Constructing compact 8-manifolds with holonomy $\operatorname{Spin}(7)$

Dominic Joyce, Oxford University
Simons Collaboration meeting, Imperial College, June 2017.
Based on Invent. math. 123 (1996), 507-552;
J. Diff. Geom. 53 (1999), 89-130; and
'Compact Manifolds with Special Holonomy', OUP, 2000.
These slides available at
http://people.maths.ox.ac.uk/~joyce/.

Plan of talk:
(1) The holonomy group $\operatorname{Spin}(7)$
(2) $\operatorname{Spin}(7)$-manifolds from resolutions of T^{8} / Γ
(3) Spin(7)-manifolds from Calabi-Yau 4-orbifolds
(4) Open problems in $\operatorname{Spin}(7)$ geometry

Apology

This talk contains no new work since 2000, except open problems.

1. The holonomy group $\operatorname{Spin}(7)$

The holonomy group $\operatorname{Spin}(7)$ in 8 dimensions is one of the exceptional cases $G_{2}, \operatorname{Spin}(7)$ in Berger's classification. The action of $\operatorname{Spin}(7)$ on \mathbb{R}^{8} preserves the Euclidean metric $g_{0}=\mathrm{d} x_{1}^{2}+\cdots+\mathrm{d} x_{8}^{2}$, the orientation, and the 4 -form

$$
\begin{aligned}
\Omega_{0} & =\mathrm{d} \mathbf{x}_{1234}+\mathrm{d} \mathbf{x}_{1256}+\mathrm{d} \mathbf{x}_{1278}+\mathrm{d} \mathbf{x}_{1357}-\mathrm{d} \mathbf{x}_{1368}-\mathrm{d} \mathbf{x}_{1458}-\mathrm{d} \mathbf{x}_{1467} \\
& -\mathrm{d} \mathbf{x}_{2358}-\mathrm{d} \mathbf{x}_{2367}-\mathrm{d} \mathbf{x}_{2457}+\mathrm{d} \mathbf{x}_{2468}+\mathrm{d} \mathbf{x}_{3456}+\mathrm{d} \mathbf{x}_{3478}+\mathrm{d} \mathbf{x}_{5678}
\end{aligned}
$$

where $\mathrm{d} \mathbf{x}_{i j k l}=\mathrm{d} x_{i} \wedge \mathrm{~d} x_{j} \wedge \mathrm{~d} x_{k} \wedge \mathrm{~d} x_{l}$. If (X, g) is a Riemannian 8-manifold with holonomy $\operatorname{Spin}(7)$ then X has a natural 4 -form Ω with $\nabla \Omega=0$ isomorphic to Ω_{0} at each $x \in X$, and g is Ricci-flat. We call a pair (Ω, g) a $\operatorname{Spin}(7)$-structure on X if at each $x \in X$ there is an isomorphism $T_{x} X \cong \mathbb{R}^{8}$ identifying $\left(\left.\Omega\right|_{x},\left.g\right|_{x}\right)$ with $\left(\Omega_{0}, g_{0}\right)$. We call (Ω, g) torsion-free if $\nabla \Omega=0$ for ∇ the Levi-Civita connection of g, or equivalently if $\mathrm{d} \Omega=0$ (though this is apparently weaker). Then $\operatorname{Hol}(g) \subseteq \operatorname{Spin}(7)$.

One difference with G_{2} is that $\operatorname{Spin}(7)$-forms Ω are not generic. Call a 4-form Ω on X admissible if it is pointwise isomorphic to Ω_{0}, and write $\mathcal{A} X \subset \Lambda^{4} T^{*} X$ for the bundle of admissible forms. Then $\mathcal{A} X \rightarrow X$ has fibre $\mathrm{GL}(8, \mathbb{R}) / \operatorname{Spin}(7)$ with dimension $64-21=43$, but $\Lambda^{4} T^{*} X \rightarrow X$ has fibre of dimension $\binom{8}{4}=70$, so $\mathcal{A} X$ has codimension $70-43=27$ in $\Lambda^{4} T^{*} X$.
So to construct holonomy $\operatorname{Spin}(7)$ metrics we need to find sections Ω of the nonlinear subbundle $\mathcal{A} X \subset \Lambda^{4} T^{*} M$ satisfying $\mathrm{d} \Omega=0$, which is superficially a more complicated problem than the G_{2} case. Let (X, Ω, g) be a $\operatorname{Spin}(7)$-manifold. Then we have natural decompositions of exterior forms
$\begin{array}{lrlrl}\Lambda^{1} T^{*} X & =\Lambda_{8}^{1}, & \Lambda^{2} T^{*} X & =\Lambda_{7}^{2} \oplus \Lambda_{21}^{2}, & \Lambda^{3} T^{*} X \\ \Lambda^{4} T^{*} X=\Lambda_{8}^{3} \oplus \Lambda_{+}^{4} \oplus \Lambda_{-}^{4}, & \Lambda_{+}^{4} & =\Lambda_{1}^{4} \oplus \Lambda_{7}^{4} \oplus \Lambda_{27}^{2}, & \Lambda_{-}^{4} & =\Lambda_{35}^{4}, \\ \Lambda^{5} T^{*} X & =\Lambda_{8}^{5} \oplus \Lambda_{48}^{5}, & \Lambda^{6} T^{*} X=\Lambda_{7}^{6} \oplus \Lambda_{21}^{6}, & \Lambda^{7} T^{*} X=\Lambda_{8}^{7},\end{array}$
where Λ_{l}^{k} is a vector bundle of rank l.

We have inclusions of holonomy groups
$\mathrm{SU}(2) \times \mathrm{SU}(2) \subset \mathrm{Sp}(2) \subset \mathrm{SU}(4) \subset \operatorname{Spin}(7), \mathrm{SU}(3) \subset G_{2} \subset \operatorname{Spin}(7)$.
Thus Calabi-Yau 4-folds and hyperkähler 8-manifolds are torsion-free $\operatorname{Spin}(7)$-manifolds. If Y is a G_{2}-manifold, and Z is a Calabi-Yau 3-fold, then $Y \times \mathcal{S}^{1}, Y \times \mathbb{R}, Z \times T^{2}, Z \times \mathbb{R}^{2}$ are torsion-free $\operatorname{Spin}(7)$-manifolds.
Suppose (X, Ω, g) is a compact, torsion-free $\operatorname{Spin}(7)$-manifold. Then the \hat{A}-genus of X, a characteristic class of X, satisfies

$$
24 \hat{A}(X)=-1+b^{1}-b^{2}+b^{3}+b_{+}^{4}-2 b_{-}^{4} .
$$

If X is simply-connected then there are four cases: (i)
$\operatorname{Hol}(g)=\operatorname{Spin}(7)$ and $\hat{A}(X)=1$; (ii) $\operatorname{Hol}(g)=\mathrm{SU}(4)$ and $\hat{A}(X)=2$; (iii) $\operatorname{Hol}(g)=\operatorname{Sp}(2)$ and $\hat{A}(X)=3$; and (iv) $\operatorname{Hol}(g)=\operatorname{SU}(2) \times \operatorname{SU}(2)$ and $\hat{A}(X)=4$. Conversely, if g has any of these holonomy groups then X is simply-connected. Thus, $\operatorname{Hol}(g)=\operatorname{Spin}(7)$ if and only if $\pi_{1}(X)=\{1\}$ and $\hat{A}(X)=1$.

The moduli space of torsion-free $\operatorname{Spin}(7)$-structures

Theorem 1 (Bryant-Harvey?; Joyce)

Let X be a compact, oriented 8-manifold. Then the moduli space \mathcal{M} of oriented, torsion-free $\operatorname{Spin}(7)$-structures (Ω, g) on X, modulo diffeomorphisms isotopic to the identity, is a smooth manifold of dimension $\operatorname{dim} \mathcal{M}=\hat{A}(X)+b^{1}(X)+b_{-}^{4}(X)$, so that $\operatorname{dim} \mathcal{M}=1+b_{-}^{4}(X)$ if X admits metrics of holonomy $\operatorname{Spin}(7)$. The map $\iota: \mathcal{M} \rightarrow H^{4}(X ; \mathbb{R})$ taking $\iota:[(\Omega, g)] \mapsto[\Omega]$ is an immersion.

It seems to be difficult to compute the submanifold $\iota(\mathcal{M}) \subset H^{4}(X ; \mathbb{R})$ (the period domain) in examples. For the analogous problem for Calabi-Yau manifolds, there is a deep theory which allows you to do this.

In 1987, Robert Bryant proved the local existence of many metrics with holonomy Spin(7), using EDS. In 1989, Robert Bryant and Simon Salamon produced explicit, complete examples of holonomy Spin(7) manifolds. In 1996 and 2000 I gave two constructions of compact 8-manifolds with holonomy $\operatorname{Spin}(7)$, which I will explain today. Alexei Kovalev has a third construction (this conference). Let (X, Ω, g) be a torsion-free $\operatorname{Spin}(7)$-manifold. A Cayley 4-fold C in X is a 4 -submanifold $C \subset X$ calibrated w.r.t. Ω. They are minimal submanifolds. McLean (1998) studied the deformation theory of compact Cayley 4 -folds C, and found it is elliptic, and obstructed, and the Cayley moduli space \mathcal{M}_{C} has virtual dimension $b^{0}(C)-b^{1}(C)+b_{+}^{2}(C)-[C] \cdot[C]$. I gave examples of compact Cayley 4-folds in compact 8-manifolds with holonomy $\operatorname{Spin}(7)$, as fixed points of involutions.

If (X, Ω, g) is a $\operatorname{Spin}(7)$-manifold, there is a natural splitting $\Lambda^{2} T^{*} X=\Lambda_{7}^{2} \oplus \Lambda_{21}^{2}$ into vector subbundles of rank 7,21 . Let $P \rightarrow X$ be a principal bundle, and A a connection on P with curvature F_{A}. We call (P, A) a $\operatorname{Spin}(7)$-instanton if $\pi_{7}^{2}\left(F_{A}\right)=0$, where π_{7}^{2} is the projection to $\operatorname{ad}(P) \otimes \Lambda_{7}^{2} \subset \operatorname{ad}(P) \otimes \Lambda^{2} T^{*} X$. $\operatorname{Spin}(7)$-instantons have elliptic deformation theory, and so form well-behaved moduli spaces. These should fit into the Donaldson-Thomas / Donaldson-Segal programme for defining invariants, though I'm not sure if there are particular conjectures. Borisov-Joyce use Derived Algebraic Geometry to prove existence of deformation-invariant Donaldson-Thomas style invariants 'counting' stable coherent sheaves on a Calabi-Yau 4-fold. Morally speaking, the $B-J$ construction treats moduli spaces of Hermitian-Yang-Mills connections as moduli spaces of Spin(7)-instantons in order to define the virtual cycle. So this is some evidence that there may be interesting deformation-invariant counting information in Spin(7)-instanton moduli spaces.

2. $\operatorname{Spin}(7)$-manifolds from resolutions of T^{8} / Γ

My first construction of compact 8-manifolds with holonomy $\operatorname{Spin}(7)(1996,2000)$ worked, as in the G_{2} case, by starting with a torus $T^{8}=\mathbb{R}^{8} / \Lambda$ with flat $\operatorname{Spin}(7)$-structure $\left(\Omega_{0}, g_{0}\right)$, choosing a finite group Γ of automorphisms of (T^{8}, Ω_{0}, g_{0}), taking the quotient orbifold T^{8} / Γ, and resolving the singularities by gluing in ALE and Quasi-ALE Calabi-Yau 4-folds.
This is more difficult than the G_{2} case for several reasons:

- All orbifold singularities of $\mathrm{C}-\mathrm{Y} 3$-folds admit crepant resolutions. But many C-Y 4-fold orbifold singularities do not, $\mathbb{C}^{4} /\{ \pm 1\}$ for instance. So, it is a lot harder to find orbifolds T^{8} / Γ all of whose singularities can be resolved.
- In the G_{2} case, we can work with orbifolds T^{7} / Γ whose only singularities look like $T^{3} \times \mathbb{C}^{2} / G$ or $\mathcal{S}^{1} \times \mathbb{C}^{3} / G$. In the $\operatorname{Spin}(7)$ case, because of the \hat{A}-genus, it is necessary that T^{8} / Γ has orbifold strata intersecting in points.
- As $\operatorname{Spin}(7)$ forms are not generic, we need a different method of proof to deform small torsion to zero torsion.
- The general method of proof for both G_{2} and $\operatorname{Spin}(7)$ needs (codimension of singularities) $>\frac{1}{2}$ (total dimension). (*) For G_{2} this is $4>\frac{1}{2} \cdot 7$. For $\operatorname{Spin}(7)$ it is $4 \geqslant \frac{1}{2} \cdot 8$. As equality holds in the $\operatorname{Spin}(7)$ case, we have to work harder to define a $\operatorname{Spin}(7)$-structure with small enough torsion to deform to torsion-free. Here $(*)$ holds as if c is the codimension of singularities and d the total dimension, and $G=G_{2}$ or $\operatorname{Spin}(7)$, then roughly we expect to construct a G-structure Ω with torsion τ satisfying $\|\tau\|_{L^{2}}=O\left(t^{c}\right)$, where t is the injectivity radius. Then we solve $L_{\Omega}(\delta \Omega)=-\tau$, where $\delta \Omega$ is an infinitesimal change in Ω and L_{Ω} is the linearized torsion. We find that $\|\delta \Omega\|_{C^{0}} \leqslant C t^{-d / 2} \cdot\|\tau\|_{L^{2}}=O\left(t^{c-d / 2}\right)$. So if $c>d / 2$ then taking t small is enough. But if $c=d / 2$ then we need to add in extra correction terms to make $\|\tau\|_{L^{2}}=o\left(t^{c}\right)$.

An example

Let $T^{8}=\mathbb{R}^{8} / \mathbb{Z}^{8}$ with standard $\operatorname{Spin}(7)$-structure $\left(\Omega_{0}, g_{0}\right)$. Let
$\Gamma=\langle\alpha, \beta, \gamma, \delta\rangle \cong \mathbb{Z}_{2}^{4}$, where $\alpha, \beta, \gamma, \delta$ are involutions acting by

$$
\begin{aligned}
\alpha\left(x_{1}, \ldots, x_{8}\right) & =\left(-x_{1},-x_{2},-x_{3},-x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right), \\
\beta\left(x_{1}, \ldots, x_{8}\right) & =\left(x_{1}, x_{2}, x_{3}, x_{4},-x_{5},-x_{6},-x_{7},-x_{8}\right), \\
\gamma\left(x_{1}, \ldots, x_{8}\right) & =\left(\frac{1}{2}-x_{1}, \frac{1}{2}-x_{2}, x_{3}, x_{4}, \frac{1}{2}-x_{5}, \frac{1}{2}-x_{6}, x_{7}, x_{8}\right), \\
\delta\left(x_{1}, \ldots, x_{8}\right) & =\left(-x_{1}, x_{2}, \frac{1}{2}-x_{3}, x_{4}, \frac{1}{2}-x_{5}, x_{6}, \frac{1}{2}-x_{7}, x_{8}\right) .
\end{aligned}
$$

The singular set of T^{8} / Γ consists of:
(a) 4 copies of $T^{4} /\{ \pm 1\}$ from the fixed points of α.
(b) 4 copies of $T^{4} /\{ \pm 1\}$ from the fixed points of β.
(c) 2 copies of T^{4} from the fixed points of γ.
(d) 2 copies of T^{4} from the fixed points of δ.

Here (a),(b) intersect in 64 points, from the fixed points of $\alpha \beta$.
11/22 Dominic Joyce, Oxford University Constructing compact 8-manifolds with holonomy Spin(7)

> The holonomy group Spin (7) Spin(7)-manifolds from resolutions of T^{8} / Γ Spin(7)-manifolds from Calabi-Yau 4-orbifolds Open problems in $\operatorname{Spin}(7)$ geometry

Let Y be the Eguchi-Hanson space, ALE C-Y 2-fold asymptotic to $\mathbb{C}^{2} /\{ \pm 1\}$. We desingularize T^{8} / Γ by gluing in $T^{4} /\{ \pm 1\} \times Y$ at each $T^{4} /\{ \pm 1\}$ from (a),(b), and gluing in $T^{4} \times Y$ at each T^{4} from (c),(d), and gluing in $Y \times Y$ at each point of intersection of (a),(b). This gives a compact, simply-connected 8 -manifold X with $b^{2}(X)=12, b^{3}(X)=16, b_{+}^{4}(X)=107$ and $b_{-}^{4}(X)=43$. We then write down a family of $\operatorname{Spin}(7)$-structures $\left(\Omega_{t}, g_{t}\right)$ on X for $t \in(0, \epsilon]$, which have small torsion when t is small. We do this by shrinking the $\mathrm{C}-\mathrm{Y} 2$ structure on Y by a factor $t>0$, using this to give $\operatorname{Spin}(7)$ structures on $T^{4} /\{ \pm 1\} \times Y, T^{4} \times Y, Y \times Y$, and gluing these to $\left(\Omega_{0}, g_{0}\right)$ with a partition of unity. We glue the forms either as $\operatorname{Spin}(7)$-structures $\left(\Omega_{t}, g_{t}\right)$, or as closed 4-forms $\tilde{\Omega}_{t}$. Then $\phi_{t}=\tilde{\Omega}_{t}-\Omega_{t}$ is a small 4-form. The obvious definitions would give $\left\|\phi_{t}\right\|_{L^{2}}=O\left(t^{4}\right)$, which is not small enough. But by solving an equation on T^{8} / Γ to cancel out the leading order errors, we can achieve $\left\|\phi_{t}\right\|_{L^{2}}=O\left(t^{9 / 2}\right)$, which is small enough.

We then prove the following analytic theorem:

Theorem 2

Let $\lambda, \mu, \nu>0$. Then there exist $\kappa, K>0$ depending only on λ, μ, ν such that whenever $0<t \leqslant \kappa$, the following holds.
Suppose $\left(X, \Omega_{t}, g_{t}\right)$ is a compact $\operatorname{Spin}(7)$-manifold, and ϕ_{t} is a 4-form on X with $\mathrm{d} \Omega_{t}+\mathrm{d} \phi_{t}=0$, and: (i) $\left\|\phi_{t}\right\|_{L^{2}} \leqslant \lambda t^{13 / 3}$, (ii) $\left\|\mathrm{d} \phi_{t}\right\|_{L^{2}} \leqslant \lambda t^{7 / 5}$,
(iii) the injectivity radius $\delta\left(g_{t}\right)$ satisfies $\delta\left(g_{t}\right) \geqslant \mu t$, and
(iv) the Riemann curvature $R\left(g_{t}\right)$ satisfies $\left\|R\left(g_{t}\right)\right\|_{C^{0}} \leqslant \nu t^{-2}$.

Then there exists a torsion-free $\operatorname{Spin}(7)$-structure $\left(\hat{\Omega}_{t}, \hat{g}_{t}\right)$ on X with $\left\|\hat{\Omega}_{t}-\Omega_{t}\right\|_{C^{0}} \leqslant K t^{1 / 3}$.
We show (i)-(iv) hold in our examples for some $A_{1}, \ldots, A_{4}>0$ independent of $t \in(0, \epsilon]$, and thus Theorem 2 shows that we can deform $\left(\Omega_{t}, g_{t}\right)$ to a torsion-free $\operatorname{Spin}(7)$-structure $\left(\hat{\Omega}_{t}, \hat{g}_{t}\right)$ for small $t>0$. As in $\S 1$, a topological criterion, that $\pi_{1}(X)=\{1\}$ and $\hat{A}(X)=1$, then implies that $\operatorname{Hol}\left(\hat{g}_{t}\right)=\operatorname{Spin}(7)$.

Note that we do not know the cohomology class $\left[\hat{\Omega}_{t}\right] \in H^{4}(X ; \mathbb{R})$ (in particular, it need not be $\left[\Omega_{t}+\phi_{t}\right]$). This is necessary, since as in Theorem 1 we don't know the possible cohomology classes of torsion-free $\operatorname{Spin}(7)$-structures in advance.
To prove Theorem 2, we first show that for any C^{0}-small 4 -form η_{t} on X which lies in $\Lambda_{-}^{4} T^{*} X$ w.r.t. g_{t}, there is a unique decomposition

$$
\Omega_{t}+\eta_{t}=\hat{\Omega}_{t}+\chi_{t}
$$

for $\hat{\Omega}_{t}$ a $\operatorname{Spin}(7)$-form which is C^{0}-close to Ω_{t}, and χ_{t} a C^{0}-small 4-form which lies in Λ_{27}^{4} w.r.t. $\hat{\Omega}_{t}$. We regard $\hat{\Omega}_{t}, \chi_{t}$ as smooth nonlinear functions of η_{t}. So we can write $\mathrm{d} \hat{\Omega}_{t}=0$ as a nonlinear p.d.e. in η_{t}, and we show that it has a unique solution η_{t} which is L^{2}-orthogonal to the harmonic anti-self-dual 4-forms \mathcal{H}_{-}^{4}. This works as our equation involves a small nonlinear perturbation of the isomorphism
$d:\left\{\right.$ anti-self-dual 4-forms L^{2}-orthogonal to $\left.\mathcal{H}_{-}^{4}\right\} \stackrel{\cong}{\cong}$ exact 5-forms $\}$.

The holonomy group Spin (7) $\operatorname{Spin}(7)$-manifolds from resolutions of T^{8} / Γ Spin(7)-manifolds from Calabi-Yau 4-orbifolds Open problems in $\operatorname{Spin}(7)$ geometry
 3. Spin(7)-manifolds from Calabi-Yau 4-orbifolds

In 2000 I gave a second construction of compact 8-manifolds with holonomy $\operatorname{Spin}(7)$, which starts not with T^{8} / Γ, but with a Calabi-Yau 4-orbifold Y.
Suppose Y is a compact complex 4-orbifold with $c_{1}(Y)=0$, admitting Kähler metrics, such that the only singularities of Y are p_{1}, \ldots, p_{k} locally modelled on $\mathbb{C}^{4} /\langle i\rangle$, where $\langle i\rangle=\mathbb{Z}_{4}$ acts on \mathbb{C}^{4} by multiplication in the obvious way. Suppose $\sigma: Y \rightarrow Y$ is an antiholomorphic involution whose only fixed points are p_{1}, \ldots, p_{k}. Then $Y /\langle\sigma\rangle$ is a compact 8 -orbifold with orbifold points p_{1}, \ldots, p_{k} locally modelled on \mathbb{R}^{8} / G, for G a nonabelian group of order 8 , which may be thought of as $\{ \pm 1, \pm i, \pm j, \pm k\} \subset \mathbb{H}$.
By the Calabi Conjecture (orbifold version) there exist Ricci-flat Kähler metrics on Y, which will be σ-invariant if the Kähler class is σ-invariant. So as $\mathrm{SU}(4) \subset \operatorname{Spin}(7)$, we get σ-invariant torsion-free $\operatorname{Spin}(7)$-structures on Y, which descend to $Y /\langle\sigma\rangle$.

Thus, we have a compact orbifold $Y /\langle\sigma\rangle$ with torsion-free $\operatorname{Spin}(7)$-structure (Ω, g). We resolve $Y /\langle\sigma\rangle$ to an 8 -manifold X by gluing in an ALE Spin(7)-manifold Z asymptotic to \mathbb{R}^{8} / G at each of p_{1}, \ldots, p_{k}. Then we define a family of $\operatorname{Spin}(7)$-structures $\left(\Omega_{t}, g_{t}\right)$ on X for $t \in(0, \epsilon]$, with small torsion for small t, and use Theorem 2 to deform them to torsion-free $\operatorname{Spin}(7)$-structures $\left(\hat{\Omega}_{t}, \hat{g}_{t}\right)$ as for the T^{8} / Γ case, which have $\operatorname{Hol}\left(\hat{g}_{t}\right)=\operatorname{Spin}(7)$. To define the ALE $\operatorname{Spin}(7)$-manifold Z, note that G acts on $\mathbb{C}^{4}=T_{p_{i}} Y$ as $\langle\alpha, \beta\rangle$, where

$$
\begin{aligned}
& \alpha:\left(z_{1}, \ldots, z_{4}\right) \longmapsto\left(i z_{1}, i z_{2}, i z_{3}, i z_{4}\right), \\
& \beta:\left(z_{1}, \ldots, z_{4}\right) \longmapsto\left(\bar{z}_{2},-\bar{z}_{1}, \bar{z}_{4},-\bar{z}_{3}\right),
\end{aligned}
$$

where $\alpha^{4}=\beta^{4}=1, \alpha^{2}=\beta^{2}, \alpha \beta=\beta \alpha^{3}$.

The crepant resolution of $\mathbb{C}^{4} /\langle\alpha\rangle$ is the blow-up W of $\mathbb{C}^{4} /\langle\alpha\rangle$ at 0 , the line bundle $\mathcal{O}(-4) \rightarrow \mathbb{C P}^{3}$, and it carries an explicit ALE C-Y 4 metric due to Calabi. The action of β on $\mathbb{C}^{4} /\langle\alpha\rangle$ lifts to a free action of $\langle\beta\rangle=\mathbb{Z}_{2}$ on W, so $W /\langle\beta\rangle$ is an ALE Spin(7)-manifold asymptotic to \mathbb{C}^{4} / G.
Now if we did the blow-up of $\mathbb{C}^{4} /\langle\alpha\rangle$ using the given complex structure on Y, then the $\operatorname{Spin}(7)$-manifold X we end up with would not have $\pi_{1}(X)=\{1\}$ and holonomy $\operatorname{Spin}(7)$, but we would have $X=\tilde{X} /\langle\beta\rangle$ where \tilde{X} is a Calabi-Yau 4-fold with a free action of $\langle\beta\rangle \cong \mathbb{Z}_{2}$, and metrics on X with holonomy $\mathbb{Z}_{2} \ltimes \mathrm{SU}(4)$.
However, the action of G on \mathbb{R}^{8} has a kind of 'hyperkähler twist': we can use a different complex structure on \mathbb{R}^{8} which swaps round α and β. That is, there are two different ways to glue $W /\langle\beta\rangle$ into $Y /\langle\sigma\rangle$ at each p_{i}. As long as we use the 'twisted' gluing for at least one $i=1, \ldots, k$, we get $\pi_{1}(X)=\{1\}$, and holonomy $\operatorname{Spin}(7)$ metrics on X.

The holonomy group $\operatorname{Spin}(7)$ $\operatorname{Spin}(7)$-manifolds from resolutions of T^{8} / Γ
 Spin(7)-manifolds from Calabi-Yau 4-orbifolds Open problems in $\operatorname{Spin}(7)$ geometry

An example

Work in the weighted projective space $\mathbb{C P}_{1,1,1,1,4,4}^{5}$. Let Y be the hypersurface

$$
Y=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,1,1,4,4}^{5}: z_{0}^{12}+z_{1}^{12}+z_{2}^{12}+z_{3}^{12}+z_{4}^{3}+z_{5}^{3}=0\right\}
$$

Then Y is a Calabi-Yau 4-orbifold with three singular points
$p_{1}=[0,0,0,0,1,-1], p_{2}=\left[0,0,0,0,1, e^{\pi i / 3}\right], p_{3}=\left[0,0,0,0,1, e^{-\pi i / 3}\right]$,
each of which is locally modelled on $\mathbb{C}^{4} /\langle i\rangle$. Define an antiholomorphic involution $\sigma: Y \rightarrow Y$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{5}, \bar{z}_{4}\right] .
$$

Then the only fixed points of σ are p_{1}, p_{2}, p_{3}. The construction yields a compact 8 -manifold X with holonomy $\operatorname{Spin}(7)$, which has $b^{1}=b^{2}=b^{3}=0, b_{+}^{4}=1639$ and $b_{-}^{4}=807$. The family of holonomy $\operatorname{Spin}(7)$ metrics on X has dimension 808.

4. Open problems in $\operatorname{Spin}(7)$ geometry

 Finding compact 8-manifolds with holonomy $\operatorname{Spin}(7)$

 Finding compact 8-manifolds with holonomy $\operatorname{Spin}(7)$}

Problem 1

Use the known constructions to of compact 8-manifolds with holonomy $\operatorname{Spin}(7)$ find as many new examples as you can.

Presumably this could be done by some kind of computer search, of the kind that some String Theorists are very good at. The examples I found, I did with a pencil and paper and counting on my fingers, and when I felt I had enough, I stopped. It is very possible that there are many more examples left to find.

Problem 2

Can you find new ways to construct compact 8-manifolds with holonomy $\operatorname{Spin}(7)$?

Problems about Cayley submanifolds

Problem 3

Study the singularities of Cayley 4-folds. Find more examples of model singularities in \mathbb{R}^{8}. Consider how singularities form, e.g. by shrinking ALE Cayley 4-folds. Get some idea of which singularities can occur in low codimension amongst all Cayley 4-folds, e.g. codimension 1.

Since special Lagrangian 4-folds and complex surfaces in
Calabi-Yau 4-folds, and associative 3-folds $\times \mathcal{S}^{1}$, coassociative 4-folds $\times\{$ point $\}$ in G_{2}-manifold $\times \mathcal{S}^{1}$, all provide examples of Cayley 4-folds, we know quite a lot of examples already; and there is some work on Cayley 4-folds as well.

Problem 4

Construct examples of compact 8-manifolds with Spin(7), together with a fibration by Cayley 4-folds, including singular fibres.

This is rather a nice problem, which I would like to see done during the Simons collaboration. One could hope to approach it in a similar way to a proposal by Alexei Kovalev in the G_{2} case, in which the singularities of the fibration are locally modelled on singularities of holomorphic fibrations of Cayley 4-folds by surfaces.

Problems about $\operatorname{Spin}(7)$ instantons

We can ask similar questions about $\operatorname{Spin}(7)$ instantons to G_{2} instantons, and others here know a lot more about this than I do.

- Study singularities of $\operatorname{Spin}(7)$ instantons, in particular, bubbling on Cayley 4-folds.
- Use to define Donaldson-Segal style counting invariants of Spin(7)-manifolds?
- Use to define a Floer theory for G_{2} instantons on a G_{2}-manifold X, by considering $\operatorname{Spin}(7)$ instantons on $X \times \mathbb{R}$?

