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Plan of talk:

1 The holonomy group Spin(7)

2 Spin(7)-manifolds from resolutions of T 8/Γ

3 Spin(7)-manifolds from Calabi–Yau 4-orbifolds

4 Open problems in Spin(7) geometry

Apology

This talk contains no new work since 2000, except open problems.
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1. The holonomy group Spin(7)

The holonomy group Spin(7) in 8 dimensions is one of the
exceptional cases G2, Spin(7) in Berger’s classification. The action
of Spin(7) on R8 preserves the Euclidean metric
g0 = dx2

1 + · · ·+ dx2
8 , the orientation, and the 4-form

Ω0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678,

where dxijkl = dxi ∧ dxj ∧ dxk ∧ dxl . If (X , g) is a Riemannian
8-manifold with holonomy Spin(7) then X has a natural 4-form Ω
with ∇Ω = 0 isomorphic to Ω0 at each x ∈ X , and g is Ricci-flat.
We call a pair (Ω, g) a Spin(7)-structure on X if at each x ∈ X
there is an isomorphism TxX ∼= R8 identifying (Ω|x , g |x) with
(Ω0, g0). We call (Ω, g) torsion-free if ∇Ω = 0 for ∇ the
Levi-Civita connection of g , or equivalently if dΩ = 0 (though this
is apparently weaker). Then Hol(g) ⊆ Spin(7).
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One difference with G2 is that Spin(7)-forms Ω are not generic.
Call a 4-form Ω on X admissible if it is pointwise isomorphic to
Ω0, and write AX ⊂ Λ4T ∗X for the bundle of admissible forms.
Then AX → X has fibre GL(8,R)/ Spin(7) with dimension
64− 21 = 43, but Λ4T ∗X → X has fibre of dimension

(8
4

)
= 70,

so AX has codimension 70− 43 = 27 in Λ4T ∗X .
So to construct holonomy Spin(7) metrics we need to find sections
Ω of the nonlinear subbundle AX ⊂ Λ4T ∗M satisfying dΩ = 0,
which is superficially a more complicated problem than the G2 case.
Let (X ,Ω, g) be a Spin(7)-manifold. Then we have natural
decompositions of exterior forms

Λ1T ∗X = Λ1
8, Λ2T ∗X = Λ2

7 ⊕ Λ2
21, Λ3T ∗X = Λ3

8 ⊕ Λ3
48,

Λ4T ∗X = Λ4
+ ⊕ Λ4

−, Λ4
+ = Λ4

1 ⊕ Λ4
7 ⊕ Λ2

27, Λ4
− = Λ4

35,

Λ5T ∗X = Λ5
8 ⊕ Λ5

48, Λ6T ∗X = Λ6
7 ⊕ Λ6

21, Λ7T ∗X = Λ7
8,

where Λk
l is a vector bundle of rank l .
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We have inclusions of holonomy groups

SU(2)×SU(2) ⊂ Sp(2) ⊂ SU(4) ⊂ Spin(7), SU(3) ⊂ G2 ⊂ Spin(7).

Thus Calabi–Yau 4-folds and hyperkähler 8-manifolds are
torsion-free Spin(7)-manifolds. If Y is a G2-manifold, and Z is a
Calabi–Yau 3-fold, then Y × S1, Y × R, Z × T 2, Z × R2 are
torsion-free Spin(7)-manifolds.
Suppose (X ,Ω, g) is a compact, torsion-free Spin(7)-manifold.
Then the Â-genus of X , a characteristic class of X , satisfies

24Â(X ) = −1 + b1 − b2 + b3 + b4
+ − 2b4

−.

If X is simply-connected then there are four cases: (i)
Hol(g) = Spin(7) and Â(X ) = 1; (ii) Hol(g) = SU(4) and
Â(X ) = 2; (iii) Hol(g) = Sp(2) and Â(X ) = 3; and (iv)
Hol(g) = SU(2)× SU(2) and Â(X ) = 4. Conversely, if g has any
of these holonomy groups then X is simply-connected. Thus,
Hol(g) = Spin(7) if and only if π1(X ) = {1} and Â(X ) = 1.
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The moduli space of torsion-free Spin(7)-structures

Theorem 1 (Bryant–Harvey?; Joyce)

Let X be a compact, oriented 8-manifold. Then the moduli space
M of oriented, torsion-free Spin(7)-structures (Ω, g) on X ,
modulo diffeomorphisms isotopic to the identity, is a smooth
manifold of dimension dimM = Â(X ) + b1(X ) + b4

−(X ), so that
dimM=1+b4

−(X ) if X admits metrics of holonomy Spin(7). The
map ι :M→ H4(X ;R) taking ι : [(Ω, g)] 7→ [Ω] is an immersion.

It seems to be difficult to compute the submanifold
ι(M) ⊂ H4(X ;R) (the period domain) in examples. For the
analogous problem for Calabi–Yau manifolds, there is a deep theory
which allows you to do this.
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In 1987, Robert Bryant proved the local existence of many metrics
with holonomy Spin(7), using EDS. In 1989, Robert Bryant and
Simon Salamon produced explicit, complete examples of holonomy
Spin(7) manifolds. In 1996 and 2000 I gave two constructions of
compact 8-manifolds with holonomy Spin(7), which I will explain
today. Alexei Kovalev has a third construction (this conference).
Let (X ,Ω, g) be a torsion-free Spin(7)-manifold. A Cayley 4-fold
C in X is a 4-submanifold C ⊂ X calibrated w.r.t. Ω. They are
minimal submanifolds. McLean (1998) studied the deformation
theory of compact Cayley 4-folds C , and found it is elliptic, and
obstructed, and the Cayley moduli space MC has virtual
dimension b0(C )− b1(C ) + b2

+(C )− [C ] · [C ]. I gave examples of
compact Cayley 4-folds in compact 8-manifolds with holonomy
Spin(7), as fixed points of involutions.
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If (X ,Ω, g) is a Spin(7)-manifold, there is a natural splitting
Λ2T ∗X = Λ2

7 ⊕ Λ2
21 into vector subbundles of rank 7,21. Let

P → X be a principal bundle, and A a connection on P with
curvature FA. We call (P,A) a Spin(7)-instanton if π2

7(FA) = 0,
where π2

7 is the projection to ad(P)⊗ Λ2
7 ⊂ ad(P)⊗ Λ2T ∗X .

Spin(7)-instantons have elliptic deformation theory, and so form
well-behaved moduli spaces. These should fit into the
Donaldson–Thomas / Donaldson–Segal programme for defining
invariants, though I’m not sure if there are particular conjectures.
Borisov–Joyce use Derived Algebraic Geometry to prove existence
of deformation-invariant Donaldson–Thomas style invariants
‘counting’ stable coherent sheaves on a Calabi–Yau 4-fold. Morally
speaking, the B–J construction treats moduli spaces of
Hermitian–Yang–Mills connections as moduli spaces of
Spin(7)-instantons in order to define the virtual cycle. So this is
some evidence that there may be interesting deformation-invariant
counting information in Spin(7)-instanton moduli spaces.
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2. Spin(7)-manifolds from resolutions of T 8/Γ

My first construction of compact 8-manifolds with holonomy
Spin(7) (1996, 2000) worked, as in the G2 case, by starting with a
torus T 8 = R8/Λ with flat Spin(7)-structure (Ω0, g0), choosing a
finite group Γ of automorphisms of (T 8,Ω0, g0), taking the
quotient orbifold T 8/Γ, and resolving the singularities by gluing in
ALE and Quasi-ALE Calabi–Yau 4-folds.
This is more difficult than the G2 case for several reasons:
• All orbifold singularities of C–Y 3-folds admit crepant resolutions.
But many C–Y 4-fold orbifold singularities do not, C4/{±1} for
instance. So, it is a lot harder to find orbifolds T 8/Γ all of whose
singularities can be resolved.
• In the G2 case, we can work with orbifolds T 7/Γ whose only
singularities look like T 3 × C2/G or S1 × C3/G . In the Spin(7)
case, because of the Â-genus, it is necessary that T 8/Γ has
orbifold strata intersecting in points.
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• As Spin(7) forms are not generic, we need a different method of
proof to deform small torsion to zero torsion.
• The general method of proof for both G2 and Spin(7) needs

(codimension of singularities)> 1
2 (total dimension). (∗)

For G2 this is 4 > 1
2 · 7. For Spin(7) it is 4> 1

2 · 8. As
equality holds in the Spin(7) case, we have to work harder to define a
Spin(7)-structure with small enough torsion to deform to torsion-free.
Here (∗) holds as if c is the codimension of singularities and d the
total dimension, and G = G2 or Spin(7), then roughly we expect to
construct a G -structure Ω with torsion τ satisfying ‖τ‖L2 = O(tc),
where t is the injectivity radius. Then we solve LΩ(δΩ) = −τ ,
where δΩ is an infinitesimal change in Ω and LΩ is the linearized
torsion. We find that ‖δΩ‖C0 6 Ct−d/2 · ‖τ‖L2 = O(tc−d/2).
So if c > d/2 then taking t small is enough. But if c = d/2 then
we need to add in extra correction terms to make ‖τ‖L2 = o(tc).
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An example

Let T 8 = R8/Z8 with standard Spin(7)-structure (Ω0, g0). Let
Γ = 〈α, β, γ, δ〉 ∼= Z4

2, where α, β, γ, δ are involutions acting by

α(x1, . . . , x8) = (−x1,−x2,−x3,−x4, x5, x6, x7, x8),

β(x1, . . . , x8) = (x1, x2, x3, x4,−x5,−x6,−x7,−x8),

γ(x1, . . . , x8) = ( 1
2 − x1,

1
2 − x2, x3, x4,

1
2 − x5,

1
2 − x6, x7, x8),

δ(x1, . . . , x8) = (−x1, x2,
1
2 − x3, x4,

1
2 − x5, x6,

1
2 − x7, x8).

The singular set of T 8/Γ consists of:

(a) 4 copies of T 4/{±1} from the fixed points of α.

(b) 4 copies of T 4/{±1} from the fixed points of β.

(c) 2 copies of T 4 from the fixed points of γ.

(d) 2 copies of T 4 from the fixed points of δ.

Here (a),(b) intersect in 64 points, from the fixed points of αβ.
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Let Y be the Eguchi–Hanson space, ALE C–Y 2-fold asymptotic to
C2/{±1}. We desingularize T 8/Γ by gluing in T 4/{±1} × Y at
each T 4/{±1} from (a),(b), and gluing in T 4 × Y at each T 4

from (c),(d), and gluing in Y × Y at each point of intersection of
(a),(b). This gives a compact, simply-connected 8-manifold X
with b2(X ) = 12, b3(X ) = 16, b4

+(X ) = 107 and b4
−(X ) = 43.

We then write down a family of Spin(7)-structures (Ωt , gt) on X
for t ∈ (0, ε], which have small torsion when t is small. We do this
by shrinking the C–Y 2 structure on Y by a factor t > 0, using this
to give Spin(7) structures on T 4/{±1} × Y , T 4 × Y , Y × Y , and
gluing these to (Ω0, g0) with a partition of unity. We glue the
forms either as Spin(7)-structures (Ωt , gt), or as closed 4-forms
Ω̃t . Then φt = Ω̃t − Ωt is a small 4-form. The obvious definitions
would give ‖φt‖L2 = O(t4), which is not small enough. But by
solving an equation on T 8/Γ to cancel out the leading order errors,
we can achieve ‖φt‖L2 = O(t9/2), which is small enough.
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We then prove the following analytic theorem:

Theorem 2

Let λ, µ, ν > 0. Then there exist κ,K > 0 depending only on
λ, µ, ν such that whenever 0 < t 6 κ, the following holds.
Suppose (X ,Ωt , gt) is a compact Spin(7)-manifold, and φt is a
4-form on X with dΩt + dφt = 0, and: (i) ‖φt‖L2 6 λt13/3,
(ii) ‖dφt‖L2 6 λt7/5,
(iii) the injectivity radius δ(gt) satisfies δ(gt) > µt, and
(iv) the Riemann curvature R(gt) satisfies ‖R(gt)‖C0 6 νt−2.
Then there exists a torsion-free Spin(7)-structure (Ω̂t , ĝt) on X
with ‖Ω̂t − Ωt‖C0 6 Kt1/3.

We show (i)–(iv) hold in our examples for some A1, . . . ,A4 > 0
independent of t ∈ (0, ε], and thus Theorem 2 shows that we can
deform (Ωt , gt) to a torsion-free Spin(7)-structure (Ω̂t , ĝt) for
small t > 0. As in §1, a topological criterion, that π1(X ) = {1}
and Â(X ) = 1, then implies that Hol(ĝt) = Spin(7).
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Note that we do not know the cohomology class [Ω̂t ] ∈ H4(X ;R)
(in particular, it need not be [Ωt + φt ]). This is necessary, since as
in Theorem 1 we don’t know the possible cohomology classes of
torsion-free Spin(7)-structures in advance.
To prove Theorem 2, we first show that for any C 0-small 4-form ηt
on X which lies in Λ4

−T
∗X w.r.t. gt , there is a unique

decomposition
Ωt + ηt = Ω̂t + χt

for Ω̂t a Spin(7)-form which is C 0-close to Ωt , and χt a C 0-small
4-form which lies in Λ4

27 w.r.t. Ω̂t . We regard Ω̂t , χt as smooth
nonlinear functions of ηt . So we can write dΩ̂t = 0 as a nonlinear
p.d.e. in ηt , and we show that it has a unique solution ηt which is
L2-orthogonal to the harmonic anti-self-dual 4-forms H4

−. This
works as our equation involves a small nonlinear perturbation of
the isomorphism

d :
{

anti-self-dual 4-forms L2-orthogonal to H4
−
} ∼=−→{exact 5-forms

}
.
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3. Spin(7)-manifolds from Calabi–Yau 4-orbifolds

In 2000 I gave a second construction of compact 8-manifolds with
holonomy Spin(7), which starts not with T 8/Γ, but with a
Calabi–Yau 4-orbifold Y .
Suppose Y is a compact complex 4-orbifold with c1(Y ) = 0,
admitting Kähler metrics, such that the only singularities of Y are
p1, . . . , pk locally modelled on C4/〈i〉, where 〈i〉 = Z4 acts on C4

by multiplication in the obvious way. Suppose σ : Y → Y is an
antiholomorphic involution whose only fixed points are p1, . . . , pk .
Then Y /〈σ〉 is a compact 8-orbifold with orbifold points p1, . . . , pk
locally modelled on R8/G , for G a nonabelian group of order 8,
which may be thought of as {±1,±i ,±j ,±k} ⊂ H.
By the Calabi Conjecture (orbifold version) there exist Ricci-flat
Kähler metrics on Y , which will be σ-invariant if the Kähler class
is σ-invariant. So as SU(4) ⊂ Spin(7), we get σ-invariant
torsion-free Spin(7)-structures on Y , which descend to Y /〈σ〉.
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Thus, we have a compact orbifold Y /〈σ〉 with torsion-free
Spin(7)-structure (Ω, g). We resolve Y /〈σ〉 to an 8-manifold X by
gluing in an ALE Spin(7)-manifold Z asymptotic to R8/G at each
of p1, . . . , pk . Then we define a family of Spin(7)-structures
(Ωt , gt) on X for t ∈ (0, ε], with small torsion for small t, and use
Theorem 2 to deform them to torsion-free Spin(7)-structures
(Ω̂t , ĝt) as for the T 8/Γ case, which have Hol(ĝt) = Spin(7).
To define the ALE Spin(7)-manifold Z , note that G acts on
C4 = TpiY as 〈α, β〉, where

α : (z1, . . . , z4) 7−→ (iz1, iz2, iz3, iz4),

β : (z1, . . . , z4) 7−→ (z̄2,−z̄1, z̄4,−z̄3),

where α4 = β4 = 1, α2 = β2, αβ = βα3.

16 / 22 Dominic Joyce, Oxford University Constructing compact 8-manifolds with holonomy Spin(7)



The holonomy group Spin(7)
Spin(7)-manifolds from resolutions of T 8/Γ

Spin(7)-manifolds from Calabi–Yau 4-orbifolds
Open problems in Spin(7) geometry

The crepant resolution of C4/〈α〉 is the blow-up W of C4/〈α〉 at
0, the line bundle O(−4)→ CP3, and it carries an explicit ALE
C–Y 4 metric due to Calabi. The action of β on C4/〈α〉 lifts to a
free action of 〈β〉 = Z2 on W , so W /〈β〉 is an ALE
Spin(7)-manifold asymptotic to C4/G .
Now if we did the blow-up of C4/〈α〉 using the given complex
structure on Y , then the Spin(7)-manifold X we end up with
would not have π1(X ) = {1} and holonomy Spin(7), but we would
have X = X̃/〈β〉 where X̃ is a Calabi–Yau 4-fold with a free action
of 〈β〉 ∼= Z2, and metrics on X with holonomy Z2 n SU(4).
However, the action of G on R8 has a kind of ‘hyperkähler twist’:
we can use a different complex structure on R8 which swaps round
α and β. That is, there are two different ways to glue W /〈β〉 into
Y /〈σ〉 at each pi . As long as we use the ‘twisted’ gluing for at
least one i = 1, . . . , k , we get π1(X ) = {1}, and holonomy Spin(7)
metrics on X .
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An example

Work in the weighted projective space CP5
1,1,1,1,4,4. Let Y be the

hypersurface

Y =
{

[z0, . . . , z5] ∈ CP5
1,1,1,1,4,4 : z12

0 +z12
1 +z12

2 +z12
3 +z3

4 +z3
5 = 0

}
.

Then Y is a Calabi–Yau 4-orbifold with three singular points

p1 =[0, 0, 0, 0, 1,−1], p2 =[0, 0, 0, 0, 1, eπi/3], p3 =[0, 0, 0, 0, 1, e−πi/3],

each of which is locally modelled on C4/〈i〉. Define an
antiholomorphic involution σ : Y → Y by

σ : [z0, . . . , z5] 7−→ [z̄1,−z̄0, z̄3,−z̄2, z̄5, z̄4].

Then the only fixed points of σ are p1, p2, p3. The construction
yields a compact 8-manifold X with holonomy Spin(7), which has
b1 = b2 = b3 = 0, b4

+ = 1639 and b4
− = 807. The family of

holonomy Spin(7) metrics on X has dimension 808.
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4. Open problems in Spin(7) geometry
Finding compact 8-manifolds with holonomy Spin(7)

Problem 1

Use the known constructions to of compact 8-manifolds with
holonomy Spin(7) find as many new examples as you can.

Presumably this could be done by some kind of computer search,
of the kind that some String Theorists are very good at. The
examples I found, I did with a pencil and paper and counting on
my fingers, and when I felt I had enough, I stopped. It is very
possible that there are many more examples left to find.

Problem 2

Can you find new ways to construct compact 8-manifolds with
holonomy Spin(7)?
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Problems about Cayley submanifolds

Problem 3

Study the singularities of Cayley 4-folds. Find more examples of
model singularities in R8. Consider how singularities form, e.g. by
shrinking ALE Cayley 4-folds. Get some idea of which singularities
can occur in low codimension amongst all Cayley 4-folds, e.g.
codimension 1.

Since special Lagrangian 4-folds and complex surfaces in
Calabi–Yau 4-folds, and associative 3-folds ×S1, coassociative
4-folds ×{point} in G2-manifold ×S1, all provide examples of
Cayley 4-folds, we know quite a lot of examples already; and there
is some work on Cayley 4-folds as well.
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Problem 4

Construct examples of compact 8-manifolds with Spin(7), together
with a fibration by Cayley 4-folds, including singular fibres.

This is rather a nice problem, which I would like to see done during
the Simons collaboration. One could hope to approach it in a
similar way to a proposal by Alexei Kovalev in the G2 case, in
which the singularities of the fibration are locally modelled on
singularities of holomorphic fibrations of Cayley 4-folds by surfaces.
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Problems about Spin(7) instantons

We can ask similar questions about Spin(7) instantons to G2

instantons, and others here know a lot more about this than I do.
• Study singularities of Spin(7) instantons, in particular, bubbling
on Cayley 4-folds.
• Use to define Donaldson–Segal style counting invariants of
Spin(7)-manifolds?
• Use to define a Floer theory for G2 instantons on a G2-manifold
X , by considering Spin(7) instantons on X × R?
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