Riemannian holonomy groups and calibrated geometry Dominic Joyce, Oxford Lectures 3 and 4. Introduction to holonomy groups

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

2. Holonomy groups 2.1 Parallel transport

Let ∇^E be a connection on a vector bundle $E \to M$. Let γ : $[0,1] \to M$ be a smooth curve with $\gamma(0) = x$ and $\gamma(1) = y$. Then $\gamma^*(\nabla^E)$ is a connection on $\gamma^*(E) \to [0,1]$.

For each $e \in E_x$ there is a unique section s of $\gamma^*(E)$ with s(0) = e and $\gamma^*(\nabla^E)s \equiv 0$. Define $P_{\gamma}(e) = s(1)$. Then $P_{\gamma} : E_x \to E_y$ is the parallel transport map. Think of a connection ∇^E on $E \to M$ as identifying nearby fibres $E_x, E_{x'}$ for x, x' close together in M.

Parallel transport identifies the fibres of E all along a curve γ , so we can drag vectors along γ .

2.2 Holonomy groups Let ∇^E be a connection on a vector bundle $E \rightarrow M$. Fix $x \in M$. Let $\gamma : [0,1] \rightarrow M$ be a piecewise-smooth loop based at x, so that $\gamma(0) =$ $\gamma(1) = x$. Then P_{γ} is an invertible linear map $E_x \to E_x$. The holonomy group $Hol_x(\nabla^E)$ of ∇^E is the set of parallel transports P_{γ} for all piecewisesmooth loops γ based at x.

Some properties of $\operatorname{Hol}_x(\nabla^E)$:

- It's a *Lie subgroup* of $GL(E_x)$.
- Identify $E_x \cong \mathbb{R}^n$, so that $\operatorname{Hol}_x(\nabla^E) \subseteq \operatorname{GL}(n,\mathbb{R})$. Then $\operatorname{Hol}_x(\nabla^E)$ is independent of basepoint $x \in M$, up to conjugation in $\operatorname{GL}(n,\mathbb{R})$.
- If M is simply-connected, then $\operatorname{Hol}_x(\nabla^E)$ is connected.
- Let $\mathfrak{hol}_x(\nabla^E)$ be the *Lie* algebra of $\operatorname{Hol}_x(\nabla^E)$. Then $R(\nabla^E)_x \in \mathfrak{hol}_x(\nabla^E) \otimes \Lambda^2 T^*M$ in $\operatorname{End}(E_x) \otimes \Lambda^2 T^*M$.

Now let ∇ be a connection on TM. Then ∇ also acts on $\otimes^k TM \otimes \otimes^l T^*M$. A constant tensor S satisfies $\nabla S = 0$. If S is constant then S_x is invariant under the action of $\operatorname{Hol}_x(\nabla)$ on $\otimes^k T_x M \otimes \otimes^l T_x^* M$. Any S_x in $\otimes^k T_x M \otimes \otimes^l T_x^* M$ invariant under $Hol_x(\nabla)$ extends to a unique constant tensor Son M by parallel transport. So the constant tensors on Mare determined by $Hol_x(\nabla)$.

2.3 Riemannian geometry Let g be a Riemannian metric on M. The Levi-Civita con*nection* is the unique, torsionfree connection ∇ on TM with $\nabla g = 0$. The *Riemann curva*ture $R(\nabla)$ is a tensor R^a_{bcd} . The Ricci curvature of g is $R_{ab} = R^c_{acb}$. It satisfies $R_{ab} = R_{ba}$. We call g Einstein if $R_{ab} = \lambda g_{ab}$ for some $\lambda \in \mathbb{R}$, and *Ricci-flat* if $R_{ab} = 0$.

Define $R_{abcd} = g_{ae}R^{e}_{bcd}$. Then R_{abcd} and $\nabla_{e}R_{abcd}$ satisfy the equations

$$R_{abcd} + R_{adbc} + R_{acdb} = 0, \qquad (1)$$

$$\nabla_e R_{abcd} + \nabla_c R_{abde} + \nabla_d R_{abec} = 0, \quad (2)$$

 $R_{abcd} = -R_{abdc} = -R_{bacd} = R_{cdab}.$ (3)

Eqns (1) and (2) are the first and second Bianchi identities, and hold as ∇ is torsion-free. In (3), $R_{abcd} = -R_{abdc}$ holds as curvature is a 2-form, and $R_{abcd} = -R_{bacd}$ as $\nabla g = 0$. The last part follows from (1).

2.4 Riemannian holonomy Let g be a Riemannian metric on M, and $x \in M$. The holonomy group $\operatorname{Hol}_{x}(g)$ of g is the holonomy group $\operatorname{Hol}_x(\nabla)$ of its Levi-Civita connection. It is a closed Lie subgroup of O(n), which up to conjugation in O(n) is independent of basepoint x.

Riemannian holonomy groups have stronger properties than the general case. Regard the Lie algebra $\mathfrak{hol}_x(g)$ as a vector subspace of $\Lambda^2 T_x^* M$. Using symmetries of R_{abcd} , eqn (3) of §2.3, we find that R_{abcd} lies in the vector subspace $S^2 \mathfrak{hol}_x(g)$ in $\Lambda^2 T_x^* M \otimes \Lambda^2 T_x^* M$ at each $x \in M$.

Thus, the holonomy group imposes strong restrictions on the curvature tensor R_{abcd} of g. These are the basis of the classification of Riemannian holonomy groups.

2.5 Reducible metrics Let (P, g) and (Q, h) be **Riemannian** manifolds with dim P, dim Q > 0. The product metric $g \times h$ on $P \times Q$ is given by $g \times h|_{(p,q)} = g|_p + h|_q$ for $p \in P$ and $q \in Q$. **Proposition 2.1** The holonomy groups satisfy $Hol(q \times h) = Hol(q) \times Hol(h).$

We call (M,g) *irreducible* if it is not locally isometric to a Riemannian product.

Theorem 2.2 Let (M, g) be an irreducible Riemannian n-manifold. Then the representation of Hol(g) on \mathbb{R}^n is irreducible. *Proof.* If $\mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^l$ for $\mathbb{R}^k, \mathbb{R}^l$ subrepresentations of Hol(q), can define a local isometry $M \cong P \times Q$ with dim P = k, dim Q = l, so M is reducible.

2.6 Symmetric spaces A Riemannian manifold (M, q)is a symmetric space if for each $p \in M$ there is an isometry $s_p: M \to M$ with $s_p^2 = 1$ such that p is an isolated fixed point of s_p . Let G be the group of isometries of (M, g) generated by $s_q \circ s_r$ for all $q, r \in M$. Then G is a connected Lie group and M = G/H for some closed Lie subgroup H of G.

Symmetric spaces can be classified completely using Lie groups.

We call (M, g) *locally symmetric* if it is locally isometric to a symmetric space, and *nonsymmetric* otherwise.

Theorem 2.5 Let (M,g) have Levi-Civita connection ∇ and Riemann curvature R. Then (M,g) is locally symmetric if and only if $\nabla R = 0$.

2.7 Berger's classification

Let M be a simply-connected *n*-manifold and g an irreducible, nonsymmetric Riemannian metric on M. Then either (i) Hol(q) = SO(n), (ii) n = 2m and Hol(g) = U(m), (iii) n = 2m and Hol(q) = SU(m), (iv) n = 4m and Hol(q) = Sp(m), (v) n = 4m and Hol(q) = Sp(m) Sp(1),(vi) n = 7 and $Hol(g) = G_2$, or (vii) n = 8 and Hol(q) = Spin(7).

There are three assumptions in Berger's Theorem.

- As M is simply-connected, Hol(g) is connected.
- As g is irreducible, Hol(g)acts irreducibly on \mathbb{R}^n .
- As g is nonsymmetric, $\nabla R \not\equiv 0$.

Each excludes some possible holonomy groups. Without them, the list of holonomy groups would be much longer.

2.8 A sketch proof

Let M be simply-connected and g irreducible and nonsymmetric, and let H = Hol(g). Then H is a closed, connected Lie subgroup of SO(n) acting irreducibly on \mathbb{R}^n .

Berger made a list of all such subgroups up to conjugation, and applied two tests to see if each could be a holonomy group. Berger's list are the groups passing both tests.

Berger's first test

Let R_{abcd} be the Riemann curvature of g, and \mathfrak{h} the Lie algebra of H. Then $R_{abcd} \in S^2\mathfrak{h}$. Also we have

 $R_{abcd} + R_{adbc} + R_{acdb} = 0$, (1) the first Bianchi Identity. Let \mathfrak{R}^H be the subset of $S^2\mathfrak{h}$ satisfying (1). Now \mathfrak{R}^H must be big enough to generate \mathfrak{h} . That is, a generic element of \mathfrak{R}^H cannot lie in $S^2\mathfrak{g}$ for $\mathfrak{g} \subset \mathfrak{h}$ a proper Lie subalgebra. If \mathfrak{R}^H is too small, H fails the first test.

Berger's second test

Now $\nabla_e R_{abcd}$ lies in $(\mathbb{R}^n)^* \otimes \mathfrak{R}^H$, and also satisfies

 $\nabla_e R_{abcd} + \nabla_c R_{abde} + \nabla_d R_{abec} = 0$, (2) the second Bianchi identity. If these two requirements force $\nabla R = 0$, then g is locally symmetric. This excludes such H, the second test.

2.9 Simons' proof

The list of closed, connected Lie subgroups of SO(n) acting transitively on \mathcal{S}^{n-1} is known; it consists of Berger's list together with Sp(m)U(1) in SO(4m) and Spin(9) in SO(16). Simons gave a general proof that for M simply-connected and g irreducible and nonsymmetric, H = Hol(q) acts transitively on S^{n-1} . It starts like this: if H is not transitive we can choose orthonormal $x, z \in \mathbb{R}^n$ with z orthogonal to $T_x(H \cdot x)$. Then $R \cdot (x \wedge z) = 0$ in $End(\mathbb{R}^n)$ for all $R \in \mathfrak{R}^H$. The proof is very algebraic. We then exclude the cases $Sp(m) \cup (1)$ and Spin(9) to get an alternative proof of Berger's theorem.

2.10 Understanding Berger's list

The four inner product algebras are

- \mathbb{R} real numbers.
- \mathbb{C} complex numbers.
- \mathbb{H} quaternions.
- \mathbb{O} octonions,

or Cayley numbers.

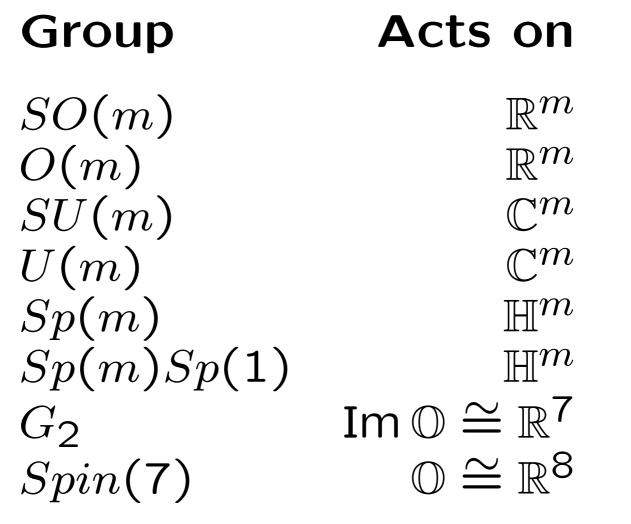
Here \mathbb{C} is not ordered,

 \mathbb{H} is not commutative,

and \mathbb{O} is not associative.

Also we have $\mathbb{C} \cong \mathbb{R}^2$, $\mathbb{H} \cong \mathbb{R}^4$

and $\mathbb{O} \cong \mathbb{R}^8$, with $\operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$.



Thus there are two holonomy groups for each of $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

Remarks on Berger's list (i) SO(n) is the holonomy group of generic metrics. (ii) Metrics g with $Hol(g) \subseteq$ U(m) are called *Kähler metrics*, a natural class of metrics on *complex manifolds*. (iii) Metrics g with $Hol(g) \subseteq$

(III) Metrics g with Hol(g) \subseteq SU(m) are called *Calabi-Yau metrics*. They are Ricci-flat and Kähler. (iv) Metrics g with Hol $(g) \subseteq$ Sp(m) are called *hyperkähler metrics*. They are also Ricciflat and Kähler.

(v) Metrics g with holonomy group Sp(m) Sp(1) for $m \ge 2$ are called *quaternionic Kähler metrics*. They are Einstein, but not Kähler.

(vi) and (vii) G₂ and Spin(7) are the *exceptional holonomy groups*.

Common features

• The Kähler holonomy groups are U(m), SU(m) and Sp(m). Any Riemannian manifold with one of these holonomy groups is Kähler, and thus a complex manifold. • The Ricci-flat holonomy groups are SU(m), Sp(m), G_2 and Spin(7). Metrics with these holonomy groups are Ricci-flat, as \mathfrak{R}^H has zero Ricci component.

2.11 Principal bundles and *G*-structures

Let M be a manifold and G a Lie group. A principal bundle over Mwith fibre G is a manifold P with a free (left) G-action and a smooth, surjective map $\pi : P \to M$ whose fibres are G-orbits, such that each $x \in M$ has an open neighbourhood $U \subseteq M$ with a diffeomorphism $\pi^{-1}(U) \cong U \times G$ identifying π and the G-action with the obvious projection $U \times G \to G$ and G and Gaction on $U \times G$.

Let M be a smooth manifold of dimension n. The *frame* bundle F of M is a principal bundle over M with fibre $GL(n,\mathbb{R})$. The points of Fare (n+1)-tuples $(x, e_1, ..., e_n)$, where $x \in M$ and e_1, \ldots, e_n is a basis for $T_x M$. We have π : $(x, e_1, \ldots, e_n) \mapsto x$, and $GL(n, \mathbb{R})$ fixes x and acts on e_1, \ldots, e_n by change of basis. $A: (x, e_1, \ldots, e_n) \mapsto (x, \tilde{e}_1, \ldots, \tilde{e}_n),$ where $\tilde{e}_i = \sum_{j=1}^n A_{ij} e_j$.

Let M be a manifold, P a principal bundle over M with fibre G and projection $\pi: P \rightarrow$ M, and H a Lie subgroup of G. A principal subbundle Qof P with fibre H is a submanifold Q of P closed under the action of H on P, such that the H-action on Q and the restriction $\pi|_Q : Q \to M$ make Q into a principal bundle over M with fibre H.

Let M be a manifold of dimension n, and G be a Lie subgroup of $GL(n,\mathbb{R})$. A Gstructure on M is a principal subbundle P of the frame bundle F of M with fibre G. For example, if (M, g) is a Riemannian manifold, let P be the subset of (x, e_1, \ldots, e_n) in F with e_1, \ldots, e_n an orthonormal basis for $T_x M$ w.r.t. $g|_x$. All such bases are related by matrices in O(n), so P is an O(n)-structure.

2.12 *G*-structures and holonomy groups

Let M be an n-manifold and ∇ a connection on TM. Fix $x \in M$ and a basis (e_1, \ldots, e_n) for $T_x M$. This identifies $T_x M \cong \mathbb{R}^n$, so the holonomy group $\operatorname{Hol}_x(\nabla)$ lies in $GL(T_xM) \cong GL(n,\mathbb{R})$. Let G be a Lie subgroup of $GL(n,\mathbb{R})$ containing $\operatorname{Hol}_{x}(\nabla)$. Define Q to be the set of (y, f_1, \ldots, f_n) in the frame bundle F of M, such that if $\gamma : [0, 1] \to M$ is a smooth path with $\gamma(0) = x$, $\gamma(1) = y$, then there exists $g \in G$ with $(P_{\gamma} \circ g)e_i = f_i$ for $i = 1, \ldots, n$. 30

As $\operatorname{Hol}_{x}(\nabla) \subseteq G$ this is independent of choice of γ , and P is a *G*-structure on M.

Thus, a connection ∇ on TMwith holonomy in G induces a G-structure on M. Can take $G = \operatorname{Hol}_x(\nabla)$.

Let (M,g) be a Riemannian manifold with $Hol(g) = H \subseteq$ $O(n) \subset GL(n,\mathbb{R})$. Then Mhas a natural H-structure Q, which is a principal subbundle of the O(n)-structure Pconstructed before. There is a notion of *connection* on principal bundles. A (vector bundle) connection on TM is equivalent to a (principal bundle) connection on the frame bundle F.

A connection ∇ on TM or Fhas holonomy contained in Giff there exists a G-structure on M preserved by (closed under) ∇ .

A G-structure Q is called torsion-free if there exists a torsion-free connection ∇ on TM preserving Q. If $G \subseteq O(n)$ this ∇ is unique, and is the Levi-Civita connection of the Riemannian metric associated to Q. Studying torsion-free G-structures for $G \subseteq O(n)$ is equivalent to studying metrics g with $Hol(g) \subset G$.