The d-orbifold programme. Lecture 2 of 5: The 2-categories of d-manifolds and d-orbifolds.

Dominic Joyce, Oxford University

May 2014

Some references (to be revised, especially concerning corners): For d-manifolds and d-orbifolds, see arXiv:1206.4207 (survey), arXiv:1208.4948, and preliminary version of book available at http://people.maths.ox.ac.uk/~joyce/dmanifolds.html. For C^{∞} geometry, see arXiv:1104.4951 (survey), and arXiv:1001.0023.

Much of this lecture series is work in progress, and not yet written up — it exists only in my head.

What there is you can find on my web page at

http://people.maths.ox.ac.uk/~joyce/dmanifolds.html, including a preliminary version (768 pages) of a book [book] on d-manifolds and d-orbifolds and their differential geometry. I am intending to rewrite the book from the beginning, not because there is very much wrong with it, but because it turns out (irritatingly) that I need a more general notion of d-orbifold with corners to do moduli spaces of J-holomorphic curves properly.

1. Introduction

I will tell you about new classes of geometric objects I call *d-manifolds* and *d-orbifolds* — 'derived' smooth manifolds, in the sense of Derived Algebraic Geometry. Some properties:

- D-manifolds form a *strict* 2-*category* dMan. That is, we have objects X, the d-manifolds, 1-morphisms f, g : X → Y, the smooth maps, and also 2-morphisms η : f ⇒ g.
- Smooth manifolds embed into d-manifolds as a full (2)-subcategory. So, d-manifolds generalize manifolds.
- There are also 2-categories dMan^b, dMan^c of d-manifolds with boundary and with corners, and orbifold versions dOrb, dOrb^b, dOrb^c of these, *d-orbifolds*.
- Much of differential geometry extends nicely to d-manifolds: submersions, immersions, orientations, submanifolds, transverse fibre products, cotangent bundles,

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

Origins in derived algebraic geometry

D-manifolds are based on ideas from *derived algebraic geometry*. First consider an algebro-geometric version of what we want to do. A good algebraic analogue of smooth manifolds are *complex algebraic manifolds*, that is, separated smooth \mathbb{C} -schemes S of pure dimension. These form a full subcategory **AlgMan**_{\mathbb{C}} in the category **Sch**_{\mathbb{C}} of \mathbb{C} -schemes, and can roughly be characterized as the (sufficiently nice) objects S in **Sch**_{\mathbb{C}} whose cotangent complex \mathbb{L}_S is a vector bundle (i.e. perfect in the interval [0,0]).

To make a derived version of this, we first define an ∞ -category **DerSch**_C of *derived* C*-schemes*, and then define the ∞ -category **DerAlgMan**_C of *derived complex algebraic manifolds* to be the full ∞ -subcategory of objects **S** in **DerSch**_C which are *quasi-smooth* (have cotangent complex \mathbb{L}_S perfect in the interval [-0, 0]), and satisfy some other niceness conditions (separated, etc.).

Derived algebraic geometry in the C^{∞} world

Thus, we have 'classical' categories $AlgMan_{\mathbb{C}} \subset Sch_{\mathbb{C}}$, and related 'derived' ∞ -categories $DerAlgMan_{\mathbb{C}} \subset DerSch_{\mathbb{C}}$.

David Spivak (arXiv:0810.5175, Duke Math. J.), a student of Jacob Lurie, defined an ∞ -category **DerMan** of 'derived smooth manifolds' using a similar structure: he considered 'classical' categories **Man** \subset **C**^{∞}**Sch** and related 'derived' ∞ -categories **DerMan** \subset **DerC** $^{\infty}$ **Sch**. Here **C** $^{\infty}$ **Sch** is C^{∞} -schemes, and **DerC** $^{\infty}$ **Sch** derived C^{∞} -schemes. That is, before we can 'derive', we must first embed **Man** into a larger category of C^{∞} -schemes, singular generalizations of manifolds.

My set-up is a simplification of Spivak's. I consider 'classical' categories $Man \subset C^{\infty}Sch$ and related 'derived' 2-categories $dMan \subset dSpa$, where dMan is *d-manifolds*, and dSpa *d-spaces*. Here dMan, dSpa are roughly 2-category truncations of Spivak's DerMan, DerC^{\infty}Sch — see Borisov arXiv:1212.1153.

5 / 30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

2. D-manifolds without boundary

I will concentrate today on d-manifolds *without boundary*. Lecture 4 will explain how to include boundaries and corners.

We begin by discussing C^{∞} -algebraic geometry, C^{∞} -rings, and C^{∞} -schemes. Algebraic geometry (based on algebra and polynomials) has excellent tools for studying singular spaces – the theory of schemes.

In contrast, conventional differential geometry (based on smooth real functions and calculus) deals well with nonsingular spaces – manifolds – but poorly with singular spaces.

There is a little-known theory of schemes in differential geometry, C^{∞} -schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes,

... in synthetic differential geometry in the 1960s-1980s.

 C^{∞} -schemes are essentially *algebraic* objects, on which smooth real functions and calculus make sense.

2.1. C^{∞} -rings

Let X be a manifold, and write $C^{\infty}(X)$ for the smooth functions $c: X \to \mathbb{R}$. Then $C^{\infty}(X)$ is an \mathbb{R} -algebra: we can add smooth functions $(c, d) \mapsto c + d$, and multiply them $(c, d) \mapsto cd$, and multiply by $\lambda \in \mathbb{R}$.

But there are many more operations on $C^{\infty}(X)$ than this, e.g. if $c: X \to \mathbb{R}$ is smooth then $\exp(c): X \to \mathbb{R}$ is smooth, giving $\exp: C^{\infty}(X) \to C^{\infty}(X)$, which is algebraically independent of addition and multiplication.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth. Define $\Phi_f : C^{\infty}(X)^n \to C^{\infty}(X)$ by $\Phi_f(c_1, \ldots, c_n)(x) = f(c_1(x), \ldots, c_n(x))$ for all $x \in X$. Then addition comes from $f : \mathbb{R}^2 \to \mathbb{R}$, $f : (x, y) \mapsto x + y$, multiplication from $(x, y) \mapsto xy$, etc. This huge collection of algebraic operations Φ_f make $C^{\infty}(X)$ into an algebraic object called a C^{∞} -ring.

7 / 30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

Definition

A C^{∞} -ring is a set \mathfrak{C} together with *n*-fold operations $\Phi_f : \mathfrak{C}^n \to \mathfrak{C}$ for all smooth maps $f : \mathbb{R}^n \to \mathbb{R}$, $n \ge 0$, satisfying: Let $m, n \ge 0$, and $f_i : \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m and $g : \mathbb{R}^m \to \mathbb{R}$ be smooth functions. Define $h : \mathbb{R}^n \to \mathbb{R}$ by $h(x_1, ..., x_n) = g(f_1(x_1, ..., x_n), ..., f_m(x_1..., x_n)),$ for $(x_1, ..., x_n) \in \mathbb{R}^n$. Then for all $c_1, ..., c_n$ in \mathfrak{C} we have $\Phi_h(c_1, ..., c_n) = \Phi_g(\Phi_{f_1}(c_1, ..., c_n), ..., \Phi_{f_m}(c_1, ..., c_n))).$ Also defining $\pi_j : (x_1, ..., x_n) \mapsto x_j$ for j = 1, ..., n we have $\Phi_{\pi_j} : (c_1, ..., c_n) \mapsto c_j.$ A morphism of C^{∞} -rings is $\phi : \mathfrak{C} \to \mathfrak{D}$ with $\Phi_f \circ \phi^n = \phi \circ \Phi_f : \mathfrak{C}^n \to \mathfrak{D}$ for all smooth $f : \mathbb{R}^n \to \mathbb{R}$. Write \mathbf{C}^{∞} **Rings** for the category of C^{∞} -rings.

Examples of C^{∞} -rings

Then $C^{\infty}(X)$ is a C^{∞} -ring for any manifold X, and from $C^{\infty}(X)$ we can recover X up to canonical isomorphism. If $f: X \to Y$ is smooth then $f^*: C^{\infty}(Y) \to C^{\infty}(X)$ is a morphism of C^{∞} -rings; conversely, if $\phi: C^{\infty}(Y) \to C^{\infty}(X)$ is a morphism of C^{∞} -rings then $\phi = f^*$ for some unique smooth $f: X \to Y$. This gives a full and faithful functor $F: \operatorname{Man} \to \operatorname{C^{\infty}Rings^{op}}$ by $F: X \mapsto C^{\infty}(X), F: f \mapsto f^*$. Thus, we can think of manifolds as examples of C^{∞} -rings, and C^{∞} -rings as generalizations of manifolds. But there are many

more C^{∞} -rings than manifolds. For example, $C^{0}(X)$ is a C^{∞} -ring for any topological space X.

Any C^{∞} -ring \mathfrak{C} has a *cotangent module* $\Omega_{\mathfrak{C}}$. If $\mathfrak{C} = C^{\infty}(X)$ for X a manifold, then $\Omega_{\mathfrak{C}} = C^{\infty}(T^*X)$.

We can now develop the whole machinery of scheme theory in algebraic geometry, replacing rings or algebras by C^{∞} -rings throughout — see my arXiv:1104.4951, arXiv:1001.0023. A C^{∞} -ringed space $\underline{X} = (X, \mathcal{O}_X)$ is a topological space X with a sheaf of C^{∞} -rings \mathcal{O}_X . Write $\mathbb{C}^{\infty} \mathbb{RS}$ for the category of C^{∞} -ringed spaces. The global sections functor $\Gamma : \mathbb{C}^{\infty} \mathbb{RS} \to \mathbb{C}^{\infty} \mathbb{Rings}^{\mathrm{op}}$ maps $\Gamma : (X, \mathcal{O}_X) \mapsto \mathcal{O}_X(X)$. It has a right adjoint, the spectrum functor Spec : $\mathbb{C}^{\infty} \mathbb{Rings}^{\mathrm{op}} \to \mathbb{C}^{\infty} \mathbb{RS}$. That is, for each C^{∞} -ring \mathfrak{C} we construct a C^{∞} -ringed space Spec \mathfrak{C} . Points $x \in \mathrm{Spec} \mathfrak{C}$ are \mathbb{R} -algebra morphisms $x : \mathfrak{C} \to \mathbb{R}$ (this implies x is a C^{∞} -ring

morphism). We don't use prime ideals. On the subcategory of *fair* C^{∞} -rings, Spec is full and faithful.

10 / 30

A C^{∞} -ringed space \underline{X} is called an *affine* C^{∞} -scheme if $\underline{X} \cong \operatorname{Spec} \mathfrak{C}$ for some C^{∞} -ring \mathfrak{C} . We call <u>X</u> a C^{∞} -scheme if X can be covered by open subsets U with $(U, \mathcal{O}_X|_U)$ an affine C^{∞} -scheme. Write C^{∞} Sch for the full subcategory of C^{∞} -schemes in C^{∞} RS. If X is a manifold, define a C^{∞} -scheme $\underline{X} = (X, \mathcal{O}_X)$ by $\mathcal{O}_X(U) = C^{\infty}(U)$ for all open $U \subseteq X$. Then $\underline{X} \cong \operatorname{Spec} C^{\infty}(X)$. This defines a full and faithful embedding $Man \hookrightarrow C^{\infty}Sch$. So we can regard manifolds as examples of C^{∞} -schemes. All *fibre products* exist in C^{∞} Sch. In manifolds Man, fibre products $X \times_{g,Z,h} Y$ need exist only if $g: X \to Z$ and $h: Y \to Z$ are transverse. When g, h are not transverse, the fibre product $X \times_{g,Z,h} Y$ exists in **C**^{∞}**Sch**, but may not be a manifold. We also define vector bundles and quasicoherent sheaves on a C^{∞} -scheme X, and write qcoh(X) for the abelian category of quasicoherent sheaves. A C^{∞} -scheme X has a well-behaved cotangent sheaf T^*X .

11/30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction **D-manifolds without boundary** Standard model d-manifolds Differential geometry of d-manifolds

Differences with ordinary Algebraic Geometry

- The topology on C[∞]-schemes is finer than the Zariski topology on schemes – affine schemes are always Hausdorff. No need to introduce the étale topology.
- Can find smooth functions supported on (almost) any open set.
- (Almost) any open cover has a subordinate partition of unity.
- Our C[∞]-rings 𝔅 are generally not noetherian as ℝ-algebras.
 So ideals I in 𝔅 may not be finitely generated, even in C[∞](ℝⁿ).

2.3. Differential graded C^{∞} -rings

We can define derived \mathbb{C} -schemes by replacing \mathbb{C} -algebras A by $dg \mathbb{C}$ -algebras A^{\bullet} in the definition of \mathbb{C} -scheme — commutative differential graded \mathbb{C} -algebras in degrees ≤ 0 , of the form $\dots \rightarrow A^{-2} \xrightarrow{d} A^{-1} \xrightarrow{d} A^{0}$, where A^{0} is an ordinary \mathbb{C} -algebra. The corresponding 'classical' \mathbb{C} -algebra is $H^{0}(A^{\bullet}) = A^{0}/d[A^{-1}]$. There is a parallel notion of $dg \ C^{\infty}$ -ring \mathfrak{C}^{\bullet} , of the form $\dots \rightarrow \mathfrak{C}^{-2} \xrightarrow{d} \mathfrak{C}^{-1} \xrightarrow{d} \mathfrak{C}^{0}$, where \mathfrak{C}^{0} is an ordinary C^{∞} -ring, and $\mathfrak{C}^{-1}, \mathfrak{C}^{-2}, \dots$ are modules over \mathfrak{C}^{0} . The corresponding 'classical' C^{∞} -ring is $H^{0}(\mathfrak{C}^{\bullet}) = \mathfrak{C}^{0}/d[\mathfrak{C}^{-1}]$. One could use dg C^{∞} -rings to define 'derived C^{∞} -schemes'; an alternative is to use simplicial C^{∞} -rings, see Spivak arXiv:0810.5175, Borisov–Noel arXiv:1112.0033, and Borisov arXiv:1212.1153.

13 / 30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

Square zero dg C^{∞} -rings

My d-spaces are a 2-category truncation of derived C^{∞} -schemes. To define them, I use a special class of dg C^{∞} -rings called square zero dg C^{∞} -rings, which form a 2-category **SZC**^{∞}**Rings**. A dg C^{∞} -ring \mathfrak{C}^{\bullet} is square zero if $\mathfrak{C}^{i} = 0$ for i < -1 and $\mathfrak{C}^{-1} \cdot d[\mathfrak{C}^{-1}] = 0$. Then \mathfrak{C} is $\mathfrak{C}^{-1} \stackrel{d}{\longrightarrow} \mathfrak{C}^{0}$, and $d[\mathfrak{C}^{-1}]$ is a square zero ideal in the (ordinary) C^{∞} -ring \mathfrak{C}^{0} , and \mathfrak{C}^{-1} is a module over the 'classical' C^{∞} -ring $H^{0}(\mathfrak{C}^{\bullet}) = \mathfrak{C}^{0}/d[\mathfrak{C}^{-1}]$. A 1-morphism $\alpha^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ in **SZC**^{∞}**Rings** is maps $\alpha^{0} : \mathfrak{C}^{0} \to \mathfrak{D}^{0}$, $\alpha^{-1} : \mathfrak{C}^{-1} \to \mathfrak{D}^{-1}$ preserving all the structure. Then $H^{0}(\alpha^{\bullet}) : H^{0}(\mathfrak{C}) \to H^{0}(\mathfrak{D})$ is a morphism of C^{∞} -rings. For 1-morphisms $\alpha^{\bullet}, \beta^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ a 2-morphism $\eta : \alpha^{\bullet} \Rightarrow \beta^{\bullet}$ is a linear $\eta : \mathfrak{C}^{0} \to \mathfrak{D}^{-1}$ with $\beta^{0} = \alpha^{0} + d \circ \eta$ and $\beta^{-1} = \alpha^{-1} + \eta \circ d$. There is an embedding of (2-)categories \mathbf{C}^{∞} **Rings** \subset **SZC**^{∞}**Rings** as the (2-)subcategory of \mathfrak{C}^{\bullet} with $\mathfrak{C}^{-1} = 0$. Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

Cotangent complexes in the 2-category setting

Let
$$\mathfrak{C}^{\bullet}$$
 be a square zero dg C^{∞} -ring. Define the *cotangent*
 $complex \mathbb{L}_{\mathfrak{C}}^{-1} \xrightarrow{\mathrm{d}_{\mathfrak{C}}} \mathbb{L}_{\mathfrak{C}}^{0}$ to be the 2-term complex of $H^{0}(\mathfrak{C}^{\bullet})$ -modules
 $\mathfrak{C}^{-1} \xrightarrow{\mathrm{d}_{DR} \circ \mathrm{d}} \Omega_{\mathfrak{C}^{0}} \otimes_{\mathfrak{C}^{0}} H^{0}(\mathfrak{C}^{\bullet})$,
regarded as an element of the 2-category of 2-term complexes of
 $H^{0}(\mathfrak{C}^{\bullet})$ -modules. Let $\alpha^{\bullet}, \beta^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ be 1-morphisms and
 $\eta : \alpha^{\bullet} \Rightarrow \beta^{\bullet}$ a 2-morphism in **SZC** ^{∞} **Rings**. Then
 $H^{0}(\alpha^{\bullet}) = H^{0}(\beta^{\bullet})$, so we may regard \mathfrak{D}^{-1} as an $H^{0}(\mathfrak{C}^{\bullet})$ -module.
And $\eta : \mathfrak{C}^{0} \to \mathfrak{D}^{-1}$ is a derivation, so it factors through an
 $H^{0}(\mathfrak{C}^{\bullet})$ -linear map $\hat{\eta} : \Omega_{\mathfrak{C}^{0}} \otimes_{\mathfrak{C}^{0}} H^{0}(\mathfrak{C}^{\bullet}) \to \mathfrak{D}^{-1}$. We have a diagram
 $\mathbb{L}_{\mathfrak{C}}^{-1} \xrightarrow{d_{\mathfrak{C}}} \mathbb{L}_{\mathfrak{O}}^{0} \xrightarrow{\mathbb{L}_{\mathfrak{O}}^{0}} \mathbb{L}_{\mathfrak{O}}^{0}$.
So 1-morphisms induce morphisms, and 2-morphisms homotopies,

of virtual cotangent modules.

15 / 30 Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction **D-manifolds without boundary** Standard model d-manifolds Differential geometry of d-manifolds

Examples of square zero dg C^{∞} -rings

Let V be a manifold, $E \to V$ a vector bundle, and $s : V \to E$ a smooth section. Then we call (V, E, s) a Kuranishi neighbourhood (compare Kuranishi spaces); for d-orbifolds, we take V an orbifold. Associate a square zero dg C^{∞} -ring $\mathfrak{C}^{-1} \stackrel{d}{\longrightarrow} \mathfrak{C}^{0}$ to (V, E, s) by

$$\mathfrak{C}^{0} = C^{\infty}(V)/I_{s}^{2}, \qquad \mathfrak{C}^{-1} = C^{\infty}(E^{*})/I_{s} \cdot C^{\infty}(E^{*}),$$

 $\mathrm{d}(\epsilon + I_{s} \cdot C^{\infty}(E^{*})) = \epsilon(s) + I_{s}^{2},$

where $I_s = C^{\infty}(E^*) \cdot s \subset C^{\infty}(V)$ is the ideal generated by s. The d-manifold **X** associated to (V, E, s) is Spec \mathfrak{C}^{\bullet} . It only knows about functions on V up to $O(s^2)$, and sections of E up to O(s).

2.4. D-spaces

A *d-space* **X** is a topological space *X* with a sheaf of square zero dg- C^{∞} -rings $\mathcal{O}_{\mathbf{X}}^{\bullet} = \mathcal{O}_{X}^{-1} \stackrel{d}{\longrightarrow} \mathcal{O}_{\mathbf{X}}^{0}$, such that $\underline{X} = (X, H^{0}(\mathcal{O}_{\mathbf{X}}^{\bullet}))$ and $(X, \mathcal{O}_{\mathbf{X}}^{0})$ are C^{∞} -schemes, and \mathcal{O}_{X}^{-1} is quasicoherent over \underline{X} . We call \underline{X} the *underlying classical* C^{∞} -scheme. D-spaces form a strict 2-category **dSpa**, with 1-morphisms and 2-morphisms defined using sheaves of 1-morphisms and 2-morphisms in **SZC**^{∞}**Rings** in the obvious way. All fibre products exist in **dSpa**. C^{∞} -schemes include into d-spaces as those **X** with $\mathcal{O}_{X}^{-1} = 0$. Thus we have inclusions of (2-)categories **Man** \subset **C**^{∞}**Sch** \subset **dSpa**, so manifolds are examples of d-spaces. The *cotangent complex* $\mathbb{L}_{\mathbf{X}}^{\bullet}$ of **X** is the sheaf of cotangent complexes of $\mathcal{O}_{\mathbf{X}}^{\bullet}$, a 2-term complex $\mathbb{L}_{\mathbf{X}}^{-1} \stackrel{d\mathbf{x}}{\to} \mathbb{L}_{\mathbf{X}}^{0}$ of quasicoherent sheaves on \underline{X} . Such complexes form a 2-category qcoh $[^{-1,0]}(\underline{X})$.

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

2.5. D-manifolds

A *d*-manifold **X** of virtual dimension $n \in \mathbb{Z}$ is a d-space **X** whose topological space X is Hausdorff and second countable, and such that **X** is covered by open d-subspaces $\mathbf{Y} \subset \mathbf{X}$ with equivalences $\mathbf{Y} \simeq U \times_{g,W,h} V$, where U, V, W are manifolds with $\dim U + \dim V - \dim W = n$, and $g : U \to W$, $h : V \to W$ are smooth maps, and $U \times_{g,W,h} V$ is the fibre product in the 2-category **dSpa**. (The 2-category structure is *essential* to define the fibre product here.) Write **dMan** for the full 2-subcategory of d-manifolds in **dSpa**. Alternatively, we can write the local models as $\mathbf{Y} \simeq V \times_{0,E,s} V$, where V is a manifold, $E \to V$ a vector bundle, $s : V \to E$ a smooth section, and $n = \dim V - \operatorname{rank} E$. Then (V, E, s) is a

Kuranishi neighbourhood on **X** (compare with Kuranishi spaces). We call such $V \times_{0,E,s} V$ affine *d*-manifolds.

2.6. D-orbifolds, d-manifolds with corners

In a similar way, I define 2-categories of *d*-stacks **dSta**, which are a Deligne–Mumford stack version of d-spaces locally modelled on quotients $[\mathbf{X}/G]$ for \mathbf{X} a d-space and G a finite group, and *d*-orbifolds **dOrb** \subset **dSta**. D-orbifolds \mathbf{X} are locally modelled by Kuranishi neighbourhoods (V, E, s) with V an orbifold, $E \rightarrow V$ a vector bundle and $s : V \rightarrow E$ a smooth section (that is, \mathbf{X} is locally equivalent to a fibre product $V \times_{0,E,s} V$ in **dSta**). I also define 2-categories **dSpa^b**, **dSpa^c**, **dMan^b**, **dMan^c**, **dSta^b**, **dSta^c**, **dOrb^b**, **dOrb^c** of d-spaces, d-manifolds, d-stacks and d-orbifolds with boundary, and with corners.

Many moduli spaces of *J*-holomorphic curves will be d-orbifolds with corners. Doing 'things with corners' properly, especially in the derived context, is more complicated than you would expect. I will say more about this in Lecture 4.

19/30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

2.7. Why should **dMan** be a 2-category?

Here is one reason why any class of 'derived manifolds' should be (at least) a 2-category. One property we want of **dMan** (or of Kuranishi spaces, etc.) is that it contains manifolds **Man** as a subcategory, and if X, Y, Z are manifolds and $g : X \to Z$, $h : Y \to Z$ are smooth then a fibre product $\mathbf{W} = X \times_{g,Z,h} Y$ should exist in **dMan**, characterized by a universal property in **dMan**, and should be a d-manifold of 'virtual dimension'

 $\operatorname{vdim} \mathbf{W} = \dim X + \dim Y - \dim Z.$

Note that g, h need not be transverse, and vdim **W** may be negative. Consider the case X = Y = *, the point, $Z = \mathbb{R}$, and g, $h : * \mapsto 0$. If **dMan** were an ordinary category then as * is a terminal object, the unique fibre product $* \times_{0,\mathbb{R},0} *$ would be *. But this has virtual dimension 0, not -1. So **dMan** must be some kind of higher category.

Why is a 2-category enough?

Usually in derived algebraic geometry, one considers an ∞ -category of objects (derived stacks, etc.). But we work in a 2-category, a truncation of Spivak's ∞ -category of derived manifolds. Here are two reasons why this truncation does not lose important information. Firstly, d-manifolds correspond to *quasi-smooth* derived schemes X, whose cotangent complexes \mathbb{L}_X lie in degrees [-1,0]. So \mathbb{L}_X lies in a 2-category of complexes, not an ∞ -category. Note that $f: X \to Y$ is étale in **dMan** iff $\Omega_f : f^*(\mathbb{L}_Y) \to \mathbb{L}_X$ is an equivalence. Secondly, the existence of *partitions of unity* in differential geometry means that our structure sheaves \mathcal{O}_X are 'fine' or 'soft',

which simplifies behaviour. Partitions of unity are also essential in gluing by equivalences in **dMan**. Our '2-category style derived geometry' would not work well in a conventional algebro-geometric context, rather than a differential-geometric one.

21/30 Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds 3. 'Standard model' d-manifolds

Let V be a manifold, $E \to V$ a vector bundle, and $s : V \to E$ a smooth section. Then we can define an explicit affine d-manifold $\mathbf{S}_{V,E,s}$ in a 2-Cartesian diagram in **dMan**:

We have $\mathbf{S}_{V,E,s} = \operatorname{Spec} \mathfrak{C}^{\bullet}$, for \mathfrak{C}^{\bullet} as in the example in §2.3. We call $\mathbf{S}_{V,E,s}$ a 'standard model' d-manifold. It is similar to *Kuranishi neighbourhoods* in Fukaya–Oh–Ohta-Ono's Kuranishi spaces. It has dimension $\operatorname{vdim} \mathbf{S}_{V,E,s} = \dim V - \operatorname{rank} E$. Every affine d-manifold is equivalent to some $\mathbf{S}_{V,E,s}$, and every d-manifold is locally equivalent to some $\mathbf{S}_{V,E,s}$. D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

'Standard model' 1-morphisms

Let V, W be manifolds, $E \to V, F \to W$ vector bundles, and $s: V \to E, t: W \to F$ smooth sections, so we have d-manifolds $\mathbf{S}_{V,E,s}, \mathbf{S}_{W,F,t}$. Suppose $f: V \to W$ is smooth, and $\hat{f}: E \to f^*(F)$ is a morphism of vector bundles on V satisfying $\hat{f} \circ s = f^*(t) + O(s^2)$ in $C^{\infty}(f^*(F))$. Then we define a 'standard model' 1-morphism $\mathbf{S}_{f,\hat{f}}: \mathbf{S}_{V,E,s} \to \mathbf{S}_{W,F,t}$. Two 1-morphisms $\mathbf{S}_{f,\hat{f}}, \mathbf{S}_{g,\hat{g}}$ are equal iff $g = f + O(s^2)$ and $\hat{g} = \hat{f} + O(s)$.

Theorem

Every 1-morphism $\mathbf{g} : \mathbf{S}_{V,E,s} \to \mathbf{S}_{W,F,t}$ in **dMan** is of the form $\mathbf{S}_{f,\hat{f}}$, possibly after making V smaller.

23 / 30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

Theorem

A 'standard model' 1-morphism $S_{f,\hat{f}} : S_{V,E,s} \to S_{W,F,t}$ is étale (a local equivalence) in **dMan** iff for each $v \in V$ with s(v) = 0 and $w = f(v) \in W$, the following sequence is exact:

$$0 \longrightarrow T_v V \xrightarrow{\mathrm{d} s(v) \oplus \mathrm{d} f(v)} E_v \oplus T_w W \xrightarrow{\hat{f}(v) \oplus -\mathrm{d} t(w)} F_w \longrightarrow 0.$$

 $\mathbf{S}_{f,\hat{f}}$ is an equivalence iff also $f|_{s^{-1}(0)} : s^{-1}(0) \rightarrow t^{-1}(0)$ is a bijection.

Example

In Kuranishi spaces, a 'coordinate change' $(f, \hat{f}) : (V, E, s)$ $\rightarrow (W, F, t)$ is embeddings $f : V \hookrightarrow W$ and $\hat{f} : E \hookrightarrow f^*(F)$ with $\hat{f} \circ s = f^*(t), f^*(TW)/TV \cong f^*(F)/E$. The theorem shows $\mathbf{S}_{f,\hat{f}}$ is étale, or an equivalence.

'Standard model' 2-morphisms

Let $\mathbf{S}_{V,E,s}, \mathbf{S}_{W,F,t}$ be 'standard model' d-manifolds, and $\mathbf{S}_{f,\hat{f}}, \mathbf{S}_{g,\hat{g}} : \mathbf{S}_{V,E,s} \to \mathbf{S}_{W,F,t}$ 'standard model' 1-morphisms. Suppose $\Lambda : E \to f^*(TW)$ is a morphism of vector bundles on V, with $g = f + \Lambda \cdot s + O(s^2)$ and $\hat{g} = \hat{f} + \Lambda \cdot f^*(\mathrm{d}t) + O(s)$. Then we can define a 'standard model' 2-morphism $\mathbf{S}_{\Lambda} : \mathbf{S}_{f,\hat{f}} \Rightarrow \mathbf{S}_{g,\hat{g}}$. Every 2-morphism $\eta : \mathbf{S}_{f,\hat{f}} \Rightarrow \mathbf{S}_{g,\hat{g}}$ is \mathbf{S}_{Λ} for some Λ . Also $\mathbf{S}_{\Lambda} = \mathbf{S}_{\Lambda'}$ iff $\Lambda' = \Lambda + O(s)$.

These 'standard models' give a very explicit geometric picture of objects, 1- and 2-morphisms in **dMan**. The O(s), $O(s^2)$ notation tells you how much information about V, E, s the d-manifolds and morphisms remember.

One should use these ideas to relate d-manifolds/d-orbifolds and Kuranishi spaces, and to see how to make a new, 2-categorical definition of Kuranishi spaces.

25 / 30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

4. Differential geometry of d-manifolds4.1. Cotangent complexes of d-manifolds

If **X** is a d-manifold, its cotangent complex $\mathbb{L}^{\bullet}_{\mathbf{X}}$ is *perfect*, that is, $\mathbb{L}^{\bullet}_{\mathbf{X}}$ is equivalent locally on \underline{X} in the 2-category $\operatorname{qcoh}^{[-1,0]}(\underline{X})$ of 2-term complexes of quasicoherent sheaves on \underline{X} to a complex of vector bundles $\mathcal{E}^{-1} \to \mathcal{E}^{0}$, and $\operatorname{rank} \mathcal{E}^{0} - \operatorname{rank} \mathcal{E}^{-1} = \operatorname{vdim} \mathbf{X}$. For $x \in \mathbf{X}$, define the *cotangent space* $T_{x}^{*}\mathbf{X} = H^{0}(\mathbb{L}_{\mathbf{X}}|_{x})$ and the *obstruction space* $O_{x}\mathbf{X} = H^{-1}(\mathbb{L}_{\mathbf{X}}|_{x})$, with dim $T_{x}^{*}\mathbf{X} - \operatorname{dim} O_{x}\mathbf{X}$ $= \operatorname{vdim} \mathbf{X}$. A 1-morphism of d-manifolds $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ induces a 1-morphism d $\mathbf{f} : \underline{f}^{*}(\mathbb{L}^{\bullet}_{\mathbf{Y}}) \to \mathbb{L}^{\bullet}_{\mathbf{X}}$ in $\operatorname{qcoh}^{[-1,0]}(\underline{X})$.

Theorem

A 1-morphism $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ in **dMan** is étale if and only if $d\mathbf{f} : \underline{f}^*(\mathbb{L}^{\bullet}_{\mathbf{Y}}) \to \mathbb{L}^{\bullet}_{\mathbf{X}}$ is an equivalence in $\operatorname{qcoh}^{[-1,0]}(\underline{X})$, if and only if $H^0(d\mathbf{f}|_x) : T^*_{f(x)}Y \to T^*_xX$ and $H^{-1}(d\mathbf{f}|_x) : O^*_{f(x)}Y \to O^*_xX$ are isomorphisms for all $x \in \mathbf{X}$.

4.2. D-transversality and fibre products

Let $g: X \to Z$, $h: Y \to Z$ be smooth maps of manifolds. Then g, h are transverse if for all $x \in X$, $y \in Y$ with g(x) = h(y) = z in Z, the map $dg|_x \oplus dh|_y: T_z^*Z \to T_x^*X \oplus T_x^*Y$ is injective. If g, hare transverse then a fibre product $X \times_{g,Z,h} Y$ exists in **Man**. Similarly, we call 1-morphisms of d-manifolds $g: X \to Z$, $h: Y \to Z$ d-transverse if for all $x \in X$, $y \in Y$ with g(x) = h(y) = z in Z, the map $H^{-1}(dg|_x) \oplus H^{-1}(dh|_y): O_z^*Z \to O_x^*X \oplus O_y^*Y$ is injective. Note that d-transversality is much weaker than transversality of manifolds, and often holds automatically.

Theorem

Let $\mathbf{g} : \mathbf{X} \to \mathbf{Z}$ and $\mathbf{h} : \mathbf{Y} \to \mathbf{Z}$ be d-transverse 1-morphisms in dMan. Then a fibre product $\mathbf{W} = \mathbf{X} \times_{\mathbf{g},\mathbf{Z},\mathbf{h}} \mathbf{Y}$ exists in dMan.

27 / 30

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

If **Z** is a manifold, O_z^* **Z** = 0 and d-transversality is trivial, giving:

Corollary

All fibre products of the form $X \times_Z Y$ with X, Y d-manifolds and Z a manifold exist in the 2-category dMan.

The same holds in **dOrb**. This is a very useful property of d-manifolds and d-orbifolds. For example, moduli spaces $\overline{\mathcal{M}}_k(\gamma)$ of *J*-holomorphic discs in homology class γ in a symplectic manifold with boundary in a Lagrangian *L* and *k* boundary marked points are d-orbifolds with corners satisfying

$$\partial \overline{\mathcal{M}}_{k}(\gamma) = \coprod_{i+j=k, \alpha+\beta=\gamma} \overline{\mathcal{M}}_{i+1}(\alpha) \times_{L} \overline{\mathcal{M}}_{j+1}(\beta),$$

where the d-orbifold fibre products over the manifold L exist.

4.3. Gluing by equivalences

A 1-morphism $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ in **dMan** is an *equivalence* if there exist $\mathbf{g} : \mathbf{Y} \to \mathbf{X}$ and 2-morphisms $\eta : \mathbf{g} \circ \mathbf{f} \Rightarrow \mathbf{id}_{\mathbf{X}}$ and $\zeta : \mathbf{f} \circ \mathbf{g} \Rightarrow \mathbf{id}_{\mathbf{Y}}$.

Theorem

Let \mathbf{X}, \mathbf{Y} be d-manifolds, $\emptyset \neq \mathbf{U} \subseteq \mathbf{X}, \emptyset \neq \mathbf{V} \subseteq \mathbf{Y}$ open d-submanifolds, and $\mathbf{f} : \mathbf{U} \to \mathbf{V}$ an equivalence. Suppose the topological space $Z = X \cup_{U=V} Y$ made by gluing X, Y using f is Hausdorff. Then there exists a d-manifold \mathbf{Z} , unique up to equivalence, open $\hat{\mathbf{X}}, \hat{\mathbf{Y}}$ $\subseteq \mathbf{Z}$ with $\mathbf{Z} = \hat{\mathbf{X}} \cup \hat{\mathbf{Y}}$, equivalences $\mathbf{g} : \mathbf{X} \to \hat{\mathbf{X}}$ and $\mathbf{h} : \mathbf{Y} \to \hat{\mathbf{Y}}$, and a 2-morphism $\eta : \mathbf{g}|_{\mathbf{U}} \Rightarrow \mathbf{h} \circ \mathbf{f}$.

Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction D-manifolds without boundary Standard model d-manifolds Differential geometry of d-manifolds

Equivalence is the natural notion of when two objects in **dMan** are 'the same'. In the theorem **Z** is a *pushout* $\mathbf{X} \coprod_{id_{\mathbf{U}},\mathbf{U},f} \mathbf{Y}$ in **dMan**. The theorem generalizes to gluing families of d-manifolds $\mathbf{X}_i : i \in I$ by equivalences on double overlaps $\mathbf{X}_i \cap \mathbf{X}_j$, with (weak) conditions on triple overlaps $\mathbf{X}_i \cap \mathbf{X}_j \cap \mathbf{X}_k$.

We can take the X_i to be 'standard model' d-manifolds S_{v_i, E_i, s_i} , and the equivalences on overlaps $X_i \cap X_j$ to be 1-morphisms $S_{e_{ij}, \hat{e}_{ij}}$. This is very useful for proving existence of d-manifold structures on moduli spaces.