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1.1. Introduction
Calabi—=Yau manifolds

A Calabi—-Yau m-fold is a compact 2m-dimensional manifold X
equipped with four geometric structures:

@ a Riemannian metric g;
@ a complex structure J;
@ a symplectic form (Kahler form) w; and

@ a complex volume form (.

These satisfy pointwise compatibility conditions:

w(u,v) = g(Ju,v), |Q|g = 2™/2, Qs of type (m,0) w.r.t. J, and
p.d.e.s: Jis integrable, and dw = d€2 = 0. Usually we also require
Hl(X;]R) = 0. This is a rich geometric structure, and very
interesting from several points of view.
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Complex algebraic geometry: (X, J) is a projective complex
manifold. That is, we can embed X as a complex submanifold of
CPN for some N > 0, and then X is the zero set of finitely many
homogeneous polynomials on CN*1. Also Q is a holomorphic
section of the canonical bundle Kx, so Kx is trivial, and ¢;(X) = 0.
Analysis: For fixed (X, J), Yau's solution of the Calabi Conjecture
by solving a nonlinear elliptic p.d.e. shows that there exists a

family of Kahler metrics g on X making X Calabi—Yau.

Combining complex algebraic geometry and analysis proves the
existence of huge numbers of examples of Calabi—Yau m-folds.
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Riemannian geometry: (X, g) is a Ricci-flat Riemannian
manifold with holonomy group Hol(g) C SU(m).

Symplectic geometry: (X, w) is a symplectic manifold with
C1(X) = 0.

Calibrated geometry: there is a distinguished class of minimal
submanifolds in (X, g) called special Lagrangian m-folds.

String Theory: a branch of theoretical physics aiming to combine
Quantum Theory and General Relativity. String Theorists believe
that space-time is not 4 dimensional, but 10-dimensional, and is
locally modelled on R3! x X, where R3! is Minkowski space, our
observed universe, and X is a Calabi—Yau 3-fold with radius of
order 10~33cm, the Planck length.
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String Theory and Mirror Symmetry

String Theorists believe that each Calabi—Yau 3-fold X has a
quantization, a Super Conformal Field Theory (SCFT), not yet
rigorously defined. Invariants of X such as the Dolbeault groups
HP9(X) and the Gromov-Witten invariants of X translate to
properties of the SCFT. Using physical reasoning they made
amazing predictions about Calabi—Yau 3-folds, an area known as
Mirror Symmetry, conjectures which are slowly turning into
theorems.

Part of the picture is that Calabi—Yau 3-folds should occur in pairs
X, X, such that HP9(X) = H3~P4(X), and the complex geometry
of X is somehow equivalent to the symplectic geometry of X, and
vice versa. This is very strange. It is an exciting area in which to
work.
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Invariants in Geometry

When geometers talk about invariants, they tend to have a
particular, quite complex set-up in mind:

@ Let X be a manifold (usually compact).

@ Let G be a geometric structure on X that we are interested in.
@ Let A be some auxiliary geometric structure on X.

@ Let o besometopologicalinvariant, e.g. a homology classon X.

We define a moduli space (G, A, a) which parametrizes
isomorphism classes of some kind of geometric object on X (e.g.
submanifolds, or bundles with connection) which satisfy a p.d.e.
depending on G and A, and have topological invariant «.

Then we define (G, ) in Z or Q or H.(X;Q) which ‘counts’ the
number of points in 9(G, A, «). The ‘counting’ often has to be
done in a complicated way. Usually we need 9(G, A, a) compact.
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Sometimes one can prove /(G, «) is independent of the choice of
auxiliary geometric structure A, even though 91(G, A, o) depends
very strongly on A, and even though we usually have no way to
define /(G, ) without choosing A. Then we call /(G, ) an
invariant. Invariants are interesting as they may be part of some
deep underlying structure, perhaps some kind of Quantum
Geometry coming from String Theory. Some examples:

e Donaldson invariants and Seiberg—Witten invariants of
4-manifolds ‘count’ self-dual connections. They are independent of
the Riemannian metric used to define them. They can distinguish
homeomorphic, non-diffeomorphic 4-manifolds.

e Gromov-Witten invariants of a compact symplectic manifold
(X,w) ‘count’ J-holomorphic curves in X for an almost complex
structure J compatible with w, but are independent of J.

e Donaldson—Thomas invariants of a Calabi—Yau 3-fold
(X,J,g,8) ‘count’ coherent sheaves on X, and are independent of
the complex structure J up to deformation.
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1.2. Donaldson—Thomas invariants

Let X be a Calabi—Yau 3-fold. A holomorphic vector bundle

w: E — X of rank r is a complex manifold E with a holomorphic
map 7 : E — X whose fibres are complex vector spaces C". A
morphism ¢ : E — F of holomorphic vector bundles 7 : E — X,

7’ F — X is a holomorphic map ¢ : E — F with 7’ 0 ¢ = 7, that
is linear on the vector space fibres. Then Hom(E, F) is a
finite-dimensional vector space. Holomorphic vector bundles form
an exact category Vect(X).

A holomorphic vector bundle E has topological invariants, the
Chern character ch,(E) in H*V*"(X,Q), with cho(E) = r, the rank
of E. Holomorphic vector bundles are very natural objects to study.
Roughly speaking, D—T invariants are integers which ‘count’
(semi)stable holomorphic vector bundles. But we actually consider
a larger category, the coherent sheaves coh(X) on X.
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A coherent sheaf is a (possibly singular) vector bundle E — Y on a
complex submanifold (subscheme) Y in X. We need coherent
sheaves for two reasons:

Firstly, moduli spaces of semistable holomorphic vector bundles are
generally noncompact; to get compact moduli spaces, we have to
allow singular vector bundles, that is, coherent sheaves.

Secondly, if ¢ : E — F is a morphism of vector bundles then Ker ¢
and Coker¢ are generally coherent sheaves, not vector bundles.
The category coh(X) is better behaved than Vect(X) (it is an
abelian category, has kernels and cokernels).
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One cannot define invariants ‘counting’ all coherent sheaves with a
fixed Chern character «, as the number would be infinite (the
moduli spaces are not of finite type). Instead, one restricts to
(semi)stable coherent sheaves. A coherent sheaf E is Gieseker
(semi)stable if all subsheaves F C E satisfy some numerical
conditions. These conditions depend on an ample line bundle on
X; essentially, on the cohomology class [w] € H?(X; R) of the
Kahler form w of X. We will write 7 for Gieseker stability.

Every coherent sheaf can be decomposed into 7-semistable sheaves
in a unique way, the Harder—Narasimhan filtration. So counting
T-semistable sheaves is related to counting all sheaves.

12 /110 Dominic Joyce, Oxford University Lecture 1: Donaldson—Thomas Theory, DAG



Introduction
Donaldson—Thomas invariants
Joyce—Song's generalized D—T invariants

Classical Donaldson—Thomas Theory

Thomas' definition of Donaldson—Thomas invariants

Let X be a Calabi—Yau 3-fold. The Donaldson—Thomas invariants
DT*(1) of X were defined by Richard Thomas in 1998. Fix a
Chern character a in H*¥**(X; Q). Then one can define coarse
moduli schemes IS (1), M (7) parametrizing equivalence classes
of 7-(semi)stable sheaves with Chern character a. They are not
manifolds, but schemes which may have bad singularities. Two
good properties:

e M (7) is a projective C-scheme, so in particular it is compact
and Hausdorff.

e M (7) is an open subset in M (7), and has an extra structure,
a symmetric obstruction theory, which does not extend to 5 (7)

in general.
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If S (7) = MG (7), that is, there are no strictly 7-semistable
sheaves in class «, then 9 (7) is compact with a symmetric
obstruction theory. Thomas used the virtual class of Behrend and
Fantechi to define the ‘number’ DT(7) € Z of points in IS (7),
and showed DT(7) is unchanged under deformations of the
complex structure of X.

Virtual classes are non-local. But Behrend (2005) showed that
DT%(7) can be written as a weighted Euler characteristic

DT(r) :/ v dy. (1.1)
g ()

where v is the ‘Behrend function’, a Z-valued constructible
function on IS (7) depending only on IS (7) as a C-scheme. We
think of v as a multiplicity function, so (1.1) counts points with
multiplicity.
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Donaldson—Thomas invariants are of interest in String Theory. The
MNOP Conjecture, an important problem, relates the rank 1
Donaldson—Thomas invariants to the Gromov-Witten invariants
counting holomorphic curves in X.

Thomas' definition of DT*(7) has two disadvantages:

e DT%(7) is undefined if M (7) #£ M (7).

e It was not understood how DT%(7) depends on the choice of
stability condition 7 (effectively, on the Kahler class [w] of X).

| will explain a theory which solves these two problems (joint work
with Yinan Song).
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1.3. Joyce-Song's generalized D—T invariants

We will define generalized Donaldson—Thomas invariants

DT*(7) € Q for all Chern characters «, such that:

e DT?(7) is unchanged by deformations of the underlying CY3.

o If M2 (1) = M%(7) then DTY(7) = DT(7) in Z C Q.

e The DT%(r) transform according to a known transformation law
under change of stability condition.

e For ‘generic’ 7, we have a conjecture rewriting the DT%(7) in
terms of Z-valued ‘BPS invariants’ DT<(7). (Cf. Gromov— Witten
and Gopakumar—Vafa invariants). Now proved Davison—Meinhardt.
e The theory generalizes to invariants counting representations of a
quiver with relations coming from a superpotential. (Cf.
‘noncommutative DT invariants’).

On the face of it, the problem is just to decide how to ‘count’
strictly 7-semistable sheaves with the correct multiplicity, which
sounds simple. But the solution turns out to be very long and
complex. | will just explain a few of the key ideas involved.
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Key idea 1: work with Artin stacks

Kinds of space used in complex algebraic geometry, in decreasing
order of ‘niceness’:

e complex manifolds (very nice)

e varieties (nice)

e schemes (not bad): Thomas' DT%(7).

e algebraic spaces (getting worse)

e Deligne-Mumford stacks (not nice)

e Artin stacks (horrible): our DT%(7).

e derived stacks (deeply horrible).

For classical D—T theory we work with moduli spaces which are
Artin stacks, rather than coarse moduli schemes as Thomas does.
One reason is that strictly 7-semistable sheaves can have nontrivial
automorphism groups, and Artin stacks keep track of
automorphism groups, but schemes do not.

For generalizations of D—T theory, we will need to work with
derived stacks, and the theory of Pantev—Toén—Vaquié—Vezzosi.
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Key idea 2: Ringel-Hall algebras

Write 901 for the moduli stack of coherent sheaves on X. The
'stack functions’ SF(91) is the Q-vector space generated by
isomorphism classes [(R, p)] of morphisms p : R — 901 for R a
finite type Artin C-stack, with the relation

(R, 0)] = [(S, p)] + [(R\ G, p)]

for © a closed substack of A.

There is an interesting associative, noncommutative product * on
SF(90) defined using short exact sequences in coh(X); for

f,g € SF(IM), think of (f * g)(F) as the ‘integral’ of f(E)g(G)
over all exact sequences 0 - E — F — G — 0 in coh(X).
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The substack 9 (7) of M of 7-semistable sheaves with Chern
character « has finite type, so 6&(7) = [(9MZ(7),inc)] € SF(M).
There is a Lie subalgebra SF™(9t) of SF(9M) of stack functions
‘supported on virtual indecomposables’. Define elements

e(r) = Y. (S0 S (r) # 62(r) # - x Sgr (7).
n=21, a1+-4ap=a, 7(a;)=7(a), all i

Then &(7) € SF™4(M).

There are many important universal identities in the Ringel-Hall

algebra SF(901). For instance, if 7,7 are different stability
conditions, we have

= Z S(on,...,an 7, %) - 02%(T) % - x027(7), (1.2)

n=1, a1+ +oap=a

— Z Ular,...,an 7, 7) - €Y1)*---xe* (1), (1.3)

n=1, a1+---+op=a

Classical Donaldson—Thomas Theory

for combinatorial coefficients S, U(--- ; 7, 7).
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We prove that the moduli stack of coherent sheaves 9]t can be
written locally in the complex analytic topology as [Crit(f)/G],
where G is a complex Lie group, U a complex manifold acted on
by G, and f : U — C a G-invariant holomorphic function.

This is a complex analytic analogue for 9 of the fact that 90t (7)
has a symmetric obstruction theory.

It requires X to be a Calabi—Yau 3-fold. The proof in Joyce-Song
from 2008 is non-algebraic, using gauge theory on complex vector
bundles over X, and works only over the field C. However, as in
§3, more recently Ben-Bassat—Bussi—Brav—Joyce used PTVV's
shifted symplectic derived algebraic geometry to give an algebraic
proof, in the Zariski/smooth topologies, which works over fields K
of characteristic zero.
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Key idea 4: Behrend function identities

For each Artin C-stack 90t we can define a Behrend function vey, a
Z-valued constructible function we interpret as a multiplicity
function. If we can write 901 locally as [Crit(f)/G] for f : U — C
holomorphic and U a complex manifold then

von(uG) = (—=1)dImU=dim& (1 (MFg(u))) for u € Crit(f),
where MF¢(u) is the Milnor fibre of f at u.

Using Key idea 3 we prove two identities on the Behrend function
of the moduli stack I:

von(EL ® B) = (—1)XUELED yon (B v (), (1.4)
. /
%A]EP(Extl(Ez,El)):Vm(F)dX [X]E]P’(Extl(El,Eg)): van(F7)dx 1
A& 0—Ei—F—E—0 N & 0—=EB—F —E—0 ( -5)

= (dim Ext!(E, £1) — dim Ext'(Eq, B2))von(E1 @ Ey).
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Let K(X) C HV"(X; Q) be the lattice of Chern characters of
coherent sheaves. Then K(X) =2 Z!, and there is an antisymmetric
Euler form x : K(X) x K(X) — Z.

Define a Lie algebra L(X) to have basis, as a Q-vector space,
symbols A* for a € K(X), and Lie bracket

AN = (~1)X P g(a, B) A*TF.

We define a Lie algebra morphism W : SF™™4(90t) — L(X). Roughly
speaking this is given by

V(R o) = > xR xam M, p*(vm)) A,
aceK(X)

where x**¥ is a kind of stack-theoretic weighted Euler
characteristic.
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However, Euler characteristics of stacks are not well-defined: we
want x([X/G]) = x(X)/x(G) for X a scheme and G a Lie group,
but x(G) = 0 whenever rank G > 0.

The point of using SF4(901) is that it is generated by elements
[(U x [Spec C/C*], p)] for U a C-variety, and we set

W([(U x [SpecC/T], p))
= ek X(U xan M, o (vm)) A%,

which is well-defined as U xgp 991¢ is a variety. We do not yet
know how to extend W from SF4(901) to SF(90t). To prove W is a
Lie algebra morphism we use the Behrend function identities
(1.4)—(1.5).

23 /110 Dominic Joyce, Oxford University Lecture 1: Donaldson—Thomas Theory, DAG

Introduction
Donaldson—Thomas invariants
Joyce—Song's generalized D-T invariants

Classical Donaldson—Thomas Theory

We can now define generalized Donaldson—Thomas invariants
DT*(7) € Q: we set W(e*(1)) = DT(1)\* for all o € K(A).
The transformation law (1.3) for the €*(7) under change of
stability condition can be written as a Lie algebra identity in
SFnd(901). So applying the Lie algebra morphism W yields a
transformation law for the DT (7):

DT(7) = Z + U(T, /,KJ'T 7)-
|so cIasses H DTn( ) H X ' ) (16)

icl edges
i—jinTl

Here ' is a connected, simply-connected undirected graph with
vertices I, k1 | = K(A) has >, k(i) = a, and U(T', I, k;7,7) in
Q are explicit combinatorial coefficients.
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Key idea 6: pair invariants P/*N(7")

We define an auxiliary invariant PI*"N(7') € Z counting ‘stable
pairs’ (E,s) with E a semistable sheaf in class o and

s € HY(E(N)), for N > 0. The moduli space of stable pairs is a
projective C-scheme with a symmetric obstruction theory, so
PI*N(7") is unchanged by deformations of X.

By a similar proof to (1.6) we show that PI*N(7') can be written
in terms of the D_TB(T) by

PR = 2y

at,...,an€K(A):
o1+-Fap=a, nl

T(aj))=7(a) Vi (17)
n (_1))‘(([(9x(—N)]—a1—---—a,-_1,a,).
I X([Ox(=N)] —a1 — -+ — aj_1, a;)DTY (7).
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Since the PI*%N(7') are deformation- invariant, we use (1.7) and
induction on rank a to prove that DT%(7) is unchanged under
deformations of X for all a € K(X).

The PI*N(7') are similar to Pandharipande-Thomas invariants.
Note that DT%(7) counts strictly semistables E in a complicated
way: there are (Q-valued contributions from every filtration
0=EyC Ey C---C E, = E with E; 7-semistable and

7(E;) = 7(E), weighted by vy(E). One can show by example that
more obvious, simpler definitions of DT®(7) do not give
deformation-invariant answers.
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Integrality properties of the invariants

Suppose E is stable and rigid in class a. Then kE =E&--- D E is
strictly semistable in class ko, for k > 2. Calculations show that E
contributes 1 to DT“(7), and kE contributes 1/k? to D_Tka(T).
So we do not expect the DT”(7) to be integers, in general.
Define new invariants DT%(7) € Q by

DT (r)= > % DT*/k(7).

k>1:k divides « ~

Then the kE for k > 1 above contribute 1 to DT“(7) and 0 to
DTke(7) for k > 1.

Conjecture (Joyce—Song, now proved Davison—Meinhardt)

Suppose T is generic, in the sense that T7(«) = 7(8) implies
X(a,8) =0. Then DT*(1) € Z for all a € K(X).

These DT%(7) should coincide with invariants conjectured by
Kontsevich—Soibelman, and in String Theory should perhaps be

interpreted as ‘numbers of BPS states’.
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2. Derived Algebraic Geometry
References for §2
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B. Toén, Derived Algebraic Geometry, EMS Surveys in
Mathematical Sciences 1 (2014), 153-240. arXiv:1401.1044.

B. Toén and G. Vezzosi, Homotopical Algebraic Geometry Il:
Geometric Stacks and Applications, Mem. A.M.S. 193 (2008), no.
902. math.AG/0404373.

B. Toen and G. Vezzosi, From HAG to DAG: derived moduli
stacks, pages 173-216 in Axiomatic, enriched and motivic
homotopy theory, NATO Sci. Ser. Il Math. Phys. Chem., 131,
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2.1. Derived Algebraic Geometry for dummies

Let K be an algebraically closed field of characteristic zero, e.g.

K = C. Work in the context of Toén and Vezzosi's theory of
Derived Algebraic Geometry (DAG). This gives oo-categories of
derived K-schemes dSchyi and derived stacks dStgk. In this talk,
for simplicity, we will mostly discuss derived schemes, though the
results also extend to derived stacks.

This is a very technical subject. It is not easy to motivate DAG, or
even to say properly what a derived scheme is, in an elementary
talk. So I will lie a little bit.
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What is a derived scheme?

K-schemes in classical algebraic geometry are geometric spaces X
which can be covered by Zariski open sets Y C X with

Y = Spec A for A a commutative K-algebra. General K-schemes
are very singular, but smooth K-schemes X are very like smooth
manifolds over K, many differential geometric ideas like cotangent
bundles TX, T*X work nicely for them.

Think of a derived K-scheme X as a geometric space which can be
covered by Zariski open sets Y C X with Y ~ Spec A® for

A®* = (A,d) a commutative differential graded algebra (cdga) over
K, in degrees < 0.

We require X to be locally finitely presented, that is, we can take
the A® to be finitely presented, a strong condition.
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Why derived algebraic geometry?

One reason derived algebraic geometry can be a powerful tool, is
the combination of two facts:

(A) Many algebro-geometric spaces one wants to study, such as
moduli spaces of coherent sheaves, or complexes, or
representations, etc., which in classical algebraic geometry
may be very singular, also have an incarnation as (locally
finitely presented) derived schemes (or derived stacks).

(B) Within the framework of DAG, one can treat (locally finitely
presented) derived schemes or stacks very much like smooth,
nonsingular objects (Kontsevich's ‘hidden smoothness
philosophy'). Some nice things work in the derived world,
which do not work in the classical world.
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2.2. Tangent and cotangent complexes

In going from classical to derived geometry, we always replace
vector bundles, sheaves, representations, ..., by complexes of
vector bundles, .... A classical smooth K-scheme X has a tangent
bundle TX and dual cotangent bundle T*X, which are vector
bundles on X, of rank the dimension dim X € N.

Similarly, a derived K-scheme X has a tangent complex Tx and a
dual cotangent complex ILx, which are perfect complexes of
coherent sheaves on X, of rank the virtual dimension vdim X € Z.
A complex £° on X is called perfect in the interval [a, b] if locally
on X it is quasi-isomorphic to a complex

- 0—>E,—E;yy1— - — E,—0—---, with E; a vector
bundle in position /. For X a derived scheme, T x is perfect in
[0,00) and Lx perfect in (—oo,0]; for X a derived Artin stack, Tx
is perfect in [—1,00) and Lx perfect in (—o0, 1].

32 /110 Dominic Joyce, Oxford University Lecture 1: Donaldson—Thomas Theory, DAG



Derived Algebraic Geometry for dummies
Derived Algebraic Geometry Tangent and cotangent complexes

Tangent complexes of moduli stacks

Suppose X is a smooth projective scheme, and M is a derived
moduli stack of coherent sheaves E on X. Then for each point [E]
in M and each i € Z we have natural isomorphisms

H'(T aljg)) = Ext ™ (E, E). (2.1)

In effect, the derived stack M remembers the entire deformation
theory of sheaves on X. In contrast, if M = tp(M) is the
corresponding classical moduli scheme, (2.1) holds when i < 1 only.
This shows that the derived structure on a moduli scheme/stack
can remember useful information forgotten by the classical moduli
scheme/stack, e.g. the Ext groups Ext/(E, E) for i > 2.

If X has dimension n then (2.1) implies that H'(T a4 |g)) = O for

i > n, so Taq is perfect in [—1,n—1].
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Quasi-smooth derived schemes and virtual cycles

A derived scheme X is called quasi-smooth if Tx is perfect in

[0, 1], or equivalently Lx is perfect in [—1,0].

A proper quasi-smooth derived scheme X has a virtual cycle
[X]virt in the Chow homology A.(X), where X = to(X) is the
classical truncation. This is because the natural morphism

Lx|x — Lx induced by the inclusion X — X is a ‘perfect
obstruction theory’ in the sense of Behrend and Fantechi.

Most theories of invariants in algebraic geometry —e.g.
Gromov—Witten invariants, Mochizuki invariants counting sheaves
on surfaces, Donaldson—Thomas invariants — can be traced back to
the existence of quasi-smooth derived moduli schemes.

For an (ordinary) derived moduli scheme M of coherent sheaves E
on X to be quasi-smooth, we need Ext/(E, E) = 0 for i > 3. This
is automatic if dim X < 2. For Calabi—-Yau 3-folds X, you would
expect a problem with Ext3(E, E) # 0, but stable sheaves E with
fixed determinant have trace-free Ext groups Ext3(E, E)o = 0.
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An example of nice behaviour in the derived world

Here is an example of the ‘hidden smoothness philosophy’.
Suppose we have a Cartesian square of smooth K-schemes
(or indeed, smooth manifolds)

T
e h
X £ Z,

with g, h transverse. Then we have an exact sequence of vector
bundles on W, which we can use to compute TW:

Te®TF e*(Tg)®—f*(Th)

0 TW 7L ex(TX)@ F*(TY)

(goe)(72) =0.
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Similarly, if we have a homotopy Cartesian square of derived

K-schemes
T
e h
X g Z,

with no transversality, we have a distinguished triangle on W

Te@r.lrf

*(T —f*(T
Tw e*(Tx) ® f*(Ty)e (Tg)® (Th)

(goe)(Tz) = Tw(+1],

which we can use to compute Tyy. This is false for classical
schemes. So, derived schemes with arbitrary morphisms, have good
behaviour analogous to smooth classical schemes with transverse
morphisms, and are better behaved than classical schemes.
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