Derived Differential Geometry

Lecture 2 of 3: Two ways to define derived manifolds

Dominic Joyce, Oxford University 'Derived Algebraic Geometry and Interactions', Toulouse, June 2017

These slides available at http://people.maths.ox.ac.uk/~joyce/.

Differential graded C^{∞} -rings Square zero dg C^{∞} -rings

4. Derived C^{∞} -rings and derived C^{∞} -schemes Differential graded C^{∞} -rings

We can define derived \mathbb{C} -schemes by replacing \mathbb{C} -algebras A by dg \mathbb{C} -algebras A^{\bullet} in the definition of \mathbb{C} -scheme — commutative differential graded \mathbb{C} -algebras in degrees ≤ 0 , of the form $\dots \rightarrow A^{-2} \xrightarrow{d} A^{-1} \xrightarrow{d} A^{0}$, where A^{0} is an ordinary \mathbb{C} -algebra. The corresponding 'classical' \mathbb{C} -algebra is $H^{0}(A^{\bullet}) = A^{0}/d[A^{-1}]$. There is a parallel notion of $dg \ C^{\infty}$ -ring \mathfrak{C}^{\bullet} , of the form $\dots \rightarrow \mathfrak{C}^{-2} \xrightarrow{d} \mathfrak{C}^{-1} \xrightarrow{d} \mathfrak{C}^{0}$, where \mathfrak{C}^{0} is an ordinary C^{∞} -ring, and $\mathfrak{C}^{-1}, \mathfrak{C}^{-2}, \dots$ are modules over \mathfrak{C}^{0} as an \mathbb{R} -algebra. The corresponding 'classical' C^{∞} -ring is $H^{0}(\mathfrak{C}^{\bullet}) = \mathfrak{C}^{0}/d[\mathfrak{C}^{-1}]$. One could use dg C^{∞} -rings to define 'derived C^{∞} -schemes'. It is necessary to regard dg C^{∞} -rings as in ∞ -category. An alternative is to use simplicial C^{∞} -rings, see Lurie DAG V, Spivak arXiv:0810.5175, Borisov–Noel arXiv:1112.0033, and Borisov arXiv:1212.1153.

27 / 71

Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

Differential graded C^{∞} -rings Square zero dg C^{∞} -rings

Square zero dg C^{∞} -rings

My d-spaces are a 2-category truncation of derived C^{∞} -schemes. To define them, I use a special class of dg C^{∞} -rings called *square zero dg* C^{∞} -rings, which form a 2-category **SZC**^{∞}**Rings**. A dg C^{∞} -ring \mathfrak{C}^{\bullet} is *square zero* if $\mathfrak{C}^{i} = 0$ for i < -1 and $\mathfrak{C}^{-1} \cdot d[\mathfrak{C}^{-1}] = 0$. Then \mathfrak{C} is $\mathfrak{C}^{-1} \stackrel{d}{\to} \mathfrak{C}^{0}$, and $d[\mathfrak{C}^{-1}]$ is a square zero ideal in the (ordinary) C^{∞} -ring \mathfrak{C}^{0} , and \mathfrak{C}^{-1} is a module over the 'classical' C^{∞} -ring $H^{0}(\mathfrak{C}^{\bullet}) = \mathfrak{C}^{0}/d[\mathfrak{C}^{-1}]$. A 1-morphism $\alpha^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ in **SZC**^{∞}**Rings** is maps $\alpha^{0} : \mathfrak{C}^{0} \to \mathfrak{D}^{0}, \alpha^{-1} : \mathfrak{C}^{-1} \to \mathfrak{D}^{-1}$ preserving all the structure. Then $H^{0}(\alpha^{\bullet}) : H^{0}(\mathfrak{C}^{\bullet}) \to H^{0}(\mathfrak{D}^{\bullet})$ is a morphism of C^{∞} -rings. For 1-morphisms $\alpha^{\bullet}, \beta^{\bullet} : \mathfrak{C}^{\bullet} \to \mathfrak{D}^{\bullet}$ a 2-morphism $\eta : \alpha^{\bullet} \Rightarrow \beta^{\bullet}$ is a C^{∞} -derivation $\eta : \mathfrak{C}^{0} \to \mathfrak{D}^{-1}$ with $\beta^{0} = \alpha^{0} + d \circ \eta, \beta^{-1} = \alpha^{-1} + \eta \circ d$. There is an embedding of (2-)categories \mathbf{C}^{∞} **Rings** \subset **SZC**^{∞}**Rings** as the (2-)subcategory of \mathfrak{C}^{\bullet} with $\mathfrak{C}^{-1} = 0$.

Differential graded C^{∞} -rings Square zero dg C^{∞} -rings

Examples of square zero dg C^{∞} -rings

Example 4.1

Let V be a manifold, $E \to V$ a vector bundle, and $s : V \to E$ a smooth section. Then we call (V, E, s) an *m*-Kuranishi neighbourhood (compare m-Kuranishi spaces later). Associate a square zero dg C^{∞} -ring $\mathfrak{C}^{\bullet} = (\mathfrak{C}^{-1} \stackrel{\mathrm{d}}{\longrightarrow} \mathfrak{C}^{0})$ to (V, E, s) by

$$\begin{split} \mathfrak{C}^0 &= C^\infty(V)/I_s^2, \qquad \mathfrak{C}^{-1} = C^\infty(E^*)/I_s \cdot C^\infty(E^*), \\ &\mathrm{d}(\epsilon + I_s \cdot C^\infty(E^*)) = \epsilon(s) + I_s^2, \end{split}$$

where $I_s = C^{\infty}(E^*) \cdot s \subset C^{\infty}(V)$ is the ideal generated by s. The d-manifold X associated to (V, E, s) is Spec \mathfrak{C}^{\bullet} . It only knows about functions on V up to $O(s^2)$, and sections of E up to O(s).

29/71

Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

D-spaces D-manifolds Tangent and obstruction spaces of d-manifolds D-manifolds with boundary, and with corners

5. D-spaces and d-manifolds

A *d-space* X is a topological space X with a sheaf of square zero dg- C^{∞} -rings $\mathcal{O}_X^{\bullet} = \mathcal{O}_X^{-1} \stackrel{d}{\longrightarrow} \mathcal{O}_X^{0}$, such that $X = (X, H^0(\mathcal{O}_X^{\bullet}))$ and (X, \mathcal{O}_X^{0}) are C^{∞} -schemes, and \mathcal{O}_X^{-1} is quasicoherent over X. We call X the *underlying classical* C^{∞} -scheme. D-spaces are a kind of derived C^{∞} -scheme. They form a strict 2-category **dSpa**, with 1-morphisms and 2-morphisms defined using sheaves of 1-morphisms and 2-morphisms in **SZC^{\infty}Rings** in the obvious way. All (2-category) fibre products exist in **dSpa**. C^{∞} -schemes include into d-spaces as those X with $\mathcal{O}_X^{-1} = 0$. Thus we have inclusions of (2-)categories **Man** \subset **C**^{∞}**Sch** \subset **dSpa**, so manifolds are examples of d-spaces. A d-space X has a *cotangent complex* \mathbb{L}_X^{\bullet} , a 2-term complex

 $\mathbb{L}_{\mathbf{X}}^{-1} \xrightarrow{\mathrm{d}_{\mathbf{X}}} \mathbb{L}_{\mathbf{X}}^{0}$ of quasicoherent sheaves on \underline{X} . Such complexes form a 2-category qcoh^[-1,0](\underline{X}).

D-manifolds Tangent and obstruction spaces of d-manifolds D-manifolds with boundary, and with corners

D-manifolds

A *d*-manifold **X** of virtual dimension $n \in \mathbb{Z}$ is a d-space **X** whose topological space X is Hausdorff and second countable, and such that **X** is covered by open d-subspaces $\mathbf{Y} \subset \mathbf{X}$ with equivalences $\mathbf{Y} \simeq U \times_{g,W,h} V$ in **dSpa**, where U, V, W are manifolds with dim $U + \dim V - \dim W = n$, and $g : U \to W$, $h : V \to W$ are smooth maps, and $U \times_{g,W,h} V$ is the fibre product in the 2-category **dSpa**. (The 2-category structure is essential here.) Write **dMan** for the full 2-subcategory of d-manifolds in **dSpa**. Alternatively, we can write the local models as $\mathbf{Y} \simeq V \times_{0,E,s} V$, where V is a manifold, $E \to V$ a vector bundle, $s : V \to E$ a smooth section, and $n = \dim V - \operatorname{rank} E$.

We call a d-manifold **X** affine if it is equivalent in **dMan** to some $V \times_{0,E,s} V$. So any d-manifold has an open cover by affine d-manifolds.

Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

D-manifolds Tangent and obstruction spaces of d-manifolds D-manifolds with boundary, and with corners

Tangent and obstruction spaces of d-manifolds

Let X be a d-manifold, and $x \in X$. Then we have the *tangent* space $T_x X$ and obstruction space $O_x X$, finite-dimensional real vector spaces with dim $T_x X - \dim O_x X = \operatorname{vdim} X$. The dual vector spaces are the cotangent space $T_x^* X$ and coobstruction space $O_x^* X$. If $\mathbb{L}_X = [\mathbb{L}_X^{-1} \stackrel{d}{\longrightarrow} \mathbb{L}_X^0]$ is the cotangent complex of Xas a d-space, we may define these by the exact sequence

$$0 \longrightarrow O_{X}^{*} \boldsymbol{X} \longrightarrow \mathbb{L}_{\boldsymbol{X}}^{-1}|_{X} \xrightarrow{\mathrm{d}|_{X}} \mathbb{L}_{\boldsymbol{X}}^{0}|_{X} \longrightarrow T_{X}^{*} \boldsymbol{X} \longrightarrow 0.$$
 (5.1)

If $f : X \to Y$ is a 1-morphism in **dMan** and $x \in X$ with $f(x) = y \in Y$, we have natural, functorial linear maps $T_x f : T_x X \to T_y Y$ and $O_x f : O_x X \to O_y Y$. If $\eta : f \Rightarrow g$ is a 2-morphism in **dMan** then $T_x f = T_x g$ and $O_x f = O_x g$. In contrast to schemes, most d-manifolds are affine:

Theorem

A d-manifold X is affine if and only if dim $T_X X$ is bounded for $x \in X$. This holds automatically if X is compact.

D-manifolds Tangent and obstruction spaces of d-manifolds D-manifolds with boundary, and with corners

D-manifolds with boundary, and with corners

I also define 2-categories $dMan^b$, $dMan^c$ of *d-manifolds with boundary* and *corners*, and orbifold versions dOrb, $dOrb^b$, $dOrb^c$, *d-orbifolds*, using Deligne–Mumford C^{∞} -stacks. The currently available definition of d-manifolds with boundary and corners is not that pretty. In joint work with Kelli Francis-Staite, I am planning a different definition based on a new notion of C^{∞} -ring with corners, which is quite like log schemes in algebraic geometry. Including boundaries and corners in the (m-)Kuranishi picture is a lot easier.

33/71

Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

M-Kuranishi neighbourhoods 1-morphisms of m-Kuranishi neighbourhoods 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

6. The 2-category of m-Kuranishi neighbourhoods

We will define m-Kuranishi spaces, a weak 2-category of derived manifolds mKur, by an 'atlas of charts'. The charts themselves, *m-Kuranishi neighbourhoods*, form a strict 2-category, with objects, 1- and 2-morphisms.

Definition

Let X be a topological space. An *m*-Kuranishi neighbourhood on X is a quadruple (V, E, s, ψ) such that:

- (a) V is a smooth manifold.
- (b) $\pi: E \to V$ is a vector bundle over V, the *obstruction bundle*.
- (c) $s \in C^{\infty}(E)$ is a smooth section of E, the *m*-Kuranishi section.
- (d) ψ is a homeomorphism from $s^{-1}(0)$ to an open subset Im ψ in X, where Im ψ is called the *footprint* of (V, E, s, ψ) .

If $S \subseteq X$ is open, we call (V, E, s, ψ) an *m*-Kuranishi neighbourhood over S if $S \subseteq \text{Im } \psi \subseteq X$. We call (V, E, s, ψ) global if S = X.

M-Kuranishi neighbourhoods 1-morphisms of m-Kuranishi neighbourhoods 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

Definition

Let $f : X \to Y$ be a continuous map of topological spaces, (V_i, E_i, s_i, ψ_i) , (V_j, E_j, s_j, ψ_j) be m-Kuranishi neighbourhoods on X, Y, and $S \subseteq \operatorname{Im} \psi_i \cap f^{-1}(\operatorname{Im} \psi_j) \subseteq X$ be an open set. A 1-morphism $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ over (S, f) is a triple $\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij})$ satisfying:

- (a) V_{ij} is an open neighbourhood of $\psi_i^{-1}(S)$ in V_i .
- (b) $\phi_{ij}: V_{ij} \to V_j$ is smooth.
- (c) $\hat{\phi}_{ij}: E_i|_{V_{ij}} \to \phi^*_{ij}(E_j)$ is a morphism of vector bundles on V_{ij} , with $\hat{\phi}_{ij}(s_i|_{V_{ii}}) = \phi^*_{ii}(s_j) + O(s_i^2)$.
- (d) Parts (b),(c) imply that ϕ_{ij} maps $s_i^{-1}(0) \cap V_{ij} \rightarrow s_j^{-1}(0)$. We require that $f \circ \psi_i = \psi_j \circ \phi_{ij}$ on $s_i^{-1}(0) \cap V_{ij}$.

Here the $O(s_i^2)$ means that $\hat{\phi}_{ij}(s_i|_{V_{ij}}) - \phi_{ij}^*(s_j)$ lies in the square of the ideal of smooth functions generated by s_i .

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

M-Kuranishi neighbourhoods **1-morphisms of m-Kuranishi neighbourhoods** 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

We often take $f : X \to Y$ to be $id_X : X \to X$, and then we call Φ_{ij} a 1-morphism over S.

The *identity* 1-*morphism* of (V_i, E_i, s_i, ψ_i) over id_X is

$$\operatorname{id}_{(V_i, E_i, s_i, \psi_i)} = (V_i, \operatorname{id}_{V_i}, \operatorname{id}_{E_i}).$$

Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps, and $T \subseteq Y$, $S \subseteq f^{-1}(T) \subseteq X$ be open, and $\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be a 1-morphism over (S, f), and $\Phi_{jk} = (V_{jk}, \phi_{jk}, \hat{\phi}_{jk}) : (V_j, E_j, s_j, \psi_j) \to (V_k, E_k, s_k, \psi_k)$ a 1-morphism over (T, g). The composition is

$$\Phi_{jk} \circ \Phi_{ij} = (V_{ij} \cap \phi_{ij}^{-1}(V_{jk}), \phi_{jk} \circ \phi_{ij}|..., \phi_{ij}^{-1}(\hat{\phi}_{jk}) \circ \hat{\phi}_{ij}|...):$$
$$(V_i, E_i, s_i, \psi_i) \longrightarrow (V_k, E_k, s_k, \psi_k).$$

Composition is strictly associative, and identities behave as expected, $\Phi_{ij} \circ \operatorname{id}_{(V_i, E_i, s_i, \psi_i)} = \operatorname{id}_{(V_i, E_i, s_i, \psi_i)} \circ \Phi_{ij} = \Phi_{ij}$.

M-Kuranishi neighbourhoods 1-morphisms of m-Kuranishi neighbourhoods 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

Definition

Let $\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \rightarrow (V_j, E_j, s_j, \psi_j)$ be 1-morphisms over (S, f) with $\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}), \Phi'_{ij} = (V'_{ij}, \phi'_{ij}, \hat{\phi}'_{ij})$. Consider pairs $(\dot{V}_{ij}, \hat{\lambda}_{ij})$ with open $\psi_i^{-1}(S) \subseteq \dot{V}_{ij} \subseteq V_{ij} \cap V'_{ij}$ open, and $\hat{\lambda} : E_i|_{\dot{V}_{ij}} \rightarrow \phi^*_{ij}(TV_j)|_{\dot{V}_{ij}}$ a morphism of vector bundles on \dot{V}_{ij} satisfying $\phi'_{ij} = \phi_{ij} + \Lambda \circ s_i + O(s_i^2)$ and $\hat{\phi}'_{ij} = \hat{\phi}_{ij} + \phi^*_{ij}(ds_j) \circ \Lambda + O(s_i)$ on \dot{V}_{ij} . Define an equivalence relation \sim on such pairs by $(\dot{V}_{ij}, \hat{\lambda}_{ij}) \sim (\dot{V}'_{ij}, \hat{\lambda}'_{ij})$ if there exists an open $\psi_i^{-1}(S) \subseteq \ddot{V}_{ij} \subseteq \dot{V}_{ij} \cap \dot{V}'_{ij}$ with $\hat{\lambda}_{ij}|_{\ddot{V}_{ij}} = \hat{\lambda}'_{ij}|_{\ddot{V}_{ij}} + O(s_i)$. Write $\Lambda_{ij} = [\dot{V}_{ij}, \hat{\lambda}_{ij}]$ for the \sim -equivalence class of $(\dot{V}_{ij}, \hat{\lambda}_{ij})$, and call $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ a 2-morphism of m-Kuranishi neighbourhoods over (S, f).

There are natural notions of vertical and horizontal composition of 2-morphisms, and identity 2-morphisms, which make (global) m-Kuranishi neighbourhoods into a *strict* 2-*category* **GmKN**. All 2-morphisms are invertible, so **GmKN** is a (2,1)-category.

37 / 71

Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

M-Kuranishi neighbourhoods 1-morphisms of m-Kuranishi neighbourhoods 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

Global m-Kuranishi neighbourhoods and affine d-manifolds

We can motivate the definitions above using d-manifolds. There is a natural strict 2-functor F_{GmKN}^{dMan} : GmKN \rightarrow dMan, which on objects takes a global m-Kuranishi neighbourhood (V, E, s, ψ) on X to the affine d-manifold Spec \mathfrak{C}^{\bullet} , for \mathfrak{C}^{\bullet} the square zero dg C^{∞} -ring defined from (V, E, s) in Example 4.1. For fixed objects, F_{GmKN}^{dMan} is surjective on 1-morphisms, and a 1-1 correspondence on 2-morphisms. In fact, the correct definition of 2-morphism of m-Kuranishi neighbourhood was deduced from the definition of 2-morphisms of d-manifolds.

This 2-functor F_{GmKN}^{dMan} is an equivalence from **GmKN** to the full 2-subcategory **dMan**^{aff} \subset **dMan** of affine d-manifolds.

M-Kuranishi neighbourhoods 1-morphisms of m-Kuranishi neighbourhoods 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

Coordinate changes

For X a topological space and $S \subseteq X$ open, write $\mathbf{mKur}_S(X)$ for the strict 2-category of m-Kuranishi neighbourhoods and 1- and 2-morphisms over (S, id_X) . We call a 1-morphism $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \rightarrow (V_j, E_j, s_j, \psi_j)$ in $\mathbf{mKur}_S(X)$ a *coordinate change* over S if it is an equivalence in $\mathbf{mKur}_S(X)$. That is, there should exist a 1-morphism $\Phi_{ji} : (V_j, E_j, s_j, \psi_j) \rightarrow (V_i, E_i, s_i, \psi_i)$ and 2-morphisms $\Lambda_{ii} : \Phi_{ji} \circ \Phi_{ij} \Rightarrow \mathrm{id}_{(V_i, E_i, s_i, \psi_i)}$. Then we have:

Theorem 6.1

A 1-morphism $\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, s_i, \psi_i) \rightarrow (V_j, E_j, s_j, \psi_j)$ is a coordinate change over S if and only if for all $x \in S$ with $v_i = \psi_i^{-1}(x)$ and $v_j = \psi_j^{-1}(x)$, the following sequence is exact: $0 \longrightarrow T_{v_i} V_i \xrightarrow{\mathrm{ds}_i|_{v_i} \oplus T_{v_i} \phi_{ij}} E_i|_{v_i} \oplus T_{v_i} V_j \xrightarrow{\hat{\phi}_{ij}|_{v_i} \oplus -\mathrm{ds}_j|_{v_j}} E_j|_{v_i} \longrightarrow 0.$

Dominic Joyce, Oxford University

Lecture 2: Two ways to define derived manifolds

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds **The 2-category of m-Kuranishi neighbourhoods** The 2-category of m-Kuranishi spaces

M-Kuranishi neighbourhoods 1-morphisms of m-Kuranishi neighbourhoods 2-morphisms of m-Kuranishi neighbourhoods Properties of m-Kuranishi neighbourhoods

The stack property of 1- and 2-morphisms

Theorem 6.2

Let $f : X \to Y$ be a continuous map, and (V_i, E_i, s_i, ψ_i) , (V_j, E_j, s_j, ψ_j) be m-Kuranishi neighbourhoods on X, Y. For each open $S \subseteq \operatorname{Im} \psi_i \cap f^{-1}(\operatorname{Im} \psi_j)$, write $\mathcal{Hom}_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(S)$ for the groupoid of 1-morphisms $\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ and 2-morphisms $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ over (S, f). For all open $T \subseteq S \subseteq \operatorname{Im} \psi_i \cap f^{-1}(\operatorname{Im} \psi_j)$ define a functor $\rho_{ST} : \mathcal{Hom}_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(S) \longrightarrow$ $\mathcal{Hom}_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(T)$ by restriction to T. Then $\mathcal{Hom}_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ is a stack (the 2-category version of sheaf) on $\operatorname{Im} \psi_i \cap f^{-1}(\operatorname{Im} \psi_j)$.

This is not obvious. It means we can glue 1- and 2-morphisms of m-Kuranishi neighbourhoods over the sets of an open cover.

The definition of m-Kuranishi space L-morphisms of m-Kuranishi spaces 2-morphisms of m-Kuranishi spaces Fangent and obstruction spaces of m-Kuranishi spaces

7. The 2-category of m-Kuranishi spaces

Definition 7.1

Let X be a Hausdorff, second countable topological space. An *m*-Kuranishi structure \mathcal{K} on X of virtual dimension $n \in \mathbb{Z}$ is data $\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij, i, j \in I}, \Lambda_{ijk, i, j, k \in I})$, where: (a) I is an indexing set. (b) (V_i, E_i, s_i, ψ_i) is an m-Kuranishi neighbourhood on X for $i \in I$, with dim V_i - rank $E_i = n$. Write $S_{ij} = \operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j$, etc. (c) $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ is a coordinate change over S_{ij} for $i, j \in I$. (d) $\Lambda_{ijk} : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{ik}$ is a 2-morphism over S_{ijk} for $i, j, k \in I$. (e) $\bigcup_{i \in I} \operatorname{Im} \psi_i = X$. (f) $\Phi_{ii} = \operatorname{id}_{(V_i, E_i, s_i, \psi_i)}$ for $i \in I$. (g) $\Lambda_{iij} = \Lambda_{ijj} = \operatorname{id}_{\Phi_{ij}}$ for $i, j \in I$. (h) $\Lambda_{ikl} \odot (\operatorname{id}_{\Phi_{kl}} * \Lambda_{ijk})|_{S_{ijkl}} = \Lambda_{ijl} \odot (\Lambda_{jkl} * \operatorname{id}_{\Phi_{ij}})|_{S_{ijkl}} :$ $\Phi_{kl} \circ \Phi_{jk} \circ \Phi_{ij}|_{S_{ijkl}} \Longrightarrow \Phi_{il}|_{S_{ijkl}}$ for $i, j, k, l \in I$. We call $\mathbf{X} = (X, \mathcal{K})$ an *m*-Kuranishi space, with vdim $\mathbf{X} = n$.

Derived C^∞ -rings and derived C^∞ -schemes	The definition of m-Kuranishi space
D-spaces and d-manifolds	1-morphisms of m-Kuranishi spaces
The 2-category of m-Kuranishi neighbourhoods	2-morphisms of m-Kuranishi spaces
The 2-category of m-Kuranishi spaces	Tangent and obstruction spaces of m-Kuranishi spaces

This defines m-Kuranishi spaces using an 'atlas of charts', where the charts are m-Kuranishi neighbourhoods (V_i, E_i, s_i, ψ_i) , with coordinate changes Φ_{ij} on double overlaps $\operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j$, and 2-isomorphisms $\Lambda_{ijk} : \Phi_{jk} \circ \Phi_{ij}|_{S_{ijk}} \Rightarrow \Phi_{ik}|_{S_{ijk}}$ on triple overlaps $\operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j \cap \operatorname{Im} \psi_k$, with associativity

 $\Lambda_{ikl} \odot (\mathrm{id}_{\Phi_{kl}} * \Lambda_{ijk})|_{S_{ijkl}} = \Lambda_{ijl} \odot (\Lambda_{jkl} * \mathrm{id}_{\Phi_{ij}})|_{S_{ijkl}} \text{ on quadruple}$ overlaps $\mathrm{Im} \, \psi_i \cap \mathrm{Im} \, \psi_j \cap \mathrm{Im} \, \psi_k \cap \mathrm{Im} \, \psi_l.$

Once you have grasped the idea that m-Kuranishi neighbourhoods over $S \subseteq X$ form a 2-category, with restriction $|_T$ to open subsets $T \subseteq S \subseteq X$, Definition 7.1, although complicated, is obvious, and necessary: it is the only sensible way to make a global space by gluing local charts in the world of 2-categories.

Fukaya–Oh–Ohta–Ono define their Kuranishi spaces by a similar atlas of charts approach, but their coordinate changes only go in one direction, and they have no 2-morphisms.

41/71

The definition of m-Kuranishi space 1-morphisms of m-Kuranishi spaces 2-morphisms of m-Kuranishi spaces Tangent and obstruction spaces of m-Kuranishi spaces

Definition 7.2

Let $\boldsymbol{X} = (X, \mathcal{K})$ and $\boldsymbol{Y} = (Y, \mathcal{L})$ be m-Kuranishi spaces, with $\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ii', i, i' \in I}, \Lambda_{ii', i', i, i', i'' \in I})$ and $\mathcal{L} = (J, (W_j, F_j, t_j, \chi_j)_{j \in J}, \Psi_{jj', j, j' \in J}, M_{jj'j'', j, j', j'' \in J}). A$ 1-morphism $\boldsymbol{f}: \boldsymbol{X} \to \boldsymbol{Y}$ is $\boldsymbol{f} = (f, \boldsymbol{f}_{ij, i \in I, j \in J}, F_{ii', i, i' \in I}^{j, j \in J}, F_{i, i \in I}^{jj', j, j' \in J})$, with: (a) $f: X \to Y$ is a continuous map. (b) $f_{ii}: (V_i, E_i, s_i, \psi_i) \rightarrow (W_i, F_i, t_i, \chi_i)$ is a 1-morphism of m-Kuranishi neighbourhoods over $S = \operatorname{Im} \psi_i \cap f^{-1}(\operatorname{Im} \chi_i)$ and f for $i \in I$, $i \in J$. (c) $F_{ii'}^j : \mathbf{f}_{i'i} \circ \Phi_{ii'} \Rightarrow \mathbf{f}_{ij}$ is a 2-morphism over f for $i, i' \in I, j \in J$. (d) $F_i^{jj'}: \Psi_{jj'} \circ f_{ij} \Rightarrow f_{ij'}$ is a 2-morphism over f for $i \in I, j, j' \in J$. (e) $F_{ii}^{j} = F_{i}^{jj} = \mathrm{id}_{f_{ii}}$. (f) $F_{ii''}^{j} \odot (\operatorname{id}_{f_{i''j}} * \Lambda_{ii'i''}) = F_{ii'}^{j} \odot (F_{i'i''}^{j} * \operatorname{id}_{\Phi_{ii'}}) : f_{i''j} \circ \Phi_{i'i''} \circ \Phi_{ii'} \Rightarrow f_{i''j}.$ (g) $F_{i}^{jj'} \odot (\operatorname{id}_{\Psi_{ii'}} * F_{ii'}^{j}) = F_{ii'}^{j'} \odot (F_{i'}^{jj'} * \operatorname{id}_{\Phi_{ii'}}) : \Psi_{jj'} \circ f_{i'j} \circ \Phi_{ii'} \Rightarrow f_{ij'}.$ (h) $F_{i}^{j'j''} \odot (\operatorname{id}_{\Psi_{i'i''}} * F_{i}^{jj'}) = F_{i}^{jj''} \odot (\operatorname{M}_{jj'j''} * \operatorname{id}_{f_{ij}}) : \Psi_{j'j''} \circ \Psi_{jj'} \circ f_{ij} \Rightarrow f_{ij''}.$ Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds 43/71

> Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

The definition of m-Kuranishi space 1-morphisms of m-Kuranishi spaces **2-morphisms of m-Kuranishi spaces** Tangent and obstruction spaces of m-Kuranishi spaces

Here (c)–(h) hold for all i, j, \ldots , restricted to appropriate domains.

Definition 7.3

Let $\mathbf{f}, \mathbf{g} : \mathbf{X} \to \mathbf{Y}$ be 1-morphisms of m-Kuranishi spaces, with $\mathbf{f} = (f, \mathbf{f}_{ij, i \in I, j \in J}, F_{ii', i, i' \in I}^{j, j \in J}, F_{i, i \in I}^{jj', j, j' \in J}),$ $\mathbf{g} = (g, \mathbf{g}_{ij, i \in I, j \in J}, G_{ii', i, i' \in I}^{j, j \in J}, G_{i, i \in I}^{jj', j, j' \in J}).$ Suppose the continuous maps $f, g : \mathbf{X} \to \mathbf{Y}$ satisfy f = g. A 2-morphism $\eta : \mathbf{f} \Rightarrow \mathbf{g}$ is data $\eta = (\eta_{ij, i \in I, j \in J})$, where $\eta_{ij} : \mathbf{f}_{ij} \Rightarrow \mathbf{g}_{ij}$ is a 2-morphism of m-Kuranishi neighbourhoods over f = g, satisfying: (a) $G_{ii'}^{j} \odot (\eta_{i'j} * \mathrm{id}_{\Phi_{ii'}}) = \eta_{ij} \odot F_{ii'}^{j} : \mathbf{f}_{i'j} \circ \Phi_{ii'} \Rightarrow \mathbf{g}_{ij}$ for $i, i' \in I, j \in J$. (b) $G_{i}^{jj'} \odot (\mathrm{id}_{\Psi_{jj'}} * \eta_{ij}) = \eta_{ij'} \odot F_{i}^{jj'} : \Psi_{jj'} \circ \mathbf{f}_{ij} \Rightarrow \mathbf{g}_{ij'}$ for $i \in I, j, j' \in J$.

We can then define composition of 1- and 2-morphisms, identity 1and 2-morphisms, and so on, making m-Kuranishi spaces into a weak 2-category **mKur**. Composition of 1-morphisms needs the stack property of 1-morphisms, as in Theorem 6.2.

The definition of m-Kuranishi space 1-morphisms of m-Kuranishi spaces 2-morphisms of m-Kuranishi spaces Tangent and obstruction spaces of m-Kuranishi spaces

Composition of 1-morphisms in **mKur**

Suppose $f : X \to Y$, $g : Y \to Z$ are 1-morphisms of m-Kuranishi spaces, where X, Y, Z have m-Kuranishi neighbourhoods $(V_i, E_i, s_i, \psi_i)_{i \in I}, (W_j, F_j, t_j, \chi_j)_{j \in J}, (W_k, F_k, t_k, \xi_k)_{k \in K}$. Consider how to define the composition $\mathbf{g} \circ \mathbf{f} : \mathbf{X} \to \mathbf{Z}$ in **mKur**. Now $\boldsymbol{g} \circ \boldsymbol{f}$ should contain 1-morphisms of m-Kuranishi neighbourhoods $(\boldsymbol{g} \circ \boldsymbol{f})_{ik} : (V_i, E_i, s_i, \psi_i) \rightarrow (W_k, F_k, t_k, \xi_k)$ for all $i \in I$ and $k \in K$, defined over $S_{ik} = \operatorname{Im} \psi_i \cap (g \circ f)^{-1}(\operatorname{Im} \xi_k)$. We do not have this. Instead, for each $j \in J$ we have 1-morphisms $\boldsymbol{g}_{jk} \circ \boldsymbol{f}_{ij} : (V_i, E_i, s_i, \psi_i) \rightarrow (W_k, F_k, t_k, \xi_k)$ defined over $S_{ijk} = \operatorname{Im} \psi_i \cap f^{-1}(\operatorname{Im} \chi_j) \cap (g \circ f)^{-1}(\operatorname{Im} \xi_k).$ As the S_{iik} for $j \in J$ cover S_{ik} , we can use Theorem 6.2 to show that there exists $(\boldsymbol{g} \circ \boldsymbol{f})_{ik}$ defined over S_{ik} with 2-isomorphisms $(\boldsymbol{g} \circ \boldsymbol{f})_{ik}|_{S_{iik}} \cong \boldsymbol{g}_{ik} \circ \boldsymbol{f}_{ij}$ for all $j \in J$. This $(\boldsymbol{g} \circ \boldsymbol{f})_{ik}$ is only natural up to 2-isomorphism. Thus $\boldsymbol{g} \circ \boldsymbol{f}$ is only natural up to 2-isomorphism in **mKur**, so **mKur** is a weak 2-category. FOOO can't compose morphisms, as they have no stack property.

45	/ 71	Dominic Joyce	Oxford University	Lecture 2:	Two ways to define	derived manifolds
-+				Lecture 2.		

Derived C^{∞} -rings and derived C^{∞} -schemes D-spaces and d-manifolds The 2-category of m-Kuranishi neighbourhoods The 2-category of m-Kuranishi spaces

The definition of m-Kuranishi space 1-morphisms of m-Kuranishi spaces 2-morphisms of m-Kuranishi spaces Tangent and obstruction spaces of m-Kuranishi spaces

• The 2-category equivalence F_{GmKN}^{dMan} : $GmKN \rightarrow dMan^{aff}$ can be extended to an equivalence F_{mKur}^{dMan} : $mKur \rightarrow dMan$. Here GmKN is basically the full 2-subcategory of m-Kuranishi spaces X in mKur with only one m-Kuranishi neighbourhood.

• There is a full and faithful embedding $Man \hookrightarrow mKur$ taking a manifold X to the m-Kuranishi space X with topological space X and one m-Kuranishi neighbourhood $(X, 0, 0, id_X)$, where $E \to X$ is the zero vector bundle.

There is an orbifold version of this construction, Kuranishi spaces, a kind of derived orbifold. Kuranishi neighbourhoods (V, E, Γ, s, ψ) on X are a manifold V, a vector bundle E → V, a finite group Γ acting on V.E, a Γ-equivariant section s : V → E, and a homeomorphism ψ : s⁻¹(0)/Γ → X with an open subset Im ψ ⊆ X. They form a 2-category Kur.

• We can generalize all this to (m-)Kuranishi spaces with boundary, or with corners, by taking V_i to be manifolds with boundary, or corners. (Not quite as simple as this.)

The definition of m-Kuranishi space 1-morphisms of m-Kuranishi spaces 2-morphisms of m-Kuranishi spaces Tangent and obstruction spaces of m-Kuranishi spaces

Tangent and obstruction spaces of m-Kuranishi spaces

As for d-manifolds, for an m-Kuranishi space X we can define the tangent space $T_x \mathbf{X}$ and obstruction space $O_x \mathbf{X}$ for any $x \in \mathbf{X}$, where if $\mathbf{X} = (\mathbf{X}, \mathcal{K})$ with $\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ii', i, i' \in I})$ $\Lambda_{ii'i'', i,i',i'' \in I}$ and $x \in \operatorname{Im} \psi_i$ with $\psi_i^{-1}(x) = v_i \in s_i^{-1}(0) \subseteq V_i$ then as for (5.1) we have an exact sequence $0 \longrightarrow T_{X} \mathbf{X} \longrightarrow T_{v_{i}} V_{i} \xrightarrow{\mathrm{d} s_{i}|_{v_{i}}} E_{i}|_{v_{i}} \longrightarrow O_{X} \mathbf{X} \longrightarrow 0.$ If $f: X \to Y$ is a 1-morphism of m-Kuranishi spaces we get functorial linear maps $T_x \mathbf{f} : T_x \mathbf{X} \to T_y \mathbf{Y}$ and $O_x \mathbf{f} : O_x \mathbf{X} \to O_y \mathbf{Y}$. If $\eta : \boldsymbol{f} \Rightarrow \boldsymbol{g}$ is a 2-morphism then $T_{\chi}\boldsymbol{f} = T_{\chi}\boldsymbol{g}$ and $O_{\chi}\boldsymbol{f} = O_{\chi}\boldsymbol{g}$. Theorem 7.4 (a) An m-Kuranishi space X is a manifold iff $O_x X = 0$ for all $x \in X$. (b) A 1-morphism $f : X \to Y$ of m-Kuranishi spaces is étale (a local equivalence) iff $T_x \mathbf{f} : T_x \mathbf{X} \to T_y \mathbf{Y}$ and $O_x \mathbf{f} : O_x \mathbf{X} \to O_y \mathbf{Y}$ are isomorphisms for all $x \in \mathbf{X}$ with $\mathbf{f}(x) = y \in \mathbf{Y}$. And \mathbf{f} is an equivalence in **mKur** if also $f : X \to Y$ is a bijection. Dominic Joyce, Oxford University Lecture 2: Two ways to define derived manifolds 47 / 71

Derived C^{∞} -rings and derived C^{∞} -schemes	The definition of m-Kuranishi space
D-spaces and d-manifolds	1-morphisms of m-Kuranishi spaces
The 2-category of m-Kuranishi neighbourhoods	2-morphisms of m-Kuranishi spaces
The 2-category of m-Kuranishi spaces	Tangent and obstruction spaces of m-Kuranishi spaces

Although tangent and obstruction spaces $T_X X$, $O_X X$ are only a small part of the data in a derived manifold X, they tell you a lot, as Theorem 7.4 illustrates. One can often write (necessary and) sufficient conditions for things in terms of $T_X X$, $O_X X$ and $T_X f$, $O_X f$. The same thing does *not* hold for general d-spaces.