∗z , with identity 1, except
the formal power series and poles make everything more complicated.
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Any commutative algebra (V ,1, ·) with derivation D is a vertex
algebra, with Y (u, z)v = (ezDu) · v , so no poles, where
un(v) =

(
1

(n+1)!D
n+1u

)
· v for n > −1, and un(v) = 0 for n < −1.

We call such V a commutative vertex algebra. All
non-commutative vertex algebras are infinite-dimensional, so even
the simplest nontrivial examples are large, complicated objects,
which are difficult to write down.
Let R be a field of characteristic zero. A vertex operator algebra
(VOA) over R is a vertex algebra V over R, with a distinguished
conformal element ω ∈ V and a central charge cV ∈ R, such that
writing Ln = ωn+1 : V∗ → V∗, the Ln define an action of the
Virasoro algebra on V∗, with central charge cV , and L−1 = D(1).
VOAs are important in Physics. We will give a geometric
construction of vertex algebras, but often they will not be VOAs.
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If V is a (graded/super) vertex algebra then V /〈D(k)(V ), k > 1〉
is a (graded/super) Lie algebra, with Lie bracket[
u+〈D(k)(V ), k>1〉, v+〈D(k)(V ), k>1〉

]
=u0(v)+〈D(k)(V ), k>1〉.

Vertex algebras were introduced in mathematics by Borcherds, who
noticed that certain infinite-dimensional Lie algebras important in
Representation Theory were constructed as V /〈D(k)(V ), k > 1〉.
For example, Kac–Moody Lie algebras are (Lie subalgebras of) the
Lie algebras associated to lattice vertex algebras.
Vertex algebras are used in Representation Theory, both of
infinite-dimensional Lie algebras, and in Moonshine – the Monster
may be characterized as the symmetry group of a certain
infinite-dimensional vertex algebra.
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2.2. Vertex and Lie algebras on homology of moduli stacks

Let A be a C-linear abelian or triangulated category from Algebraic
Geometry or Representation Theory, e.g. A = coh(X ) or Db coh(X )
for X a smooth projective C-scheme, or A = mod-CQ or Db mod-CQ.
Write M for the moduli stack of objects in A, which is an Artin
C-stack in the abelian case, and a higher C-stack in the
triangulated case. There is a morphism Φ :M×M→M acting
by ([E ], [F ])→ [E ⊕ F ] on C-points.
Now Gm acts on objects E in A with λ ∈ Gm acting as
λ idE : E → E . This induces an action Ψ : [∗/Gm]×M→M of
the group stack [∗/Gm] on M. We write Mpl =M/[∗/Gm] for
the quotient, called the ‘projective linear’ moduli stack. There is a
morphism M→Mpl which is a [∗/Gm]-fibration on M\ {[0]}.
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We need some extra data:

A quotient K0(A)� K (A) giving splittings
M =

∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α .

A symmetric biadditive Euler form χ : K (A)× K (A)→ Z.

A perfect complex Θ• on M×M satisfying some
assumptions, including rankΘ•|Mα×Mβ

= χ(α, β).
If A is a 4-Calabi–Yau category, and we will use Borisov–Joyce
virtual classes, we take Θ• = (Ext•)∨, where Ext• →M×M
is the Ext complex. Otherwise we take Θ• = (Ext•)∨ ⊕
σ∗(Ext•), where σ :M×M→M×M swaps the factors.

Signs εα,β ∈ {±1} for α, β ∈ K (A) with εα,β · εα+β,γ =
εα,β+γ · εβ,γ and εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β).
(These compare orientations on Mα,Mβ,Mα+β.)

Then we can make the homology H∗(M), with grading shifted to
Ĥ∗(M) as above, into a graded vertex algebra.
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Writing H∗([∗/Gm]) = Q[t] with deg t = 2, the state-field
correspondence Y (z) is given by, for u ∈ Ha(Mα), v ∈ Hb(Mβ)

Y (u, z)v = εα,β(−1)aχ(β,β)zχ(α,β) · H∗
(
Φ ◦ (Ψ× id)

)
(3){(∑

i>0
z i t i
)
�
[
(u�v)∩exp

(∑
j>1

(−1)j−1(j−1)!z−j chj([Θ•])
)]}

.

The identity 1 is 1 ∈ H0(M0). Define ezD : Ȟ∗(M)→ Ȟ∗(M)[[z ]]
by Y (v , z)1 = ezDv . Then (Ȟ∗(M),1, ezD ,Y ) is a graded vertex
algebra, so Ȟ∗+2(M)/D(Ȟ∗(M)) is a graded Lie algebra. In the
abelian category case at least, there is a canonical isomorphism
Ȟ∗(Mpl) ∼= Ȟ∗+2(M)/D(Ȟ∗(M)). This makes Ȟ∗(Mpl) into a
graded Lie algebra, and Ȟ0(Mpl) into a Lie algebra.
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Remarks

• One can often write down Ȟ∗(M) and Ȟ∗(Mpl) with their
algebraic structures explicitly. The answer is usually simpler in the
derived category case. For example, my student Jacob Gross
showed that if a smooth projective C-scheme X is a curve, surface,
or toric variety, and M is the moduli stack of Db coh(X ), then

Ĥ∗(M,Q) ∼= Q[K 0
sst(X )]⊗Q Sym∗

(
K 0(X an)⊗Z t2Q[t2]

)
⊗Q

∧
∗(K 1(X an)⊗Z tQ[t2]

)
, (4)

with a super-lattice vertex algebra structure. Thus we can use this
for explicit computations in examples, as well as for abstract theory.
• It helps to study [Mss

α (τ)]virt in coh(X ) using H∗(M), H∗(Mpl)
for Db coh(X ), so we can use the presentation (4).
• Although Lie algebras are much simpler than vertex algebras, it is
difficult to write down the Lie bracket on Ȟ∗(Mpl) explicitly: the
best way seems to be via the vertex algebra structure on Ĥ∗(M).
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3. Enumerative invariants
3.1. Virtual classes of moduli spaces

The vertex and Lie algebras Ĥ∗(M), Ȟ∗(Mpl) above work for M
the moduli stack of objects in coh(X ) or Db coh(X ) for X a smooth
projective C-scheme of any dimension. However, defining virtual
classes [Mss

α (τ)]virt when Mst
α (τ)=Mss

α (τ) is much more restrictive:

If dimA = 1, say if A = mod-CQ or A = coh(X ) for X a
curve, then Mss

α (τ) is a smooth projective C-scheme, and has
a fundamental class [Mss

α (τ)]fund.
If dimA = 2, say if A = mod-CQ/I or A = coh(X ) for X a
surface, then Mss

α (τ) is a projective C-scheme with obstruction
theory, and has a Behrend–Fantechi virtual class [Mss

α (τ)]virt.
If A = coh(X ) for X a Calabi–Yau or Fano 3-fold, one can
also define Behrend–Fantechi virtual classes [Mss

α (τ)]virt.
If A = coh(X ) for X a Calabi–Yau 4-fold, Borisov–Joyce
define a different kind of virtual class [Mss

α (τ)]virt, with half
the expected dimension of the Behrend–Fantechi class.
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On moduli stacks and moduli schemes

There are two main ways of forming moduli spaces in Algebraic
Geometry: as schemes or stacks. An important difference is that if
M is a moduli stack of objects E , then automorphism groups are
remembered in the isotropy groups of M by IsoM([E ]) = Aut(E ),
but moduli schemes forget automorphism groups.
Our moduli stacks M,Mpl differ in that their isotropy groups are
IsoM([E ]) = Aut(E ), but IsoMpl([E ]) = Aut(E )/(Gm · idE ).
If E is τ -stable then Aut(E ) = Gm · idE , so IsoMpl([E ]) = {1}.
Because of this, the τ -stable moduli scheme Mst

α (τ) is actually an
open substack inMpl (but notM). This makesMpl useful for us.
The τ -semistable moduli scheme Mss

α (τ) has the good property
that it is usually compact (proper). But it has the bad properties
that it does not map to Mpl or M, and the obstruction theory (or
other nice structure) on Mst

α (τ) does not extend to Mss
α (τ), so we

cannot define a virtual class [Mss
α (τ)]virt unless Mst

α (τ) =Mss
α (τ).
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3.2. The case of quivers

Let Q = (Q0,Q1, h, t) be a quiver, with finite sets Q0 of vertices
and Q1 of edges, and head and tail maps h, t : Q1 → Q0. Then we
have a C-linear abelian category mod-CQ of representations
(Vv , ρe) of Q, comprising a finite-dimensional C-vector space Vv

for each v ∈ Q0 and a linear map ρe : Vt(e) → Vh(e) for each e ∈ Q1.

The dimension vector of (Vv , ρe) is d ∈ NQ0 , where d (v) = dimVv .
We can work out our theory very explicitly for A = mod-CQ. We
take K (A) = ZQ0 . Then M =

∐
d∈NQ0Md , Mpl =

∐
d∈NQ0M

pl
d ,

where Md = [Rd/GLd ], Mpl
d = [Rd/PGLd ] with

Rd =
∏

e∈Q1
Hom(Ct(d (e)),Ch(d (e))), GLd =

∏
v∈Q0

GL(d (v)),

and PGLd = GLd /Gm. Hence H∗(Md ) ∼= H∗(B GLd ) and

H∗(Mpl
d ) ∼= H∗(B PGLd ), which we can write explicitly.
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Slope stability conditions

Fix µv ∈ R for all v ∈ Q0. Define µ : NQ0 \ {0} → R by

µ(d ) =
(∑

v∈Q0
µvd (v)

)/(∑
v∈Q0

d (v)
)
.

We call µ a slope function. An object 0 6= E ∈ mod-CQ is called
µ-semistable (or µ-stable) if whenever 0 6= E ′ ( E is a subobject
we have µ(dimE ′) > µ(dimE ) (or µ(dimE ′) > µ(dimE )).

Recall that Mpl
d = [Rd/PGLd ] as a quotient stack. King (1994)

showed that there is a linearization θ of the action of PGLd on
Rd , such that a C-point [E ] ∈ [Rd/PGLd ] is µ-(semi)stable in
mod-CQ iff the corresponding point in Rd is GIT (semi)stable.
Hence there are moduli schemes Mst

d (µ) ⊆Mss
d (µ) which are the

GIT (semi)stable quotients Rd//
st
θ PGLd ⊆ Rd//

ss
θ PGLd .

If Q has no oriented cycles then a Gm subgroup of PGLd acts on
Rd with positive weights, so Mss

d (µ) = Rd//
ss
θ PGLd is a

projective C-scheme. Also Mst
d (µ) = Rd//

st
θ PGLd is a smooth

quasi-projective C-scheme, an open substack of Mpl
d = [Rd/PGLd ].
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Thus, if Q has no oriented cycles, and µ is a slope function on
mod-CQ, and d ∈ NQ0 \ {0} with Mst

d (µ) =Mss
d (µ), then

Mss
d (µ) is a smooth projective C-scheme and an open substack of

Mpl
d , and has a fundamental class [Mss

d (µ)]fund in H∗(Mpl
d ). It

has dimension 2− χ(d ,d ), where χ : ZQ0 × ZQ0 → Z is

χ(d , e) = 2
∑

v∈Q0

d (v)e(v)−
∑

e∈Q1

(d (h(e))e(t(e))+d (t(e))e(h(e))).

Theorem 1 (Gross–Joyce–Tanaka arXiv:2005.05637.)

Let Q be a quiver with no oriented cycles. Then for all slope
functions µ on mod-CQ and d ∈ NQ0 \ {0}, there exist unique

classes [Mss
d (µ)]virt ∈ H2−χ(d ,d )(M

pl
d ) = Ȟ0(Mpl

d ) such that:

(i) If Mst
d (µ) =Mss

d (µ) then [Mss
d (µ)]virt = [Mss

d (µ)]fund.

(ii) The [Mss
d (µ)]virt transform according to the wall-crossing

formula (1) above in the Lie algebra Ȟ0(Mpl) under change
of stability condition.
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In arXiv:2111.04694 I generalize Theorem 1 to many other
situations in Algebraic Geometry. The general format is that I
prove that, given an abelian category A (e.g. A = mod-CQ or
A = coh(X )) and a lot of extra data (stability conditions, moduli
stacks, Behrend–Fantechi obstruction theories, . . . ) satisfying a
long list of assumptions, then I can define enumerative invariants
and prove they satisfy wall-crossing formulae (1) and (2). Then I
define the data and verify the assumptions in my favourite
examples (e.g. A = coh(X ) for X a curve, surface or Fano 3-fold).
The proofs are very long and complicated (the paper is 302 pages).
The rough idea for the WCF proof is that for ‘simple’
wall-crossings, involving splittings E = E1 ⊕ · · · ⊕ En in A for n at
most 2, I can prove the WCF (with splittings α = α1 + · · ·+αn for
n 6 2) by Gm-localization on a master space. Then I show that
complicated wall-crossings in A can be reduced to a sequence of
simple wall-crossings in an auxiliary category B in an exact sequence

0 // A // B // mod-CQ // 0.
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3.3. Counting coherent sheaves on surfaces

This section is work in progress.
Let X be a complex projective surface, with geometric genus
pg = 1

2(b2+(X )− 1) > 0. Write K (coh(X )) for the image of
K 0(coh(X )) in the topological K-theory K 0

top(X ). Consider
stability conditions (τ,T ,6) on coh(X ) which are either Gieseker
or µ-stability with respect to a real Kähler class ω on X . Then my
theory defines invariants [Mss

α (τ)]virt for α ∈ K (coh(X )). When
pg > 0 we take these to be reduced invariants.
Write M for the (higher) moduli stack of objects in Db coh(X ),
and Mpl for its projective linear version. They split as
M =

∐
α∈K(coh(X ))Mα and Mpl =

∐
α∈K(coh(X ))M

pl
α . We

consider the invariants [Mss
α (τ)]virt to lie in

H∗(M
pl
α ) ∼= H∗(Mα)/D(H∗(Mα)). For rankα > 0 there is a

systematic way to lift the invariants (and the Lie bracket) from

H∗(M
pl
α ) to H∗(Mα). So we take [Mss

α (τ)]virt to lie in H∗(Mα).
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Work of Jacob Gross gives explicit isomorphisms with polynomial
superalgebras

H∗(Mα) ∼= eαQ[sjkl : k = 0, . . . , 4, j = 1, . . . , bk(X ), l > k/2],

H∗(M) ∼=
⊕

α∈K(coh(X )) e
αQ[sjkl , ∀j , k, l ],

where eα is a formal symbol, and sjkl is a graded formal variable
with deg sjkl = 2l − k , and variables of odd degree anticommute.
Roughly speaking, sjkl is a dual variable to Sjkl = chl(U•α) \ ejk in
H2l−k(Mα), where U•α → X ×Mα is the universal complex and

(ejk)
bk (X )
j=1 is a basis for Hk(X ,Q).

We can also write the vertex algebra structure explicitly in this
representation.
Thus we may write [Mss

α (τ)]virt = eαPα(sjkl), for Pα a
superpolynomial homogeneous of degree 2 vdimCMss

α (τ).
I aim to compute the invariants [Mss

α (τ)]virt as explicitly as I can,
as functions of the formal variables sjkl .
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Applying my WCF in an abelian category of ‘pairs’
ρ : V ⊗C L→ E , for V ∈ VectC, E ∈ coh(X ) and L→ X a fixed
line bundle, there is an algorithm to compute [Mss

α (τ)]virt for
rankα = r > 0 in terms of rank 1 pair and sheaf invariants, by
induction on r . For example, if pg > 0 and r > 0 I can prove that

∑
k∈ 1

2
Z: 2k−

∫
X α

2∈2Z

q
vdimCMss

(r,α,k)(τ)
[Mss

(r ,α,k)(τ)]virt

e(r ,α,k)

=
∑

β1,...,βr−1∈H2(X ,Z)

r−1∏
a=1

SW(βa) · Fr (α, β1, . . . , βr−1, q, sjkl ∀j , k , l),

where SW(βa) are Seiberg–Witten invariants and Fr is a universal
function, and I can say a lot about the form of Fr . Using this I
hope to be able to prove a number of conjectures in the literature.
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