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1. Introduction

Several important areas of symplectic geometry involve ‘counting’
moduli spaces M of J-holomorphic curves — Gromov–Witten
invariants, Lagrangian Floer cohomology, Symplectic Field Theory,
. . . . To do this, we first endow M with an appropriate geometric
structure (smooth manifold, Kuranishi space, polyfold, d-orbifold),
and then associate a virtual class (or virtual cycle, or virtual chain)
to M, in some (co)homology theory. That is, we need a bridge
between moduli spaces and homological algebra.

If things go nicely (they may not), geometric relations between
moduli spaces translate cleanly into algebraic relations between
their virtual classes / virtual chains. The geometers can then go
home for tea, and leave a specialist in homological algebra to
define Lagrangian Floer cohomology, Fukaya categories, SFT, etc.

If things do not go nicely, it is probably the geometers’ fault.
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For example, moduli spaces Mk(γ) of J-holomorphic discs in
homology class γ in a symplectic manifold with boundary in a
Lagrangian L and k boundary marked points are Kuranishi spaces
or d-orbifolds with corners satisfying the boundary equation

∂Mk(γ) ∼=
∐

i+j=k, α+β=γ Mi+1(α)×L Mj+1(β). (1)

Ideally, one would like Mk(γ) to have a virtual chain [Mk(γ)]virt
in the chains C∗(Lk) of some homology theory of Lk , satisfying

∂[Mk(γ)]virt =
∑

i+j=k, α+β=γ [Mi+1(α)]virt•L [Mj+1(β)]virt, (2)

where •L is an associative, supercommutative intersection product
defined at the chain level, not just on homology. (Compare with
the wedge product of forms in de Rham cohomology.)
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In [FOOO], this is done by perturbing the Kuranishi spaces using
multisections to get a (Q-weighted, non-Hausdorff) manifold,
triangulating this by simplices to get a chain in singular homology.
This process is acutely painful, because singular homology does not
play at all nicely with Kuranishi spaces, and much of the algebraic
complexity of [FOOO] is due to the problems this causes —
especially, perturbing Kuranishi spaces to transverse.
Note too that singular chains C sing

∗ (L) do not have a nice
intersection product •L defined at the chain level, so (2) does not
make sense. Basically, singular homology is not a good choice.

As I understand it, the proposed virtual cycle construction for
polyfolds (HWZ arXiv:0711.0781) is very similar to [FOOO]
(curiously, this is not mentioned), except that after perturbing by
multisections, they integrate differential forms over the
(Q-weighted, non-Hausdorff) manifold. So [Mk(γ)]virt∈C∞(Λ•Lk)∗

is a current on Lk . Currents also have no natural chain product •L.

5 / 27 Dominic Joyce, Oxford University Lecture 5: D-orbifold homology and cohomology

Introduction
D-manifold bordism

D-orbifold homology
D-orbifold cohomology

D-orbifold homology and cohomology

I propose to define new (co)homology theories dH∗(Y ,R),
dH∗(Y ,R) of a manifold or orbifold Y , with coefficients in a
Q-algebra R, isomorphic to ordinary homology and
compactly-supported cohomology, but in which the (co)chains are
1-morphisms f : X→ Y for X a compact, oriented d-orbifold with
g-corners (or stratified d-orbifold), plus extra ‘gauge-fixing data’ G.
Forming virtual classes for moduli spaces in d-orbifold
(co)homology is almost trivial, there is no need to perturb, one
just chooses gauge-fixing data G, which is always possible.
There is an associative, supercommutative intersection product •L
defined on chains dC∗(L). For the moduli spaces Mk(γ), in a
single induction one can choose virtual chains
[Mk(γ)]virt ∈ dC∗(Lk) satisfying (2). Because of this, the
homological algebra in [FOOO] can be drastically simplified if we
use d-orbifold homology instead of singular homology.
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2. Ordinary bordism and d-manifold bordism

As a warm-up, we discuss bordism and d-manifold bordism.

Let Y be a manifold. Define the bordism group Bk(Y ) to have
elements ∼-equivalence classes [X , f ] of pairs (X , f ), where X is a
compact oriented k-manifold without boundary and f : X → Y is
smooth, and (X , f ) ∼ (X ′, f ′) if there exists a (k + 1)-manifold
with boundary W and a smooth map e : W → Y with
∂W ∼= X q−X ′ and e|∂W ∼= f q f ′. It is an abelian group, with
addition [X , f ] + [X ′, f ′] = [X q X , f q f ′].
If Y is oriented of dimension n, there is a supercommutative,
associative intersection product • : Bk(Y )× Bl(Y )→ Bk+l−n(Y )
given by [X , f ] • [X ′, f ′] = [X ×f ,Y ,f ′ X ′, πY ], choosing X , f , X ′, f ′

in their bordism classes with f : X → Y , f ′ : X ′ → Y transverse.
There is a natural morphism Πhom

bo : Bk(Y )→ Hk(Y ,Z) given by
Πhom
bo : [X , f ] 7→ f∗([X ]), for [X ] ∈ Hk(X ,Z) the fundamental class.
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Similarly, define the derived bordism group dBk(Y ) to have
elements ≈-equivalence classes [X, f] of pairs (X , f ), where X is a
compact oriented d-manifold with vdimX = k and f : X→ Y is a
1-morphism in dMan, and (X, f) ≈ (X′, f ′) if there exists a
d-manifold with boundary W with vdimW = k + 1 and a
1-morphism e : W→ Y in dManb with ∂W ' Xq−X′ and
e|∂W ∼= f q f ′. It is an abelian group, with
[X, f] + [X′, f ′] = [Xq X, f q f ′].
If Y is oriented of dimension n, there is a supercommutative,
associative intersection product • : dBk(Y )× dBl(Y )→
dBk+l−n(Y ) given by [X, f] • [X′, f ′] = [X×f,Y ,f′ X

′,πY ], with no
transversality condition on X, f, X′, f ′.
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There is a natural morphism Πdbo
bo : Bk(Y )→ dBk(Y ) mapping

[X , f ] 7→ [X , f ].

Theorem

Πdbo
bo :Bk(Y )→dBk(Y ) is an isomorphism for all k, with

dBk(Y ) = 0 for k < 0.

This holds as every d-manifold can be perturbed to a manifold.

Composing (Πdbo
bo )−1 with Πhom

bo : Bk(Y )→ Hk(Y ,Z) gives a
morphism Πhom

dbo :dBk(Y )→Hk(Y ,Z). We can interpret this as a
virtual class map for compact, oriented d-manifolds. In particular,
this is an easy proof that the geometric structure on d-manifolds is
strong enough to define virtual classes.
Virtual classes (in homology over Q) also exist for compact
oriented d-orbifolds, though the proof is harder.
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3. D-orbifold homology
3.1. The basic idea

Let Y be a manifold or orbifold, and R a Q-algebra. We define a
complex of R-modules

(
dC∗(Y ,R), ∂

)
, whose homology groups

dH∗(Y ,R) are the d-orbifold homology of Y .
Similarly to the definition of d-manifold bordism, chains in
dCk(Y ,R) for k ∈ Z are R-linear combinations of equivalence
classes [X, f,G] with relations, where X is a compact, oriented
d-orbifold with g-corners (or stratified d-orbifold) with dimension
k , f : X→ Y is a 1-morphism in dOrbgc, and G is some extra
‘gauge-fixing data’ associated to X, with many possible choices.
I won’t give all the relations on the [X, f,G]. Two examples are:

[X1 q X2, f1 q f2,G1 q G2] = [X1, f1,G1] + [X2, f2,G2], (3)

[−X, f,G] = −[X, f,G], (4)

where −X is X with the opposite orientation.
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Gauge-fixing data – first properties

Here ‘gauge-fixing data’ is the key to the whole story. I won’t tell
you what it is — in fact, this doesn’t really matter — but I will
give you lists of axioms we need it to satisfy. Here are the first:

(i) For any d-orbifold with g-corners X (not necessarily compact
or oriented) we have a nonempty set Gauge(X) of choices of
‘gauge-fixing data’ G for X.

(ii) If f : X→ Y is étale (e.g. an equivalence, or inclusion of an
open) we have a pullback map f∗ : Gauge(Y)→ Gauge(X).
If f, g are 2-isomorphic then f∗ = g∗. Pullbacks are functorial.

(iii) There is a boundary map |∂X : Gauge(X)→ Gauge(∂X). We
regard it as a pullback along the (non-étale) iX : ∂X→ X.
The maps |∂X combine functorially with other pullbacks.

(iv) (Desirable.) The map U→ Gauge(U) for U ⊆ X open is a
sheaf on X, using pullbacks by inclusions U ↪→ V ⊆ X.
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Boundary operators

Note that d-orbifolds X can have virtual dimension vdimX < 0, so
dCk(Y ,R) 6= 0 for all k < 0, although dHk(Y ,R) = 0 for k < 0.
The boundary operator ∂ : dCk(Y ,R)→ dCk−1(Y ,R) maps

∂ :
[
X, f,G

]
7−→

[
∂X, f ◦ iX,G|∂X

]
.

We have a natural 1-morphism iX : ∂X→ X and an equivalence
∂2X ' ∂XiX,X,iX∂X. Thus there is an orientation-reversing
involution σ : ∂2X→ ∂2X swapping the two factors of ∂X. This
satisfies iX ◦ i∂X ◦ σ ∼= iX ◦ i∂X. Hence G|∂2X is σ-invariant. Using
this and (4) we show that ∂2 = 0, so dH∗(Y ,R) is well-defined.
Here is a property of gauge-fixing data with prescribed boundary
values. ‘Only if’ is necessary by (i)–(iii) as above.

(v) Suppose H ∈ Gauge(∂X). Then there exists G ∈ Gauge(X)
with G|∂X = H if and only if σ∗(H|∂2X) = H|∂2X.
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Pushforwards, relation to singular homology

Suppose g : Y → Z is a smooth map of manifolds or orbifolds.
Define an R-linear pushforward g∗ : dCk(Y ,R)→ dCk(Z ,R) by
g∗ : [X, f,G] 7→ [X, g ◦ f,G]. Then g∗ ◦ ∂ = ∂ ◦ g∗, so this induces
g∗ : dHk(Y ,R)→ dHk(Z ,R). Pushforwards are functorial.

Singular homology Hsing
∗ (Y ,R) may be defined using(

C sing
∗ (Y ,R), ∂

)
, where C sing

k (Y ,R) is spanned by smooth maps
f : ∆k → Y , for ∆k the standard k-simplex, thought of as a
manifold with corners.
We define an R-linear map F dH

sing : C sing
k (Y ,R)→ dCk(Y ,R) by

F dH
sing : f 7−→

[
∆k , f ,G∆k

]
,

with G∆k
some standard choice of gauge-fixing data for ∆k .

Then F dH
sing ◦ ∂ = ∂ ◦ F dH

sing, so that F dH
sing induces morphisms

F dH
sing : H sing

k (Y ,R)→ dHk(Y ,R).
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3.2. The main result (hopefully)

The main result of the theory (I haven’t proved it yet!) will be:

“Theorem”

F dH
sing : H sing

k (Y ,R)→ dHk(Y ,R) is an isomorphism for all k ∈ Z.

Some remarks:

Whether or not the “Theorem” is actually true depends on
the choice of relations on the [X, f,G] in the definition of
dCk(Y ), and on the definition (or at least the properties) of
gauge-fixing data, neither of which I have explained.
The aim is to design them to make the “Theorem” hold.
Forming virtual classes/virtual chains is easy. Suppose M is a
moduli d-orbifold, with evaluation map ev : M→ Y . Choose
gauge-fixing data G for M, which is possible by (i). Then
[M, ev,G] ∈ dCk(Y ) is a virtual chain for M. If ∂M = ∅
then [[M, ev,G]] ∈ dHk(Y ) is a virtual class for M.
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Obviously, d-orbifold homology is not a new invariant, it’s just
ordinary homology. The point is that it has special properties
which make it more convenient than competing homology
theories (e.g. singular homology) for some tasks:

(a) D-orbifold homology is very well adapted for forming virtual
cycles and virtual chains in moduli problems. It is particularly
powerful for moduli spaces ‘with corners’, as in Lagrangian
Floer homology and Symplectic Field Theory.
Using d-orbifold homology instead of singular homology could
simplify [FOOO] considerably.

(b) Issues to do with transversality — for instance, defining
intersection products on (not necessarily transverse) chains —
often disappear in d-orbifold homology.
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To prove the “Theorem”, the main issue is to show that any
cycle

∑m
i=1 ci [Xi , f i ,Gi ] in dCk(Y ,R) is homologous to a

singular cycle
∑n

j=1 dj [∆k , gj ,G∆k
].

The proof of this involves using homologies and relations to
first cut the Xi into small pieces which are global quotients
[X′/G ] for d-manifolds X′, replacing [X′/G ] by 1

|G |X
′ to get a

cycle
∑m′

i=1 c ′i [X
′
i , f
′
i ,G
′
i ] involving d-manifolds with g-corners

X′i rather than d-orbifolds, perturbing the X′i to manifolds
with g-corners, and triangulating these by simplices.
Essentially, this uses all the messy bits of [FOOO] I was
complaining about: perturbation by multisections,
triangulation by simplices, arbitrary choices with boundary
compatibilities. We do have to solve all the same issues. But
now, these messy bits are repackaged in the proof of the
“Theorem”. I only have to do them once, and you won’t have
to read it; you don’t meet them every time you use theory.
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3.3. Why we need gauge-fixing data: an example

D-manifold bordism dBk(Y ) in §2 worked fine without gauge-fixing
data. So what would go wrong if we did d-orbifold homology
without gauge-fixing data, or equivalently, set Gauge(X) = {pt}
for all X, so there is only ever one choice for G?
It turns out that without gauge-fixing data, we would have
dHk(Y ,R) = 0 for all k ,Y . We explain this by an example; finding
out what goes wrong shows more properties we need of
gauge-fixing data.
Take Y = pt, the point. Then dH∗(pt,R) is a ring, with identity
[[pt, id]] ∈ dH0(Y ,R). We will show that [[pt, id]] = 0, so
dH∗(pt,R) = 0 as the identity is zero.
For any orbifold Z , by writing Z ∼= Z × pt, we can make dH∗(Z ,R)
into a module over dH∗(pt,R) = 0. Hence dH∗(Z ,R) = 0.
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For k ∈ Z, define Xk to be the ‘standard model’ d-manifold of
virtual dimension 0, with Kuranishi neighbourhood (CP1,O(k), 0).
Then [Xk ,π] ∈ dC0(pt,R), supposing we are defining d-orbifold
homology without gauge-fixing data, and ∂[Xk ,π] = 0 as
∂Xk = 0, so [[Xk ,π]] ∈ dH0(pt,R).
By perturbing the section s = 0 to a generic section s̃, which has k
transverse zeros counted with signs, we can show that

[[Xk ,π]] = k[[pt, id]]. (5)

Divide CP1 into two hemispheres D+,D− with common boundary
S1. Let X±k be the corresponding d-manifolds with boundary, so
that Xk = X+

k ∪S1 X−k . Then we can show that

[[Xk ,π]] =
[
[X+

k ,π] + [X−k ,π]
]
. (6)

However, X±k are independent of k ∈ Z up to equivalence, as
O(k)|D± is trivial. So (5)–(6) show that [[pt, id]] = 0, as we want.
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What went wrong in this example?

To prove that [Xk ,π] ∼ [Xl ,π] for k 6= l ∈ Z we cut Xk into two
pieces X±k , whose boundary Y = ∂X±k is a d-manifold of virtual
dimension −1, a circle S1 with obstruction bundle R2 × S1 → S1.
To make Xl we glue X+

k ,X
−
k back together along their boundaries

in a different way, applying an automorphism of Y = ∂X±k which
rotates the obstruction bundle l − k times as one goes round S1.
Thus, this example involves an automorphism of Y, of infinite
order, which acts nontrivially upon the obstructions of Y.
This suggests that problems arise when chains [X, f,G] have
infinite automorphism groups Aut(X, f,G).
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More properties of gauge-fixing data

One property of gauge-fixing data we could impose is:

(vi) (Desirable.) Suppose X is a compact d-orbifold with g-corners,
and G ∈ Gauge(X). Then Aut(X,G) is a finite group.

Actually, (vi) contradicts the sheaf property (iv) in examples where
X has infinitely many connected components. But (vi) is stronger
than we need; probably ‘every finitely generated subgroup of
Aut(X,G) is finite’ is enough, and there are weaker versions of (vi)
consistent with (iv), ‘Aut(X,G) is locally finite’.

In the proof of the “Theorem”, this arises because sometimes we
need to average over an automorphism group Γ ⊆ Aut(X, f,G) of
a chain [X, f,G] – for instance, if we choose a non Γ-invariant
deformation X̃ of X, and average over images of X̃ under Γ. If Γ is
not finite, this does not make sense. This is also one reason why
we take the coefficient ring R to be a Q-algebra, so that 1

|Γ| ∈ R.
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4. D-orbifold cohomology
4.1. The basic idea

I will also define a cochain complex
(
dC ∗(Y ,R), d) with

cohomology dH∗(Y ,R), called d-orbifold cohomology.
The basic idea is to use Poincaré duality:

If Y is a compact oriented n-manifold, then Hk(Y ,R) ∼=
Hn−k(Y ,R). So roughly we take dC k(Y ,R) = dCn−k(Y ,R).
This is still true for orbifolds Y , as R is a Q-algebra.
If Y is noncompact, then Hk

cs(Y ,R) ∼= Hn−k(Y ,R), where
H∗cs(Y ,R) is compactly-supported cohomology. So in the
analogue of the “Theorem”, we want dHk(Y ,R) ∼= Hk

cs(Y ,R).
If Y is not oriented, then instead of taking X oriented in
cochains [X, f,G], we take f : X→ Y cooriented. That is, the
line bundle ΛtopLX ⊗ f∗(ΛtopTY ) on X is oriented.
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So, in a similar way to d-manifold homology, let Y be a manifold
or orbifold, and R a Q-algebra. We define a complex of R-modules(
dC ∗(Y ,R), ∂

)
, whose homology groups dH∗(Y ,R) are the

d-orbifold cohomology of Y .
Cochains in dCk(Y ,R) for k ∈ Z are R-linear combinations of
equivalence classes [X, f,C] with relations, where X is a compact
d-orbifold with g-corners (or stratified d-orbifold) with virtual
dimension dimY − k, f : X→ Y is a cooriented 1-morphism in
dOrbgc, and G is some extra ‘co-gauge-fixing data’ associated to
f : X→ Y , with many possible choices, which we explain shortly.

As a general principle, in chains [X, f,G] in d-orbifold homology we
work with absolute data on X, but in cochains [X, f,C] in
d-orbifold cohomology we work with relative data for f : X→ Y .
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4.2. Co-gauge-fixing data

We can’t (or shouldn’t) define d-orbifold cohomology using
gauge-fixing data, as it won’t have the right functoriality:
gauge-fixing data on X is good for defining pushforwards, but
(compactly-supported) cohomology should have (proper) pullbacks.
So instead, cochains dC k(Y ) in d-orbifold cohomology will be
R-linear combinations of equivalence classes [X, f,C], where C is
co-gauge-fixing data associated to the 1-morphism f : X→ Y ,
rather than just to the d-orbifold with corners X.
In fact the target Y doesn’t need to be a manifold or orbifold: we
can associate co-gauge-fixing data to any w-submersion f : X→ Y
in dOrbgc, where w-submersions induce injective maps
H−1(df |x) : OyY → OxX on obstructions. If Y is an orbifold, any
f : X→ Y is a w-submersion, as the obstructions OyY are zero.
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Co-gauge-fixing data – first properties

(i) Any w-submersion f : X→ Y in dOrbgc has a nonempty set
CoGauge(f : X→ Y) of co-gauge-fixing data C, which
depends on f only up to 2-isomorphism.

(ii) If f : X→ Y is étale, we are given identity co-gauge-fixing
data 1f ∈ CoGauge(f : X→ Y).

(iii) If f : X→ Y, g : Y → Z are w-submersions, we have an
associative composition ◦ : CoGauge(g : Y → Z)×
CoGauge(f : X→ Y)→ CoGauge(g ◦ f : X→ Z).

(iv) (Desirable.) If f : X→ Y is a w-submersion, then
U 7→ CoGauge(f|U : U→ Y) for open U ⊆ X is a sheaf,
where if U ⊆ V ⊆ X are open then the restriction map
CoGauge(f|V : V→ Y)→ CoGauge(f|U : U→ Y) is
C 7→ C ◦ 1U↪→V.
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Co-gauge-fixing data – first properties

(v) Suppose we are given a 2-Cartesian diagram in dOrbgc

W
f

//

e��
GO

η
Y
h ��

X
g // Z,

with g (and hence f) a w-submersion. Then there is a pullback
map e∗ : CoGauge(g : X→ Z)→ CoGauge(f : W→ Y).
These are functorial, together with composition, under
combining 2-Cartesian squares into larger rectangles.

Let g : Y → Z be a smooth map of manifolds or orbifolds. Define
an R-linear pullback map g∗ : dC k(Z ,R)→ dC k(Y ,R) by
g∗ : [X, f,C] 7→ [X×f,Z ,g Y ,πY ,π

∗
X(C)], where π∗X(C) is as in

(v). Then g∗ ◦ d = d ◦ g∗, so this induces
g∗ : dHk(Z ,R)→ dHk(Y ,R) in the usual way.
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4.4. Relation of gauge-fixing and co-gauge-fixing data

We can identify gauge-fixing data for X with co-gauge-fixing data
for π : X→ pt. In fact, both d-orbifold homology and cohomology
are part of a larger ‘bivariant theory’ dBH∗(g : Y → Z ,R) of
smooth maps g : Y → Z , mixing homology and cohomology, with
chains [X, f,C] for f : X→ Y and C co-gauge-fixing data for
g ◦ f : X→ Z , with dHk(Y ,R) ∼= dBHk(π : Y → pt,R) and
dHk(Y ,R) ∼= dBH−k(idY : Y → Y ,R).
This may have symplectic applications: for moduli spaces of
J-holomorphic discs in Lagrangian Floer theory, it may be more
functorial to associate ‘incoming’ boundary marked points to the
homology of L, and ‘outgoing’ ones to the cohomology of L,
mixing homology and cohomology.
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4.5. Isomorphism with compactly-supported cohomology

Let Y be oriented of dimension n. Choose co-gauge-fixing data Gπ
for π : Y → ∗. Define Πdhom

dcoh : dC k(Y ,R)→ dCn−k(Y ,R) by
Πdhom
dcoh : [X, f,C] 7→ [X, f,Gπ ◦ C]. This induces

Πdhom
dcoh : dHk(Y ,R)→ dHn−k(Y ,R). I would like to prove:

“Theorem”

These maps Πdhom
dcoh : dHk(Y ,R)→ dHn−k(Y ,R) are

isomorphisms, and independent of the choice of Gπ.

If so, the composition

Hk
cs(Y ,R)

Poincaré
duality// Hsing

n−k(Y ,R)
FdH
sing // dHn−k(Y ,R)

(Πdhom
dcoh )−1

// dHk(Y ,R)

gives isomorphisms H∗cs(Y ,R) ∼= dH∗(Y ,R), as we want.
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