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8. Differential geometry of derived manifolds
Gluing by equivalences

A 1-morphism f : X → Y in dMan is an equivalence if there exist
g :Y→X and 2-morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY .

Theorem 8.1

Let X ,Y be d-manifolds, ∅ 6= U ⊆ X , ∅ 6= V ⊆ Y open
d-submanifolds, and f : U → V an equivalence. Suppose the
topological space Z = X ∪U=V Y made by gluing X ,Y using f is
Hausdorff. Then there exists a d-manifold Z , unique up to
equivalence, open X̂ , Ŷ ⊆ Z with Z = X̂ ∪ Ŷ , equivalences
g : X → X̂ and h : Y → Ŷ , and a 2-morphism η : g |U ⇒ h ◦ f .

The theorem generalizes to gluing families of d-manifolds
X i : i ∈ I by equivalences on double overlaps X i ∩X j , with (weak)
conditions on triple overlaps X i ∩ X j ∩ X k .
(All this holds for m-Kuranishi spaces too, as dMan ' mKur.)
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W-transversality and fibre products

Let g : X → Z , h : Y → Z be smooth maps of manifolds. Then
g , h are transverse if for all x ∈ X , y ∈ Y with g(x) = h(y) = z in
Z , the map Txg ⊕ Tyh : TxX ⊕ TyY → TzZ is surjective.
Similarly, we call 1-morphisms g : X → Z , h : Y → Z in dMan
w-transverse if for all x ∈ X , y ∈ Y with g(x) = h(y) = z in Z ,
the map Oxg ⊕ Oyh : OxX ⊕ OyY → OzZ is surjective.

Theorem 8.2

Let g : X → Z and h : Y → Z be w-transverse 1-morphisms in
dMan. Then a fibre product W = X ×g ,Z ,h Y exists in the
2-category dMan, with vdimW = vdimX + vdimY − vdimZ .

If Z is a manifold, OzZ = 0 and w-transversality is trivial, giving:

Corollary

All fibre products of the form X ×Z Y with X ,Y d-manifolds and
Z a manifold exist in dMan.
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W-submersions and submersions

A smooth map of manifolds f : X → Y is a submersion if
Tx f : TxX → Tf (x)Y is surjective for all x ∈ X .

Definition

Let f : X → Y be a 1-morphism of derived manifolds. We call f a
w-submersion if Ox f : OxX → Of (x)Y is surjective for all x ∈ X .
We call f a submersion if Tx f : TxX → Tf (x)Y is surjective and
Ox f : OxX → Of (x)Y is an isomorphism for all x ∈ X .

Theorem 8.3

Suppose g : X → Z is a w-submersion in dMan, and h : Y → Z
is any 1-morphism. Then g ,h are w-transverse, so a fibre product
W = X ×g ,Z ,h Y exists in dMan.
If g is a submersion and Y is a manifold, then W is a manifold.
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Orientations on derived manifolds

Here is one way to define orientations on ordinary manifolds. Let
X be a manifold of dimension n. The canonical bundle KX is
ΛnT ∗X . It is a real line bundle over X . An orientation o on X is
an orientation on the fibres of KX . That is, o is an equivalence
class [ι] of isomorphisms ι : OX → KX , where OX = X × R is the
trivial line bundle on X , and two isomorphisms ι, ι′ are equivalent
if ι′ = c · ι for c : X → (0,∞) a smooth positive function on X .
Isomorphisms ι : OX → KX are equivalent to non-vanishing
n-forms ω = ι(1) on X .
The opposite orientation is −o = [−ι].
An oriented manifold (X , o) is a manifold X with orientation o.
Usually we just say X is an oriented manifold, and write −X for
(X ,−o) with the opposite orientation.

54 / 71 Dominic Joyce, Oxford University Lecture 3: Applications; moduli spaces and virtual cycles



Differential geometry of derived manifolds
Bordism, virtual classes, and virtual chains

Derived manifold/orbifold structures on moduli spaces

Gluing by equivalences
W-transversality and fibre products
Orientations on derived manifolds

There is an analogue of canonical bundles for derived manifolds:

Theorem 8.4

(a) Every d-manifold or m-Kuranishi space X has a canonical
bundle KX , a topological real line bundle over the topological
space X , natural up to canonical isomorphism, with
KX |x ∼= ΛtopT ∗x X ⊗ ΛtopOxX for all x ∈ X .
(b) If f : X → Y is an étale 1-morphism (e.g. an equivalence),
there is a canonical, functorial isomorphism Kf : KX → f ∗(KY ).
If f , g : X → Y are 2-isomorphic then Kf = Kg .
(c) If (Vi ,Ei , si , ψi ) is an m-Kuranishi neighbourhood on X , there
is a canonical isomorphism

ψ∗i (KX ) ∼=
(
ΛdimViT ∗Vi ⊗ ΛrankEiEi

)
|s−1

i (0).

To prove the theorem for m-Kuranishi spaces, we show that the
line bundles

(
ΛdimViT ∗Vi ⊗ ΛrankEiEi

)
|s−1

i (0) on Imψi ⊆ X can be

glued by canonical isomorphisms on overlaps Imψi ∩ Imψj .
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Definition

An orientation o on a d-manifold or m-Kuranishi space X is an
equivalence class [ι] of isomorphisms ι : OX → KX , where OX is
the trivial line bundle on X , and two isomorphisms ι, ι′ are
equivalent if ι′ = c · ι for c : X → (0,∞) continuous.

On a single m-Kuranishi neighbourhood (Vi ,Ei , si , ψi ) on X , an
orientation is equivalent to an orientation (near s−1

i (0)) on the
total space of Ei . We can do oriented w-transverse fibre products:

Theorem 8.5

Let W = X ×g ,Z ,h Y be a w-transverse fibre product in dMan, as
in Theorem 8.2, with projections e : W → X , f : W → Y . Then
there is a natural isomorphism of line bundles on W

KW ∼= e∗(KX )⊗ f ∗(KY )⊗ (g ◦ e)∗(KZ )∗.

Hence orientations on X ,Y ,Z induce an orientation on W .
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9. Bordism, virtual classes, and virtual chains

In many important areas of geometry to do with enumerative
invariants (e.g. Donaldson and Seiberg–Witten invariants of
4-manifolds, Gromov–Witten invariants of symplectic manifolds,
Donaldson–Thomas invariants of Calabi–Yau 3-folds, . . . ), we form
a moduli space M with some geometric structure, and we want to
‘count’ M to get a number in Z or Q (if M has no boundary and
dimension 0), or a homology class (‘virtual class’) [M]virt in some
homology theory (if M has no boundary and dimension > 0).
For more complicated theories (Floer homology, Fukaya
categories), M has boundary, and then we must define a chain
[M]virt in the chain complex (C∗, ∂) of some homology theory (a
‘virtual chain’), where ideally we want ∂[M]virt = [∂M]virt.
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In general M is not a manifold (or orbifold). However, the point is
to treat M as if it were a compact, oriented manifold, so that in
particular, if ∂M = ∅ then M has a fundamental class [M] in the
homology group HdimM(M;Z).
All of these ‘counting invariant’ theories over R or C, in both
differential and algebraic geometry, can be understood using
derived differential geometry. The point is that the moduli spaces
M should be compact, oriented derived manifolds or orbifolds
(possibly with corners). Then we show that compact, oriented
derived manifolds or orbifolds (with corners) have virtual classes
(virtual chains), and these are used to define the invariants.
There is an easy way to define virtual classes for compact, oriented
derived manifolds without boundary, using bordism, so we explain
this first. It does not work as well in the orbifold case, though.
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Classical bordism groups

Let Y be a manifold. Define the bordism group Bk(Y ) to have
elements ∼-equivalence classes [X , f ] of pairs (X , f ), where X is a
compact oriented k-manifold without boundary and f : X → Y is
smooth, and (X , f ) ∼ (X ′, f ′) if there exists a compact, oriented
(k + 1)-manifold with boundary W and a smooth map e : W → Y
with ∂W ∼= X q−X ′ and e|∂W ∼= f q f ′. It is an abelian group,
with addition [X , f ] + [X ′, f ′] = [X q X ′, f q f ′].
If Y is oriented of dimension n, there is a supercommutative,
associative intersection product • : Bk(Y )× Bl(Y )→ Bk+l−n(Y )
given by [X , f ] • [X ′, f ′] = [X ×f ,Y ,f ′ X

′, πY ], choosing X , f , X ′, f ′

in their bordism classes with f : X → Y , f ′ : X ′ → Y transverse.
Bordism is a generalized homology theory, i.e. it satisfies all the
Eilenberg–Steenrod axioms except the Dimension Axiom.
There is a natural morphism Πhom

bo : Bk(Y )→ Hk(Y ;Z) given by
Πhom
bo : [X , f ] 7→ f∗([X ]), for [X ] ∈ Hk(X ;Z) the fundamental class.
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Derived bordism groups

Similarly, define the derived bordism group dBk(Y ) to have
elements ≈-equivalence classes [X , f ] of pairs (X , f ), where X is a
compact oriented d-manifold with vdimX = k and f : X → Y is a
1-morphism in dMan, and (X , f ) ≈ (X ′, f ′) if there exists a
compact, oriented d-manifold with boundary W with
vdimW = k + 1 and a 1-morphism e : W → Y in dManb with
∂W ' X q−X ′ and e|∂W ∼= f q f ′. It is an abelian group, with
[X , f ] + [X ′, f ′] = [X q X , f q f ′].
If Y is oriented of dimension n, there is a supercommutative,
associative intersection product • : dBk(Y )× dBl(Y )→
dBk+l−n(Y ) given by [X , f ] • [X ′, f ′] = [X ×f ,Y ,f ′ X

′,πY ], with
no transversality condition on X , f , X ′, f ′.
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There is a morphism Πdbo
bo : Bk(Y )→dBk(Y ) mapping [X , f ] 7→ [X , f ].

Theorem 9.1 (First version due to David Spivak.)

Πdbo
bo :Bk(Y )→dBk(Y ) is an isomorphism for all k , with

dBk(Y ) = 0 for k < 0.

This holds as every d-manifold can be perturbed to a manifold.

Composing (Πdbo
bo )−1 with Πhom

bo : Bk(Y )→ Hk(Y ;Z) gives a
morphism Πhom

dbo :dBk(Y )→Hk(Y ;Z). We can interpret this as a
virtual class map for compact, oriented d-manifolds. In particular,
this is an easy proof that the geometric structure on d-manifolds is
strong enough to define virtual classes.
We can also define orbifold bordism Borb

k (Y ) and derived orbifold
bordism dBorb

k (Y ), replacing (derived) manifolds by (derived)
orbifolds. However, the natural morphism Borb

k (Y )→ dBorb
k (Y ) is

not an isomorphism, as derived orbifolds cannot always be
perturbed to orbifolds.
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A virtual class for X in the homology of X?

In algebraic geometry, given a moduli space M, it is usual to
define the virtual class in the (Chow) homology HvdimM(M;Q).
But in differential geometry, given M, usually we find a manifold
Y with a map M→ Y , and define the virtual class [M]virt in the
(ordinary) homology HvdimM(Y ;Q). This is because
differential-geometric techniques for defining [M]virt involve
perturbing M, which changes it as a topological space.

Example

Define f : R→ R by f (x) = e−x
−2

sin(π/x) for x 6= 0, and
f (0) = 0. Then f is smooth. Define X = R×f ,R,0 ∗. Then X is a
compact, oriented derived manifold without boundary, with
vdimX = 0. As a topological space we have

X =
{

1/n : 0 6= n ∈ Z
}
q {0}.

Then no virtual class exists for X in ordinary homology H0(X ;Z).
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Virtual classes in Steenrod or Čech homology

Steenrod homology HSt
∗ (X ;Z) (see J. Milnor, ‘On the Steenrod

homology theory’, Milnor collected works IV, 2009) is a homology
theory of topological spaces. For nice topological spaces X (e.g.
manifolds, or finite simplicial complexes) it equals ordinary (e.g.
singular) homology H∗(X ;Z). It has a useful limiting property:

Theorem 9.2

Let X be a compact subset of a metric space Y , and suppose
W1,W2, . . . are open neighbourhoods of X in Y with

⋂
n>1 Wn =X

and W1 ⊇W2 ⊇ · · · . Then HSt
k (X ;Z) ∼= lim←− n>1 H

St
k (Wn;Z).

Čech homology Ȟ∗(X ;Q) over Q has the same property.
Singular homology does not.
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Following an idea due to Dusa McDuff, we can use this to define a
virtual class [X ]virt for a compact oriented d-manifold X in
HSt
vdimX (X ;Z) or Ȟ∗(X ;Q). We may write X ' SV ,E ,s by

Corollary 9.8. This gives a homeomorphism X ∼= s−1(0), for
s−1(0) a compact subset of V . Choose open neighbourhoods
W1,W2, . . . of s−1(0) in V with

⋂
n>1 Wn =s−1(0) and

W1 ⊇W2 ⊇ · · · . The inclusion i n : X ↪→Wn defines a d-bordism
class [X , i n] ∈ dBvdimX (Wn), and hence a homology class
Πhom
dbo

(
[X , i n]

)
in HvdimX (Wn;Z) ∼= HSt

vdimX (Wn;Z). These are
preserved by the inclusions Wn+1 ↪→Wn, and so define a class in
the inverse limit lim←− n>1 H

St
k (Wn;Z), and thus, by Theorem 9.2, a

virtual class [X ]virt in HSt
vdimX (X ;Z) or ȞvdimX (X ;Q).
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More about virtual classes and virtual chains

• If X is a compact, oriented derived orbifold, we can also define a
virtual class [X ]virt in ȞvdimX (X ;Q), though the process is more
complicated.
• If X is a compact oriented derived manifold or orbifold with
corners, and Y is a manifold or orbifold, and f : X → Y is a
1-morphism, then after making some arbitrary choices, one can
define a virtual chain [X ]virt of X in the chains CvdimX (Y ;Q) of a
suitable homology theory of Y . This is important for Floer
theories, Fukaya categories, Symplectic Field Theory, and so on.
Constructing virtual chains is complicated. Ideally one wants to
arrange that ∂[X ]virt = [∂X ]virt, and several other properties. In
arXiv:1509.05672 I define a new homology theory of manifolds,
M-homology MH∗(Y ;Q), which is isomorphic to ordinary
homology H∗(Y ;Q), but has good chain-level behaviour, and is
designed for forming virtual chains of derived manifolds/orbifolds.
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10. Derived manifold/orbifold structures on moduli spaces

Theorem 10.1

Let V be a Banach manifold, E → V a Banach vector bundle, and
s : V → E a smooth Fredholm section, with constant Fredholm
index n ∈ Z. Then there is a canonical d-manifold X with
topological space X = s−1(0) and vdimX = n.

Nonlinear elliptic equations, when written as maps between suitable
Hölder or Sobolev spaces, are the zeroes of Fredholm sections of a
Banach vector bundle over a Banach manifold. Thus we have:

Corollary 10.2

Let M be a moduli space of solutions of a nonlinear elliptic
equation on a compact manifold, with fixed topological invariants.
Then M extends to a d-manifold M.

The virtual dimension of M at x ∈M is the index of the
linearization of the elliptic p.d.e. at x , given by the A–S Index Theorem.
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Truncation functors from other structures

Theorem 10.3

Suppose X is a Hausdorff, second countable topological space
equipped with any of the following geometric structures, each of
constant virtual dimension n ∈ Z :
(a) A C-scheme or Deligne–Mumford C-stack with perfect

obstruction theory in the sense of Behrend and Fantechi
(where X is the underlying complex analytic space).

(b) A quasi-smooth derived C-scheme or D–M C-stack.
(c) An M-polyfold or polyfold Fredholm structure in the sense of

Hofer, Wysocki and Zehnder.
(d) A Kuranishi structure in the sense of Fukaya–Oh–Ohta–Ono.
(e) A Kuranishi atlas in the sense of McDuff and Wehrheim.

Then X may be given the structure of a d-manifold or d-orbifold,
natural up to equivalence in dMan,dOrb, with vdimX = n. We
can also allow corners in (c)–(e), with X ∈ dManc,dOrbc.
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−2-shifted symplectic derived C-schemes

Theorem 10.4 (Borisov–Joyce arXiv:1504.00690)

Suppose X is a derived C-scheme with a −2-shifted symplectic
structure ωX in the sense of Pantev–Toën–Vaquié–Vezzosi
arXiv:1111.3209. Then we can define a d-manifold X dm with the
same underlying topological space, and virtual dimension
vdimR X dm = 1

2 vdimR X , i.e. half the expected dimension.

Note that X is not quasi-smooth, LX lies in the interval [−2, 0], so
this does not follow from Theorem 10.3(b). Also X dm is only
canonical up to bordisms fixing the underlying topological space.
Derived moduli schemes or stacks of coherent sheaves on a
Calabi–Yau m-fold are (2−m)-shifted symplectic, so this gives:

Corollary 10.5

Stable moduli schemes of coherent sheaves M with fixed Chern
character on a Calabi–Yau 4-fold can be made into d-manifolds M.
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Combining Theorems 10.3 and 10.4 with results from the literature
shows that many interesting moduli spaces over R or C, in both
differential and algebraic geometry, have the structure of
d-manifolds or d-orbifolds, natural up to equivalence. This includes
almost every moduli space used in any enumerative invariant
problem over R or C.
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Moduli 2-functors

The approaches to moduli spaces in Differential and Algebraic
Geometry are very different. In Differential Geometry one
constructs the moduli space, as a topological space covered by an
atlas of charts. In Algebraic Geometry one writes down a moduli
functor F : C → SchK, where objects O ∈ C with F (O) = B are
families of objects in the moduli problem over a base K-scheme B,
and then prove this is equivalent to the functor π : SchM → SchK
for some K-scheme M, the moduli scheme.
I propose that in Derived Differential Geometry one should write
down a moduli 2-functor F : C → GmKN, where C is a 2-category
and GmKN the 2-category of global m-Kuranishi neighbourhoods,
where objects O in C with F (O) = (V ,E , s) are families of moduli
objects over a base m-Kuranishi neighbourhood (V ,E , s), and
prove this is equivalent (after stackification) to
π : mKNM → GmKN for some m-Kuranishi space M, with
mKNM the 2-category of m-Kuranishi neighbourhoods on M.
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Some advantages of the moduli 2-functor approach:

Many current presentations of moduli spaces (e.g. FOOO,
HWZ) are long, complicated ad hoc constructions. The effort
is mostly in the definition. It is unclear how natural they are.
Our definition makes the naturality clear. We have a short
definition (the moduli 2-functor), followed by a difficult
theorem (the 2-functor is represented by an (m-)Kuranishi space).

To prove representability we only have to worry about single
(m-)Kuranishi neighbourhoods, not double or triple overlaps.

The definition involves only finite-dimensional families of
smooth objects – no Hölder or Sobolev spaces, etc. (though
these will be used in the proof of representability). This
enables us to sidestep some technical issues in current
approaches, e.g. sc-smoothness in polyfolds.

In our approach, the existence of natural morphisms between
moduli spaces (e.g. ‘forgetful morphisms’ in Symplectic
Geometry forgetting a marked point) is essentially trivial.
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