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Some references (to be revised, especially concerning corners):
For d-manifolds and d-orbifolds, see arXiv:1206.4207 (survey),
arXiv:1208.4948, and preliminary version of book available at
http://people.maths.ox.ac.uk/∼joyce/dmanifolds.html.

For C∞ geometry, see arXiv:1104.4951 (survey), and
arXiv:1001.0023.
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Disclaimer

Much of this lecture series is work in progress, and not yet written
up — it exists only in my head.
What there is you can find on my web page at
http://people.maths.ox.ac.uk/∼joyce/dmanifolds.html,
including a preliminary version (768 pages) of a book [book] on
d-manifolds and d-orbifolds and their differential geometry.
I am intending to rewrite the book from the beginning, not
because there is very much wrong with it, but because it turns out
(irritatingly) that I need a more general notion of d-orbifold with
corners to do moduli spaces of J-holomorphic curves properly.
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1. Introduction

I will tell you about new classes of geometric objects I call
d-manifolds and d-orbifolds — ‘derived’ smooth manifolds, in the
sense of Derived Algebraic Geometry. Some properties:

D-manifolds form a strict 2-category dMan. That is, we have
objects X, the d-manifolds, 1-morphisms f, g : X→ Y, the
smooth maps, and also 2-morphisms η : f ⇒ g.
Smooth manifolds embed into d-manifolds as a full
(2)-subcategory. So, d-manifolds generalize manifolds.
There are also 2-categories dManb, dManc of d-manifolds
with boundary and with corners, and orbifold versions
dOrb,dOrbb,dOrbc of these, d-orbifolds.
Much of differential geometry extends nicely to d-manifolds:
submersions, immersions, orientations, submanifolds,
transverse fibre products, cotangent bundles, . . . .
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Origins in derived algebraic geometry

D-manifolds are based on ideas from derived algebraic geometry.
First consider an algebro-geometric version of what we want to do.
A good algebraic analogue of smooth manifolds are complex
algebraic manifolds, that is, separated smooth C-schemes S of
pure dimension. These form a full subcategory AlgManC in the
category SchC of C-schemes, and can roughly be characterized as
the (sufficiently nice) objects S in SchC whose cotangent complex
LS is a vector bundle (i.e. perfect in the interval [0, 0]).

To make a derived version of this, we first define an ∞-category
DerSchC of derived C-schemes, and then define the ∞-category
DerAlgManC of derived complex algebraic manifolds to be the full
∞-subcategory of objects S in DerSchC which are quasi-smooth
(have cotangent complex LS perfect in the interval [−0, 0]), and
satisfy some other niceness conditions (separated, etc.).
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Derived algebraic geometry in the C∞ world

Thus, we have ‘classical’ categories AlgManC ⊂ SchC, and related
‘derived’ ∞-categories DerAlgManC ⊂ DerSchC.
David Spivak (arXiv:0810.5175, Duke Math. J.), a student of
Jacob Lurie, defined an ∞-category DerMan of ‘derived smooth
manifolds’ using a similar structure: he considered ‘classical’
categories Man ⊂ C∞Sch and related ‘derived’ ∞-categories
DerMan ⊂ DerC∞Sch. Here C∞Sch is C∞-schemes, and
DerC∞Sch derived C∞-schemes. That is, before we can ‘derive’,
we must first embed Man into a larger category of C∞-schemes,
singular generalizations of manifolds.
My set-up is a simplification of Spivak’s. I consider ‘classical’
categories Man ⊂ C∞Sch and related ‘derived’ 2-categories
dMan ⊂ dSpa, where dMan is d-manifolds, and dSpa d-spaces.
Here dMan,dSpa are roughly 2-category truncations of Spivak’s
DerMan,DerC∞Sch — see Borisov arXiv:1212.1153.
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2. D-manifolds without boundary

I will concentrate today on d-manifolds without boundary. Lecture
4 will explain how to include boundaries and corners.
We begin by discussing C∞-algebraic geometry, C∞-rings, and
C∞-schemes. Algebraic geometry (based on algebra and
polynomials) has excellent tools for studying singular spaces – the
theory of schemes.
In contrast, conventional differential geometry (based on smooth
real functions and calculus) deals well with nonsingular spaces –
manifolds – but poorly with singular spaces.
There is a little-known theory of schemes in differential geometry,
C∞-schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes,
. . . in synthetic differential geometry in the 1960s-1980s.
C∞-schemes are essentially algebraic objects, on which smooth
real functions and calculus make sense.
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2.1. C∞-rings

Let X be a manifold, and write C∞(X ) for the smooth functions
c : X→R. Then C∞(X ) is an R-algebra: we can add smooth
functions (c , d) 7→ c + d , and multiply them (c , d) 7→ cd , and
multiply by λ ∈ R.
But there are many more operations on C∞(X ) than this, e.g. if
c : X → R is smooth then exp(c) : X → R is smooth, giving
exp : C∞(X )→ C∞(X ), which is algebraically independent of
addition and multiplication.
Let f : Rn → R be smooth. Define Φf : C∞(X )n → C∞(X ) by
Φf (c1, . . . , cn)(x) = f

(
c1(x), . . . , cn(x)

)
for all x ∈ X . Then

addition comes from f : R2 → R, f : (x , y) 7→ x + y , multiplication
from (x , y) 7→ xy , etc. This huge collection of algebraic operations
Φf make C∞(X ) into an algebraic object called a C∞-ring.

7 / 30 Dominic Joyce, Oxford University Lecture 2: D-manifolds and d-orbifolds

Introduction
D-manifolds without boundary

Standard model d-manifolds
Differential geometry of d-manifolds

Definition

A C∞-ring is a set C together with n-fold operations Φf : Cn → C
for all smooth maps f : Rn → R, n > 0, satisfying:
Let m, n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
be smooth functions. Define h : Rn → R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)),

for (x1, . . . , xn) ∈ Rn. Then for all c1, . . . , cn in C we have

Φh(c1, . . . , cn) = Φg (Φf1(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)).

Also defining πj : (x1, . . . , xn) 7→ xj for j = 1, . . . , n we have
Φπj : (c1, . . . , cn) 7→ cj .
A morphism of C∞-rings is φ : C→ D with
Φf ◦ φn = φ ◦ Φf : Cn → D for all smooth f : Rn → R. Write
C∞Rings for the category of C∞-rings.
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Examples of C∞-rings

Then C∞(X ) is a C∞-ring for any manifold X , and from C∞(X )
we can recover X up to canonical isomorphism.
If f : X → Y is smooth then f ∗ : C∞(Y )→ C∞(X ) is a morphism
of C∞-rings; conversely, if φ : C∞(Y )→ C∞(X ) is a morphism of
C∞-rings then φ = f ∗ for some unique smooth f : X → Y . This
gives a full and faithful functor F : Man→ C∞Ringsop by
F : X 7→ C∞(X ), F : f 7→ f ∗.
Thus, we can think of manifolds as examples of C∞-rings, and
C∞-rings as generalizations of manifolds. But there are many
more C∞-rings than manifolds. For example, C 0(X ) is a C∞-ring
for any topological space X .
Any C∞-ring C has a cotangent module ΩC. If C = C∞(X ) for X
a manifold, then ΩC = C∞(T ∗X ).
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2.2. C∞-schemes

We can now develop the whole machinery of scheme theory in
algebraic geometry, replacing rings or algebras by C∞-rings
throughout — see my arXiv:1104.4951, arXiv:1001.0023.
A C∞-ringed space X = (X ,OX ) is a topological space X with a
sheaf of C∞-rings OX . Write C∞RS for the category of
C∞-ringed spaces.
The global sections functor Γ : C∞RS→ C∞Ringsop maps
Γ : (X ,OX ) 7→ OX (X ). It has a right adjoint, the spectrum
functor Spec : C∞Ringsop → C∞RS. That is, for each C∞-ring
C we construct a C∞-ringed space SpecC. Points x ∈ SpecC are
R-algebra morphisms x : C→ R (this implies x is a C∞-ring
morphism). We don’t use prime ideals.
On the subcategory of fair C∞-rings, Spec is full and faithful.
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A C∞-ringed space X is called an affine C∞-scheme if X ∼= SpecC
for some C∞-ring C. We call X a C∞-scheme if X can be covered
by open subsets U with (U,OX |U) an affine C∞-scheme. Write
C∞Sch for the full subcategory of C∞-schemes in C∞RS.
If X is a manifold, define a C∞-scheme X = (X ,OX ) by
OX (U) = C∞(U) for all open U ⊆ X . Then X ∼= SpecC∞(X ).
This defines a full and faithful embedding Man ↪→ C∞Sch. So we
can regard manifolds as examples of C∞-schemes.
All fibre products exist in C∞Sch. In manifolds Man, fibre
products X ×g ,Z ,h Y need exist only if g : X → Z and h : Y → Z
are transverse. When g , h are not transverse, the fibre product
X ×g ,Z ,h Y exists in C∞Sch, but may not be a manifold.
We also define vector bundles and quasicoherent sheaves on a
C∞-scheme X , and write qcoh(X ) for the abelian category of
quasicoherent sheaves. A C∞-scheme X has a well-behaved
cotangent sheaf T ∗X .
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Differences with ordinary Algebraic Geometry

The topology on C∞-schemes is finer than the Zariski
topology on schemes – affine schemes are always Hausdorff.
No need to introduce the étale topology.
Can find smooth functions supported on (almost) any open
set.
(Almost) any open cover has a subordinate partition of unity.
Our C∞-rings C are generally not noetherian as R-algebras.
So ideals I in C may not be finitely generated, even in
C∞(Rn).
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2.3. Differential graded C∞-rings

We can define derived C-schemes by replacing C-algebras A by dg
C-algebras A• in the definition of C-scheme — commutative
differential graded C-algebras in degrees 6 0, of the form

· · · → A−2 d−→A−1 d−→A0, where A0 is an ordinary C-algebra.
The corresponding ‘classical’ C-algebra is H0(A•) = A0/d[A−1].
There is a parallel notion of dg C∞-ring C•, of the form

· · · → C−2 d−→C−1 d−→C0, where C0 is an ordinary C∞-ring, and
C−1,C−2, . . . are modules over C0. The corresponding ‘classical’
C∞-ring is H0(C•) = C0/d[C−1].
One could use dg C∞-rings to define ‘derived C∞-schemes’; an
alternative is to use simplicial C∞-rings, see Spivak
arXiv:0810.5175, Borisov–Noel arXiv:1112.0033, and Borisov
arXiv:1212.1153.
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Square zero dg C∞-rings

My d-spaces are a 2-category truncation of derived C∞-schemes.
To define them, I use a special class of dg C∞-rings called square
zero dg C∞-rings, which form a 2-category SZC∞Rings.
A dg C∞-ring C• is square zero if Ci = 0 for i < −1 and

C−1 · d[C−1] = 0. Then C is C−1 d−→C0, and d[C−1] is a square
zero ideal in the (ordinary) C∞-ring C0, and C−1 is a module over
the ‘classical’ C∞-ring H0(C•) = C0/d[C−1].
A 1-morphism α• : C• → D• in SZC∞Rings is maps
α0 : C0 → D0, α−1 : C−1 → D−1 preserving all the structure.
Then H0(α•) : H0(C)→ H0(D) is a morphism of C∞-rings.
For 1-morphisms α•, β• : C• → D• a 2-morphism η : α• ⇒ β• is a
linear η : C0 → D−1 with β0 = α0 + d ◦ η and β−1 = α−1 + η ◦ d.
There is an embedding of (2-)categories C∞Rings ⊂ SZC∞Rings
as the (2-)subcategory of C• with C−1 = 0.
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Cotangent complexes in the 2-category setting

Let C• be a square zero dg C∞-ring. Define the cotangent

complex L−1
C

dC−→L0
C to be the 2-term complex of H0(C•)-modules

C−1 dDR◦d // ΩC0 ⊗C0 H0(C•),

regarded as an element of the 2-category of 2-term complexes of
H0(C•)-modules. Let α•, β• : C• → D• be 1-morphisms and
η : α• ⇒ β• a 2-morphism in SZC∞Rings. Then
H0(α•) = H0(β•), so we may regard D−1 as an H0(C•)-module.
And η : C0 → D−1 is a derivation, so it factors through an
H0(C•)-linear map η̂ : ΩC0 ⊗C0 H0(C•)→ D−1. We have a diagram

L−1
C

L−1
α �� L−1

β��

dC
// L0

C

L0
α ��

L0
β��η̂

ttL−1
D

dD // L0
D.

So 1-morphisms induce morphisms, and 2-morphisms homotopies,
of virtual cotangent modules.
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Examples of square zero dg C∞-rings

Let V be a manifold, E → V a vector bundle, and s : V → E a
smooth section. Then we call (V ,E , s) a Kuranishi neighbourhood
(compare Kuranishi spaces); for d-orbifolds, we take V an orbifold.

Associate a square zero dg C∞-ring C−1 d−→C0 to (V ,E , s) by

C0 = C∞(V )/I 2
s , C−1 = C∞(E ∗)/Is · C∞(E ∗),

d(ε+ Is · C∞(E ∗)) = ε(s) + I 2
s ,

where Is = C∞(E ∗) · s ⊂ C∞(V ) is the ideal generated by s.
The d-manifold X associated to (V ,E , s) is SpecC•. It only knows
about functions on V up to O(s2), and sections of E up to O(s).
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2.4. D-spaces

A d-space X is a topological space X with a sheaf of square zero

dg-C∞-rings O•X = O−1
X

d−→O0
X, such that X = (X ,H0(O•X)) and

(X ,O0
X) are C∞-schemes, and O−1

X is quasicoherent over X . We
call X the underlying classical C∞-scheme.
D-spaces form a strict 2-category dSpa, with 1-morphisms and
2-morphisms defined using sheaves of 1-morphisms and
2-morphisms in SZC∞Rings in the obvious way.
All fibre products exist in dSpa.
C∞-schemes include into d-spaces as those X with O−1

X = 0.
Thus we have inclusions of (2-)categories Man ⊂ C∞Sch ⊂ dSpa,
so manifolds are examples of d-spaces.
The cotangent complex L•X of X is the sheaf of cotangent

complexes of O•X, a 2-term complex L−1
X

dX−→L0
X of quasicoherent

sheaves on X . Such complexes form a 2-category qcoh[−1,0](X ).
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2.5. D-manifolds

A d-manifold X of virtual dimension n ∈ Z is a d-space X whose
topological space X is Hausdorff and second countable, and such
that X is covered by open d-subspaces Y ⊂ X with equivalences
Y ' U ×g ,W ,h V , where U,V ,W are manifolds with
dimU + dimV − dimW = n, and g : U →W , h : V →W are
smooth maps, and U ×g ,W ,h V is the fibre product in the
2-category dSpa. (The 2-category structure is essential to define
the fibre product here.)
Write dMan for the full 2-subcategory of d-manifolds in dSpa.
Alternatively, we can write the local models as Y ' V ×0,E ,s V ,
where V is a manifold, E → V a vector bundle, s : V → E a
smooth section, and n = dimV − rankE . Then (V ,E , s) is a
Kuranishi neighbourhood on X (compare with Kuranishi spaces).
We call such V ×0,E ,s V affine d-manifolds.
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2.6. D-orbifolds, d-manifolds with corners

In a similar way, I define 2-categories of d-stacks dSta, which are a
Deligne–Mumford stack version of d-spaces locally modelled on
quotients [X/G ] for X a d-space and G a finite group, and
d-orbifolds dOrb ⊂ dSta. D-orbifolds X are locally modelled by
Kuranishi neighbourhoods (V ,E , s) with V an orbifold, E → V a
vector bundle and s : V → E a smooth section (that is, X is
locally equivalent to a fibre product V ×0,E ,s V in dSta).
I also define 2-categories dSpab,dSpac,dManb,dManc,dStab,
dStac,dOrbb,dOrbc of d-spaces, d-manifolds, d-stacks and
d-orbifolds with boundary, and with corners.
Many moduli spaces of J-holomorphic curves will be d-orbifolds
with corners. Doing ‘things with corners’ properly, especially in the
derived context, is more complicated than you would expect. I will
say more about this in Lecture 4.
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2.7. Why should dMan be a 2-category?

Here is one reason why any class of ‘derived manifolds’ should be
(at least) a 2-category. One property we want of dMan (or of
Kuranishi spaces, etc.) is that it contains manifolds Man as a
subcategory, and if X ,Y ,Z are manifolds and g : X → Z ,
h : Y → Z are smooth then a fibre product W = X ×g ,Z ,h Y
should exist in dMan, characterized by a universal property in
dMan, and should be a d-manifold of ‘virtual dimension’

vdimW = dimX + dimY − dimZ .

Note that g , h need not be transverse, and vdimW may be
negative. Consider the case X = Y = ∗, the point, Z = R, and
g , h : ∗ 7→ 0. If dMan were an ordinary category then as ∗ is a
terminal object, the unique fibre product ∗ ×0,R,0 ∗ would be ∗.
But this has virtual dimension 0, not −1. So dMan must be some
kind of higher category.
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Why is a 2-category enough?

Usually in derived algebraic geometry, one considers an ∞-category
of objects (derived stacks, etc.). But we work in a 2-category, a
truncation of Spivak’s ∞-category of derived manifolds.
Here are two reasons why this truncation does not lose important
information. Firstly, d-manifolds correspond to quasi-smooth
derived schemes X, whose cotangent complexes LX lie in degrees
[−1, 0]. So LX lies in a 2-category of complexes, not an
∞-category. Note that f : X→ Y is étale in dMan iff
Ωf : f∗(LY)→ LX is an equivalence.
Secondly, the existence of partitions of unity in differential
geometry means that our structure sheaves OX are ‘fine’ or ‘soft’,
which simplifies behaviour. Partitions of unity are also essential in
gluing by equivalences in dMan. Our ‘2-category style derived
geometry’ would not work well in a conventional algebro-geometric
context, rather than a differential-geometric one.
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3. ‘Standard model’ d-manifolds

Let V be a manifold, E → V a vector bundle, and s : V → E a
smooth section. Then we can define an explicit affine d-manifold
SV ,E ,s in a 2-Cartesian diagram in dMan:

SV ,E ,s π
//

π
��

GO
η

V

0
��

V
s // E.

We have SV ,E ,s = SpecC•, for C• as in the example in §2.3.
We call SV ,E ,s a ‘standard model’ d-manifold. It is similar to
Kuranishi neighbourhoods in Fukaya–Oh–Ohta-Ono’s Kuranishi
spaces. It has dimension vdimSV ,E ,s = dimV − rankE . Every
affine d-manifold is equivalent to some SV ,E ,s , and every d-manifold
is locally equivalent to some SV ,E ,s .
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‘Standard model’ 1-morphisms

Let V ,W be manifolds, E → V , F →W vector bundles, and
s : V → E , t : W → F smooth sections, so we have d-manifolds
SV ,E ,s , SW ,F ,t . Suppose f : V →W is smooth, and f̂ : E → f ∗(F )
is a morphism of vector bundles on V satisfying
f̂ ◦ s = f ∗(t) + O(s2) in C∞(f ∗(F )). Then we define a ‘standard
model’ 1-morphism Sf ,f̂ : SV ,E ,s → SW ,F ,t . Two 1-morphisms
Sf ,f̂ ,Sg,ĝ are equal iff g = f + O(s2) and ĝ = f̂ + O(s).

Theorem

Every 1-morphism g : SV ,E ,s → SW ,F ,t in dMan is of the form Sf ,f̂ ,
possibly after making V smaller.
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Theorem

A ‘standard model’ 1-morphism Sf ,f̂ : SV ,E ,s → SW ,F ,t is étale (a
local equivalence) in dMan iff for each v ∈ V with s(v) = 0 and
w = f (v) ∈W , the following sequence is exact:

0 // TvV
ds(v)⊕ df (v)

// Ev ⊕ TwW
f̂ (v)⊕−dt(w)

// Fw
// 0.

Sf ,f̂ is an equivalence iff also f |s−1(0) : s−1(0)→ t−1(0) is a
bijection.

Example

In Kuranishi spaces, a ‘coordinate change’ (f , f̂ ) : (V ,E , s)
→ (W ,F , t) is embeddings f : V ↪→W and f̂ : E ↪→ f ∗(F ) with
f̂ ◦ s = f ∗(t), f ∗(TW )/TV ∼= f ∗(F )/E . The theorem shows Sf ,f̂ is
étale, or an equivalence.
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‘Standard model’ 2-morphisms

Let SV ,E ,s ,SW ,F ,t be ‘standard model’ d-manifolds, and
Sf ,f̂ ,Sg,ĝ : SV ,E ,s → SW ,F ,t ‘standard model’ 1-morphisms.
Suppose Λ : E → f ∗(TW ) is a morphism of vector bundles on V ,
with g = f + Λ · s + O(s2) and ĝ = f̂ + Λ · f ∗(dt) + O(s). Then
we can define a ‘standard model’ 2-morphism SΛ : Sf ,f̂ ⇒ Sg,ĝ .
Every 2-morphism η : Sf ,f̂ ⇒ Sg,ĝ is SΛ for some Λ. Also SΛ = SΛ′

iff Λ′ = Λ + O(s).

These ‘standard models’ give a very explicit geometric picture of
objects, 1- and 2-morphisms in dMan. The O(s),O(s2) notation
tells you how much information about V ,E , s the d-manifolds and
morphisms remember.
One should use these ideas to relate d-manifolds/d-orbifolds and
Kuranishi spaces, and to see how to make a new, 2-categorical
definition of Kuranishi spaces.
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4. Differential geometry of d-manifolds
4.1. Cotangent complexes of d-manifolds

If X is a d-manifold, its cotangent complex L•X is perfect, that is,
L•X is equivalent locally on X in the 2-category qcoh[−1,0](X ) of
2-term complexes of quasicoherent sheaves on X to a complex of
vector bundles E−1 → E0, and rank E0 − rank E−1 = vdimX.
For x ∈ X, define the cotangent space T ∗xX=H0(LX|x) and the
obstruction space OxX=H−1(LX|x), with dimT ∗xX−dimOxX
=vdimX. A 1-morphism of d-manifolds f : X→ Y induces a
1-morphism df : f ∗(L•Y)→ L•X in qcoh[−1,0](X ).

Theorem

A 1-morphism f : X→ Y in dMan is étale if and only if
df : f ∗(L•Y)→ L•X is an equivalence in qcoh[−1,0](X ), if and only if
H0(df|x) : T ∗f (x)Y → T ∗x X and H−1(df|x) : O∗f (x)Y → O∗x X are
isomorphisms for all x ∈ X.
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4.2. D-transversality and fibre products

Let g : X → Z , h : Y → Z be smooth maps of manifolds. Then
g , h are transverse if for all x ∈ X , y ∈ Y with g(x) = h(y) = z in
Z , the map dg |x ⊕ dh|y : T ∗z Z → T ∗x X ⊕ T ∗x Y is injective. If g , h
are transverse then a fibre product X ×g ,Z ,h Y exists in Man.

Similarly, we call 1-morphisms of d-manifolds g : X→ Z,
h : Y → Z d-transverse if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z, the map
H−1(dg|x)⊕ H−1(dh|y ) : O∗zZ→ O∗xX⊕ O∗yY is injective.
Note that d-transversality is much weaker than transversality of
manifolds, and often holds automatically.

Theorem

Let g : X→ Z and h : Y → Z be d-transverse 1-morphisms in
dMan. Then a fibre product W = X×g,Z,h Y exists in dMan.
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If Z is a manifold, O∗zZ = 0 and d-transversality is trivial, giving:

Corollary

All fibre products of the form X×Z Y with X,Y d-manifolds and
Z a manifold exist in the 2-category dMan.

The same holds in dOrb. This is a very useful property of
d-manifolds and d-orbifolds. For example, moduli spaces Mk(γ)
of J-holomorphic discs in homology class γ in a symplectic
manifold with boundary in a Lagrangian L and k boundary marked
points are d-orbifolds with corners satisfying

∂Mk(γ) =
∐

i+j=k, α+β=γ Mi+1(α)×L Mj+1(β),

where the d-orbifold fibre products over the manifold L exist.
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4.3. Gluing by equivalences

A 1-morphism f : X→ Y in dMan is an equivalence if there exist
g :Y→X and 2-morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g⇒ idY.

Theorem

Let X,Y be d-manifolds, ∅ 6= U ⊆ X, ∅ 6= V ⊆ Y open
d-submanifolds, and f : U→ V an equivalence. Suppose the
topological space Z = X ∪U=V Y made by gluing X ,Y using f is
Hausdorff. Then there exists a d-manifold Z, unique up to
equivalence, open X̂, Ŷ
⊆ Z with Z = X̂ ∪ Ŷ, equivalences g : X→ X̂ and h : Y → Ŷ, and
a 2-morphism η : g|U ⇒ h ◦ f.
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Equivalence is the natural notion of when two objects in dMan are
‘the same’. In the theorem Z is a pushout XqidU,U,f

Y in dMan.
The theorem generalizes to gluing families of d-manifolds Xi : i ∈ I
by equivalences on double overlaps Xi ∩Xj , with (weak) conditions
on triple overlaps Xi ∩ Xj ∩ Xk .
We can take the Xi to be ‘standard model’ d-manifolds SVi ,Ei ,si

,
and the equivalences on overlaps Xi ∩Xj to be 1-morphisms Seij ,êij

.
This is very useful for proving existence of d-manifold structures on
moduli spaces.
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