
Riemannian holonomy

groups and

calibrated geometry

Dominic Joyce, Oxford

Lectures 3 and 4.

Introduction to

holonomy groups

These slides available at

www.maths.ox.ac.uk/∼joyce/talks.html

1



2. Holonomy groups
2.1 Parallel transport

Let ∇E be a connection on a
vector bundle E → M . Let γ :
[0,1] → M be a smooth curve
with γ(0) = x and γ(1) = y.
Then γ∗(∇E) is a connection
on γ∗(E) → [0,1].
For each e ∈ Ex there is a
unique section s of γ∗(E) with
s(0) = e and γ∗(∇E)s ≡ 0.
Define Pγ(e) = s(1). Then
Pγ : Ex → Ey is the parallel
transport map.
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Think of a connection ∇E on
E → M as identifying nearby
fibres Ex, Ex′ for x, x′ close
together in M .

Parallel transport identifies the
fibres of E all along a curve γ,
so we can drag vectors along γ.
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2.2 Holonomy groups
Let ∇E be a connection on a
vector bundle E → M . Fix
x ∈ M . Let γ : [0,1] → M

be a piecewise-smooth loop
based at x, so that γ(0) =
γ(1) = x. Then Pγ is an in-
vertible linear map Ex → Ex.
The holonomy group Holx(∇E)
of ∇E is the set of parallel
transports Pγ for all piecewise-
smooth loops γ based at x.
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Some properties of Holx(∇E):
• It’s a Lie subgroup of GL(Ex).
• Identify Ex

∼= Rn, so that
Holx(∇E) ⊆ GL(n,R). Then
Holx(∇E) is independent of
basepoint x ∈ M , up to
conjugation in GL(n,R).

• If M is simply-connected,
then Holx(∇E) is connected.

• Let holx(∇E) be the Lie
algebra of Holx(∇E). Then
R(∇E)x ∈ holx(∇E) ⊗ Λ2T ∗M
in End(Ex)

⊗ Λ2T ∗M .
5



Now let ∇ be a connection
on TM . Then ∇ also acts on
⊗kTM

⊗⊗lT ∗M . A constant
tensor S satisfies ∇S = 0.
If S is constant then Sx is
invariant under the action of
Holx(∇) on ⊗kTxM

⊗⊗lT ∗xM .
Any Sx in ⊗kTxM

⊗⊗lT ∗xM in-
variant under Holx(∇) extends
to a unique constant tensor S

on M by parallel transport.
So the constant tensors on M

are determined by Holx(∇).
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2.3 Riemannian geometry
Let g be a Riemannian metric
on M . The Levi-Civita con-
nection is the unique, torsion-
free connection ∇ on TM with
∇g = 0. The Riemann curva-
ture R(∇) is a tensor Ra

bcd.
The Ricci curvature of g is
Rab = Rc

acb. It satisfies
Rab = Rba. We call g Einstein
if Rab = λgab for some λ ∈ R,
and Ricci-flat if Rab = 0.
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Define Rabcd=gaeRe
bcd. Then

Rabcd and ∇eRabcd satisfy the
equations

Rabcd + Radbc + Racdb = 0, (1)

∇eRabcd +∇cRabde +∇dRabec = 0, (2)

Rabcd = −Rabdc = −Rbacd = Rcdab. (3)

Eqns (1) and (2) are the first
and second Bianchi identities,
and hold as ∇ is torsion-free.
In (3), Rabcd = −Rabdc holds
as curvature is a 2-form, and
Rabcd=−Rbacd as ∇g = 0. The
last part follows from (1).

8



2.4 Riemannian holonomy
Let g be a Riemannian met-
ric on M , and x ∈ M . The
holonomy group Holx(g) of g

is the holonomy group Holx(∇)
of its Levi-Civita connection.
It is a closed Lie subgroup of

O(n), which up to conjuga-
tion in O(n) is independent
of basepoint x.
Riemannian holonomy groups
have stronger properties than
the general case.
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Regard the Lie algebra holx(g)
as a vector subspace of Λ2T ∗xM .
Using symmetries of Rabcd, eqn
(3) of §2.3, we find that Rabcd

lies in the vector subspace
S2 holx (g) in Λ2T ∗xM

⊗ Λ2T ∗xM

at each x∈M.
Thus, the holonomy group
imposes strong restrictions on
the curvature tensor Rabcd of
g. These are the basis of the
classification of Riemannian
holonomy groups.
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2.5 Reducible metrics
Let (P, g) and (Q, h) be
Riemannian manifolds
with dimP,dimQ > 0. The
product metric g×h on P ×Q

is given by g×h|(p,q) = g|p+h|q
for p ∈ P and q ∈ Q.
Proposition 2.1 The
holonomy groups satisfy
Hol(g × h) = Hol(g)×Hol(h).
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We call (M, g) irreducible if it
is not locally isometric to a
Riemannian product.
Theorem 2.2 Let (M, g) be
an irreducible Riemannian
n-manifold. Then the
representation of Hol(g) on
Rn is irreducible.
Proof. If Rn=Rk⊕Rl for Rk,Rl

subrepresentations of Hol(g),
can define a local isometry
M ∼= P × Q with dimP = k,
dimQ = l, so M is reducible.
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2.6 Symmetric spaces
A Riemannian manifold (M, g)
is a symmetric space if for
each p ∈ M there is an
isometry sp : M → M with
s2p = 1 such that p is an
isolated fixed point of sp.
Let G be the group of isome-
tries of (M, g) generated by
sq◦sr for all q, r ∈ M . Then G

is a connected Lie group and
M = G/H for some closed Lie
subgroup H of G.
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Symmetric spaces can be
classified completely using
Lie groups.
We call (M, g) locally symmet-
ric if it is locally isometric to
a symmetric space, and non-
symmetric otherwise.
Theorem 2.5 Let (M, g) have
Levi-Civita connection ∇ and
Riemann curvature R. Then
(M, g) is locally symmetric if
and only if ∇R = 0.
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2.7 Berger’s classification

Let M be a simply-connected
n-manifold and g an irreducible,
nonsymmetric Riemannian
metric on M . Then either
(i) Hol(g)=SO(n),
(ii) n=2m and Hol(g)=U(m),
(iii) n=2m and Hol(g)=SU(m),
(iv) n=4m and Hol(g)=Sp(m),
(v) n=4m and

Hol(g)=Sp(m)Sp(1),
(vi) n=7 and Hol(g)=G2, or
(vii) n=8 and Hol(g)=Spin(7).
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There are three assumptions
in Berger’s Theorem.
• As M is simply-connected,
Hol(g) is connected.

• As g is irreducible, Hol(g)
acts irreducibly on Rn.

• As g is nonsymmetric,
∇R 6≡ 0.

Each excludes some possible
holonomy groups. Without
them, the list of holonomy
groups would be much longer.
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2.8 A sketch proof
Let M be simply-connected
and g irreducible and nonsym-
metric, and let H = Hol(g).
Then H is a closed, connected
Lie subgroup of SO(n) acting
irreducibly on Rn.
Berger made a list of all such
subgroups up to conjugation,
and applied two tests to see
if each could be a holonomy
group. Berger’s list are the
groups passing both tests.
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Berger’s first test
Let Rabcd be the Riemann cur-
vature of g, and h the Lie al-
gebra of H. Then Rabcd ∈
S2h. Also we have
Rabcd+Radbc+Racdb=0, (1)
the first Bianchi Identity. Let
RH be the subset of S2h sat-
isfying (1). Now RH must
be big enough to generate h.
That is, a generic element of
RH cannot lie in S2g for g ⊂ h

a proper Lie subalgebra.
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If RH is too small, H fails the
first test.
Berger’s second test
Now ∇eRabcd lies in (Rn)∗ ⊗

RH,
and also satisfies
∇eRabcd +∇cRabde +∇dRabec = 0, (2)

the second Bianchi identity.
If these two requirements force
∇R = 0, then g is locally sym-
metric. This excludes such
H, the second test.
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2.9 Simons’ proof

The list of closed, connected Lie subgroups

of SO(n) acting transitively on Sn−1 is

known; it consists of Berger’s list together

with Sp(m)U(1) in SO(4m) and Spin(9) in

SO(16). Simons gave a general proof that

for M simply-connected and g irreducible

and nonsymmetric, H = Hol(g) acts tran-

sitively on Sn−1. It starts like this: if H is

not transitive we can choose orthonormal

x, z ∈ Rn with z orthogonal to Tx(H · x).
Then R · (x ∧ z) = 0 in End(Rn) for all

R ∈ RH. The proof is very algebraic.

We then exclude the cases Sp(m) U (1)

and Spin(9) to get an alternative proof of

Berger’s theorem.
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2.10 Understanding Berger’s list

The four inner product algebras are

R — real numbers.

C — complex numbers.

H — quaternions.

O — octonions,

or Cayley numbers.

Here C is not ordered,

H is not commutative,

and O is not associative.

Also we have C ∼= R2, H ∼= R4

and O ∼= R8, with ImO ∼= R7.
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Group Acts on

SO(m) Rm

O(m) Rm

SU(m) Cm

U(m) Cm

Sp(m) Hm

Sp(m)Sp(1) Hm

G2 ImO ∼= R7

Spin(7) O ∼= R8

Thus there are two holonomy
groups for each of R,C,H,O.
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Remarks on Berger’s list
(i) SO(n) is the holonomy
group of generic metrics.
(ii) Metrics g with Hol(g) ⊆
U(m) are called Kähler met-
rics, a natural class of metrics
on complex manifolds.
(iii) Metrics g with Hol(g) ⊆
SU(m) are called Calabi–Yau
metrics. They are Ricci-flat
and Kähler.
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(iv) Metrics g with Hol(g) ⊆
Sp(m) are called hyperkähler
metrics. They are also Ricci-
flat and Kähler.
(v) Metrics g with holonomy
group Sp(m)Sp(1) for m > 2
are called quaternionic Kähler
metrics. They are Einstein,
but not Kähler.
(vi) and (vii) G2 and Spin(7)
are the exceptional holonomy
groups.
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Common features
• The Kähler holonomy
groups are U(m), SU(m) and
Sp(m). Any Riemannian
manifold with one of these
holonomy groups is Kähler,
and thus a complex manifold.
• The Ricci-flat holonomy
groups are SU(m), Sp(m), G2
and Spin(7). Metrics with
these holonomy groups are
Ricci-flat, as RH has zero
Ricci component.
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2.11 Principal bundles

and G-structures

Let M be a manifold and G a Lie

group. A principal bundle over M

with fibre G is a manifold P with a

free (left) G-action and a smooth,

surjective map π : P → M whose

fibres are G-orbits, such that each

x ∈ M has an open neighbourhood

U ⊆ M with a diffeomorphism

π−1(U) ∼= U × G identifying π and

the G-action with the obvious pro-

jection U × G → G and G and G-

action on U ×G.
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Let M be a smooth manifold
of dimension n. The frame
bundle F of M is a princi-
pal bundle over M with fibre
GL(n,R). The points of F

are (n+1)-tuples (x, e1, . . . , en),
where x ∈ M and e1, . . . , en is
a basis for TxM . We have π :
(x, e1, . . . , en) 7→x, and GL(n,R)
fixes x and acts on e1, . . . , en

by change of basis,
A : (x, e1, . . . , en) 7→ (x, ẽ1, . . . , ẽn),

where ẽi =
∑n

j=1 Aijej.
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Let M be a manifold, P a
principal bundle over M with
fibre G and projection π : P →
M , and H a Lie subgroup of
G. A principal subbundle Q

of P with fibre H is a sub-
manifold Q of P closed under
the action of H on P , such
that the H-action on Q and
the restriction π|Q : Q → M

make Q into a principal bun-
dle over M with fibre H.
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Let M be a manifold of di-
mension n, and G be a Lie
subgroup of GL(n,R). A G-
structure on M is a princi-
pal subbundle P of the frame
bundle F of M with fibre G.

For example, if (M, g) is a Rie-
mannian manifold, let P be
the subset of (x, e1, . . . , en) in
F with e1, . . . , en an orthonor-
mal basis for TxM w.r.t. g|x.
All such bases are related by
matrices in O(n), so P is an
O(n)-structure.
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2.12 G-structures and

holonomy groups

Let M be an n-manifold and ∇ a

connection on TM . Fix x ∈ M and

a basis (e1, . . . , en) for TxM . This

identifies TxM ∼= Rn, so the holon-

omy group Holx(∇) lies in

GL(TxM) ∼= GL(n,R). Let G be a

Lie subgroup of GL(n,R) contain-

ing Holx(∇). Define Q to be the set

of (y, f1, . . . , fn) in the frame bundle

F of M , such that if γ : [0,1] → M

is a smooth path with γ(0) = x,

γ(1) = y, then there exists g ∈ G

with (Pγ ◦ g)ei = fi for i = 1, . . . , n.
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As Holx(∇) ⊆ G this is inde-
pendent of choice of γ, and
P is a G-structure on M .
Thus, a connection ∇ on TM
with holonomy in G induces a
G-structure on M . Can take
G = Holx(∇).
Let (M, g) be a Riemannian
manifold with Hol(g) = H ⊆
O(n) ⊂ GL(n,R). Then M
has a natural H-structure Q,
which is a principal subbun-
dle of the O(n)-structure P
constructed before.
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There is a notion of connec-
tion on principal bundles. A
(vector bundle) connection on
TM is equivalent to a (prin-
cipal bundle) connection on
the frame bundle F .
A connection ∇ on TM or F

has holonomy contained in G

iff there exists a G-structure
on M preserved by (closed
under) ∇.
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A G-structure Q is called
torsion-free if there exists a
torsion-free connection ∇ on
TM preserving Q. If G ⊆ O(n)
this ∇ is unique, and is the
Levi-Civita connection of the
Riemannian metric associated
to Q. Studying torsion-free
G-structures for G ⊆ O(n) is
equivalent to studying
metrics g with Hol(g) ⊆ G.
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