
Introduction
2-categories

C∞-rings and C∞-schemes

Different definitions of derived manifolds and orbifolds
Two ways to define ordinary manifolds
Two ways to define derived manifolds
Derived manifolds with boundary, and with corners

Derived Differential Geometry

Lecture 1 of 3: Introduction

Dominic Joyce, Oxford University
’Derived Algebraic Geometry and Interactions’,

Toulouse, June 2017

For references, see
http://people.maths.ox.ac.uk/∼joyce/dmanifolds.html,
http://people.maths.ox.ac.uk/∼joyce/Kuranishi.html.

The survey papers arXiv:1104.4951, arXiv:1206.4207,
and arXiv:1510.07444 are a good start.

These slides available at
http://people.maths.ox.ac.uk/∼joyce/.

1 / 71 Dominic Joyce, Oxford University Lecture 1: Introduction

Introduction
2-categories

C∞-rings and C∞-schemes

Different definitions of derived manifolds and orbifolds
Two ways to define ordinary manifolds
Two ways to define derived manifolds
Derived manifolds with boundary, and with corners

Plan of talk:

1 Introduction

2 2-categories

3 C∞-rings and C∞-schemes

2 / 71 Dominic Joyce, Oxford University Lecture 1: Introduction



Introduction
2-categories

C∞-rings and C∞-schemes

Different definitions of derived manifolds and orbifolds
Two ways to define ordinary manifolds
Two ways to define derived manifolds
Derived manifolds with boundary, and with corners

1. Introduction

Derived Differential Geometry (DDG) is the study of derived
smooth manifolds and derived smooth orbifolds, where ‘derived’ is
in the sense of the Derived Algebraic Geometry (DAG) of Jacob
Lurie and Toën–Vezzosi. Derived manifolds include ordinary
smooth manifolds, but also many singular objects.
Derived manifolds and orbifolds form higher categories –
2-categories dMan,dOrb or mKur,Kur in my set-up, and
∞-categories in the set-ups of Spivak–Borisov–Noel.
Many interesting moduli spaces over R or C in both algebraic and
differential geometry are naturally derived manifolds or derived
orbifolds, including those used to define Donaldson,
Donaldson–Thomas, Gromov–Witten and Seiberg–Witten
invariants, Floer theories, and Fukaya categories.
A compact, oriented derived manifold or orbifold X has a virtual
class in homology (or a virtual chain if ∂X 6= ∅), which can be
used to define these enumerative invariants, Floer theories, . . . .

3 / 71 Dominic Joyce, Oxford University Lecture 1: Introduction

Introduction
2-categories

C∞-rings and C∞-schemes

Different definitions of derived manifolds and orbifolds
Two ways to define ordinary manifolds
Two ways to define derived manifolds
Derived manifolds with boundary, and with corners

Different definitions of derived manifolds and orbifolds

There are several versions of ‘derived manifolds’ and ‘derived
orbifolds’ in the literature, in order of increasing simplicity:

Spivak’s ∞-category DerManSpi of derived manifolds (2008).
Borisov–Noël’s ∞-category DerManBN (2011,2012).
My d-manifolds and d-orbifolds (2010–2016), which form
strict 2-categories dMan,dOrb.
My µ-Kuranishi spaces, m-Kuranishi spaces and Kuranishi
spaces (2014), which form a category µKur and weak
2-categories mKur,Kur.
Here µ-, m-Kuranishi spaces are types of derived manifold,
and Kuranishi spaces a type of derived orbifold.

In fact the Kuranishi space approach is motivated by earlier work
by Fukaya, Oh, Ohta and Ono in symplectic geometry
(1999,2009–) whose ‘Kuranishi spaces’ are really a prototype kind
of derived orbifold, from before the invention of DAG.
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Relation between these definitions

Borisov–Noel (2011) prove an equivalence of ∞-categories
DerManSpi ' DerManBN.
Borisov (2012) gives a 2-functor π2(DerManBN)→ dMan
which is nearly an equivalence of 2-categories (e.g. it is a 1-1
correspondence on equivalence classes of objects), where
π2(DerManBN) is the 2-category truncation of DerManBN.
I prove (2017) equivalences of 2-categories dMan ' mKur,
dOrb ' Kur and of categories Ho(dMan) ' Ho(mKur)
' µKur, where Ho(· · · ) is the homotopy category.

Thus all these notions of derived manifold are more-or-less
equivalent. Kuranishi spaces are easiest. There is a philosophical
difference between DerManSpi,DerManBN (locally modelled on
X ×Z Y for smooth maps of manifolds g : X → Z , h : Y → Z ) and
dMan,µKur,mKur (locally modelled on s−1(0) for E a vector
bundle over a manifold V with s : V → E a smooth section).
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Restriction to the quasi-smooth case

All these definitions of derived manifolds X include the condition
that X be quasi-smooth in DAG terminology, that is, that the
cotangent complex LX lies in the interval [−1, 0], not in (−∞, 0].
There are several ways to say this:

A derived manifold X is locally a (homotopy) fibre product
U ×W V of classical manifolds U,V ,W .
A derived manifold is locally s−1(0) of a smooth section s of a
vector bundle E → V on a classical manifold V .

There are more general definitions allowing X not quasi-smooth; I
would call these derived C∞-schemes.
The quasi-smooth condition is very important in applications:
compact, oriented, quasi-smooth derived manifolds have virtual
cycles in homology, needed for counting invariants, Floer theories,
etc. This does not work for non-quasi-smooth derived manifolds.
Many moduli spaces are automatically quasi-smooth, e.g. moduli
spaces of solutions of nonlinear elliptic p.d.e.s.
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Two ways to define ordinary manifolds

Here are two equivalent definitions of classical manifolds:

Definition 1.1

A manifold of dimension n is a Hausdorff, second countable
topological space X with a sheaf OX of R-algebras (or C∞-rings)
locally isomorphic to (Rn,ORn), where ORn is the sheaf of smooth
functions f : Rn → R.

Definition 1.2

A manifold of dimension n is a Hausdorff, second countable
topological space X equipped with an atlas of charts
{(Vi , ψi ) : i ∈ I}, where Vi ⊆ Rn is open, and ψi : Vi → X is a
homeomorphism with an open subset Imψi of X for all i ∈ I , and
ψ−1
j ◦ ψi : ψ−1

i (Imψj)→ ψ−1
j (Imψi ) is a diffeomorphism of open

subsets of Rn for all i , j ∈ I .
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Two ways to define derived manifolds

The approaches to DDG of Lurie, Spivak, Borisov–Noel, and my
d-manifolds, work by generalizing Definition 1.1, and taking a
derived manifold X to be a topological space X with a sheaf of
derived C∞-rings OX . The differences are in the notions of
‘derived C∞-ring’ (simplicial/dg), and ‘sheaf’ (homotopy/strict).
My (µ- and m-)Kuranishi spaces generalize Definition 1.2, giving
an ‘atlas of charts’ definition of derived manifolds/orbifolds. They
are equivalent to my d-manifold and d-orbifolds, so we have
2-category equivalences dMan ' mKur and dOrb ' Kur.
Fukaya–Oh–Ohta–Ono have their own definition of Kuranishi space
(1999), predating DAG. With hindsight, it is a prototype ‘atlas of
charts’ notion of derived orbifold. It does not work that well, e.g.
there is no notion of morphism between FOOO Kuranishi spaces.
My (m-)Kuranishi spaces are a variant of the FOOO definition
engineered to be equivalent to d-manifolds and d-orbifolds.
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Derived manifolds with boundary, and with corners
As well as classical manifolds Man, locally modelled on Rn, in
differential geometry we also consider manifolds with boundary
Manb, locally modelled on [0,∞)× Rn−1, and manifolds with
corners Manc, locally modelled on [0,∞)k × Rn−k . Actually there
are lots of variations on categories of manifolds with corners.
So we should also consider derived manifolds/orbifolds with
boundary, and derived manifolds/orbifolds with corners. These are
very important in applications such as Lagrangian Floer theory,
Symplectic Field Theory, and Fukaya categories, as moduli spaces
of J-holomorphic curves are derived orbifolds with corners.
For ‘things with corners’, the Kuranishi space (atlas of charts)
approach is much easier than the derived C∞-scheme approach.
This is because the Kuranishi space inputs a category of
‘manifolds’ satisfying assumptions, which could be Manc, etc., and
outputs 2-categories of ‘derived manifolds’ and ‘derived orbifolds’.
For derived C∞-schemes, we should modify C∞-rings to ‘C∞-rings
with corners’, which changes the theory from the beginning.

9 / 71 Dominic Joyce, Oxford University Lecture 1: Introduction

Introduction
2-categories

C∞-rings and C∞-schemes

2-categories
Strict 2-categories
Weak 2-categories
The homotopy category Ho(C) of a 2-category C

2. 2-categories

There are two kinds of higher categories which are well behaved:
2-categories and ∞-categories. Most DAG is written using
∞-categories, but my version of DDG uses 2-categories. There are
two main reasons why 2-categories are sufficient in DDG:

The existence of partitions of unity in differential geometry
means that structure sheaves are soft, and means we do not
need the extra flexibility of an ∞-category (e.g. we can use
strict sheaves, not homotopy sheaves).

We are only interested in quasi-smooth objects, which are
naturally 2-categorical, as they involve complexes of length 2.

There are two kinds of 2-category, strict 2-categories and weak
2-categories. Every weak 2-category C is equivalent as a weak
2-category to a strict 2-category C′ (weak 2-categories can be
‘strictified’), so there is no fundamental difference, but weak
2-categories have more notation.
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A 2-category C has objects X ,Y , . . . , 1-morphisms f , g : X → Y
(morphisms), and 2-morphisms η : f ⇒ g (morphisms between
morphisms). Here are some examples to bear in mind:

Example

(a) The strict 2-category Cat has objects categories C,D , . . . ,
1-morphisms functors F ,G : C → D , and 2-morphisms natural
transformations η : F ⇒ G .
(b) The strict 2-category Topho of topological spaces up to
homotopy has objects topological spaces X ,Y , . . . , 1-morphisms
continuous maps f , g : X → Y , and 2-morphisms isotopy classes
[H] : f ⇒ g of homotopies H from f to g . That is,
H : X × [0, 1]→ Y is continuous with H(x , 0) = f (x),
H(x , 1) = g(x), and H,H ′ : X × [0, 1]→ Y are isotopic if there
exists continuous I : X × [0, 1]2 → Y with I (x , s, 0) = H(x , s),
I (s, x , 1) = H ′(x , s), I (x , 0, t) = f (x), I (x , 1, t) = g(x).
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Definition

A (strict) 2-category C consists of a class of objects Obj(C), for
all X ,Y ∈ Obj(C) an (essentially small) category Hom(X ,Y ), for
all X in Obj(C) an object idX in Hom(X ,X ) called the identity
1-morphism, and for all X ,Y ,Z in Obj(C) a functor
µX ,Y ,Z : Hom(X ,Y )×Hom(Y ,Z )→ Hom(X ,Z ). These must
satisfy the identity property, that

µX ,X ,Y (idX ,−) = µX ,Y ,Y (−, idY ) = idHom(X ,Y ) (2.1)

as functors Hom(X ,Y )→ Hom(X ,Y ), and the associativity
property, that

µW ,Y ,Z ◦ (µW ,X ,Y × id) = µW ,X ,Z ◦ (id×µX ,Y ,Z ) (2.2)

as functors Hom(W ,X )×Hom(X ,Y )×Hom(Y ,Z )→Hom(W ,X ).
Objects f of Hom(X ,Y ) are called 1-morphisms, written
f : X → Y . For 1-morphisms f , g : X → Y , morphisms
η ∈ HomHom(X ,Y )(f , g) are called 2-morphisms, written η : f ⇒ g .
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There are three kinds of composition in a 2-category, satisfying
various associativity relations. If f : X → Y and g : Y → Z are
1-morphisms then µX ,Y ,Z (f , g) is the horizontal composition of
1-morphisms, written g ◦ f : X → Z . If f , g , h : X → Y are
1-morphisms and η : f ⇒ g , ζ : g ⇒ h are 2-morphisms then
composition of η, ζ in Hom(X ,Y ) gives the vertical composition of
2-morphisms of η, ζ, written ζ � η : f ⇒ h, as a diagram

X

f

!!�� η
>>

h

�� ζ
g

// Y // X
f

))

h

55�� ζ�η Y .
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And if f , f̃ : X → Y and g , g̃ : Y → Z are 1-morphisms and
η : f ⇒ f̃ , ζ : g ⇒ g̃ are 2-morphisms then µX ,Y ,Z (η, ζ) is the
horizontal composition of 2-morphisms, written
ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ , as a diagram

X
f

''

f̃

77�� η Y

g
''

g̃

77�� ζ Z // X

g◦f
((

g̃◦f̃
66�� ζ∗η Z .

There are also two kinds of identity: identity 1-morphisms
idX : X → X and identity 2-morphisms idf : f ⇒ f .
A 2-morphism is a 2-isomorphism if it is invertible under vertical
composition. A 2-category is called a (2,1)-category if all
2-morphisms are 2-isomorphisms. For example, stacks in algebraic
geometry form a (2,1)-category.
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In a 2-category C, there are three notions of when objects X ,Y in
C are ‘the same’: equality X = Y , and isomorphism, that is we
have 1-morphisms f : X → Y , g : Y → X with g ◦ f = idX and
f ◦ g = idY , and equivalence, that is we have 1-morphisms
f : X → Y , g : Y → X and 2-isomorphisms η : g ◦ f ⇒ idX and
ζ : f ◦ g ⇒ idY . Usually equivalence is the correct notion.
Commutative diagrams in 2-categories should in general only
commute up to (specified) 2-isomorphisms, rather than strictly. A
simple example of a commutative diagram in a 2-category C is

Y g

**
η
��X

f
55

h
// Z ,

which means that X ,Y ,Z are objects of C, f : X → Y ,
g : Y → Z and h : X → Z are 1-morphisms in C, and
η : g ◦ f ⇒ h is a 2-isomorphism.
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Definition (Fibre products in 2-categories.)

Let C be a strict 2-category and g : X → Z , h : Y → Z be
1-morphisms in C. A fibre product X ×Z Y in C is an object W ,
1-morphisms πX : W → X and πY : W → Y and a 2-isomorphism
η : g ◦ πX ⇒ h ◦ πY in C with the following universal property:
suppose π′X : W ′ → X and π′Y : W ′ → Y are 1-morphisms and
η′ : g ◦ π′X ⇒ h ◦ π′Y is a 2-isomorphism in C. Then there exists a
1-morphism b : W ′ →W and 2-isomorphisms ζX : πX ◦ b ⇒ π′X ,
ζY : πY ◦ b ⇒ π′Y such that the following diagram commutes:

g ◦ πX ◦ b
η∗idb

+3

idg ∗ζX ��

h ◦ πY ◦ b
idh ∗ζY��

g ◦ π′X
η′ +3 h ◦ π′Y .

Furthermore, if b̃, ζ̃X , ζ̃Y are alternative choices of b, ζX , ζY then
there should exist a unique 2-isomorphism θ : b̃ ⇒ b with

ζ̃X = ζX � (idπX ∗θ) and ζ̃Y = ζY � (idπY ∗θ).

If a fibre product X ×Z Y exists, it is unique up to equivalence.
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Weak 2-categories

A weak 2-category, or bicategory, is like a strict 2-category, except
that the equations of functors (2.1), (2.2) are required to hold not
up to equality, but up to specified natural isomorphisms. That is, a
weak 2-category C consists of data Obj(C),Hom(X ,Y ), µX ,Y ,Z ,
idX as above, but in place of (2.1), a natural isomorphism

α : µW ,Y ,Z ◦ (µW ,X ,Y × id) =⇒ µW ,X ,Z ◦ (id×µX ,Y ,Z ),

and in place of (2.2), natural isomorphisms

β : µX ,X ,Y (idX ,−)=⇒ id, γ : µX ,Y ,Y (−, idY )=⇒ id,

satisfying some identities. That is, composition of 1-morphisms is
associative only up to specified 2-isomorphisms, so for 1-morphisms
e : W → X , f : X → Y , g : Y → Z we have a 2-isomorphism

αg ,f ,e : (g ◦ f ) ◦ e =⇒ g ◦ (f ◦ e).

Similarly identities idX , idY work up to 2-isomorphism, so for each
f : X → Y we have 2-isomorphisms

βf : f ◦ idX =⇒ f , γf : idY ◦f =⇒ f .
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The homotopy category Ho(C) of a 2-category C
Let C be a (strict or weak) 2-category. The homotopy category
Ho(C) is the ordinary category whose objects X ,Y , . . . are objects
of C, and whose morphisms [f ] : X → Y are 2-isomorphism classes
of 1-morphisms f : X → Y in C.
Thus, we can always reduce a 2-category to an ordinary category.
But important information may be lost by doing so. For example:

A 2-category fibre product X ×Z Y in C is generally not a fibre
product in Ho(C), as it is characterized by a universal property
involving 2-morphisms in C, which makes no sense in Ho(C).

In the 2-category of orbifolds Orb, for fixed objects X ,Y , the
1-morphisms f , g : X → Y and 2-morphisms η : f ⇒ g form a
stack (2-sheaf) on X . That is, we can glue 1- and
2-morphisms on an open cover of X . However morphisms
[f ] : X → Y in Ho(Orb) do not form a sheaf on X . The same
holds for stacks in algebraic geometry.
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3. C∞-rings and C∞-schemes

Algebraic geometry (based on algebra and polynomials) has
excellent tools for studying singular spaces – the theory of schemes.
In contrast, conventional differential geometry (based on smooth
real functions and calculus) deals well with nonsingular spaces –
manifolds – but poorly with singular spaces.
There is a little-known theory of schemes in differential geometry,
C∞-schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes,
. . . in synthetic differential geometry in the 1960s-1980s.
C∞-schemes are essentially algebraic objects, on which smooth
real functions and calculus make sense.
The theory works by replacing commutative rings or K-algebras in
algebraic geometry by algebraic objects called C∞-rings.
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Definition 3.1 (First definition of C∞-ring)

A C∞-ring is a set C together with n-fold operations Φf : Cn → C
for all smooth maps f : Rn → R, n > 0, satisfying:
Let m, n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
be smooth functions. Define h : Rn → R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)),

for (x1, . . . , xn) ∈ Rn. Then for all c1, . . . , cn in C we have

Φh(c1, . . . , cn) = Φg (Φf1(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)).

Also defining πj : (x1, . . . , xn) 7→ xj for j = 1, . . . , n we have
Φπj : (c1, . . . , cn) 7→ cj .
A morphism of C∞-rings is a map of sets φ : C→ D with
Φf ◦ φn = φ ◦ Φf : Cn → D for all smooth f : Rn → R. Write
C∞Rings for the category of C∞-rings.

20 / 71 Dominic Joyce, Oxford University Lecture 1: Introduction



Introduction
2-categories

C∞-rings and C∞-schemes

Algebraic definition of C∞-rings
Categorical definition of C∞-rings
Manifolds as C∞-rings
C∞-schemes

Definition 3.2 (Second definition of C∞-ring)

Write Euc for the full subcategory of manifolds Man with objects
Rn for n = 0, 1, . . . . That is, Euc is the category with objects
Euclidean spaces Rn, and morphisms smooth maps f : Rm → Rn.
A C∞-ring is a product-preserving functor F : Euc→ Sets. That
is, F is a functor with functorial identifications
F (Rm+n) = F (Rm × Rn) ∼= F (Rm)× F (Rn) for all m, n > 0.
A morphism φ : F → G of C∞-rings F ,G is a natural
transformation of functors φ : F ⇒ G .

Definitions 3.1 and 3.2 are equivalent as follows. Given
F : Euc→ Sets as above, define a set C = F (R). As F is
product-preserving, F (Rn) ∼= F (R)n = Cn for all n > 0. If
f : Rn → R is smooth then F (f ) : F (Rn)→ F (R) is identified with
a map Φf : Cn → C. Then

(
C,Φf , f :Rn→RC∞) is a C∞-ring as in

Definition 3.1. Conversely, given C we define F with F (Rn) = Cn.
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Manifolds as C∞-rings

Let X be a manifold, and write C = C∞(X ) for the set of smooth
functions c : X → R. Let f : Rn → R be smooth. Define
Φf : C∞(X )n→C∞(X ) by Φf (c1, . . . , cn)(x)= f

(
c1(x), . . . , cn(x)

)
for x ∈ X . These make C∞(X ) into a C∞-ring as in Definition 3.1.
Define F : Euc→ Sets by F (Rn) = HomMan(X ,Rn) and
F (f ) = f ◦ : HomMan(X ,Rm)→ HomMan(X ,Rn) for f : Rm → Rn

smooth. Then F is a C∞-ring as in Definition 3.2.
If f : X → Y is smooth map of manifolds then
f ∗ : C∞(Y )→ C∞(X ) is a morphism of C∞-rings; conversely, if
φ : C∞(Y )→ C∞(X ) is a morphism of C∞-rings then φ = f ∗ for
some unique smooth f : X → Y . This gives a full and faithful
functor F : Man→ C∞Ringsop by F : X 7→ C∞(X ), F : f 7→ f ∗.
Thus, we can think of manifolds as examples of C∞-rings. But
there are many more C∞-rings than manifolds. For example,
C 0(X ) is a C∞-ring for any topological space X .
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C∞-schemes

We can now develop the whole machinery of scheme theory in
algebraic geometry, replacing rings by C∞-rings throughout.
A C∞-ringed space X = (X ,OX ) is a topological space X with a
sheaf of C∞-rings OX . It is local if the stalks OX ,x for x ∈ X are
local R-algebras with residue field R. Write LC∞RS for the
category of local C∞-ringed spaces.
The global sections functor Γ : LC∞RS→ C∞Ringsop maps
Γ : (X ,OX ) 7→ OX (X ). It has a right adjoint, the spectrum
functor Spec : C∞Ringsop → LC∞RS. That is, for each C∞-ring
C we construct a local C∞-ringed space SpecC. Points x ∈ SpecC
are R-algebra morphisms x : C→ R. We don’t use prime ideals.
On the subcategory of complete C∞-rings, Spec is full and faithful.
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A local C∞-ringed space X is called an affine C∞-scheme if
X ∼= SpecC for some C∞-ring C. It is a C∞-scheme if X can be
covered by open U ⊆ X with (U,OX |U) an affine C∞-scheme.
Write C∞Sch for the full subcategory of C∞-schemes in LC∞RS.
If X is a manifold, define a C∞-scheme X = (X ,OX ) by
OX (U) = C∞(U) for all open U ⊆ X . Then X ∼= SpecC∞(X ).
This defines a full and faithful embedding Man ↪→ C∞Sch. So we
can regard manifolds as examples of C∞-schemes.
All fibre products exist in C∞Sch. In manifolds Man, fibre
products X ×g ,Z ,h Y need exist only if g : X → Z and h : Y → Z
are transverse. When g , h are not transverse, the fibre product
X ×g ,Z ,h Y exists in C∞Sch, but is not a manifold.
We also define quasicoherent sheaves on a C∞-scheme X , and
write qcoh(X ) for the abelian category of quasicoherent sheaves.
A C∞-scheme X has a well-behaved cotangent sheaf T ∗X .
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